1
|
Lee DS, Das AK, Methela NJ, Yun BW. Interaction Between Nitric Oxide and Silicon on Leghaemoglobin and S-Nitrosothiol Levels in Soybean Nodules. Biomolecules 2024; 14:1417. [PMID: 39595593 PMCID: PMC11592487 DOI: 10.3390/biom14111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Nitrogen fixation in legume nodules is crucial for plant growth and development. Therefore, this study aims to investigate the effects of nitric oxide [S-nitrosoglutathione (GSNO)] and silicon [sodium metasilicate (Si)], both individually and in combination, on soybean growth, nodule formation, leghaemoglobin (Lb) synthesis, and potential post-translational modifications. At the V1 stage, soybean plants were treated for 2 weeks with 150 µM GSNO, and Si at concentrations of 1 mM, 2 mM, and 4 mM. The results showed that NO and Si enhance the nodulation process by increasing phenylalanine ammonia-lyase activity and Nod factors (NIP2-1), attracting rhizobia and accelerating nodule formation. This leads to a greater number and larger diameter of nodules. Individually, NO and Si support the synthesis of Lb and leghaemoglobin protein (Lba) expression, ferric leghaemoglobin reductases (FLbRs), and S-nitrosoglutathione reductase (GSNOR). However, when used in combination, NO and Si inhibit these processes, leading to elevated levels of S-nitrosothiols in the roots and nodules. This combined inhibition may potentially induce post-translational modifications in FLbRs, pivotal for the reduction of Lb3+ to Lb2+. These findings underscore the critical role of NO and Si in the nodulation process and provide insight into their combined effects on this essential plant function.
Collapse
Affiliation(s)
| | | | | | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (D.-S.L.); (A.K.D.); (N.J.M.)
| |
Collapse
|
2
|
Sandhu AK, Brown MR, Subramanian S, Brözel VS. Bradyrhizobium diazoefficiens USDA 110 displays plasticity in the attachment phenotype when grown in different soybean root exudate compounds. Front Microbiol 2023; 14:1190396. [PMID: 37275139 PMCID: PMC10233038 DOI: 10.3389/fmicb.2023.1190396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Bradyrhizobium diazoefficiens, a symbiotic nitrogen fixer for soybean, forms nodules after developing a symbiotic association with the root. For this association, bacteria need to move toward and attach to the root. These steps are mediated by the surface and phenotypic cell properties of bacteria and secreted root exudate compounds. Immense work has been carried out on nodule formation and nitrogen fixation, but little is known about the phenotype of these microorganisms under the influence of different root exudate chemical compounds (RECCs) or how this phenotype impacts the root attachment ability. Methods To address this knowledge gap, we studied the impact of 12 different RECCs, one commonly used carbon source, and soil-extracted solubilized organic matter (SESOM) on attachment and attachment-related properties of B. diazoefficiens USDA110. We measured motility-related properties (swimming, swarming, chemotaxis, and flagellar expression), attachment-related properties (surface hydrophobicity, biofilm formation, and attachment to cellulose and soybean roots), and surface polysaccharide properties (colony morphology, exopolysaccharide quantification, lectin binding profile, and lipopolysaccharide profiling). Results and discussion We found that USDA 110 displays a high degree of surface phenotypic plasticity when grown on the various individual RECCs. Some of the RECCs played specific roles in modulating the motility and root attachment processes. Serine increased cell surface hydrophobicity and root and cellulose attachment, with no EPS formed. Gluconate and lactate increased EPS production and biofilm formation, while decreasing hydrophobicity and root attachment, and raffinose and gentisate promoted motility and chemotaxis. The results also indicated that the biofilm formation trait on hydrophilic surfaces (polystyrene) cannot be related to the attachment ability of Bradyrhizobium to the soybean root. Among the tested phenotypic properties, bacterial cell surface hydrophobicity was the one with a significant impact on root attachment ability. We conclude that USDA 110 displays surface plasticity properties and attachment phenotype determined by individual RECCs from the soybean. Conclusions made based on its behavior in standard carbon sources, such as arabinose or mannitol, do not hold for its behavior in soil.
Collapse
Affiliation(s)
- Armaan Kaur Sandhu
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - McKenzie Rae Brown
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Senthil Subramanian
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Volker S. Brözel
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Yun J, Wang C, Zhang F, Chen L, Sun Z, Cai Y, Luo Y, Liao J, Wang Y, Cha Y, Zhang X, Ren Y, Wu J, Hasegawa PM, Tian C, Su H, Ferguson BJ, Gresshoff PM, Hou W, Han T, Li X. A nitrogen fixing symbiosis-specific pathway required for legume flowering. SCIENCE ADVANCES 2023; 9:eade1150. [PMID: 36638166 PMCID: PMC9839322 DOI: 10.1126/sciadv.ade1150] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 05/26/2023]
Abstract
Symbiotic nitrogen fixation boosts legume growth and production in nitrogen-poor soils. It has long been assumed that fixed nitrogen increases reproductive success, but until now, the regulatory mechanism was unknown. Here, we report a symbiotic flowering pathway that couples symbiotic and nutrient signals to the flowering induction pathway in legumes. We show that the symbiotic microRNA-microRNA172c (miR172c) and fixed nitrogen systemically and synergistically convey symbiotic and nutritional cues from roots to leaves to promote soybean (Glycine max) flowering. The combinations of symbiotic miR172c and local miR172c elicited by fixed nitrogen and development in leaves activate florigen-encoding FLOWERING LOCUS T (FT) homologs (GmFT2a/5a) by repressing TARGET OF EAT1-like 4a (GmTOE4a). Thus, FTs trigger reproductive development, which allows legumes to survive and reproduce under low-nitrogen conditions.
Collapse
Affiliation(s)
- Jinxia Yun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Can Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengrong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengxi Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanqing Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junwen Liao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongliang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Cha
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ya Ren
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Paul M. Hasegawa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Changfu Tian
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Soil Microbiology, and Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huanan Su
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Brett J. Ferguson
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter M. Gresshoff
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| |
Collapse
|
4
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The worldwide increase in population continues to threaten the sustainability of agricultural systems since agricultural output must be optimized to meet the global rise in food demand. Sub-Saharan Africa (SSA) is among the regions with a fast-growing population but decreasing crop productivity. Pests and diseases, as well as inadequate nitrogen (N) levels in soils, are some of the biggest restrictions to agricultural production in SSA. N is one of the most important plant-limiting elements in agricultural soils, and its deficit is usually remedied by using nitrogenous fertilizers. However, indiscriminate use of these artificial N fertilizers has been linked to environmental pollution calling for alternative N fertilization mechanisms. Soybean (Glycine max) is one of the most important legumes in the world. Several species of rhizobia from the four genera, Bardyrhizobium, Rhizobium, Mesorhizobium, and Ensifer (formerly Sinorhizobium), are observed to effectively fix N with soybean as well as perform various plant-growth promoting (PGP) functions. The efficiency of the symbiosis differs with the type of rhizobia species, soybean cultivar, and biotic factors. Therefore, a complete understanding of the ecology of indigenous soybean-nodulating rhizobia concerning their genetic diversity and the environmental factors associated with their localization and dominance in the soil is important. This review aimed to understand the potential of indigenous soybean-nodulating rhizobia through a synthesis of the literature regarding their characterization using different approaches, genetic diversity, symbiotic effectiveness, as well as their functions in biological N fixation (BNF) and biocontrol of soybean soil-borne pathogens.
Collapse
|
5
|
Naithani S, Komath SS, Nonomura A, Govindjee G. Plant lectins and their many roles: Carbohydrate-binding and beyond. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153531. [PMID: 34601337 DOI: 10.1016/j.jplph.2021.153531] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Lectins are ubiquitous proteins that reversibly bind to specific carbohydrates and, thus, serve as readers of the sugar code. In photosynthetic organisms, lectin family proteins play important roles in capturing and releasing photosynthates via an endogenous lectin cycle. Often, lectin proteins consist of one or more lectin domains in combination with other types of domains. This structural diversity of lectins is the basis for their current classification, which is consistent with their diverse functions in cell signaling associated with growth and development, as well as in the plant's response to biotic, symbiotic, and abiotic stimuli. Furthermore, the lectin family shows evolutionary expansion that has distinct clade-specific signatures. Although the function(s) of many plant lectin family genes are unknown, studies in the model plant Arabidopsis thaliana have provided insights into their diverse roles. Here, we have used a biocuration approach rooted in the critical review of scientific literature and information available in the public genomic databases to summarize the expression, localization, and known functions of lectins in Arabidopsis. A better understanding of the structure and function of lectins is expected to aid in improving agricultural productivity through the manipulation of candidate genes for breeding climate-resilient crops, or by regulating metabolic pathways by applications of plant growth regulators.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA.
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arthur Nonomura
- Department of Chemistry, Northern Arizona University, South San Francisco Street, Flagstaff, AZ, 86011, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
7
|
Dong W, Song Y. The Significance of Flavonoids in the Process of Biological Nitrogen Fixation. Int J Mol Sci 2020; 21:E5926. [PMID: 32824698 PMCID: PMC7460597 DOI: 10.3390/ijms21165926] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza-Rhizobium-legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.
Collapse
Affiliation(s)
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
8
|
Wakimoto T, Nakagishi S, Matsukawa N, Tani S, Kai K. A Unique Combination of Two Different Quorum Sensing Systems in the β-Rhizobium Cupriavidus taiwanensis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1876-1884. [PMID: 32484353 DOI: 10.1021/acs.jnatprod.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cupriavidus taiwanensis LMG19424, a β-rhizobial symbiont of Mimosa pudica, harbors phc and tqs quorum sensing (QS), which are the homologous cell-cell communication systems previously identified from the plant pathogen Ralstonia solanacearum and the human pathogen Vibrio cholerae, respectively. However, there has been no experimental evidence reported that these QS systems function in C. taiwanensis LMG19424. We identified (R)-methyl 3-hydroxymyristate (3-OH MAME) and (S)-3-hydroxypentadecan-4-one (C15-AHK) as phc and tqs QS signals, respectively, and characterized these QS systems. The expression of the signal synthase gene phcB and tqsA in E. coli BL21(DE3) resulted in the high production of 3-OH MAME and C15-AHK, respectively. Their structures were elucidated by comparison of EI-MS data and GC/chiral LC retention times with synthetic standards. The deletion of phcB reduced cell motility and increased biofilm formation, and the double deletion of phcB/tqsA caused the accumulation of the metal chelator coproporphyrin III in its mutant culture. Although the deletion of phcB and tqsA slightly reduced its ability to nodulate on aseptically grown seedlings of M. pudica, there was no significant difference in nodule formation between LMG19424 and its QS mutants when commercial soils were used. Taken together, this is the first example of the simultaneous production of 3-OH MAME/C15-AHK as QS signals in a bacterial species, and the importance of the phc/tqs QS systems in the saprophytic stage of C. taiwanensis LMG19424 is suggested.
Collapse
Affiliation(s)
- Takayuki Wakimoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shiori Nakagishi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Nao Matsukawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|
10
|
Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S. InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species. Front Microbiol 2018; 9:3155. [PMID: 30619219 PMCID: PMC6305347 DOI: 10.3389/fmicb.2018.03155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean (Glycine max cv. BARC2) and unable to nodulate either plant. This incompatibility is due to the presence of a functional type III secretion system (T3SS) that translocates effector protein into host cells. We previously identified five genes in B. elkanii that are responsible for its incompatibility with KPS1 plants. Among them, a novel gene designated as innB exhibited some characteristics associated with the T3SS and was found to be responsible for the restriction of nodulation on KPS1. In the present study, we further characterized innB by analysis of gene expression, protein secretion, and symbiotic phenotypes. The innB gene was found to encode a hypothetical protein that is highly conserved among T3SS-harboring rhizobia. Similar to other rhizobial T3SS-associated genes, the expression of innB was dependent on plant flavonoids and a transcriptional regulator TtsI. The InnB protein was secreted via the T3SS and was not essential for secretion of other nodulation outer proteins. In addition, T3SS-dependent translocation of InnB into nodule cells was confirmed by an adenylate cyclase assay. According to inoculation tests using several Vigna species, InnB promoted nodulation of at least one V. mungo cultivar. These results indicate that innB encodes a novel type III effector controlling symbiosis with Vigna species.
Collapse
Affiliation(s)
- Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Safirah T N Ratu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Kirienko AN, Porozov YB, Malkov NV, Akhtemova GA, Le Signor C, Thompson R, Saffray C, Dalmais M, Bendahmane A, Tikhonovich IA, Dolgikh EA. Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. PLANTA 2018; 248:1101-1120. [PMID: 30043288 DOI: 10.1007/s00425-018-2944-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/29/2018] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.
Collapse
Affiliation(s)
- Anna N Kirienko
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Yuri B Porozov
- ITMO University, 49 Kronverksky Av., St. Petersburg, 197101, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, Moscow, 119991, Russia
| | - Nikita V Malkov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Gulnara A Akhtemova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Christine Le Signor
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Richard Thompson
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Christine Saffray
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405, Orsay, France
| | - Marion Dalmais
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405, Orsay, France
| | | | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia.
| |
Collapse
|
12
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
13
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
14
|
Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Vigna radiata. Genes (Basel) 2017; 8:genes8120374. [PMID: 29292795 PMCID: PMC5748692 DOI: 10.3390/genes8120374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
The establishment of a root nodule symbiosis between a leguminous plant and a rhizobium requires complex molecular interactions between the two partners. Compatible interactions lead to the formation of nitrogen-fixing nodules, however, some legumes exhibit incompatibility with specific rhizobial strains and restrict nodulation by the strains. Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean cultivars carrying the Rj4 allele. Here, we explored genetic loci in USDA61 that determine incompatibility with V. radiata KPS1. We identified five novel B. elkanii genes that contribute to this incompatibility. Four of these genes also control incompatibility with soybean cultivars carrying the Rj4 allele, suggesting that a common mechanism underlies nodulation restriction in both legumes. The fifth gene encodes a hypothetical protein that contains a tts box in its promoter region. The tts box is conserved in genes encoding the type III secretion system (T3SS), which is known for its delivery of virulence effectors by pathogenic bacteria. These findings revealed both common and unique genes that are involved in the incompatibility of B. elkanii with mung bean and soybean. Of particular interest is the novel T3SS-related gene, which causes incompatibility specifically with mung bean cv. KPS1.
Collapse
|
15
|
Figueredo MS, Tonelli ML, Ibáñez F, Morla F, Cerioni G, del Carmen Tordable M, Fabra A. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiol Res 2017; 197:65-73. [DOI: 10.1016/j.micres.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/07/2017] [Indexed: 10/20/2022]
|
16
|
Clavijo F, Diedhiou I, Vaissayre V, Brottier L, Acolatse J, Moukouanga D, Crabos A, Auguy F, Franche C, Gherbi H, Champion A, Hocher V, Barker D, Bogusz D, Tisa LS, Svistoonoff S. The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. THE NEW PHYTOLOGIST 2015; 208:887-903. [PMID: 26096779 DOI: 10.1111/nph.13506] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 05/26/2023]
Abstract
Root nodule symbioses (RNS) allow plants to acquire atmospheric nitrogen by establishing an intimate relationship with either rhizobia, the symbionts of legumes or Frankia in the case of actinorhizal plants. In legumes, NIN (Nodule INception) genes encode key transcription factors involved in nodulation. Here we report the characterization of CgNIN, a NIN gene from the actinorhizal tree Casuarina glauca using both phylogenetic analysis and transgenic plants expressing either ProCgNIN::reporter gene fusions or CgNIN RNAi constructs. We have found that CgNIN belongs to the same phylogenetic group as other symbiotic NIN genes and CgNIN is able to complement a legume nin mutant for the early steps of nodule development. CgNIN expression is correlated with infection by Frankia, including preinfection stages in developing root hairs, and is induced by culture supernatants. Knockdown mutants were impaired for nodulation and early root hair deformation responses were severely affected. However, no mycorrhizal phenotype was observed and no induction of CgNIN expression was detected in mycorrhizas. Our results indicate that elements specifically required for nodulation include NIN and possibly related gene networks derived from the nitrate signalling pathways.
Collapse
Affiliation(s)
- Fernando Clavijo
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Issa Diedhiou
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles (ISRA)/Université Cheikh Anta Diop (UCAD), BP 1386, Dakar, Sénégal
| | - Virginie Vaissayre
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Laurent Brottier
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| | - Jennifer Acolatse
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Daniel Moukouanga
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Amandine Crabos
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Florence Auguy
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Claudine Franche
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Hassen Gherbi
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| | - Antony Champion
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles (ISRA)/Université Cheikh Anta Diop (UCAD), BP 1386, Dakar, Sénégal
| | - Valerie Hocher
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| | - David Barker
- Laboratory of Plant-Microbe Interactions, Institut National de la Recherche Agronomique (UMR 441), Centre National de la Recherche Scientifique (UMR 2594), Castanet-Tolosan, France
| | - Didier Bogusz
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824-2617, USA
| | - Sergio Svistoonoff
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles (ISRA)/Université Cheikh Anta Diop (UCAD), BP 1386, Dakar, Sénégal
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| |
Collapse
|
17
|
Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T, Sato S, Okazaki S. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele. Appl Environ Microbiol 2015; 81:6710-7. [PMID: 26187957 PMCID: PMC4561682 DOI: 10.1128/aem.01942-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 11/20/2022] Open
Abstract
Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.
Collapse
Affiliation(s)
- Omar M Faruque
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiharu Fujii
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
18
|
Haichar FEZ, Santaella C, Heulin T, Achouak W. Root exudates mediated interactions belowground. SOIL BIOLOGY AND BIOCHEMISTRY 2014; 77:69-80. [PMID: 0 DOI: 10.1016/j.soilbio.2014.06.017] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
19
|
Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T, Nishioka M, Takahashi M, Ishimoto M, Katayose Y, Kaga A, Harada K, Kouchi H, Saeki Y, Umehara Y. A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean. PLANT & CELL PHYSIOLOGY 2014; 55:1679-89. [PMID: 25059584 DOI: 10.1093/pcp/pcu099] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Soybeans exhibit a nitrogen-fixing symbiosis with soil bacteria of the genera Bradyrhizobium and Ensifer/Sinorhizobium in a unique organ, the root nodule. It is well known that nodulation of soybean is controlled by several host genes referred to as Rj (rj) genes. Among these genes, a dominant allele, Rj4, restricts nodulation with specific bacterial strains such as B. elkanii USDA61 and B. japonicum Is-34. These incompatible strains fail to invade the host epidermal cells as revealed by observations using DsRed-labeled bacteria. Here, we describe the molecular identification of the Rj4 gene by using map-based cloning with several mapping populations. The Rj4 gene encoded a thaumatin-like protein (TLP) that belongs to pathogenesis-related (PR) protein family 5. In rj4/rj4 genotype soybeans and wild soybeans, we found six missense mutations and two consecutive amino acid deletions in the rj4 gene as compared with the Rj4 allele. We also found, using hairy root transformation, that the rj4/rj4 genotype soybeans were fully complemented by the expression of the Rj4 gene. Whereas the expression of many TLPs and other PR proteins is induced by biotic/abiotic stress, Rj4 gene expression appears to be constitutive in roots including root nodules.
Collapse
Affiliation(s)
- Masaki Hayashi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Sokichi Shiro
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, Miyazaki, 889-2192 Japan Department of Agriculture and Forest Sciences, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504 Japan
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Satomi Mori-Hosokawa
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Harumi Sasaki-Yamagata
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Takashi Sayama
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Miki Nishioka
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Masakazu Takahashi
- National Agriculture and Food Research Organization, Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto, 861-1192 Japan
| | - Masao Ishimoto
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yuichi Katayose
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Akito Kaga
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Kyuya Harada
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Hiroshi Kouchi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan Department of Life Science, International Christian University, 3-10-2, Osawa, Mitaka, Tokyo, 181-8585 Japan
| | - Yuichi Saeki
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, Miyazaki, 889-2192 Japan
| | - Yosuke Umehara
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| |
Collapse
|
20
|
Sarma K, Dehury B, Sahu J, Sarmah R, Sahoo S, Sahu M, Sen P, Modi MK, Barooah M. A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance. J Mol Model 2012; 18:4761-80. [DOI: 10.1007/s00894-012-1470-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
|
21
|
Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. PLANT SIGNALING & BEHAVIOR 2012; 7:636-41. [PMID: 22580697 PMCID: PMC3442858 DOI: 10.4161/psb.20039] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed.
Collapse
Affiliation(s)
- Khalid Abdel-Lateif
- Equipe Rhizogenèse; UMR DIADE (IRD, UM2); Institut de Recherche pour le Développement (IRD); Montpellier, France
| | - Didier Bogusz
- Equipe Rhizogenèse; UMR DIADE (IRD, UM2); Institut de Recherche pour le Développement (IRD); Montpellier, France
| | - Valérie Hocher
- Equipe Rhizogenèse; UMR DIADE (IRD, UM2); Institut de Recherche pour le Développement (IRD); Montpellier, France
| |
Collapse
|
22
|
Salavati A, Bushehri AAS, Taleei A, Hiraga S, Komatsu S. A comparative proteomic analysis of the early response to compatible symbiotic bacteria in the roots of a supernodulating soybean variety. J Proteomics 2012; 75:819-32. [PMID: 22005398 DOI: 10.1016/j.jprot.2011.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/04/2011] [Accepted: 09/26/2011] [Indexed: 02/03/2023]
Abstract
To reveal the processes involved in the early stages of symbiosis between soybean plants and root nodule bacteria, we conducted a proteomic analysis of the response to bacterial inoculation in the roots of supernodulating (En-b0-1) and non-nodulating (En1282) varieties, and their parental normal-nodulating variety (Enrei). A total of 56 proteins were identified from 48 differentially expressed protein spots in normal-nodulating variety after bacterial inoculation. Among 56 proteins, metabolism- and energy production-related proteins were upregulated in supernodulating and downregulated in non-nodulating varieties compared to normal-nodulating variety. The supernodulating and non-nodulating varieties responded oppositely to bacterial inoculation with respect to the expression of 11 proteins. Seven proteins of these proteins was downregulated in supernodulating varieties compared to non-nodulating variety, but expression of proteasome subunit alpha type 6, gamma glutamyl hydrolase, glucan endo-1,3-beta glucosidase, and nodulin 35 was upregulated. The expression of seven proteins mirrored the degree of nodule formation. At the transcript level, expression of stem 31kDa glycoprotein, leucine aminopeptidase, phosphoglucomutase, and peroxidase was downregulated in the supernodulating variety compared to the non-nodulating variety, and their expression in the normal-nodulating variety was intermediate. These results suggest that suppression of the autoregulatory mechanism in the supernodulating variety might be due to negative regulation of defense and signal transduction-related processes.
Collapse
Affiliation(s)
- Afshin Salavati
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | | | | | | | | |
Collapse
|
23
|
Hayashi M, Saeki Y, Haga M, Harada K, Kouchi H, Umehara Y. Rj (rj) genes involved in nitrogen-fixing root nodule formation in soybean. BREEDING SCIENCE 2012; 61:544-53. [PMID: 23136493 PMCID: PMC3406786 DOI: 10.1270/jsbbs.61.544] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 05/06/2023]
Abstract
It has long been known that formation of symbiotic root nodules in soybean (Glycine max (L.) Merr.) is controlled by several host genes referred to as Rj (rj) genes, but molecular cloning of these genes has been hampered by soybean's complicated genome structure and large genome size. Progress in molecular identification of legume genes involved in root nodule symbiosis have been mostly achieved by using two model legumes, Lotus japonicus and Medicago truncatula, that have relatively simple and small genomes and are capable of molecular transfection. However, recent development of resources for soybean molecular genetic research, such as genome sequencing, large EST databases, and high-density linkage maps, have enabled us to isolate several Rj genes. This progress has been achieved in connection with systematic utilization of the information obtained from molecular genetics of the model legumes. In this review, we summarize the current status of knowledge of host-controlled nodulation in soybean based on information from recent studies on Rj genes, and discuss the future research prospects.
Collapse
Affiliation(s)
- Masaki Hayashi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Corresponding author (e-mail: )
| | - Yuichi Saeki
- Faculty of Agriculture, Miyazaki University, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Michiyo Haga
- Fukushima Prefecture Ken-chu Agriculture and Forestry Office, 1-1-1 Hayama, Koriyama, Fukushima 963-8540, Japan
| | - Kyuya Harada
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Kouchi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yosuke Umehara
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
24
|
Lopez-Gomez M, Sandal N, Stougaard J, Boller T. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:393-401. [PMID: 21934117 PMCID: PMC3245478 DOI: 10.1093/jxb/err291] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/04/2011] [Accepted: 08/12/2011] [Indexed: 05/18/2023]
Abstract
In this study the interplay between the symbiotic and defence signalling pathways in Lotus japonicus was investigated by comparing the responses to Mesorhizobium loti, the symbiotic partner of L. japonicus, and the elicitor flg22, a conserved peptide motif present in flagellar protein of a wide range of bacteria. It was found that defence and symbiotic pathways overlap in the interaction between L. japonicus and M. loti since similar responses were induced by the mutualistic bacteria and flg22. However, purified flagellin from M. loti did not induce any response in L. japonicus, which suggests the production of other elicitors by the symbiotic bacteria. Defence responses induced by flg22 caused inhibition of rhizobial infection and delay in nodule organogenesis, as demonstrated by the negative effect of flg22 in the formation of spontaneous nodules in the snf1 L. japonicus mutant, and the inhibition of NSP1 and NSP2 genes. This indicates the antagonistic effect of the defence pathway on the nodule formation in the initial rhizobium-legume interaction. However, the fact that flg22 did not affect the formation of new nodules once the symbiosis was established indicates that after the colonization of the host plant by the symbiotic partner, the symbiotic pathway has prevalence over the defensive response. This result is also supported by the down-regulation of the expression levels of the flg22 receptor FLS2 in the nodular tissue.
Collapse
Affiliation(s)
- Miguel Lopez-Gomez
- Zürich-Basel Plant Science Center, Botanical Institute, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
25
|
Martinez EA, Boer H, Koivula A, Samain E, Driguez H, Armand S, Cottaz S. Engineering chitinases for the synthesis of chitin oligosaccharides: Catalytic amino acid mutations convert the GH-18 family glycoside hydrolases into transglycosylases. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Morando MA, Nurisso A, Grenouillat N, Vauzeilles B, Beau JM, Cañada FJ, Jiménez-Barbero J, Imberty A. NMR and molecular modeling reveal key structural features of synthetic nodulation factors. Glycobiology 2011; 21:824-33. [PMID: 21415035 DOI: 10.1093/glycob/cwr014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nod factors are lipochitoligosaccharides originally produced by the soil bacteria Rhizobia that are involved in the symbiotic process with leguminous plants. Some synthetic analogs of the Nod factors present a strong biological activity, and the conformational behavior of these molecules is of interest for structure/function studies. Nod factor analogs containing an insertion of a phenyl group in the acyl chain at the oligosaccharidic non-reducing end were previously synthesized (Grenouillat N, Vauzeilles B, Bono J-J, Samain E, Beau J-M. 2004. Simple synthesis of nodulation-factor analogues exhibiting high affinity towards a specific binding protein. Angew Chem Int Ed Engl. 43:4644). Conformational studies of natural compounds and synthetic analogs have been performed combining molecular dynamics simulations in explicit water and NMR. Data revealed that the glycosidic head group can adopt only restricted conformations, whereas chemical modifications of the lipid chains, highly flexible in a water environment, influence the global shape of the molecules. Collected structural data could be used in the future to rationalize and understand their biological activity and affinity toward a putative receptor.
Collapse
Affiliation(s)
- Maria A Morando
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:169-80. [PMID: 21223383 DOI: 10.1111/j.1365-313x.2010.04411.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitrogen-fixing symbiosis between legumes and rhizobia is initiated by the recognition of rhizobial Nod factors (NFs) by host plants. NFs are diversely modified derivatives of chitin oligosaccharide, a fungal elicitor that induces defense responses in plants. Recent evidence has shown that both NFs and chitin elicitors are recognized by structurally related LysM receptor kinases. Transcriptome analyses of Lotus japonicus roots indicated that NFs not only activate symbiosis genes but also transiently activate defense-related genes through NF receptors. Conversely, chitin oligosaccharides were able to activate symbiosis genes independently of NF receptors. Analyses using chimeric genes consisting of the LysM receptor domain of a Lotus japonicus NF receptor, NFR1, and the kinase domain of an Arabidopsis chitin receptor, CERK1, demonstrated that substitution of a portion of the αEF helix in CERK1 with the amino acid sequence YAQ from the corresponding region of NFR1 enables L. japonicus nfr1 mutants to establish symbiosis with Mesorhizobium loti. We also showed that the kinase domains of two Lotus japonicus LysM receptor kinases, Lys6 and Lys7, which also possess the YAQ sequence, suppress the symbiotic defect of nfr1. These results strongly suggest that, in addition to adaptation of extracellular LysM domains to NFs, limited alterations in the kinase domain of chitin receptors have played a crucial role in shifting the intracellular signaling to symbiosis from defense responses, thus constituting one of the key genetic events in the evolution of root nodule symbiosis in legume plants.
Collapse
Affiliation(s)
- Tomomi Nakagawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
29
|
Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, Lee J, Oelmüller R. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:193-206. [PMID: 19392691 DOI: 10.1111/j.1365-313x.2009.03867.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+), as a second messenger, is crucial for signal transduction processes during many biotic interactions. We demonstrate that cellular [Ca2+] elevations are early events in the interaction between the plant growth-promoting fungus Piriformospora indica and Arabidopsis thaliana. A cell wall extract (CWE) from the fungus promotes the growth of wild-type seedlings but not of seedlings from P. indica-insensitive mutants. The extract and the fungus also induce a similar set of genes in Arabidopsis roots, among them genes with Ca2+ signalling-related functions. The CWE induces a transient cytosolic Ca2+ ([Ca2+](cyt)) elevation in the roots of Arabidopsis and tobacco (Nicotiana tabacum) plants, as well as in BY-2 suspension cultures expressing the Ca2+ bioluminescent indicator aequorin. Nuclear Ca2+ transients were also observed in tobacco BY-2 cells. The Ca2+ response was more pronounced in roots than in shoots and involved Ca2+ uptake from the extracellular space as revealed by inhibitor studies. Inhibition of the Ca2+ response by staurosporine and the refractory nature of the Ca2+ elevation suggest that a receptor may be involved. The CWE does not stimulate H2O2 production and the activation of defence gene expression, although it led to phosphorylation of mitogen-activated protein kinases (MAPKs) in a Ca2+-dependent manner. The involvement of MAPK6 in the mutualistic interaction was shown for an mpk6 line, which did not respond to P. indica. Thus, Ca2+ is likely to be an early signalling component in the mutualistic interaction between P. indica and Arabidopsis or tobacco.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Street 159, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gimenez-Ibanez S, Ntoukakis V, Rathjen JP. The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2009; 4:539-41. [PMID: 19816132 PMCID: PMC2688306 DOI: 10.4161/psb.4.6.8697] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 05/18/2023]
Abstract
Plants use pattern recognition receptors (PRRs) to perceive pathogen-associated molecular pattern (PAMPs) and initiate defence responses. PAMP-triggered immunity (PTI) plays an important role in general resistance, and constrains the growth of most microbes on plants. Despite the importance of PRRs in plant immunity, the vast majority of them remain to be identified. We recently showed that the Arabidopsis LysM receptor kinase CERK1 is required not only for chitin signalling and fungal resistance, but plays an essential role in restricting bacterial growth on plants. We proposed that CERK1 may mediate the perception of a bacterial PAMP, or an endogenous plant cell wall component released during infection, through its extracellular carbohydrate-binding LysM-motifs. Here we report reduced activation of a PAMP-induced defence response on plants lacking the CERK1 gene after treatment with crude bacterial extracts. This demonstrates that CERK1 mediates perception of an unknown bacterial PAMP in Arabidopsis.
Collapse
|
31
|
|
32
|
Leitner M, Kaiser R, Rasmussen MO, Driguez H, Boland W, Mithöfer A. Microbial oligosaccharides differentially induce volatiles and signalling components in Medicago truncatula. PHYTOCHEMISTRY 2008; 69:2029-40. [PMID: 18534640 DOI: 10.1016/j.phytochem.2008.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 05/08/2023]
Abstract
Plants perceive biotic stimuli by recognising a multitude of different signalling compounds originating from the interacting organisms. Some of these substances represent pathogen-associated molecular patterns, which act as general elicitors of defence reactions. But also beneficial microorganisms like rhizobia take advantage of compounds structurally related to certain elicitors, i.e. Nod-factors, to communicate their presence to the host plant. In a bioassay-based study we aimed to determine to what extent distinct oligosaccharidic signals are able to elicit overlapping responses, including the emission of volatile organic compounds which is mainly considered a typical mode of inducible indirect defence against herbivores. The model legume Medicago truncatula Gaertn. was challenged with pathogen elicitors (beta-(1,3)-beta-(1,6)-glucans and N,N',N'',N'''-tetraacetylchitotetraose) and two Nod-factors, with one of them being able to induce a nodulation response in M. truncatula. Single oligosaccharidic elicitors caused the emission of volatile organic compounds, mainly sesquiterpenoids. The volatile blends detected were quite characteristic for the applied compounds, which could be pinpointed by multivariate statistical methods. As potential mediators of this response, the levels of jasmonic acid and salicylic acid were determined. Strikingly, neither of these phytohormones exhibited changing levels correlating with enhanced volatile emission. All stimuli tested caused an overproduction of reactive oxygen species, whereas nitric oxide accumulation was only effected by elicitors that were equally able to induce volatile emission. Thus, all signalling compounds tested elicited distinct reaction patterns. However, similarities between defence reactions induced by herbivory and pathogen-derived elicitors could be ascertained; but also Nod-factors were able to trigger defence-related reactions.
Collapse
Affiliation(s)
- Margit Leitner
- Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Jena, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Meschini EP, Blanco FA, Zanetti ME, Beker MP, Küster H, Pühler A, Aguilar OM. Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)-rhizobium etli symbiosis revealed by suppressive subtractive hybridization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:459-68. [PMID: 18321191 DOI: 10.1094/mpmi-21-4-0459] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Common bean cultivars are nodulated preferentially by Rhizobium etli lineages from the same center of host diversification. Nodulation was found to be earlier and numerous in bean plants inoculated with the cognate strain. We predicted that analysis of transcripts at early stages of the interaction between host and rhizobium would identify plant genes that are most likely to be involved in this preferential nodulation. Therefore, we applied a suppressive subtractive hybridization approach in which cDNA from a Mesoamerican cultivar inoculated with either the more- or less-efficient strain of R. etli was used as the driver and the tester, respectively. Forty-one independent tentative consensus sequences (TCs) were obtained and classified into different functional categories. Of 11 selected TCs, 9 were confirmed by quantitative reverse-transcriptase polymerase chain reaction. Two genes show high homology to previously characterized plant receptors. Two other upregulated genes encode for Rab11, a member of the small GTP-binding protein family, and HAP5, a subunit of the heterotrimeric CCAAT-transcription factor. Interestingly, one of the TCs encodes for an isoflavone reductase, which may lead to earlier Nod factor production by specific strains of rhizobia. The transcript abundance of selected cDNAs also was found to be higher in mature nodules of the more efficient interaction. Small or no differences were observed when an Andean bean cultivar was inoculated with a cognate strain, suggesting involvement of these genes in the strain-specific response. The potential role of these genes in the early preferential symbiotic interaction is discussed.
Collapse
Affiliation(s)
- Eitel Peltzer Meschini
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900-La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
34
|
Investigation of the demographic and selective forces shaping the nucleotide diversity of genes involved in nod factor signaling in Medicago truncatula. Genetics 2008; 177:2123-33. [PMID: 18073426 DOI: 10.1534/genetics.107.076943] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic nitrogen-fixing rhizobia are able to trigger root deformation in their Fabaceae host plants, allowing their intracellular accommodation. They do so by delivering molecules called Nod factors. We analyzed the patterns of nucleotide polymorphism of five genes controlling early Nod factor perception and signaling in the Fabaceae Medicago truncatula to understand the selective forces shaping the evolution of these genes. We used 30 M. truncatula genotypes sampled in a genetically homogeneous region of the species distribution range. We first sequenced 24 independent loci and detected a genomewide departure from the hypothesis of neutrality and demographic equilibrium that suggests a population expansion. These data were used to estimate parameters of a simple demographic model incorporating population expansion. The selective neutrality of genes controlling Nod factor perception was then examined using a combination of two complementary neutrality tests, Tajima's D and Fay and Wu's standardized H. The joint distribution of D and H expected under neutrality was obtained under the fitted population expansion model. Only the gene DMI1, which is expected to regulate the downstream signal, shows a pattern consistent with a putative selective event. In contrast, the receptor-encoding genes NFP and NORK show no significant signatures of selection. Among the genes that we analyzed, only DMI1 should be viewed as a candidate for adaptation in the recent history of M. truncatula.
Collapse
|
35
|
Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC Genomics 2008; 9:55. [PMID: 18230162 PMCID: PMC2275737 DOI: 10.1186/1471-2164-9-55] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/29/2008] [Indexed: 12/24/2022] Open
Abstract
Background Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Results Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP), a twin-arginine translocase (TAT) secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP) were generated, but only mutations affecting the PrsDE (Type I) and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. Conclusion None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V) is required for establishing the symbiosis with legumes. The PrsDE (Type I) system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to the genes encoding the secretion system itself.
Collapse
|
36
|
Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR. The role of plant defence proteins in fungal pathogenesis. MOLECULAR PLANT PATHOLOGY 2007; 8:677-700. [PMID: 20507530 DOI: 10.1111/j.1364-3703.2007.00419.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
SUMMARY It is becoming increasingly evident that a plant-pathogen interaction may be compared to an open warfare, whose major weapons are proteins synthesized by both organisms. These weapons were gradually developed in what must have been a multimillion-year evolutionary game of ping-pong. The outcome of each battle results in the establishment of resistance or pathogenesis. The plethora of resistance mechanisms exhibited by plants may be grouped into constitutive and inducible, and range from morphological to structural and chemical defences. Most of these mechanisms are defensive, exhibiting a passive role, but some are highly active against pathogens, using as major targets the fungal cell wall, the plasma membrane or intracellular targets. A considerable overlap exists between pathogenesis-related (PR) proteins and antifungal proteins. However, many of the now considered 17 families of PR proteins do not present any known role as antipathogen activity, whereas among the 13 classes of antifungal proteins, most are not PR proteins. Discovery of novel antifungal proteins and peptides continues at a rapid pace. In their long coevolution with plants, phytopathogens have evolved ways to avoid or circumvent the plant defence weaponry. These include protection of fungal structures from plant defence reactions, inhibition of elicitor-induced plant defence responses and suppression of plant defences. A detailed understanding of the molecular events that take place during a plant-pathogen interaction is an essential goal for disease control in the future.
Collapse
Affiliation(s)
- Ricardo B Ferreira
- Departamento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu F, Fan C, He Y. Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. J Genet Genomics 2007; 34:138-50. [PMID: 17469786 DOI: 10.1016/s1673-8527(07)60015-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/31/2006] [Indexed: 11/22/2022]
Abstract
Chitinases (EC3.2.1.14), found in a wide range of organisms, catalyze the hydrolysis of chitin and play a major role in defense mechanisms against fungal pathogens. The alignment and typical domains were analyzed using basic local alignment search tool (BLAST) and simple modular architecture research tool (SMART), respectively. On the basis of the annotations of rice (Oryza sativa L.) and Arabidopsis genomic sequences and using the bio-software SignalP3.0, TMHMM2.0, TargetP1.1, and big-Pi Predictor, 25 out of 37 and 16 out of 24 open reading frames (ORFs) with chitinase activity from rice and Arabidopsis, respectively, were predicted to have signal peptides (SPs), which have an average of 24.8 amino acids at the N-terminal region. Some of the chitinases were secreted extracellularly, whereas some were located in the vacuole. The phylogenic relationship was analyzed with 61 ORFs and 25 known chitinases and they were classified into 6 clusters using Clustal X and MEGA3.1. This classification is not completely consistent when compared with the traditional system that classifies the chitinases into 7 classes. The frequency of distribution of amino acid residues was distinct in different clusters. The contents of alanine, glycine, serine, and leucine were very high in each cluster, whereas the contents of methionine, histidine, tryptophan, and cysteine were lower than 20%. Each cluster had distinct amino acid characteristics. Alanine, valine, leucine, cysteine, serine, and lysine were rich in Clusters I to VI, respectively.
Collapse
Affiliation(s)
- Fenghua Xu
- Key Laboratory of Plant Pathology of the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | | | | |
Collapse
|
38
|
Debellé F, Rosenberg C, Bono JJ. Calcium et signalisation Nod. Med Sci (Paris) 2007; 23:130-2. [PMID: 17291420 DOI: 10.1051/medsci/2007232130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frédéric Debellé
- Laboratoire des Interactions Plantes-Micro-organismes, INRA UMR 441, CNRS, UMR 2594, BP 52627, 31320 Castanet-Tolosan, France
| | | | | |
Collapse
|
39
|
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. THE NEW PHYTOLOGIST 2007; 173:11-26. [PMID: 17176390 DOI: 10.1111/j.1469-8137.2006.01935.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphorus (P) is an essential plant nutrient and one of the most limiting in natural habitats as well as in agricultural production world-wide. The control of P acquisition efficiency and its subsequent uptake and translocation in vascular plants is complex. The physiological role of key cellular structures in plant P uptake and underlying molecular mechanisms are discussed in this review, with emphasis on phosphate transport across the cellular membrane at the root and arbuscular-mycorrhizal (AM) interfaces. The tools of molecular genetics have facilitated novel approaches and provided one of the major driving forces in the investigation of the basic transport mechanisms underlying plant P nutrition. Genetic engineering holds the potential to modify the system in a targeted way at the root-soil or AM symbiotic interface. Such approaches should assist in the breeding of crop plants that exhibit improved P acquisition efficiency and thus require lower inputs of P fertilizer for optimal growth. Whether engineering of P transport systems can contribute to enhanced P uptake will be discussed.
Collapse
Affiliation(s)
- Marcel Bucher
- ETH Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland.
| |
Collapse
|
40
|
Zhu H, Riely BK, Burns NJ, Ané JM. Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 2006; 172:2491-9. [PMID: 16452143 PMCID: PMC1456400 DOI: 10.1534/genetics.105.051185] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/24/2006] [Indexed: 01/31/2023] Open
Abstract
Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546, USA.
| | | | | | | |
Collapse
|
41
|
Hogg BV, Cullimore JV, Ranjeva R, Bono JJ. The DMI1 and DMI2 early symbiotic genes of medicago truncatula are required for a high-affinity nodulation factor-binding site associated to a particulate fraction of roots. PLANT PHYSIOLOGY 2006; 140:365-73. [PMID: 16377749 PMCID: PMC1326057 DOI: 10.1104/pp.105.068981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
The establishment of the legume-rhizobia symbiosis between Medicago spp. and Sinorhizobium meliloti is dependent on the production of sulfated lipo-chitooligosaccharidic nodulation (Nod) factors by the bacterial partner. In this article, using a biochemical approach to characterize putative Nod factor receptors in the plant host, we describe a high-affinity binding site (Kd = 0.45 nm) for the major Nod factor produced by S. meliloti. This site is termed Nod factor-binding site 3 (NFBS3). NFBS3 is associated to a high-density fraction prepared from roots of Medicago truncatula and shows binding specificity for lipo-chitooligosaccharidic structures. As for the previously characterized binding sites (NFBS1 and NFBS2), NFBS3 does not recognize the sulfate group on the S. meliloti Nod factor. Studies of Nod factor binding in root extracts of early symbiotic mutants of M. truncatula reveals that the new site is present in Nod factor perception and does not make infections 3 (dmi3) mutants but is absent in dmi1 and dmi2 mutants. Roots and cell cultures of all these mutants still contain sites similar to NFBS1 and NFBS2, respectively. These results suggest that NFBS3 is different from NFBS2 and NFBS1 and is dependent on the common symbiotic genes DMI1 and DMI2 required for establishment of symbioses with both rhizobia and arbuscular mycorrhizal fungi. The potential role of this site in the establishment of root endosymbioses is discussed.
Collapse
Affiliation(s)
- Bridget V Hogg
- Surfaces Cellulaires et Signalisation chez les Végétaux, Unité Mixte de Recherche 5546 Centre National de la Recherche Scientifique-Université Paul Sabatier, Toulouse III, Pôle de Biotechnologie Végétale, 31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
42
|
Luo L, Yao SY, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. J Bacteriol 2005; 187:4562-72. [PMID: 15968067 PMCID: PMC1151776 DOI: 10.1128/jb.187.13.4562-4572.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The establishment of an effective nitrogen-fixing symbiosis between Sinorhizobium meliloti and its legume host alfalfa (Medicago sativa) depends on the timely expression of nodulation genes that are controlled by LysR-type regulators. Ninety putative genes coding for LysR-type transcriptional regulators were identified in the recently sequenced S. meliloti genome. All 90 putative lysR genes were mutagenized using plasmid insertions as a first step toward determining their roles in symbiosis. Two new LysR-type symbiosis regulator genes, lsrA and lsrB, were identified in the screening. Both the lsrA and lsrB genes are expressed in free-living S. meliloti cells, but they are not required for cell growth. An lsrA1 mutant was defective in symbiosis and elicited only white nodules that exhibited no nitrogenase activity. Cells of the lsrA1 mutant were recovered from the white nodules, suggesting that the lsrA1 mutant was blocked early in nodulation. An lsrB1 mutant was deficient in symbiosis and elicited a mixture of pink and white nodules on alfalfa plants. These plants exhibited lower overall nitrogenase activity than plants inoculated with the wild-type strain, which is consistent with the fact that most of the alfalfa plants inoculated with the lsrB1 mutant were short and yellow. Cells of the lsrB1 mutant were recovered from both pink and white nodules, suggesting that lsrB1 mutants could be blocked at multiple points during nodulation. The identification of two new LysR-type symbiosis transcriptional regulators provides two new avenues for understanding the complex S. meliloti-alfalfa interactions which occur during symbiosis.
Collapse
Affiliation(s)
- Li Luo
- Biological Sciences Department, Lehman College, The City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Dombrecht B, Heusdens C, Beullens S, Verreth C, Mulkers E, Proost P, Vanderleyden J, Michiels J. Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol Microbiol 2005; 55:1207-21. [PMID: 15686565 DOI: 10.1111/j.1365-2958.2005.04457.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In general, oxidative stress, the consequence of an aerobic lifestyle, induces bacterial antioxidant defence enzymes. Here we report on a peroxiredoxin of Rhizobium etli, prxS, strongly expressed under microaerobic conditions and during the symbiotic interaction with Phaseolus vulgaris. The microaerobic induction of the prxS-rpoN2 operon is mediated by the alternative sigma factor RpoN and the enhancer-binding protein NifA. The RpoN-dependent promoter is also active under low-nitrogen conditions through the enhancer-binding protein NtrC. An additional symbiosis-specific weak promoter is located between prxS and rpoN2. Constitutive expression of prxS confers enhanced survival and growth to R. etli in the presence of H2O2. Single prxS mutants are not affected in their symbiotic abilities or defence response against oxidative stress under free-living conditions. In contrast, a prxS katG double mutant has a significantly reduced (>40%) nitrogen fixation capacity, suggesting a functional redundancy between PrxS and KatG, a bifunctional catalase-peroxidase. In vitro assays demonstrate the reduction of PrxS protein by DTT and thioredoxin. PrxS displays substrate specificity towards H2O2 (Km = 62 microM) over alkyl hydroperoxides (Km > 1 mM). Peroxidase activity is abolished in both the peroxidatic (C56) and resolving (C156) cysteine PrxS mutants, while the conserved C81 residue is required for proper folding of the protein. Resolving of the R. etli PrxS peroxidatic cysteine is probably an intramolecular process and intra- and intersubunit associations were observed. Taken together, our data support, for the first time, a role for an atypical 2-Cys peroxiredoxin against oxidative stress in R. etli bacteroids.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Brencic A, Winans SC. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 2005; 69:155-94. [PMID: 15755957 PMCID: PMC1082791 DOI: 10.1128/mmbr.69.1.155-194.2005] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
45
|
Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G. Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:458-67. [PMID: 15915644 DOI: 10.1094/mpmi-18-0458] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.
Collapse
Affiliation(s)
- Jinrong Wan
- National Center for Soybean Biotechnology, Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Frendo P, Harrison J, Norman C, Hernández Jiménez MJ, Van de Sype G, Gilabert A, Puppo A. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:254-9. [PMID: 15782639 DOI: 10.1094/mpmi-18-0254] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Legumes form a symbiotic interaction with bacteria of the Rhizobiaceae family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. This process involves the recognition of the bacterial Nod factors by the plant which mediates the entry of the bacteria into the root and nodule organogenesis. We have examined the importance of the low molecular weight thiols, glutathione (GSH) and homoglutathione (hGSH), during the nodulation process in the model legume Medicago truncatula. Using both buthionine sulfoximine, a specific inhibitor of GSH and hGSH synthesis, and transgenic roots expressing GSH synthetase and hGSH synthetase in an antisense orientation, we showed that deficiency in GSH and hGSH synthesis inhibited the formation of the root nodules. This inhibition was not correlated to a modification in the number of infection events or to a change in the expression of the Rhizobium sp.-induced peroxidase rip1, indicating that the low level of GSH or hGSH did not alter the first steps of the infection process. In contrast, a strong diminution in the number of nascent nodules and in the expression of the early nodulin genes, Mtenod12 and Mtenod40, were observed in GSH and hGSH-depleted plants. In conclusion, GSH and hGSH appear to be essential for proper development of the root nodules during the symbiotic interaction.
Collapse
Affiliation(s)
- Pierre Frendo
- Interactions Plantes-Microorganismes et Santé Végétale, UMR CNRS-INRA-Université de Nice-Sophia Antipolis, 400, Route des Chappes, BP167, 06903 Sophia-Antipolis Cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Groves P, Offermann S, Rasmussen MO, Canada FJ, Bono JJ, Driguez H, Imberty A, Jimenez-Barbero J. The relative orientation of the lipid and carbohydrate moieties of lipochitooligosaccharides related to nodulation factors depends on lipid chain saturation. Org Biomol Chem 2005; 3:1381-6. [PMID: 15827632 DOI: 10.1039/b500104h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipochitooligosaccharides (LCOs) signal the symbiosis of rhizobia with legumes and the formation of nitrogen-fixing root nodules. LCOs 1 and 2 share identical tetrasaccharide scaffolds but different lipid moieties (1, LCO-IV(C16:1[9Z], SNa) and , LCO-IV(C16:2[2E,9Z], SNa)). The conformational behaviors of both LCOs were studied by molecular modeling and NMR. Modeling predicts that a small lipid modification would result in a different relative orientation of the lipid and tetrasaccharide moieties. Diffusion ordered spectroscopy reports that both LCOs form small aggregates above 1 mM. Nuclear Overhauser spectroscopy (NOESY) data, collected under monomeric conditions, reveals lipid-carbohydrate contacts only for 1, in agreement with the modeling data. The distinct molecular structures of 1 and 2 have the potential to contribute to their selective binding by legume proteins.
Collapse
Affiliation(s)
- Patrick Groves
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Moulin L, Béna G, Boivin-Masson C, Stepkowski T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 2004; 30:720-32. [PMID: 15012950 DOI: 10.1016/s1055-7903(03)00255-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 06/27/2003] [Indexed: 10/27/2022]
Abstract
Symbiotic nitrogen fixing bacteria-known as rhizobia-harbour a set of nodulation (nod) genes that control the synthesis of modified lipo-chitooligosaccharides, called Nod factors that are required for legume nodulation. The nodA gene, which is essential for symbiosis, is responsible for the attachment of the fatty acid group to the oligosaccharide backbone. The nodZ, nolL, and noeI genes are involved in specific modifications of Nod factors common to bradyrhizobia, i.e., the transfer of a fucosyl group on the Nod factor core, fucose acetylation and fucose methylation, respectively. PCR amplification, sequencing and phylogenetic analysis of nodA gene sequences from a collection of diverse Bradyrhizobium strains revealed the monophyletic character with the possible exception of photosynthetic Bradyrhizobium, despite high sequence diversity. The distribution of the nodZ, nolL, and noeI genes in the studied strains, as assessed by gene amplification, hybridization or sequencing, was found to correlate with the nodA tree topology. Moreover, the nodA, nodZ, and noeI phylogenies were largely congruent, but did not closely follow the taxonomy of the strains shown by the housekeeping 16S rRNA and dnaK genes. Additionally, the distribution of nodZ, noeI, and nolL genes suggested that their presence may be related to the requirements of their legume hosts. These data indicated that the spread and maintenance of nodulation genes within the Bradyrhizobium genus occurred through vertical transmission, although lateral gene transfer also played a significant role.
Collapse
Affiliation(s)
- Lionel Moulin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD-INRA-CIRAD-ENSAM, 34398 Montpellier, France
| | | | | | | |
Collapse
|
49
|
Yao SY, Luo L, Har KJ, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP. Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J Bacteriol 2004; 186:6042-9. [PMID: 15342573 PMCID: PMC515170 DOI: 10.1128/jb.186.18.6042-6049.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of the Sinorhizobium meliloti exopolysaccharide, succinoglycan, is required for the formation of infection threads inside root hairs, a critical step during the nodulation of alfalfa (Medicago sativa) by S. meliloti. Two bacterial mutations, exoR95::Tn5 and exoS96::Tn5, resulted in the overproduction of succinoglycan and a reduction in symbiosis. Systematic analyses of the symbiotic phenotypes of the two mutants demonstrated their reduced efficiency of root hair colonization. In addition, both the exoR95 and exoS96 mutations caused a marked reduction in the biosynthesis of flagella and consequent loss of ability of the cells to swarm and swim. Succinoglycan overproduction did not appear to be the cause of the suppression of flagellum biosynthesis. Further analysis indicated that both the exoR95 and exoS96 mutations affected the expression of the flagellum biosynthesis genes. These findings suggest that both the ExoR protein and the ExoS/ChvI two-component regulatory system are involved in the regulation of both succinoglycan and flagellum biosynthesis. These findings provide new avenues of understanding of the physiological changes S. meliloti cells go through during the early stages of symbiosis and of the signal transduction pathways that mediate such changes.
Collapse
Affiliation(s)
- Shi-Yi Yao
- Biological Sciences Department, Lehman College, The City University of New York, 250 Bedford Park Blvd., West, Bronx, NY 10468, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Williams SJ, Davies GJ. A master of its sulfate. Nat Struct Mol Biol 2004; 11:686-7. [PMID: 15280877 DOI: 10.1038/nsmb0804-686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|