1
|
Asemoloye MD, Bello TS, Oladoye PO, Remilekun Gbadamosi M, Babarinde SO, Ebenezer Adebami G, Olowe OM, Temporiti MEE, Wanek W, Marchisio MA. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy. Bioengineered 2023; 14:2269328. [PMID: 37850721 PMCID: PMC10586088 DOI: 10.1080/21655979.2023.2269328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
The next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites. The lignocellulosic biorefinery has achieved good progress over the past few years with potential impact on global bioeconomy. This principle aims to produce different bio-based products like biochemical(s) or biofuel(s) from plant biomass under microbial actions. Meanwhile, yeasts have proven very useful for different biotechnological applications. Hence, their potentials in genetic/metabolic engineering can be fully explored for lignocellulosic biorefineries. For instance, the secretion of enzymes above the natural limit (aided by genetic engineering) would speed-up the down-line processes in lignocellulosic biorefineries and the cost. Thus, the next milestone would greatly require the development of synthetic yeasts with much more efficient metabolic capacities to achieve basic requirements for particular biorefinery. This review gave comprehensive overview of lignocellulosic biomaterials and their importance in bioeconomy. Many researchers have demonstrated the engineering of several ligninolytic enzymes in heterologous yeast hosts. However, there are still many factors needing to be well understood like the secretion time, titter value, thermal stability, pH tolerance, and reactivity of the recombinant enzymes. Here, we give a detailed account of the potentials of engineered yeasts being discussed, as well as the constraints associated with their development and applications.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Tunde Sheriffdeen Bello
- Department of Plant Biology, School of Life Sciences, Federal University of Technology Minna, Minna Niger State, Nigeria
| | | | | | - Segun Oladiran Babarinde
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | | | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag, Mmabatho, South Africa
| | | | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
| |
Collapse
|
2
|
Gord Noshahri N, Sharifi A, Seyedabadi M, Rudat J, Zare Mehrjerdi M. Development of two devices for high-throughput screening of ethanol-producing microorganisms by real-time CO 2 production monitoring. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02892-3. [PMID: 37338580 DOI: 10.1007/s00449-023-02892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Bioethanol's importance as a renewable energy carrier led to the development of new devices for the high-throughput screening (HTS) of ethanol-producing microorganisms, monitoring ethanol production, and process optimization. This study developed two devices based on measuring CO2 evolution (an equimolar byproduct of microbial ethanol fermentation) to allow for a fast and robust HTS of ethanol-producing microorganisms for industrial purposes. First, a pH-based system for identifying ethanol producers (Ethanol-HTS) was established in a 96-well plate format where CO2 emission is captured by a 3D-printed silicone lid and transferred from the fermentation well to a reagent containing bromothymol blue as a pH indicator. Second, a self-made CO2 flow meter (CFM) was developed as a lab-scale tool for real-time quantification of ethanol production. This CFM contains four chambers to simultaneously apply different fermentation treatments while LCD and serial ports allow fast and easy data transfer. Applying ethanol-HTS with various yeast concentrations and yeast strains displayed different colors, from dark blue to dark and light green, based on the amount of carbonic acid formed. The results of the CFM device revealed a fermentation profile. The curve of CO2 production flow among six replications showed the same pattern in all batches. The comparison of final ethanol concentrations calculated based on CO2 flow by the CFM device with the GC analysis showed 3% difference which is not significant. Data validation of both devices demonstrated their applicability for screening novel bioethanol-producer strains, determining carbohydrate fermentation profiles, and monitoring ethanol production in real time.
Collapse
Affiliation(s)
- Najme Gord Noshahri
- Industrial Microbial Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Ahmad Sharifi
- Horticultural Plants Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Mohsen Seyedabadi
- Industrial Microbial Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Jens Rudat
- BLT 2: Technical Biology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | | |
Collapse
|
3
|
El‐Salamony RA. Catalytic Steam Reforming of Ethanol to Produce Hydrogen: Modern and Efficient Catalyst Modification Strategies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Radwa A. El‐Salamony
- Process Development Department Egyptian petroleum research institute (EPRI) Cairo Egypt
| |
Collapse
|
4
|
Taha Sayed E, Olabi AG, Elsaid K, Al Radi M, Alqadi R, Ali Abdelkareem M. Recent Progress in Renewable Energy Based-Desalination in the Middle East and North Africa MENA Region. J Adv Res 2022:S2090-1232(22)00197-7. [PMID: 36108962 DOI: 10.1016/j.jare.2022.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Middle East and North African (MENA) countries are rapidly growing in population with very limited access to freshwater resources. To overcome this challenge, seawater desalination is proposed as an effective solution, as most MENA countries have easy access to saline water. However, desalination processes require massive demand for energy, which is mostly met by fossil fuel-driven power plants. The rapid technological advancements in renewable energy technologies, along with their gradually decreasing cost place renewable energy-driven power plants and processes as a promising alternative to conventional fuel-powered plants. AIM OF REVIEW In the current work, renewable energy-powered desalination in the MENA region is investigated. Various desalination technologies and renewable energy resources, particularly those available in MENA are discussed. A detailed discussion of suitable energy storage technologies for incorporation into renewable energy desalination systems is also included. KEY SCIENTIFIC CONCEPTS OF REVIEW The progress made in implementing renewable energy into power desalination plants in MENA countries is summarized and analyzed by describing the overall trend and giving recommendations for the potential amalgamation of available renewable energies (REs) and available desalination technologies. Finally, a case study in the MENA region, the Al-khafji solar seawater reverse osmosis (SWRO) desalination plant in the Kingdom of Saudi Arabia KSA, is used to demonstrate the implementation of REs to drive desalination processes.
Collapse
Affiliation(s)
- Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Khaled Elsaid
- Chemical Engineering Program, Texas A& M University at Qatar, PO Box. 23874, Doha, Qatar
| | - Muaz Al Radi
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rashid Alqadi
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Zhao Z, Yu X, Huang Y, Sang T, Guo Z, Du Y, Yu L, Li D. Study on Combustion and Emissions of a Combined Injection Spark Ignition Engine with Natural Gas Direct Injection Plus Ethanol Port Injection under Lean-Burn Conditions. ACS OMEGA 2022; 7:21901-21911. [PMID: 35785327 PMCID: PMC9244908 DOI: 10.1021/acsomega.2c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Conventional ethanol spark ignition (SI) engines have poor fuel atomization and mixture formation. The objective of this paper is to improve the combustion and emission performance of ethanol SI engines under lean-burn conditions through the dual-injection mode with ethanol port injection and compressed natural gas (CNG) direct injection (CDI+EPI). This paper studies the engine performance at 1500 rpm under five CNG direct injection ratios (CDIr) and five excess air ratios (λ). The results show that as the CDIr increases under lean-burn conditions, the following occurs: the minimum advance for best torque (MBT), the coefficient of variation (CoVIMEP), and CO and HC emissions decrease; the crankshaft rotation or time with cumulative heat release rate ranging from 10% to 90% (CA 10-90) and NOx emissions first decrease and then increase; and torque, peak in-cylinder pressure (Pmax), and the λ limit first increase and then decrease. The larger the CDIr is, the less influence λ has on the MBT. When CDIr = 15%, the CoVIMEP can be effectively reduced, the engine can still work stably in all lean-burn conditions, and the λ limit will reach the maximum value of 1.73, 19.31% higher than that of the original engine (CDIr = 0). When λ = 1.1, CO emissions decrease the most and HC emissions decrease the least. At this time, CO and HC emissions decrease by 1.56 vol % and 30 ppm, respectively, on average for every 0.1 decrease in λ. For CA 10-90, torque, and Pmax, λ = 1.1, 15% CDI, and 85% EPI is the optimal combination under lean-burn conditions. When CDIr ≥ 15%, NOx emissions are at an ideal level. Under lean-burn conditions, direct-injection CNG can form a good stratified natural gas/ethanol mixture in the cylinder, effectively improving the engine's power and stability and reducing emissions. The λ = 1.1, 15% CDI, 85% EPI combination provides a cutting-edge and outstanding solution for a natural gas/ethanol combined injection SI engine.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xiumin Yu
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Yan Huang
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Tao Sang
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zezhou Guo
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Yaodong Du
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Longlong Yu
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Decheng Li
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130022, China
- College of Automotive Engineering, Jilin University, Changchun, Jilin 130022, China
| |
Collapse
|
6
|
Chen L, Wang M, Zhang Z, Feng Y. Application of electric potential improves ethanol production from xylose by active sludge. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:215. [PMID: 34789328 PMCID: PMC8596957 DOI: 10.1186/s13068-021-02065-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Low-cost raw materials such as lignocellulosic materials have been utilized in second-generation ethanol production process. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery. RESULTS By applying different constant potentials to different microbial electrolysis cells with xylose as the sole carbon source, we analyzed the output of metabolites, microbial community structures, electron flow, and carbon flow in the process of xylose electro-fermentation by domesticated activated sludge. The bioreactors produced currents when applying positive potentials. The peak currents of the + 0.242 V, + 0.542 V and + 0.842 V reactors were 0.96 × 10-6 A, 3.36 × 10-6 A and 6.43 × 10-6 A, respectively. The application of potentials promoted the xylose consumption, and the maximum consumption rate in the + 0.542 V reactor was 95.5%, which was 34.8 times that of the reactor without applied potential. The potential application also promoted the production of ethanol and acetate. The maximum ethanol yield (0.652 mol mol-1 xylose) was obtained in the + 0.842 V reactor. The maximum acetate concentration (1,874 µmol L-1) was observed in the + 0.842 V reactor. The optimal potential for ethanol production was + 0.842 V with the maximum ethanol yield and energy saving. The application of positive potential caused the microorganisms to carry out ethanol fermentation, and the application of negative potential forced the microorganisms to carry out acetic fermentation. The potential application changed the diversity and community structure of microorganisms in the reactors, and the two most significantly changed families were Paenibacillaceae and Bacillaceae. CONCLUSION The constructed microbial electrolysis cells with different potentials obtained better production yield and selectivity compared with the reactor without applied potential. Our work provides strategies for the subsequent fermentation processes with different needs.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Mingpeng Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
7
|
Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol Adv 2021; 54:107809. [PMID: 34333091 DOI: 10.1016/j.biotechadv.2021.107809] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022]
Abstract
Development and deployment of commercial biorefineries based on conversion of lignocellulosic biomass into biofuels and bioproducts faces many challenges that must be addressed before they are commercially viable. One of the biggest challenges faced is the efficient and scalable valorization of lignin, one of the three major components of the plant cell wall. Lignin is the most abundant aromatic biopolymer on earth, and its presence hinders the extraction of cellulose and hemicellulose that is essential to biochemical conversion of lignocellulose to fuels and chemicals. There has been a significant amount of work over the past 20 years that has sought to develop innovative processes designed to extract and recycle lignin into valuable compounds and help reduce the overall costs of the biorefinery process. Due to the complex matrix of lignin, which is essential for plant survival, the development of a reliable and efficient lignin conversion technology has been difficult to achieve. One approach that has received significant interest relies on the use of enzymes, notably laccases, a class of multi‑copper green oxidative enzymes that catalyze bond breaking in lignin to produce smaller oligomers. In this review, we first assess the different innovations of lignin valorization using laccases within the context of a biorefinery process, and then assess the latest economical advances that these innovations offered. Finally, we review laccase characterization and optimization, as well as the prospects and bottlenecks of this class of enzymes within the industrial and biorefining sectors.
Collapse
|
8
|
Najjarzadeh N, Matsakas L, Rova U, Christakopoulos P. How Carbon Source and Degree of Oligosaccharide Polymerization Affect Production of Cellulase-Degrading Enzymes by Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2021; 12:652655. [PMID: 33841380 PMCID: PMC8032549 DOI: 10.3389/fmicb.2021.652655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cellulases are a group of enzymes responsible for the degradation of cellulose, which is one of the most abundant polymers on Earth. The three main groups of cellulases are endoglucosidases, exoglucosidases, and β-glucosidases; however, the mechanism of induction of these enzymes remains poorly characterized. Cellooligosaccharides are among the main inducers of these enzymes in filamentous fungi, yet it is not clear how their degree of polymerization may affect the strength of induction. In the present study, we investigated the effect of different carbohydrate-based inducers, such as lactose, sophorose, cellooligosaccharides, and xylooligosacharides, characterized by different concentrations and degree of polymerization, on cellulases production by the fungus Fusarium oxysporum f. sp. lycopersici, which is one of the most studied lignocellulose degrading fungi with the ability to consume both cellulose and hemicellulose. Moreover, the effect of carbon source on cellulase induction was assessed by growing the biomass on sucrose or glycerol. Results showed a correlation between induction efficiency and the cellooligosaccharides' concentration and size, as well as the carbon source available. Specifically, cellotetraose was a better inducer when sucrose was the carbon source, while cellobiose yielded a better result on glycerol. These findings can help optimize industrial cellulase production.
Collapse
Affiliation(s)
| | | | | | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
9
|
Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood. ENERGIES 2020. [DOI: 10.3390/en13174552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pressure, temperature, and retention time are the most studied parameters in steam explosion pretreatment. However, this work aimed to fix these parameters and to evaluate the influences of several less investigated steam explosion parameters on the saccharification yield in hydrolysis. In this study, firstly, pinewood samples smaller than 200 µm were treated with steam explosion at 190 °C for 10 min. The variable parameters were biomass loading, N2 pressure, and release time. Steam-exploded samples were hydrolyzed with the Trichoderma reesei enzyme for saccharification for 72 h. The sugar content of the resultant products was analyzed to estimate the yield of sugars (such as glucose, xylose, galactose, mannose, and arabinose). The best glucose yield in the pulp was achieved with 4 g of sample, N2 pressure of 0.44 MPa, and short release time (22 s). These conditions gave a glucose yield of 97.72% in the pulp, and the xylose, mannose, galactose, and arabinose yields in the liquid fraction were found to be 85.59%, 87.76%, 86.43%, and 90.3%, respectively.
Collapse
|
10
|
Jakeer S, Varma M, Sharma J, Mattoo F, Gupta D, Singh J, Kumar M, Gaur NA. Metagenomic analysis of the fecal microbiome of an adult elephant reveals the diversity of CAZymes related to lignocellulosic biomass degradation. Symbiosis 2020. [DOI: 10.1007/s13199-020-00695-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zhang J, Zhang Y, Zhao J, An Z, Zhu Y, Shu X, Song H, Xiang X, Ma X, He J. Cu-Pd pair facilitated simultaneous activation of ethanol and CO. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Rocha JRDASDC, Marçal TDS, Salvador FV, da Silva AC, Carneiro PCS, de Resende MDV, Carneiro JDC, Azevedo ALS, Pereira JF, Machado JC. Unraveling candidate genes underlying biomass digestibility in elephant grass (Cenchrus purpureus). BMC PLANT BIOLOGY 2019; 19:548. [PMID: 31822283 PMCID: PMC6905061 DOI: 10.1186/s12870-019-2180-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/01/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Elephant grass [Cenchrus purpureus (Schumach.) Morrone] is used for bioenergy and animal feed. In order to identify candidate genes that could be exploited for marker-assisted selection in elephant grass, this study aimed to investigate changes in predictive accuracy using genomic relationship information and simple sequence repeats for eight traits (height, green biomass, dry biomass, acid and neutral detergent fiber, lignin content, biomass digestibility, and dry matter concentration) linked to bioenergetics and animal feeding. RESULTS We used single-step, genome-based best linear unbiased prediction and genome association methods to investigate changes in predictive accuracy and find candidate genes using genomic relationship information. Genetic variability (p < 0.05) was detected for most of the traits evaluated. In general, the overall means for the traits varied widely over the cuttings, which was corroborated by a significant genotype by cutting interaction. Knowing the genomic relationships increased the predictive accuracy of the biomass quality traits. We found that one marker (M28_161) was significantly associated with high values of biomass digestibility. The marker had moderate linkage disequilibrium with another marker (M35_202) that, in general, was detected in genotypes with low values of biomass digestibility. In silico analysis revealed that both markers have orthologous regions in other C4 grasses such as Setaria viridis, Panicum hallii, and Panicum virgatum, and these regions are located close to candidate genes involved in the biosynthesis of cell wall molecules (xyloglucan and lignin), which support their association with biomass digestibility. CONCLUSIONS The markers and candidate genes identified here are useful for breeding programs aimed at changing biomass digestibility in elephant grass. These markers can be used in marker-assisted selection to grow elephant grass cultivars for different uses, e.g., bioenergy production, bio-based products, co-products, bioactive compounds, and animal feed.
Collapse
|
13
|
Kalinina AN, Gordeeva TL, Sineoky SP. Expression of the Xylanase Gene from Paenibacillus brasilensis X1 in Pichia pastoris and Characteristics of the Recombinant Enzyme. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819080064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhang L, Li Y, Liu X, Ren N, Ding J. Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement. RSC Adv 2019; 9:11179-11185. [PMID: 35520230 PMCID: PMC9062995 DOI: 10.1039/c9ra01158g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023] Open
Abstract
Due to the characteristics of renewable and carbon-neutral, lignocellulose is considered to be one of the most potential, feasible, and ample resources for biofuel production on the Earth. However, the low energy conversion capacity of microorganisms is the primary bottleneck for utilizing lignocellulosic biomass to produce biofuel. In the present study, a mesophilic bacterial strain Cel10 identified as Clostridium lentocellum, according to 16S rRNA sequence homology, which can produce hydrogen from lignocellulose was isolated and characterized. The optimal conditions of hydrogen production from carboxymethylcellulose (CMC) are 37 °C, pH 7.0, and 5.0 g L-1. The H2 production peaked at 5.419 mmol H2 g-1 CMC under these conditions, which is relatively high compared to the other reported mesophilic bacteria that use cellulose as a substrate. Moreover, the H2-producing performance of strain Cel10 using cassava residues, a type of natural lignocellulosic feedstock, was also investigated. The results show that the hydrogen production peaked at 4.08 mmol H2 g-1 after 72 h of incubation, which is almost 1.2-3.8 times higher than the production of other mesophilic and thermophilic strains, while the highest cassava residues degradation rate reached 45.43%. The results validate that Clostridium lentocellum strain Cel10, newly isolated from Ailuropoda melanoleuca excrement, can offer a new method for directly converting lignocellulosic biomass to bio-hydrogen.
Collapse
Affiliation(s)
- Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology Harbin 150090 China +86 451 86289113
| | - Yan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology Harbin 150090 China +86 451 86289113
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology Harbin 150090 China +86 451 86289113
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology Harbin 150090 China +86 451 86289113
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology Harbin 150090 China +86 451 86289113
| |
Collapse
|
15
|
Dinesha P, Kumar S, Rosen MA. Combustion, performance, and emissions of a compression ignition engine using Pongamia biodiesel and bioethanol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8069-8079. [PMID: 30684187 DOI: 10.1007/s11356-019-04270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Concerns over the depletion of conventional fuels have increased interest in new renewable energy sources like alcohol- and vegetable-based oils. Major drawbacks of using esters of vegetable oils, known as biodiesel, include reduced engine performance and increased emissions of oxides of nitrogen. In the present study, the effects of ethanol on biodiesel and mineral diesel blends in a diesel engine are experimentally investigated. The ethanol is produced from cashew apple juice by fermentation. Experiments are conducted using B20 Pongamia biodiesel with ethanol in proportions of 5, 7.5, and 10% by volume at varying load conditions. The results indicate that a B20 biodiesel blend with 7.5% ethanol yields a higher brake thermal efficiency and lower brake-specific energy consumption than pure B20 (20% biodiesel + 80% diesel), as well as significantly reduced emissions such as oxides of nitrogen, carbon monoxide, hydrocarbons, and smoke.
Collapse
Affiliation(s)
- Pijakala Dinesha
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shiva Kumar
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Marc A Rosen
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada
| |
Collapse
|
16
|
|
17
|
Verma N, Kumar V, Bansal MC. Utility of Luffa cylindrica and Litchi chinensis peel, an agricultural waste biomass in cellulase production by Trichoderma reesei under solid state cultivation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Kouzuma S, Fujii K. Biochemical characteristics of cellulose and a green alga degradation by Gilvimarinus japonicas 12-2 T, and its application potential for seaweed saccharification. Biosci Biotechnol Biochem 2018; 82:2198-2204. [PMID: 30198387 DOI: 10.1080/09168451.2018.1516542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cellulose is one of the major constituents of seaweeds, but reports of mechanisms in microbial seaweed degradation in marine environment are limited, in contrast to the multitude of reports for lignocellulose degradation in terrestrial environment. We studied the biochemical characteristics for marine cellulolytic bacterium Gilvimarinus japonicas 12-2T in seaweed degradation. The bacterial strain was found to degrade green and red algae, but not brown algae. It was shown that the bacterial strain employs various polysaccharide hydrolases (endocellulase, agarase, carrageenanase, xylanase, and laminarinase) to degrade seaweed polysaccharides. Electrophoretic analysis and peptide sequencing showed that the major protein bands on the electrophoresis gel were homologous to known glucanases and glycoside hydrolases. A seaweed hydrolysate harvested from the bacterial culture was found useful as a substrate for yeasts to produce ethanol. These findings will provide insights into possible seaweed decomposition mechanisms of Gilvimarinus, and its biotechnological potential for ethanol production from inedible seaweeds.
Collapse
Affiliation(s)
- Shousei Kouzuma
- a Faculty of Agriculture , Yamaguchi University , Yoshida , Japan
| | - Katsuhiko Fujii
- a Faculty of Agriculture , Yamaguchi University , Yoshida , Japan.,b Graduate School of Science and Technology for Innovation , Yamaguchi University , Yoshida , Japan
| |
Collapse
|
19
|
Anugraha RP, Wiguno A, Altway A, Wibawa G. Vapor pressures of diethyl carbonate + ethanol binary mixture and diethyl carbonate + ethanol + isooctane/toluene ternary mixtures at temperatures range of 303.15–323.15 K. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Mudrak T, Kuts A, Kovalchuk S, Kyrylenko R, Bondar N. SELECTION OF THE COMPLEX OF ENZYME PREPARATIONS FOR THE HYDROLYSIS OF GRAIN CONSTITUENTS DURING THE FERMENTATION OF THE WORT OF HIGH CONCENTRATION. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.15673/fst.v12i2.931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper, an optimal complex is selected of enzyme preparations for hydrolysis of the components of grain raw materials during fermentation of high concentration wort. When selecting enzyme systems, their effect on the technical and chemical parameters of the fermented wash during the fermentation of wort is investigated. For the research, maize grain with a starch content of 69.0 % was used. Fermentation was carried out with 18–30% of dry matters (DM) in the wort, using the osmophilic yeast strain Saccharomyces cerevisiae DO-16.The recommended concentration of the enzyme preparation Amylex 4 T (the source of the α-amylase enzyme) – 0.4–0.6 units of α-amylase ability/g of starch – is optimal for the concentration 18–27% of DS in the wort. For 30 % of DS, it is practical to use 0.6 units of α-amylase ability/g of starch. With the use of the enzyme preparation Diazyme TGA (the source of the enzyme glucoamylase), the value is 7.5 units of glucoamylase ability/g of starch, alcohol accumulation in fermented washes was 10.51, 13.35, 15.78% vol., according to the wort concentrations 18, 27, 30 %, respectively. It has been established that with the application of the cytolytic enzyme Laminex 750, the concentrations of dissolved carbohydrates and non-dissolved starch have a tendency to decrease. In the samples where the proteolytic enzyme preparation Alphalase AFP was added at a concentration of 0.05 units of proteolytic ability/g of raw materials, there was an increase in the accumulation of yeast cells by 6.5% compared with the reference sample. The recommended concentration of Deltazyme VR XL (the source of β-glucanase and xylanase) is 0.05 units β-glucose/g of raw materials. The addition of a cytolytic and proteolytic enzyme preparation in combination with β-glucanase and xylanase contributed to an increase in the accumulation of ethanol in the washes by 1.7 % compared with the reference sample, and to an almost 33 % decrease in the concentration of dissolved carbohydrates and non-dissolved starch. On the basis of experimental studies, it has been found that using a complex of enzyme preparations – amylolytic (Amylex 4T), saccharifying (Diazyme TGA), proteolytic (Alphalase AFP), cytolytic (Laminex 750), and complex AF β-glucanase and xylanase (Deltazyme VR XL), in various combinations of their concentrations, – contributed to the intensification of the fermentation process of the wort and increased accumulation of the target product, ethanol, by 0.8–1.4 %, depending on the wort concentration. The highest amount of ethanol accumulated at the maximum dosage of additional enzyme preparations.
Collapse
|
21
|
Bashir S, Idriss H. Temperature Programmed Desorption of Ethanol over TiO2 and M/TiO2 (M = Au, Pd and Au–Pd) Catalysts: Dehydration Versus De-carbonylation Pathways. Top Catal 2018. [DOI: 10.1007/s11244-018-0897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Das S, Maiti SK. PSII as an in vivo molecular catalyst for the production of energy rich hydroquinones - A new approach in renewable energy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:134-139. [PMID: 29413696 DOI: 10.1016/j.jphotobiol.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
One of the pertinent issues in the field of energy science today is the quest for an abundant source of hydrogen or hydrogen equivalents. In this study, phenyl-p-benzoquinone (pPBQ) has been used to generate a molecular store of hydrogen equivalents (phenyl-p-hydroquinone; pPBQH2) from thein vivo splitting of water by photosystem II of the marine cyanobacterium Synechococcus elongatus BDU 70542. Using this technique, 10.8 μmol of pPBQH2 per mg chlorophyll a can be extracted per minute, an efficiency that is orders of magnitude higher when compared to the techniques present in the current literature. Moreover, the photo-reduction process was stable when tested over longer periods of time. Addition of phenyl-p-benzoquinone on an intermittent basis resulted in the precipitation of phenyl-p-hydroquinone, obviating the need for costly downstream processing units for product recovery. Phenyl-p-hydroquinone so obtained is a molecular store of free energy preserved through the light driven photolysis of water and can be used as a cheap and a renewable source of hydrogen equivalents by employing transition metal catalysts or fuel cells with the concomitant regeneration of phenyl-p-benzoquinone. The cyclic nature of this technique makes it an ideal candidate to be utilized in mankind's transition from fossil fuels to solar fuels.
Collapse
Affiliation(s)
- Sai Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Soumen K Maiti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India.
| |
Collapse
|
23
|
Nguyen TH, Ra CH, Sunwoo IY, Sukwong P, Jeong GT, Kim SK. Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation. Appl Biochem Biotechnol 2018; 184:513-523. [PMID: 28756542 DOI: 10.1007/s12010-017-2565-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Bioethanol was produced using polysaccharide from soybean residue as biomass by separate hydrolysis and fermentation (SHF). This study focused on pretreatment, enzyme saccharification, and fermentation. Pretreatment to obtain monosaccharide was carried out with 20% (w/v) soybean residue slurry and 270 mmol/L H2SO4 at 121 °C for 60 min. More monosaccharide was obtained from enzymatic hydrolysis with a 16 U/mL mixture of commercial enzymes C-Tec 2 and Viscozyme L at 45 °C for 48 h. Ethanol fermentation with 20% (w/v) soybean residue hydrolysate was performed using wild-type and Saccharomyces cerevisiae KCCM 1129 adapted to high concentrations of galactose, using a flask and 5-L fermenter. When the wild type of S. cerevisiae was used, an ethanol production of 20.8 g/L with an ethanol yield of 0.31 g/g consumed glucose was obtained. Ethanol productions of 33.9 and 31.6 g/L with ethanol yield of 0.49 g/g consumed glucose and 0.47 g/g consumed glucose were obtained in a flask and a 5-L fermenter, respectively, using S. cerevisiae adapted to a high concentration of galactose. Therefore, adapted S. cerevisiae to galactose could enhance the overall ethanol fermentation yields compared to the wild-type one.
Collapse
Affiliation(s)
- Trung Hau Nguyen
- Department of Biotechnology, Pukyong National University, Busan, 48513, Korea
| | - Chae Hun Ra
- Department of Biotechnology, Pukyong National University, Busan, 48513, Korea
| | - In Yung Sunwoo
- Department of Biotechnology, Pukyong National University, Busan, 48513, Korea
| | - Pailin Sukwong
- Department of Biotechnology, Pukyong National University, Busan, 48513, Korea
| | - Gwi-Taek Jeong
- Department of Biotechnology, Pukyong National University, Busan, 48513, Korea
| | - Sung-Koo Kim
- Department of Biotechnology, Pukyong National University, Busan, 48513, Korea.
| |
Collapse
|
24
|
Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1. PLoS One 2017; 12:e0189806. [PMID: 29253895 PMCID: PMC5734778 DOI: 10.1371/journal.pone.0189806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 12/01/2017] [Indexed: 01/14/2023] Open
Abstract
Extremophilic xylanases have attracted great scientific and industrial interest. In this study, a GH10 xylanase-encoding gene, Xyl10E, was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris GS115. Deduced Xyl10E shares the highest identities of 62% and 57% with characterized family GH10 xylanases from Talaromyces leycettanus and Penicillium canescens (structure 4F8X), respectively. Xyl10E was most active at 93 to 95°C and pH 4.0, retained more than 75% or 48% of the initial activity when heated at 80°C or 90°C for 30 min, respectively, and hardly lost activity at pH 1.0 to 7.0, but was completely inhibited by SDS. Two residues, A160 and A161, located on loop 4, were identified to play roles in catalysis. Mutants A160D/E demonstrated higher affinity to substrate with lower Km values, while mutants A161D/E mainly displayed elevated Vmax values. All of these mutants had significantly improved catalytic efficiency. According to the molecular dynamics simulation, the mutation of A160E was able to affect the important substrate binding site Y204 and then improve the substrate affinity, and the mutation of A161D was capable of forming a hydrogen bond with the substrate to promote the substrate binding or accelerate the product release. This study introduces a highly thermophilic fungal xylanase and reveals the importance of loop 4 for catalytic efficiency.
Collapse
|
25
|
Nguyen QA, Cho E, Trinh LTP, Jeong JS, Bae HJ. Development of an integrated process to produce d-mannose and bioethanol from coffee residue waste. BIORESOURCE TECHNOLOGY 2017; 244:1039-1048. [PMID: 28851158 DOI: 10.1016/j.biortech.2017.07.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
A novel, integrated process for economical high-yield production of d-mannose and ethanol from coffee residue waste (CRW), which is abundant and widely available, was reported. The process involves pretreatment, enzymatic hydrolysis, fermentation, color removal, and pervaporation, which can be performed using environmentally friendly technologies. The CRW was pretreated with ethanol at high temperature and then hydrolyzed with enzymes produced in-house to yield sugars. Key points of the process are: manipulations of the fermentation step that allowing bioethanol-producing yeasts to use almost glucose and galactose to produce ethanol, while retaining large amounts of d-mannose in the fermented broth; removal of colored compounds and other components from the fermented broth; and separation of ethanol and d-mannose through pervaporation. Under optimized conditions, approximately 15.7g dry weight (DW) of d-mannose (approximately 46% of the mannose) and approximately 11.3g DW of ethanol from 150g DW of ethanol-pretreated CRW, were recovered.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eunjin Cho
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ly Thi Phi Trinh
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Su Jeong
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
26
|
Song A, Huang Y, Zhong X, Cao H, Liu B, Lin Y, Wang M, Li X. Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.176] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Aranda-Martinez A, Naranjo Ortiz MÁ, Abihssira García IS, Zavala-Gonzalez EA, Lopez-Llorca LV. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiol Res 2017; 204:30-39. [PMID: 28870289 DOI: 10.1016/j.micres.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/14/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Chitin is the second most abundant biopolymer after cellulose and virtually unexplored as raw material for bioethanol production. In this paper, we investigate chitosan, the deacetylated form of chitin which is the main component of shellfish waste, as substrate for bioethanol production by fungi. Fungal parasites of invertebrates such as the nematophagous Pochonia chlamydosporia (Pc) or the entomopathogens Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) are biocontrol agents of plant parasitic nematodes (eg. Meloidogyne spp.) or insect pests such as the red palm weevil (Rhynchophorus ferrugineus). These fungi degrade chitin-rich barriers for host penetration. We have therefore tested the chitin/chitosanolytic capabilities of Pc, Bb and Ma for generating reducing sugars using chitosan as only nutrient. Among the microorganisms used in this study, Pc is the best chitosan degrader, even under anaerobic conditions. These fungi have alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) encoding genes in their genomes. We have therefore analyzed their ethanol production under anaerobic conditions using chitosan as raw material. P. chlamydosporia is the largest ethanol producer from chitosan. Our studies are a starting point to develop chitin-chitosan based biofuels.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Isabel Sofía Abihssira García
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| |
Collapse
|
28
|
Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. ACTA ACUST UNITED AC 2017; 44:825-834. [DOI: 10.1007/s10295-017-1915-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/29/2017] [Indexed: 12/31/2022]
Abstract
Abstract
The plant cell wall is a source of fermentable sugars in second-generation bioethanol production. However, cellulosic biomass hydrolysis remains an obstacle to bioethanol production in an efficient and low-cost process. Clostridium thermocellum has been studied as a model organism able to produce enzymatic blends that efficiently degrade lignocellulosic biomass, and also as a fermentative microorganism in a consolidated process for the conversion of lignocellulose to bioethanol. In this study, a C. thermocellum strain (designated B8) isolated from goat rumen was characterized for its ability to grow on sugarcane straw and cotton waste, and to produce cellulosomes. We also evaluated C. thermocellum gene expression control in the presence of complex lignocellulosic biomasses. This isolate is capable of growing in the presence of microcrystalline cellulose, sugarcane straw and cotton waste as carbon sources, producing free enzymes and residual substrate-bound proteins (RSBP). The highest growth rate and cellulase/xylanase production were detected at pH 7.0 and 60 °C, after 48 h. Moreover, this strain showed different expression levels of transcripts encoding cellulosomal proteins and proteins with a role in fermentation and catabolic repression.
Collapse
|
29
|
|
30
|
Environmental Review: The Cost and Benefits of Biofuels: A Review of Recent Peer-Reviewed Research and a Sociological Look Ahead. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1466046609090024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Wang X, Huang H, Xie X, Ma R, Bai Y, Zheng F, You S, Zhang B, Xie H, Yao B, Luo H. Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. BIORESOURCE TECHNOLOGY 2016; 222:277-284. [PMID: 27723474 DOI: 10.1016/j.biortech.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 05/07/2023]
Abstract
A xylanase gene of GH 10, Tlxyn10A, was cloned from Talaromyces leycettanus JCM12802 and expressed in Pichia pastoris. Purified recombinant TlXyn10A was acidic and hyperthermophilic, and retained stable over the pH range of 2.0-6.0 and at 90°C. Sequence analysis of TlXyn10A identified seven residues probably involved in substrate contacting. Three mutants (TlXyn10A_P, _N and _C) were then constructed by substituting some or all of the residues with corresponding ones of hyperthermal Xyl10C from Bispora sp. MEY-1. TlXyn10A_P with mutations at subsites +2 to +4 exhibited improved specific activity (by 0.44-fold) and pH stability (2.0-10.0). Molecular dynamics simulation analysis indicated that mutations E229I and F232E probably weaken the substrate affinity at subsites +3 to +4, and G149D may introduce a new hydrogen bond. These modifications altogether account for the improved performance of TlXyn10A_P. Moreover, TlXyn10A_P was able to hydrolyze wheat straw persistently, and has the application potentials in various industries.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bingyu Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huifang Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
32
|
Progress towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2016; 2016:3563478. [PMID: 27847805 PMCID: PMC5101388 DOI: 10.1155/2016/3563478] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
In recent years, the problem of food waste has attracted considerable interest from food producers, processors, retailers, and consumers alike. Food waste is considered not only a sustainability problem related to food security, but also an economic problem since it directly impacts the profitability of the whole food supply chain. In developed countries, consumers are one of the main contributors to food waste and ultimately pay for all wastes produced throughout the food supply chain. To secure food and reduce food waste, it is essential to have a comprehensive understanding of the various sources of food wastes throughout the food supply chain. The present review examines various reports currently in the literature and quantifies waste levels and examines the trends in wastage for various food sectors such as fruit and vegetable, fisheries, meat and poultry, grain, milk, and dairy. Factors contributing to food waste, effective cost/benefit food waste utilisation methods, sustainability and environment considerations, and public acceptance are identified as hurdles in preventing large-scale food waste processing. Thus, we highlight the need for further research to identify and report food waste so that government regulators and food supply chain stakeholders can actively develop effective waste utilisation practices.
Collapse
|
33
|
Fu J, Xu X, Lu X, Lu X. Hydrothermal Decomposition of Carbohydrates to Levulinic Acid with Catalysis by Ionic Liquids. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Fu
- Key Laboratory
of Biomass
Chemical Engineering of Ministry of Education, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - XiuXiu Xu
- Key Laboratory
of Biomass
Chemical Engineering of Ministry of Education, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xilei Lu
- Key Laboratory
of Biomass
Chemical Engineering of Ministry of Education, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiuyang Lu
- Key Laboratory
of Biomass
Chemical Engineering of Ministry of Education, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Lomthong T, Lertwattanasakul N, Kitpreechavanich V. Production of raw starch degrading enzyme by the thermophilic filamentous bacterium LaceyellasacchariLP175 and its application for ethanol production from dried cassava chips. STARCH-STARKE 2016. [DOI: 10.1002/star.201600018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thanasak Lomthong
- Faculty of Science; Department of Microbiology; Kasetsart University; Bangkok Thailand
| | | | - Vichien Kitpreechavanich
- Faculty of Science; Department of Microbiology; Kasetsart University; Bangkok Thailand
- Center for Advanced Studies in Tropical Natural Resources; National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University; Bangkok Thailand
| |
Collapse
|
36
|
de Cassia Pereira J, Travaini R, Paganini Marques N, Bolado-Rodríguez S, Bocchini Martins DA. Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and ethanol production. BIORESOURCE TECHNOLOGY 2016; 204:122-129. [PMID: 26773948 DOI: 10.1016/j.biortech.2015.12.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
The saccharification of ozonated sugarcane bagasse (SCB) by enzymes from Myceliophthora thermophila JCP 1-4 was studied. Fungal enzymes provided slightly higher sugar release than commercial enzymes, working at 50°C. Sugar release increased with temperature increase. Kinetic studies showed remarkable glucose release (4.99 g/L, 3%w/w dry matter) at 60°C, 8 h of hydrolysis, using an enzyme load of 10 FPU (filter paper unit). FPase and β-glucosidase activities increased during saccharification (284% and 270%, respectively). No further significant improvement on glucose release was observed increasing the enzyme load above 7.5 FPU per g of cellulose. Higher dry matter contents increased sugars release, but not yields. The fermentation of hydrolysates by Saccharomyces cerevisiae provided glucose-to-ethanol conversions around to 63%.
Collapse
Affiliation(s)
- Josiani de Cassia Pereira
- Department of Biology, IBILCE/UNESP - Univ Estadual Paulista, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, São Paulo State, Brazil.
| | - Rodolfo Travaini
- Department of Chemical Engineering and Environmental Technology, University of Valladolid - UVa, Calle Doctor Mergelina, s/n, 47005 Valladolid, Spain.
| | - Natalia Paganini Marques
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Univ Estadual Paulista, Rua Prof. Francisco Degni, 55, 14800-060 Araraquara, São Paulo State, Brazil.
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid - UVa, Calle Doctor Mergelina, s/n, 47005 Valladolid, Spain.
| | - Daniela Alonso Bocchini Martins
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Univ Estadual Paulista, Rua Prof. Francisco Degni, 55, 14800-060 Araraquara, São Paulo State, Brazil.
| |
Collapse
|
37
|
Ghasemzadeh K, Zeynali R, Ahmadnejad F, Babalou AA, Basile A. Investigation of Palladium Membrane Reactor Performance during Ethanol Steam Reforming using CFD Method. CHEMICAL PRODUCT AND PROCESS MODELING 2016. [DOI: 10.1515/cppm-2015-0056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The main purpose of present study is the analysis of dense palladium membrane reactor (MR) performance during ethanol steam reforming (ESR) reaction using computational fluid dynamic (CFD). To this aim, a two-dimensional and isothermal model based on CFD method was developed and results validation was tested by our experimental data achieved in ITM-CNR of Italy. In this work, Pd-based MR modeling was performed by using COMSOL-MULTIPHYSICS software. Regarding to model validation results, a good agreement was found between CFD model results and experimental data. Moreover, in this study, the effects of the some important operating parameters (reaction temperature and pressure) on the performance of Pd-based MR was studied in terms of ethanol conversion and hydrogen recovery. Concerning to simulation results, the CFD model presented velocity and pressure profiles in both side of MR and also compositions of various species in permeate and retentate streams. The simulation results indicated that the Pd-based MR has better performance with respect to traditional reactor (TR) in terms of the ethanol conversion, especially, at lower reaction temperatures and higher reactions pressures. As a consequence, CFD model results illustrated that Pd-based MR performance was improved by increasing the reaction pressure, while this parameter had negative effect on the TR performance. This result related to enhancement of hydrogen permeance through the palladium membrane by increasing the pressure gradient. Indeed, this shift effect can provide a higher ethanol conversion in lower temperatures in the Pd-based MR. In particular, 98% ethanol conversion and 37% hydrogen recovery was achieved at 350°C and 2 atm.
Collapse
|
38
|
Nguyen TN, Son S, Jordan MC, Levin DB, Ayele BT. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC PLANT BIOLOGY 2016; 16:28. [PMID: 26811086 PMCID: PMC4727291 DOI: 10.1186/s12870-016-0717-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. RESULTS Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. CONCLUSION Lodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - Mark C Jordan
- Morden Reasearch and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
39
|
Liu J, Dantoft SH, Würtz A, Jensen PR, Solem C. A novel cell factory for efficient production of ethanol from dairy waste. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:33. [PMID: 26925162 PMCID: PMC4768334 DOI: 10.1186/s13068-016-0448-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/21/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Sustainable and economically feasible ways to produce ethanol or other liquid fuels are becoming increasingly relevant due to the limited supply of fossil fuels and the environmental consequences associated with their consumption. Microbial production of fuel compounds has gained a lot of attention and focus has mostly been on developing bio-processes involving non-food plant biomass feedstocks. The high cost of the enzymes needed to degrade such feedstocks into its constituent sugars as well as problems due to various inhibitors generated in pretreatment are two challenges that have to be addressed if cost-effective processes are to be established. Various industries, especially within the food sector, often have waste streams rich in carbohydrates and/or other nutrients, and these could serve as alternative feedstocks for such bio-processes. The dairy industry is a good example, where large amounts of cheese whey or various processed forms thereof are generated. Because of their nutrient-rich nature, these substrates are particularly well suited as feedstocks for microbial production. RESULTS We have generated a Lactococcus lactis strain which produces ethanol as its sole fermentation product from the lactose contained in residual whey permeate (RWP), by introducing lactose catabolism into a L. lactis strain CS4435 (MG1363 Δ(3) ldh, Δpta, ΔadhE, pCS4268), where the carbon flow has been directed toward ethanol instead of lactate. To achieve growth and ethanol production on RWP, we added corn steep liquor hydrolysate (CSLH) as the nitrogen source. The outcome was efficient ethanol production with a titer of 41 g/L and a yield of 70 % of the theoretical maximum using a fed-batch strategy. The combination of a low-cost medium from industrial waste streams and an efficient cell factory should make the developed process industrially interesting. CONCLUSIONS A process for the production of ethanol using L. lactis and a cheap renewable feedstock was developed. The results demonstrate that it is possible to achieve sustainable bioconversion of waste products from the dairy industry (RWP) and corn milling industry (CSLH) to ethanol and the process developed shows great potential for commercial realization.
Collapse
Affiliation(s)
- Jianming Liu
- />National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Shruti Harnal Dantoft
- />National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anders Würtz
- />Arla Foods Ingredients Group P/S, Sønderhøj 10-12, 8260 Viby J, Denmark
| | - Peter Ruhdal Jensen
- />National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christian Solem
- />National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
40
|
Lim SH, Lee WS, Kim YI, Sohn Y, Cho DW, Kim C, Kim E, Latham JA, Dunaway-Mariano D, Mariano PS. Photochemical and enzymatic SET promoted C–C bond cleavage reactions of lignin β-1 model compounds containing varying number of methoxy substituents on their arene rings. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Eblaghi M, Niakousari M, Sarshar M, Mesbahi GR. Combining Ultrasound with Mild Alkaline Solutions as an Effective Pretreatment to Boost the Release of Sugar Trapped in Sugarcane Bagasse for Bioethanol Production. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12220] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marzieh Eblaghi
- Department of Food Science and Technology; College of Agriculture; Shiraz University; Shiraz 7144165186 Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology; College of Agriculture; Shiraz University; Shiraz 7144165186 Iran
- Faculty of Advanced Technologies; Shiraz University; Shiraz 7144816189 Iran
| | | | - Gholam Reza Mesbahi
- Department of Food Science and Technology; College of Agriculture; Shiraz University; Shiraz 7144165186 Iran
| |
Collapse
|
42
|
He H, Qin Y, Li N, Chen G, Liang Z. Purification and Characterization of a Thermostable Hypothetical Xylanase from Aspergillus oryzae HML366. Appl Biochem Biotechnol 2015; 175:3148-61. [DOI: 10.1007/s12010-014-1352-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/30/2014] [Indexed: 01/27/2023]
|
43
|
Sheng T, Gao L, Zhao L, Liu W, Wang A. Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32. RSC Adv 2015. [DOI: 10.1039/c5ra20000h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The comparison of hydrogen production by conventional process and consolidated bioprocessing.
Collapse
Affiliation(s)
- Tao Sheng
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Lingfang Gao
- CAS Key Laboratory of Environmental Biotechnology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Lei Zhao
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
- CAS Key Laboratory of Environmental Biotechnology
| |
Collapse
|
44
|
Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MLTM. Cellulose from Lignocellulosic Waste. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_52] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
45
|
Huang L, Choong C, Chen L, Wang Z, Zhong Z, Chng KA, Lin J. Oxide-supported Rh catalysts for H2 generation from low-temperature ethanol steam reforming: effects of support, Rh precursor and Rh loading on catalytic performance. RSC Adv 2015. [DOI: 10.1039/c5ra14608a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rh4(CO)12-derived Rh/CeO2 is superior to the other oxide-supported Rh catalysts. Coking is the only cause of catalyst deactivation which affects the catalytic stability of Rh/CeO2. Both CeO2-supported Rh0 and Rh+ may participate in catalysis for ESR.
Collapse
Affiliation(s)
- Lin Huang
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research
- Singapore 627833
- Singapore
| | - Catherine Choong
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research
- Singapore 627833
- Singapore
| | - Luwei Chen
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research
- Singapore 627833
- Singapore
| | - Zhan Wang
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research
- Singapore 627833
- Singapore
| | - Ziyi Zhong
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research
- Singapore 627833
- Singapore
| | - Kee Ann Chng
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research
- Singapore 627833
- Singapore
| | - Jianyi Lin
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research
- Singapore 627833
- Singapore
| |
Collapse
|
46
|
Mironova EY, Ermilova M, Orekhova N, Muraviev D, Yaroslavtsev A. Production of high purity hydrogen by ethanol steam reforming in membrane reactor. Catal Today 2014. [DOI: 10.1016/j.cattod.2014.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis. BMC Genomics 2014; 15:836. [PMID: 25273399 PMCID: PMC4194401 DOI: 10.1186/1471-2164-15-836] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/23/2014] [Indexed: 11/13/2022] Open
Abstract
Background Members of the thermophilic genus Geobacillus can grow at high temperatures and produce a battery of thermostable hemicellulose hydrolytic enzymes, making them ideal candidates for the bioconversion of biomass to value-added products. To date the molecular determinants for hemicellulose degradation and utilization have only been identified and partially characterized in one strain, namely Geobacillus stearothermophilus T-6, where they are clustered in a single genetic locus. Results Using the G. stearothermophilus T-6 hemicellulose utilization locus as genetic marker, orthologous hemicellulose utilization (HUS) loci were identified in the complete and partial genomes of 17/24 Geobacillus strains. These HUS loci are localized on a common genomic island. Comparative analyses of these loci revealed extensive variability among the Geobacillus hemicellulose utilization systems, with only seven out of 41–68 proteins encoded on these loci conserved among the HUS+ strains. This translates into extensive differences in the hydrolytic enzymes, transport systems and metabolic pathways employed by Geobacillus spp. to degrade and utilize hemicellulose polymers. Conclusions The genetic variability among the Geobacillus HUS loci implies that they have variable capacities to degrade hemicellulose polymers, or that they may degrade distinct polymers, as are found in different plant species and tissues. The data from this study can serve as a basis for the genetic engineering of a Geobacillus strain(s) with an improved capacity to degrade and utilize hemicellulose. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-836) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Rana V, Eckard AD, Ahring BK. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. SPRINGERPLUS 2014; 3:516. [PMID: 25279308 PMCID: PMC4176844 DOI: 10.1186/2193-1801-3-516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to compare bioethanol production from wet exploded corn stover (WECS) and loblolly pine (WELP) hydrolyzed with in-house and commercial enzymes and fermented separately (SHF) and simultaneously (SSF). In-house enzymes produced from Trichoderma reesei, RUT-C30 and a novel fungal strain, Aspergillus saccharolyticus were loaded as 5 and 15 FPU/g glucan and supplemented with 10 and 30 CBU/g glucan, respectively. For hydrolysis and fermentation, slurries of WECS and WELP at 5 and 10% (w/w) solids loading (SL) were utilized. Saccharomyces cerevisae was used for ethanol fermentation at 33°C. Maximally, 15.6 g/L and 13.4 g/L (corresponding to theoretical ethanol yield of 76% and 67%, respectively) were achieved in SSF process from WECS and WELP, respectively at 5% SL and 15 FPU/g glucan loading of in-house enzymes. Ethanol concentrations in all cases were higher for SSF compared to SHF under same conditions. A cross comparison of SSF with commercial enzymes (Celluclast 1.5 L + Novozym 188) showed highest ethanol concentration of 17.3 g/L and 15.4 g/L (corresponding to theoretical ethanol yield of 84% and 77%, respectively) from WECS and WELP, respectively at 5% SL and 15 FPU/g glucan. These findings demonstrated that in-house enzymes were comparable to commercial enzymes as these fungi produced other lignocellulolytic enzymes beyond cellulase and hence enhanced the overall enzyme activity.
Collapse
Affiliation(s)
- Vandana Rana
- Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, 2710 Crimson Way, Richland, WA 99354-1671 USA
| | - Anahita D Eckard
- Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, 2710 Crimson Way, Richland, WA 99354-1671 USA
| | - Birgitte K Ahring
- Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, 2710 Crimson Way, Richland, WA 99354-1671 USA
| |
Collapse
|
49
|
Partial Characterization of Xylanase Produced by Caldicoprobacter algeriensis, a New Thermophilic Anaerobic Bacterium Isolated from an Algerian Hot Spring. Appl Biochem Biotechnol 2014; 174:1969-81. [DOI: 10.1007/s12010-014-1153-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/15/2014] [Indexed: 11/25/2022]
|
50
|
Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess Biosyst Eng 2014; 38:39-47. [PMID: 25090978 DOI: 10.1007/s00449-014-1241-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/14/2014] [Indexed: 10/24/2022]
Abstract
Fermentation of xylose-rich and glucose-rich bagasse hydrolysates, obtained from the two-stage acid hydrolysis was studied using the thermotolerant yeast Kluyveromyces sp. IIPE453. The yeast could grow on xylose-rich hydrolysate at 50 °C with the dry cell weight, cell mass yield and maximum specific growth rate of 5.35 g l(-1), 0.58 g g(-1) and 0.13 h(-1), respectively. The yeast was found to be very promising for ethanol as well as xylitol production from the sugars obtained from the lignocellulosic biomass. Batch fermentations of xylose-rich and glucose-rich hydrolysates yielded 0.61 g g(-1) xylitol and 0.43 g g(-1) ethanol in the broth, respectively based on the sugars present in the hydrolysate. Overall ethanol yield of 165 g (210 ml) and 183 g xylitol per kg of bagasse was obtained, when bagasse hydrolysate was used as a substrate. Utilization of both the glucose and xylose sugars makes the process most economical by producing both ethanol and xylitol based on biorefinery concept. On validating the experimental data of ethanol fermentation, the modified Luong kinetic model for product inhibition as well as inhibition due to inhibitory compounds present in hydrolysate, the model was found to be the best fit for ethanol formation from bagasse hydrolysate using Kluyveromyces sp. IIPE453.
Collapse
|