1
|
Structure and Expression Analysis of Sucrose Phosphate Synthase, Sucrose Synthase and Invertase Gene Families in Solanum lycopersicum. Int J Mol Sci 2021; 22:ijms22094698. [PMID: 33946733 PMCID: PMC8124378 DOI: 10.3390/ijms22094698] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and invertase (INV) are all encoded by multigene families. In tomato (Solanum lycopersicum), a comprehensive analysis of structure characteristics of these family genes is still lacking, and the functions of individual isoforms of these families are mostly unclear under stress. Here, the structure characteristics of the three families in tomato were analyzed; moreover, as a first step toward understanding the functions of isoforms of these proteins under stress, the tissue expression pattern and stress response of these genes were also investigated. The results showed that four SPS genes, six SUS genes and nineteen INV genes were identified in tomato. The subfamily differentiation of SlSPS and SlSUS might have completed before the split of monocotyledons and dicotyledons. The conserved motifs were mostly consistent within each protein family/subfamily. These genes demonstrated differential expressions among family members and tissues, and in response to polyethylene glycerol, NaCl, H2O2, abscisic acid or salicylic acid treatment. Our results suggest that each isoform of these families may have different functions in different tissues and under environmental stimuli. SlSPS1, SlSPS3, SlSUS1, SlSUS3, SlSUS4, SlINVAN5 and SlINVAN7 demonstrated consistent expression responses and may be the major genes responding to exogenous stimuli.
Collapse
|
2
|
Hussain M, Debnath B, Qasim M, Bamisile BS, Islam W, Hameed MS, Wang L, Qiu D. Role of Saponins in Plant Defense Against Specialist Herbivores. Molecules 2019; 24:E2067. [PMID: 31151268 PMCID: PMC6600540 DOI: 10.3390/molecules24112067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/25/2022] Open
Abstract
The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) is a very destructive crucifer-specialized pest that has resulted in significant crop losses worldwide. DBM is well attracted to glucosinolates (which act as fingerprints and essential for herbivores in host plant recognition) containing crucifers such as wintercress, Barbarea vulgaris (Brassicaceae) despite poor larval survival on it due to high-to-low concentration of saponins and generally to other plants in the genus Barbarea. B. vulgaris build up resistance against DBM and other herbivorous insects using glucosinulates which are used in plant defense. Aside glucosinolates, Barbarea genus also contains triterpenoid saponins, which are toxic to insects and act as feeding deterrents for plant specialist herbivores (such as DBM). Previous studies have found interesting relationship between the host plant and secondary metabolite contents, which indicate that attraction or resistance to specialist herbivore DBM, is due to higher concentrations of glucosinolates and saponins in younger leaves in contrast to the older leaves of Barbarea genus. As a response to this phenomenon, herbivores as DBM has developed a strategy of defense against these plant biochemicals. Because there is a lack of full knowledge in understanding bioactive molecules (such as saponins) role in plant defense against plant herbivores. Thus, in this review, we discuss the role of secondary plant metabolites in plant defense mechanisms against the specialist herbivores. In the future, trials by plant breeders could aim at transferring these bioactive molecules against herbivore to cash crops.
Collapse
Affiliation(s)
- Mubasher Hussain
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.
- Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Biswojit Debnath
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Muhammad Qasim
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 3100058, China.
| | - Bamisope Steve Bamisile
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.
- Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Muhammad Salman Hameed
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Faculty of Agricultural Sciences, Department of Plant Protection, Ghazi University, Dera Ghazi Khan 32200, Pakistan.
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.
- Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| |
Collapse
|
3
|
McKinney GJ, Waples RK, Seeb LW, Seeb JE. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol Ecol Resour 2016; 17:656-669. [DOI: 10.1111/1755-0998.12613] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Garrett J. McKinney
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| | - Ryan K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| |
Collapse
|
4
|
Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. The challenge of evolving stable polyploidy: could an increase in "crossover interference distance" play a central role? Chromosoma 2016; 125:287-300. [PMID: 26753761 PMCID: PMC4830878 DOI: 10.1007/s00412-015-0571-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 11/24/2022]
Abstract
Whole genome duplication is a prominent feature of many highly evolved organisms, especially plants. When duplications occur within species, they yield genomes comprising multiple identical or very similar copies of each chromosome (“autopolyploids”). Such genomes face special challenges during meiosis, the specialized cellular program that underlies gamete formation for sexual reproduction. Comparisons between newly formed (neo)-autotetraploids and fully evolved autotetraploids suggest that these challenges are solved by specific restrictions on the positions of crossover recombination events and, thus, the positions of chiasmata, which govern the segregation of homologs at the first meiotic division. We propose that a critical feature in the evolution of these more effective chiasma patterns is an increase in the effective distance of meiotic crossover interference, which plays a central role in crossover positioning. We discuss the findings in several organisms, including the recent identification of relevant genes in Arabidopsis arenosa, that support this hypothesis.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Gareth Jones
- The Red House, St. David's Street, Presteigne, Powys (Wales), LD8 2BP, UK
| | - Chris Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Denise Zickler
- Institut de Génétique et Microbiologie, I2BC, Université Paris-Sud, Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, Pires JC, Tan DY, Zhong Y, Ma H. Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution. Mol Biol Evol 2015; 33:394-412. [PMID: 26516094 PMCID: PMC4866547 DOI: 10.1093/molbev/msv226] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene–Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Renran Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Biology, The Huck Institute of the Life Sciences, Pennsylvania State University
| | - Liping Zeng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC
| | - Liming Cai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia
| | - Dun-Yan Tan
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Yang Zhong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Du Q, Wang L, Yang X, Gong C, Zhang D. Populus endo-β-1,4-glucanases gene family: genomic organization, phylogenetic analysis, expression profiles and association mapping. PLANTA 2015; 241:1417-34. [PMID: 25716095 DOI: 10.1007/s00425-015-2271-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/19/2015] [Indexed: 05/05/2023]
Abstract
Extensive characterization of the poplar GH9 gene family provides new insights into GH9 function and evolution in woody species, and may drive novel progress for molecular breeding in trees. In higher plants, endo-β-1,4-glucanases (cellulases) belonging to the glycosyl hydrolase family 9 (GH9) have roles in cell wall synthesis, remodeling and degradation. To increase the understanding of the GH9 family in perennial woody species, we conducted an extensive characterization of the GH9 family in the model tree species, Populus. We characterized 25 putative GH9 members in Populus with three subclasses (A, B, and C), using structures and bioinformatic analysis. Phylogenetic analyses of 114 GH9s from plant (dicot, monocot, and conifer) and bacterial species (outgroup) demonstrated that plant GH9s are monophyletic with respect to bacteria GH9s. Three subclasses, A, B, and C, of plant GH9 are formed before the divergence of angiosperms and gymnosperms. Chromosomal localization and duplications of GH9s in the Populus genome showed that eight paralogous pairs remained in conserved positions on segmental duplicated blocks, suggesting duplication of chromosomal segments has contributed to the family expansion. By examining tissue-specific expression profiles for all 25 members, we found that GH9 members exhibited distinct but partially overlapping expression patterns, while certain members have higher transcript abundance in mature or developing xylem. Based on our understanding of intraspecific variation and linkage disequilibrium of two KORRIGANs (PtoKOR1 and PtoKOR2) in natural population of Populus tomentosa, two non-synonymous SNPs in PtoKOR1 associated with fiber width and holocellulose content were obtained. Characterizations of the poplar GH9 family provide new insights into GH9 function and evolution in woody species, and may drive novel progress for molecular breeding in trees.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China,
| | | | | | | | | |
Collapse
|
7
|
Du Q, Wang L, Zhou D, Yang H, Gong C, Pan W, Zhang D. Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa). BMC Genet 2014; 15 Suppl 1:S4. [PMID: 25079429 PMCID: PMC4118623 DOI: 10.1186/1471-2156-15-s1-s4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking. Results Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π=0.01059±0.00122 and 0.00930±0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained. Conclusions The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.
Collapse
|
8
|
Zhang XM, Wang W, Du LQ, Xie JH, Yao YL, Sun GM. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening. Int J Mol Sci 2012; 13:9460-9477. [PMID: 22949808 PMCID: PMC3431806 DOI: 10.3390/ijms13089460] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/14/2012] [Accepted: 07/19/2012] [Indexed: 11/30/2022] Open
Abstract
Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion.
Collapse
Affiliation(s)
- Xiu-Mei Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Zhanjiang 524091, Guangdong, China; E-Mails: (X.-M.Z.); (L.-Q.D.); (J.-H.X.); (Y.-L.Y.)
- Department of Food Science, Lousiana State University, Baton Rouge, LA 70803, USA
| | - Wei Wang
- Laboratory of Plant Genetic & Breeding, Anhui Agricultural University School of Life Science, 130 Changjiang West Road, Hefei 230036, Anhui, China; E-Mail:
| | - Li-Qing Du
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Zhanjiang 524091, Guangdong, China; E-Mails: (X.-M.Z.); (L.-Q.D.); (J.-H.X.); (Y.-L.Y.)
| | - Jiang-Hui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Zhanjiang 524091, Guangdong, China; E-Mails: (X.-M.Z.); (L.-Q.D.); (J.-H.X.); (Y.-L.Y.)
| | - Yan-Li Yao
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Zhanjiang 524091, Guangdong, China; E-Mails: (X.-M.Z.); (L.-Q.D.); (J.-H.X.); (Y.-L.Y.)
| | - Guang-Ming Sun
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Zhanjiang 524091, Guangdong, China; E-Mails: (X.-M.Z.); (L.-Q.D.); (J.-H.X.); (Y.-L.Y.)
| |
Collapse
|
9
|
Golczyk H. Structural heterozygosity, duplication of telomeric (TTTAGGG)(n) clusters and B chromosome architecture in Tradescantia virginiana L. Cytogenet Genome Res 2011; 134:234-42. [PMID: 21709415 DOI: 10.1159/000328915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fluorescent in situ hybridization, C-banding/DAPI, and CMA(3)-fluorescence were performed to reveal the cytomolecular constitution of the standard (A) and supernumerary (B) chromosomes of an autotetraploid Tradescantia virginiana L. The analyses show that translocations and/or inversions have occurred during the evolution of the T. virginiana karyotype, generating a significant level of structural heterozygosity. Regarding the structural level, the present paper confirms the occurrence of small subterminal duplications and/or inversions in T. virginiana already suggested by previous authors. Interestingly, many of the distal chromosome segments in T. virginiana possess duplicated subterminal telomere clusters, heterochromatin, 5S and 45S rDNAs orderly intermixed and share this complex cytomolecular architecture with the common type of a B chromosome. Based on the obtained results, it is proposed that in T. virginiana the B chromosome may have arisen via excision from the distal region of an A chromosome. The nascent B could have retained much of the ancestral sequence arrangement, including duplicated telomeric cluster(s), heterochromatin and rDNA, but developed a new centromere/kinetochore to successfully propagate through the cell cycle.
Collapse
Affiliation(s)
- H Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Lublin, Poland.
| |
Collapse
|
10
|
Popluechai S, Froissard M, Jolivet P, Breviario D, Gatehouse AMR, O'Donnell AG, Chardot T, Kohli A. Jatropha curcas oil body proteome and oleosins: L-form JcOle3 as a potential phylogenetic marker. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:352-6. [PMID: 21251844 DOI: 10.1016/j.plaphy.2010.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 11/01/2010] [Accepted: 12/07/2010] [Indexed: 05/06/2023]
Abstract
The seed oil of Jatropha curcas has been proposed as a source of biodiesel. In plants, seed oil is stored in subcellular organelles called oil bodies (OBs), which are stabilized by proteins. Proteome composition of the J. curcas OBs revealed oleosins as the major component and additional proteins similar to those in other oil seed plants. Three J. curcas oleosins were isolated and characterized at the gene, transcript and protein level. They all contained the characteristic proline knot domain and were each present as a single copy in the genome. The smallest, L-form JcOle3 contained an intron. Isolation of its promoter revealed seed-specific cis-regulatory motifs among others. Spatio-temporal transcript expression of J. curcas oleosins was largely similar to that in other oil seed plants. Immunoassay with antibodies against an Arabidopsis oleosin or against JcOle3, on seed proteins extracted by different approaches, revealed JcOle3 oligomers. Alleles of JcOle3 and single nucleotide polymorphisms (SNPs) in its intron were identified in J. curcas accessions, species and hybrids. Identified alleles and SNPs could serve as markers in phylogenetic or breeding studies.
Collapse
Affiliation(s)
- Siam Popluechai
- School of Biology, Institute for Research on Environment & Sustainability, Devonshire Building, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang WK, Ho CW, Hung KH, Wang KH, Huang CC, Araki H, Hwang CC, Hsu TW, Osada N, Chiang TY. Multilocus analysis of genetic divergence between outcrossing Arabidopsis species: evidence of genome-wide admixture. THE NEW PHYTOLOGIST 2010; 188:488-500. [PMID: 20673288 DOI: 10.1111/j.1469-8137.2010.03383.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Outcrossing Arabidopsis species that diverged from their inbreeding relative Arabidopsis thaliana 5 million yr ago and display a biogeographical pattern of interspecific sympatry vs intraspecific allopatry provides an ideal model for studying impacts of gene introgression and polyploidization on species diversification. • Flow cytometry analyses detected ploidy polymorphisms of 2× and 4× in Arabidopsis lyrata ssp. kamchatica of Taiwan. Genomic divergence between species/subspecies was estimated based on 98 randomly chosen nuclear genes. Multilocus analyses revealed a mosaic genome in diploid A. l. kamchatica composed of Arabidopsis halleri-like and A. lyrata-like alleles. • Coalescent analyses suggest that the segregation of ancestral polymorphisms alone cannot explain the high inconsistency between gene trees across loci, and that gene introgression via diploid A. l. kamchatica likely distorts the molecular phylogenies of Arabidopsis species. However, not all genes migrated across species freely. Gene ontology analyses suggested that some nonmigrating genes were constrained by natural selection. • High levels of estimated ancestral polymorphisms between A. halleri and A. lyrata suggest that gene flow between these species has not completely ceased since their initial isolation. Polymorphism data of extant populations also imply recent gene flow between the species. Our study reveals that interspecific gene flow affects the genome evolution in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Kuang Wang
- Department of Life Sciences, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cibrián-Jaramillo A, De la Torre-Bárcena JE, Lee EK, Katari MS, Little DP, Stevenson DW, Martienssen R, Coruzzi GM, DeSalle R. Using phylogenomic patterns and gene ontology to identify proteins of importance in plant evolution. Genome Biol Evol 2010; 2:225-39. [PMID: 20624728 PMCID: PMC2997538 DOI: 10.1093/gbe/evq012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2010] [Indexed: 01/01/2023] Open
Abstract
We use measures of congruence on a combined expressed sequenced tag genome phylogeny to identify proteins that have potential significance in the evolution of seed plants. Relevant proteins are identified based on the direction of partitioned branch and hidden support on the hypothesis obtained on a 16-species tree, constructed from 2,557 concatenated orthologous genes. We provide a general method for detecting genes or groups of genes that may be under selection in directions that are in agreement with the phylogenetic pattern. Gene partitioning methods and estimates of the degree and direction of support of individual gene partitions to the overall data set are used. Using this approach, we correlate positive branch support of specific genes for key branches in the seed plant phylogeny. In addition to basic metabolic functions, such as photosynthesis or hormones, genes involved in posttranscriptional regulation by small RNAs were significantly overrepresented in key nodes of the phylogeny of seed plants. Two genes in our matrix are of critical importance as they are involved in RNA-dependent regulation, essential during embryo and leaf development. These are Argonaute and the RNA-dependent RNA polymerase 6 found to be overrepresented in the angiosperm clade. We use these genes as examples of our phylogenomics approach and show that identifying partitions or genes in this way provides a platform to explain some of the more interesting organismal differences among species, and in particular, in the evolution of plants.
Collapse
Affiliation(s)
- Angélica Cibrián-Jaramillo
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Carvalho A, Delgado M, Barão A, Frescatada M, Ribeiro E, Pikaard CS, Viegas W, Neves N. Chromosome and DNA methylation dynamics during meiosis in the autotetraploid Arabidopsis arenosa. ACTA ACUST UNITED AC 2009; 23:29-37. [DOI: 10.1007/s00497-009-0115-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/22/2009] [Indexed: 01/28/2023]
|
15
|
Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. PLANT, CELL & ENVIRONMENT 2009; 32:1211-29. [PMID: 19389052 DOI: 10.1111/j.1365-3040.2009.01978.x] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
MapMan is a software tool that supports the visualization of profiling data sets in the context of existing knowledge. Scavenger modules generate hierarchical and essentially non-redundant gene ontologies ('mapping files'). An ImageAnnotator module visualizes the data on a gene-by-gene basis on schematic diagrams ('maps') of biological processes. The PageMan module uses the same ontologies to statistically evaluate responses at the pathway or processes level. The generic structure of MapMan also allows it to be used for transcripts, proteins, enzymes and metabolites. MapMan was developed for use with Arabidopsis, but has already been extended for use with several other species. These tools are available as downloadable and web-based versions. After providing an introduction to the scope and use of MapMan, we present a case study where MapMan is used to analyse the transcriptional response of the crop plant maize to diurnal changes and an extension of the night. We then explain how MapMan can be customized to visually and systematically compare responses in maize and Arabidopsis. These analyses illustrate how MapMan can be used to analyse and compare global transcriptional responses between phylogenetically distant species, and show that analyses at the level of functional categories are especially useful in cross-species comparisons.
Collapse
Affiliation(s)
- Björn Usadel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
van Dam NM, Poppy GM. Why plant volatile analysis needs bioinformatics--detecting signal from noise in increasingly complex profiles. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:29-37. [PMID: 18211546 DOI: 10.1055/s-2007-964961] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant volatile analysis may be the oldest form of what now is called plant "metabolomic" analysis. A wide array of volatile organic compounds (VOCs), such as alkanes, alcohols, isoprenoids, and esters, can be collected simultaneously from the plant headspace, either within the laboratory or in the field. Increasingly faster and more sensitive analysis techniques allow detection of an ever-growing number of compounds in decreasing concentrations. However, the myriads of data becoming available from such experiments do not automatically increase our ecological and evolutionary understanding of the roles these VOCs play in plant-insect interactions. Herbivores and parasitoids responding to changes in VOC emissions are able to perceive minute changes within a complex VOC background. Plants modified in genes involved in VOC synthesis may be valuable for the evaluation of changes in plant-animal interactions compared to tests with synthetic compounds, as they allow changes to be made within the context of a more complex profile. We argue that bioinformatics is an essential tool to integrate statistical analysis of plant VOC profiles with insect behavioural data. The implementation of statistical techniques such as multivariate analysis (MVA) and meta-analysis is of the utmost importance to interpreting changes in plant VOC mixtures. MVA focuses on differences in volatile patterns rather than in single compounds. Therefore, it more closely resembles the information processing in insects that base their behavioural decisions on differences in VOC profiles between plants. Meta-analysis of different datasets will reveal general patterns pertaining to the ecological role of VOC in plant-insect interactions. Successful implementation of bioinformatics in VOC research also includes the development of MVA that integrate time-resolved chemical and behavioural analyses, as well as databases that link plant VOCs to their effects on insects.
Collapse
Affiliation(s)
- N M van Dam
- Netherlands Institute of Ecology (NIOO-KNAW), Multitrophic Interactions Department, P.O. Box 40, 6666 ZG Heteren, The Netherlands.
| | | |
Collapse
|
17
|
Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T. The genetic basis of a plant-insect coevolutionary key innovation. Proc Natl Acad Sci U S A 2007; 104:20427-31. [PMID: 18077380 PMCID: PMC2154447 DOI: 10.1073/pnas.0706229104] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Indexed: 11/18/2022] Open
Abstract
Ehrlich and Raven formally introduced the concept of stepwise coevolution using butterfly and angiosperm interactions in an attempt to account for the impressive biological diversity of these groups. However, many biologists currently envision butterflies evolving 50 to 30 million years (Myr) after the major angiosperm radiation and thus reject coevolutionary origins of butterfly biodiversity. The unresolved central tenet of Ehrlich and Raven's theory is that evolution of plant chemical defenses is followed closely by biochemical adaptation in insect herbivores, and that newly evolved detoxification mechanisms result in adaptive radiation of herbivore lineages. Using one of their original butterfly-host plant systems, the Pieridae, we identify a pierid glucosinolate detoxification mechanism, nitrile-specifier protein (NSP), as a key innovation. Larval NSP activity matches the distribution of glucosinolate in their host plants. Moreover, by using five different temporal estimates, NSP seems to have evolved shortly after the evolution of the host plant group (Brassicales) ( approximately 10 Myr). An adaptive radiation of these glucosinolate-feeding Pierinae followed, resulting in significantly elevated species numbers compared with related clades. Mechanistic understanding in its proper historical context documents more ancient and dynamic plant-insect interactions than previously envisioned. Moreover, these mechanistic insights provide the tools for detailed molecular studies of coevolution from both the plant and insect perspectives.
Collapse
Affiliation(s)
- Christopher W Wheat
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans Knoell Strasse 8, 07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Lunn JE. Gene families and evolution of trehalose metabolism in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:550-563. [PMID: 32689383 DOI: 10.1071/fp06315] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 01/11/2007] [Indexed: 05/25/2023]
Abstract
The genomes of Arabidopsis thaliana L., rice (Oryza sativa L.) and poplar (Populus trichocarpa Torr. & A.Gray) contain large families of genes encoding trehalose-phosphate synthase (TPS) and trehalose-phosphatase (TPP). The class I subfamily of TPS genes encodes catalytically active TPS enzymes, and is represented by only one or two genes in most species. A. thaliana is atypical in having four class I TPS genes, three of which (AtTPS2-4) encode unusual short isoforms of TPS that appear to be found only in members of the Brassicaceae family. The class II TPS genes encode TPS-like proteins with a C-terminal TPP-like domain, but there is no experimental evidence that they have any enzymatic activity and their function is unknown. Both classes of TPS gene are represented in the genomes of chlorophyte algae (Ostreococcus species) and non-flowering plants [Physcomitrella patens (Hedw.) Bruch & Schimp.(B.S.G.) and Selaginella moellendorffii (Hieron. in Engl. & Prantl.)]. This survey shows that the gene families encoding the enzymes of trehalose metabolism are very ancient, pre-dating the divergence of the streptophyte and chlorophyte lineages. It also provides a frame of reference for future studies to elucidate the function of trehalose metabolism in plants.
Collapse
Affiliation(s)
- John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Potsdam, Germany. Email
| |
Collapse
|
19
|
Roth C, Liberles DA. A systematic search for positive selection in higher plants (Embryophytes). BMC PLANT BIOLOGY 2006; 6:12. [PMID: 16784532 PMCID: PMC1540423 DOI: 10.1186/1471-2229-6-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 06/19/2006] [Indexed: 05/04/2023]
Abstract
BACKGROUND Previously, a database characterizing examples of Embryophyte gene family lineages showing evidence of positive selection was reported. Of the gene family trees, 138 Embryophyte branches showed Ka/Ks>>1 and are candidates for functional adaptation. The database and these examples have now been studied in further detail to better understand the molecular basis for plant genome evolution. RESULTS Neutral modeling showed an excess of positive and/or negative selection in the database over a neutral expectation centered on the mean Ka/Ks ratio. Out of 673 families with assigned structures, 490 have at least one branch with Ka/Ks >>1 in a region of the protein, enabling a picture of selective pressures delineated by protein structure. Most gene families allowed reconstruction back to the last common ancestor of flowering plants (Magnoliophytes) without saturation of 4- fold degenerate codon position. Positive selection occurred in a wide variety of gene families with different functions, including in the self incompatibility locus, in defense against pathogens, in embryogenesis, in cold acclimation, and in electrontransport. Structurally, selective pressures were similar between alpha-helices and beta- sheets, but were less negative and more variant on the surface and away from the hydrophobic core. CONCLUSION Positive selection was detected statistically significantly in a small and nonrandom minority of gene families in a systematic analysis of embryophyte gene families. More sensitive methods increased the level of positive selection that was detected and presented a structural basis for the role of positive selection in plant genomes.
Collapse
Affiliation(s)
- Christian Roth
- Computational Biology Unit, BCCS, University of Bergen, 5020 Bergen, Norway
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
- Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - David A Liberles
- Computational Biology Unit, BCCS, University of Bergen, 5020 Bergen, Norway
- Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E. University Avenue, Laramie, WY 82071, USA
| |
Collapse
|
20
|
van Leur H, Raaijmakers CE, van Dam NM. A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. PHYTOCHEMISTRY 2006; 67:1214-23. [PMID: 16777152 DOI: 10.1016/j.phytochem.2006.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 05/10/2023]
Abstract
In natural populations of Barbarea vulgaris we found two distinctly different glucosinolate profiles. The most common glucosinolate profile is dominated (94%) by the hydroxylated form, (S)-2-hydroxy-2-phenylethyl-glucosinolate (glucobarbarin, BAR-type), whereas in the other type 2-phenylethyl-glucosinolate (gluconasturtiin, NAS-type) was most prominent (82%). NAS-type plants have a 108-fold increase of gluconasturtiin concentration in rosette leaves compared to BAR-type plants. The glucosinolate composition of both chemotypes is consistent throughout all plant organs and after induction with jasmonic acid. Although the glucosinolate profile of the roots has a more diverse composition than other plant organs, it still matches the chemotype. In 12 natural populations that we sampled in Germany, Belgium, France and Switzerland solely BAR-type plants were found. However, eight out of the 15 Dutch populations that were sampled contained 2-22% NAS-type plants. Controlled crosses showed that the chemotype was heritable and determined by a single gene with two alleles. The allele coding for the BAR-type was dominant and the allele for the NAS-type was recessive. The different glucosinolate profiles will yield different hydrolysis products upon damage, and therefore we expect them to differentially affect the multitrophic interactions associated with B. vulgaris in their natural environment.
Collapse
Affiliation(s)
- Hanneke van Leur
- Department of Multitrophic Interactions, Netherlands Institute of Ecology (NIOO-KNAW), Centre for Terrestrial Ecology, P.O. Box 40, 6666 ZG Heteren, The Netherlands.
| | | | | |
Collapse
|
21
|
Moore S, Payton P, Wright M, Tanksley S, Giovannoni J. Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2885-95. [PMID: 16216847 DOI: 10.1093/jxb/eri283] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcriptional profiling allows for the assessment and comparison of cross-species gene activity and function on a comprehensive scale. The Solanaceae is a large, diverse dicot family, with well-established genetic relationships between major crop species (tomato, potato, pepper, eggplant, and tobacco). Although Arabidopsis thaliana is often the model of choice for anchoring comparative studies, certain biological processes are better examined in other plants. The ripening of fleshy fruits is not tractable in Arabidopsis; however, it has received considerable attention in tomato. As a member of the Solanaceae, tomato provides a well-characterized system to anchor transcriptional profiles of fruit ripening and development in related species. By utilizing different stages of tomato, pepper, and eggplant fruit, the use of tomato microarrays for expression analysis has been demonstrated in closely related heterologous species, and groups of candidate expressed sequence tags, which are useful as orthologous markers, have been identified, as well as genes implicated in fruit ripening and development in the Solanaceae.
Collapse
Affiliation(s)
- Shanna Moore
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Friesner JD, Liu B, Culligan K, Britt AB. Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol Biol Cell 2005; 16:2566-76. [PMID: 15772150 PMCID: PMC1087258 DOI: 10.1091/mbc.e04-10-0890] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The histone variant H2AX is rapidly phosphorylated at the sites of DNA double-strand breaks (DSBs). This phosphorylated H2AX (gamma-H2AX) is involved in the retention of repair and signaling factor complexes at sites of DNA damage. The dependency of this phosphorylation on the various PI3K-related protein kinases (in mammals, ataxia telangiectasia mutated and Rad3-related [ATR], ataxia telangiectasia mutated [ATM], and DNA-PKCs) has been a subject of debate; it has been suggested that ATM is required for the induction of foci at DSBs, whereas ATR is involved in the recognition of stalled replication forks. In this study, using Arabidopsis as a model system, we investigated the ATR and ATM dependency of the formation of gamma-H2AX foci in M-phase cells exposed to ionizing radiation (IR). We find that although the majority of these foci are ATM-dependent, approximately 10% of IR-induced gamma-H2AX foci require, instead, functional ATR. This indicates that even in the absence of DNA replication, a distinct subset of IR-induced damage is recognized by ATR. In addition, we find that in plants, gamma-H2AX foci are induced at only one-third the rate observed in yeasts and mammals. This result may partly account for the relatively high radioresistance of plants versus yeast and mammals.
Collapse
Affiliation(s)
- Joanna D Friesner
- Genetics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
24
|
Hoffmann MH. EVOLUTION OF THE REALIZED CLIMATIC NICHE IN THE GENUS ARABIDOPSIS (BRASSICACEAE). Evolution 2005. [DOI: 10.1554/05-033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Stanley Kim H, Yu Y, Snesrud EC, Moy LP, Linford LD, Haas BJ, Nierman WC, Quackenbush J. Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:212-20. [PMID: 15634198 DOI: 10.1111/j.1365-313x.2004.02295.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous studies have indicated that Arabidopsis thaliana experienced a genome-wide duplication event shortly before its divergence from Brassica followed by extensive chromosomal rearrangements and deletions. While a large number of the duplicated genes have significantly diverged or lost their sister genes, we found 4222 pairs that are still highly conserved, and as a result had similar functional assignments during the annotation of the genome sequence. Using whole-genome DNA microarrays, we identified 906 duplicated gene pairs in which at least one member exhibited a significant response to oxidative stress. Among these, only 117 pairs were up- or down-regulated in both pairs and many of these exhibited dissimilar patterns of expression. Examination of the expression patterns of PAL1 and PAL2, ACD1 and ACD2, genes coding for two Hsp20s, various P450s, and electron transfer flavoproteins suggests Arabidopsis evolved a number of distinct oxidative stress response mechanisms using similar gene sets following the duplication of its genome.
Collapse
Affiliation(s)
- H Stanley Kim
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ramos-Onsins SE, Stranger BE, Mitchell-Olds T, Aguadé M. Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata. Genetics 2004; 166:373-88. [PMID: 15020431 PMCID: PMC1470697 DOI: 10.1534/genetics.166.1.373] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide variation in eight effectively unlinked genes was surveyed in species-wide samples of the closely related outbreeding species Arabidopsis halleri and A. lyrata ssp. petraea and in three of these genes in A. lyrata ssp. lyrata and A. thaliana. Significant genetic differentiation was observed more frequently in A. l. petraea than in A. halleri. Average estimates of nucleotide variation were highest in A. l. petraea and lowest in A. l. lyrata, reflecting differences among species in effective population size. The low level of variation in A. l. lyrata is concordant with a bottleneck effect associated with its origin. The A. halleri/A. l. petraea speciation process was studied, considering the orthologous sequences of an outgroup species (A. thaliana). The high number of ancestral mutations relative to exclusive polymorphisms detected in A. halleri and A. l. petraea, the significant results of the multilocus Fay and Wu H tests, and haplotype sharing between the species indicate introgression subsequent to speciation. Average among-population variation in A. halleri and A. l. petraea was approximately 1.5- and 3-fold higher than that in the inbreeder A. thaliana. The detected reduction of variation in A. thaliana is less than that expected from differences in mating system alone, and therefore from selective processes related to differences in the effective recombination rate, but could be explained by differences in population structure.
Collapse
|
27
|
Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. PLANT PHYSIOLOGY 2004; 135:1753-64. [PMID: 15247374 PMCID: PMC519087 DOI: 10.1104/pp.104.042457] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/13/2004] [Accepted: 04/23/2004] [Indexed: 05/20/2023]
Abstract
Suc-phosphate synthase (SPS) is a key regulatory enzyme in the pathway of Suc biosynthesis and has been linked to quantitative trait loci controlling plant growth and yield. In dicotyledonous plants there are three SPS gene families: A, B, and C. Here we report the finding of five families of SPS genes in wheat (Triticum aestivum) and other monocotyledonous plants from the family Poaceae (grasses). Three of these form separate subfamilies within the previously described A, B, and C gene families, but the other two form a novel and distinctive D family, which on present evidence is only found in the Poaceae. The D-type SPS proteins lack the phosphorylation sites associated with 14-3-3 protein binding and osmotic stress activation, and the linker region between the N-terminal catalytic glucosyltransferase domain and the C-terminal Suc-phosphatase-like domain is 80 to 90 amino acid residues shorter than in the A, B, or C types. The D family appears to have arisen after the divergence of mono- and dicotyledonous plants, with a later duplication event resulting in the two D-type subfamilies. Each of the SPS gene families in wheat showed different, but overlapping, spatial and temporal expression patterns, and in most organs at least two different SPS genes are expressed. Analysis of expressed sequence tags indicated similar expression patterns to wheat for each SPS gene family in barley (Hordeum vulgare) but not in more distantly related grasses. We identified an expressed sequence tag from rice (Oryza sativa) that appears to be derived from an endogenous antisense SPS gene, and this might account for the apparently low level of expression of the related OsSPS11 sense gene, adding to the already extensive list of mechanisms for regulating the activity of SPS in plants.
Collapse
Affiliation(s)
- C Kate Castleden
- Crop Performance and Improvement Division, Rothamsted-Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Matousek J, Orctová L, Steger G, Skopek J, Moors M, Dedic P, Riesner D. Analysis of thermal stress-mediated PSTVd variation and biolistic inoculation of progeny of viroid "thermomutants" to tomato and Brassica species. Virology 2004; 323:9-23. [PMID: 15165815 DOI: 10.1016/j.virol.2004.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/06/2004] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
Thermal stress of PSTVd-infected Nicotiana benthamiana led to appearance of a broad PSTVd sequence distribution, where most of mutations accumulated in the left half of the viroid's secondary structure including the "pathogenicity" domain. A similar effect had been reported for hop latent viroid [Virology 287 (2001) 349]. The pool of viroid "thermomutants" progenies was transcribed into cDNA and used for biolistic inoculation of Raphanus sativa, where the PSTVd infection was detectable by reverse transcription and polymerase chain reaction (RT-PCR). Newly generated inoculum from R. sativa was used for biolistic transfer to Arabidopsis thaliana wild-type and silencing-deficient mutants bearing one of sde1, sde2, and sde3 locuses. Irrespective to A. thaliana silencing mutants, viroid levels in Brasicaceae species infected with mutated PSTVd variants were of approximately 300 times lower than it is expected for tomato. At the same time, no systemic infection of A. thaliana was achieved with the wild-type PSTVd. In Arabidopsis, a population of PSTVd, consisting of frequent and minor variants, was present and the sequence distribution differed from that of the original viroid "thermomutants"; that is, mutations were not predominantly restricted to the left half of viroid's secondary structure. At least 65% of viroid sequences from Arabidopsis library accumulated mutations in the upper conserved central region (UCCR). In addition, mutants having changes in "hairpin II" domain (C-->A transition at position 229) and in the conserved internal loop element in the left part of viroid structure (single insertion of G at position 39) were detected. All those mutants were inoculated biolistically to tomato and promoted infection especially after prolonged period of plant cultivation (50-80 days pi) when infection reached 70-90%. However, the sequence variants were unstable and reverted to the wild type and to other sequence variants stable in tomato. Our results demonstrate that heat stress-mediated production of viroid quasi-species could be of significance for viroid adaptations.
Collapse
Affiliation(s)
- Jaroslav Matousek
- Department of Molecular Genetics, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branisovská 31, 37005 Ceské Budejovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Lee HS, Wang J, Tian L, Jiang H, Black MA, Madlung A, Watson B, Lukens L, Chris Pires J, Wang JJ, Comai L, Osborn TC, Doerge RW, Jeffrey Chen Z. Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:45-57. [PMID: 17166142 PMCID: PMC2034503 DOI: 10.1046/j.1467-7652.2003.00048.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Synthetic oligonucleotides (oligos) represent an attractive alternative to cDNA amplicons for spotted microarray analysis in a number of model organisms, including Arabidopsis, C. elegans, Drosophila, human, mouse and yeast. However, little is known about the relative effectiveness of 60-70-mer oligos and cDNAs for detecting gene expression changes. Using 192 pairs of Arabidopsis thaliana cDNAs and corresponding 70-mer oligos, we performed three sets of dye-swap experiments and used analysis of variance (anova) to compare sources of variation and sensitivities for detecting gene expression changes in A. thaliana, A. arenosa and Brassica oleracea. Our major findings were: (1) variation among different RNA preparations from the same tissue was small, but large variation among dye-labellings and slides indicates the need to replicate these factors; (2) sources of variation were similar for experiments with all three species, suggesting these feature types are effective for analysing gene expression in related species; (3) oligo and cDNA features had similar sensitivities for detecting expression changes and they identified a common subset of significant genes, but results from quantitative RT-PCR did not support the use of one over the other. These findings indicate that spotted oligos are at least as effective as cDNAs for microarray analyses of gene expression. We are using oligos designed from approximately 26,000 annotated genes of A. thaliana to study gene expression changes in Arabidopsis and Brassica polyploids.
Collapse
Affiliation(s)
- Hyeon-Se Lee
- Department of Soil and Crop Sciences and Intercollegiate Program in Genetics, Texas A&M University, College Station, TX 77843-2474, USA
| | - Jianlin Wang
- Department of Soil and Crop Sciences and Intercollegiate Program in Genetics, Texas A&M University, College Station, TX 77843-2474, USA
| | - Lu Tian
- Department of Soil and Crop Sciences and Intercollegiate Program in Genetics, Texas A&M University, College Station, TX 77843-2474, USA
| | - Hongmei Jiang
- Department of Statistics, 1399 Math Building, Purdue University, West Lafayette, IN 47906, USA
- Computational Genomics, 206 Whistler Hall, Purdue University, West Lafayette, IN 47906, USA
| | - Michael A. Black
- Department of Statistics, 1399 Math Building, Purdue University, West Lafayette, IN 47906, USA
- Computational Genomics, 206 Whistler Hall, Purdue University, West Lafayette, IN 47906, USA
| | - Andreas Madlung
- Department of Biology, Box355325, University of Washington, Seattle, WA 98195-5325, USA
| | - Brian Watson
- Department of Biology, Box355325, University of Washington, Seattle, WA 98195-5325, USA
| | - Lewis Lukens
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - J. Chris Pires
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Jiyuan J. Wang
- Department of Soil and Crop Sciences and Intercollegiate Program in Genetics, Texas A&M University, College Station, TX 77843-2474, USA
| | - Luca Comai
- Department of Biology, Box355325, University of Washington, Seattle, WA 98195-5325, USA
| | - Thomas C. Osborn
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - R. W. Doerge
- Department of Statistics, 1399 Math Building, Purdue University, West Lafayette, IN 47906, USA
- Computational Genomics, 206 Whistler Hall, Purdue University, West Lafayette, IN 47906, USA
- Department of Agronomy, 1150 Lilly Hall, Purdue University, West Lafayette, IN 47906, USA
| | - Z. Jeffrey Chen
- Department of Soil and Crop Sciences and Intercollegiate Program in Genetics, Texas A&M University, College Station, TX 77843-2474, USA
- * Correspondence: Department of Soil and Crop Sciences and Intercollegiate Program in Genetics, Texas A&M University, College Station, TX 77843-2474, USA (fax: +1 979 845 0456; e-mail: )
| |
Collapse
|
30
|
Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FCH, Jones GH. Partial Diploidization of Meiosis in Autotetraploid Arabidopsis thaliana. Genetics 2003; 165:1533-40. [PMID: 14668400 PMCID: PMC1462840 DOI: 10.1093/genetics/165.3.1533] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Meiosis was analyzed cytogenetically in autotetraploids of Arabidopsis, including both established lines and newly generated autotetraploid plants. Fluorescent in situ hybridization with 5S and 45S rDNA probes was used to identify the different chromosomes at metaphase I of meiosis. Multivalents were observed frequently in all the lines analyzed, but there were significant differences in multivalent frequency not only between the newly generated tetraploids and the established lines but also among the different established lines. The new tetraploids showed high multivalent frequencies, exceeding the theoretical 66.66% predicted by the simple random-end pairing model, in some cases significantly, thus indicating that Arabidopsis autotetraploids have more than two autonomous pairing sites per chromosome, despite their small sizes. The established lines showed fewer multivalents than the new autotetraploids did, but the extent of this reduction was strongly line and chromosome dependent. One line in particular showed a large reduction in multivalents and a concomitant increase in bivalents, while the other lines showed lesser reductions in multivalents. The reduction in multivalents was not uniformly distributed across chromosomes. The smaller chromosomes, especially chromosomes 2 and 4, showed the most marked reductions while the largest chromosome (1) showed virtually no reduction compared to the new tetraploids. It is concluded that the established autotetraploid lines have undergone a partial diploidization of meiosis, but not necessarily genetical diploidization, since their creation. Possible mechanisms for the resulting change in meiotic chromosome behavior are discussed.
Collapse
Affiliation(s)
- J L Santos
- Departamento de Genetica, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Rostoks N, Schmierer D, Kudrna D, Kleinhofs A. Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:1094-101. [PMID: 12928776 DOI: 10.1007/s00122-003-1351-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 05/02/2003] [Indexed: 05/20/2023]
Abstract
The hypersensitive response (HR) is one of the most-efficient forms of plant defense against biotrophic pathogens, and results in localized cell death and the formation of necrotic lesions; however, the molecular components of pathways leading to HR remain largely unknown. Barley ( Hordeum vulgare ssp. vulgare L.) cDNAs for putative hypersensitive-induced reaction ( HIR) genes were isolated based on DNA and amino-acid homologies to maize HIR genes. Analyses of the cDNA and genomic sequences and genetic mapping found four distinct barley HIR genes, Hv-hir1, Hv-hir2, Hv-hir3 and Hv-hir4, on chromosomes 4(4H) bin10, 7(5H) bin04, 7(5H) bin07 and 1(7H) bin03, respectively. Hv-hir1, Hv-hir2 and Hv-hir3 genes were highly homologous at both DNA and the deduced amino-acid level, but the Hv-hir4 gene was similar to the other genes only at the amino-acid sequence level. Amino-acid sequence analyses of the barley HIR proteins indicated the presence of the SPFH protein-domain characteristic for the prohibitins and stomatins which are involved in control of the cell cycle and ion channels, as well as in other membrane-associated proteins from bacteria, plants and animals. HIR genes were expressed in all organs and developement stages analyzed, indicating a vital and non-redundant function. Barley fast-neutron mutants exhibiting spontaneous HR (disease lesion mimic mutants) showed up to a 35-fold increase in Hv-hir3 expression, implicating HIR genes in the induction of HR.
Collapse
Affiliation(s)
- N Rostoks
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
32
|
Soltis DE, Soltis PS. The role of phylogenetics in comparative genetics. PLANT PHYSIOLOGY 2003; 132:1790-800. [PMID: 12913137 PMCID: PMC526274 DOI: 10.1104/pp.103.022509] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 03/30/2003] [Accepted: 05/12/2003] [Indexed: 05/18/2023]
Affiliation(s)
- Douglas E Soltis
- Department of Botany and the Genetics Institute, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
33
|
Elo A, Lyznik A, Gonzalez DO, Kachman SD, Mackenzie SA. Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in the Arabidopsis genome. THE PLANT CELL 2003; 15:1619-31. [PMID: 12837951 PMCID: PMC165405 DOI: 10.1105/tpc.010009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 05/13/2003] [Indexed: 05/18/2023]
Abstract
The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.
Collapse
Affiliation(s)
- Annakaisa Elo
- Plant Science Initiative, Beadle Center for Genetics Research, University of Nebraska, Lincoln, Nebraska 68588-0660, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Sucrose is universal in plants and fulfils many roles: transport sugar, storage reserve, compatible solute and signal compound. Consequently, sucrose synthesis is highly regulated, with much of the control operating at the first step in the committed pathway, which is catalysed by sucrose-phosphate synthase (SPS). The discovery of at least three SPS gene families in plants has added a further layer of complexity to an already complicated picture involving transcriptional, allosteric and post-translational control of this enzyme's activity. After years of neglect, the gene encoding the last enzyme in the pathway, sucrose-phosphatase (SPP), has finally been cloned, revealing that SPS contains an SPP-like domain at the carboxy-terminus, to which SPP might bind. This has reinvigorated the search for an SPS-SPP complex, and has hinted at further complexities to be unravelled in the control of sucrose synthesis in plants.
Collapse
Affiliation(s)
- John E Lunn
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | | |
Collapse
|
35
|
Lawton-Rauh A, Robichaux RH, Purugganan MD. Patterns of nucleotide variation in homoeologous regulatory genes in the allotetraploid Hawaiian silversword alliance (Asteraceae). Mol Ecol 2003; 12:1301-13. [PMID: 12694292 DOI: 10.1046/j.1365-294x.2003.01814.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genome-wide duplication (polyploidization) is prevalent in a large number of eukaryotic organisms and is particularly widespread in flowering plants. Polyploid species appear to vary from their diploid progenitors in a variety of ecologically important traits, suggesting that genome duplications provide a mechanism for ecological diversification. Studies of nucleotide variation at duplicate genes that arise via polyploidization allow us to infer the evolutionary forces that act on these polyploid loci. In an effort to examine the evolutionary dynamics of homoeologous loci, molecular population genetic analyses were undertaken for duplicate regulatory genes in the allopolyploid Hawaiian silversword alliance, a premier example of adaptive radiation. The levels and patterns of nucleotide variation for the floral homeotic genes ASAPETALA1 (ASAP1) and ASAPETALA3/TM6 (ASAP3/TM6) were studied in two species representing different lineages within the Hawaiian silversword alliance: Argyroxiphium sandwicense ssp. macrocephalum and Dubautia ciliolata ssp. glutinosa. Homoeologueous copies of ASAP1 and ASAP3/TM6 show differing levels and patterns of nucleotide polymorphism. Duplicate ASAP1 copies have similar levels of nucleotide diversity and haplotype structure in both species; by contrast, duplicate ASAP3/TM6 genes display different levels and patterns of variation in D. ciliolata ssp. glutinosa. Additionally, D. ciliolata ssp. glutinosa appears to be segregating for a moderate frequency null allele in one ASAP3/TM6 homoeologue. These results suggest that differing evolutionary forces can affect duplicate loci arising from allopolyploidization.
Collapse
Affiliation(s)
- Amy Lawton-Rauh
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
36
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447281 DOI: 10.1002/cfg.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|