1
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
2
|
Gingras RM, Lwin KM, Miller AM, Bretscher A. Yeast Rgd3 is a phospho-regulated F-BAR-containing RhoGAP involved in the regulation of Rho3 distribution and cell morphology. Mol Biol Cell 2020; 31:2570-2582. [PMID: 32941095 PMCID: PMC7851877 DOI: 10.1091/mbc.e20-05-0288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polarized growth requires the integration of polarity pathways with the delivery of exocytic vesicles for cell expansion and counterbalancing endocytic uptake. In budding yeast, the myosin-V Myo2 is aided by the kinesin-related protein Smy1 in carrying out the essential Sec4-dependent transport of secretory vesicles to sites of polarized growth. Overexpression suppressors of a conditional myo2 smy1 mutant identified a novel F-BAR (Fes/CIP4 homology-Bin-Amphiphysin-Rvs protein)-containing RhoGAP, Rgd3, that has activity primarily on Rho3, but also Cdc42. Internally tagged Rho3 is restricted to the plasma membrane in a gradient corresponding to cell polarity that is altered upon Rgd3 overexpression. Rgd3 itself is localized to dynamic polarized vesicles that, while distinct from constitutive secretory vesicles, are dependent on actin and Myo2 function. In vitro Rgd3 associates with liposomes in a PIP2-enhanced manner. Further, the Rgd3 C-terminal region contains several phosphorylatable residues within a reported SH3-binding motif. An unphosphorylated mimetic construct is active and highly polarized, while the phospho-mimetic form is not. Rgd3 is capable of activating Myo2, dependent on its phospho state, and Rgd3 overexpression rescues aberrant Rho3 localization and cell morphologies seen at the restrictive temperature in the myo2 smy1 mutant. We propose a model where Rgd3 functions to modulate and maintain Rho3 polarity during growth.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Kyaw Myo Lwin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Abigail M Miller
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
3
|
An optogenetic system to control membrane phospholipid asymmetry through flippase activation in budding yeast. Sci Rep 2020; 10:12474. [PMID: 32719316 PMCID: PMC7385178 DOI: 10.1038/s41598-020-69459-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Lipid asymmetry in biological membranes is essential for various cell functions, such as cell polarity, cytokinesis, and apoptosis. P4-ATPases (flippases) are involved in the generation of such asymmetry. In Saccharomyces cerevisiae, the protein kinases Fpk1p/Fpk2p activate the P4-ATPases Dnf1p/Dnf2p by phosphorylation. Previously, we have shown that a blue-light-dependent protein kinase, phototropin from Chlamydomonas reinhardtii (CrPHOT), complements defects in an fpk1Δ fpk2Δ mutant. Herein, we investigated whether CrPHOT optically regulates P4-ATPase activity. First, we demonstrated that the translocation of NBD-labelled phospholipids to the cytoplasmic leaflet via P4-ATPases was promoted by blue-light irradiation in fpk1Δ fpk2Δ cells with CrPHOT. In addition, blue light completely suppressed the defects in membrane functions (such as endocytic recycling, actin depolarization, and apical-isotropic growth switching) caused by fpk1Δ fpk2Δ mutations. All responses required the kinase activity of CrPHOT. Hence, these results indicate the utility of CrPHOT as a powerful and first tool for optogenetic manipulation of P4-ATPase activity.
Collapse
|
4
|
Abstract
The eukaryotic actin cytoskeleton is a highly dynamic framework that is involved in many biological processes, such as cell growth, division, morphology, and motility. G-actin polymerizes into microfilaments that associate into bundles, patches, and networks, which, in turn, organize into higher order structures that are fundamental for the course of important physiological events. Actin rings are an example for such higher order actin entities, but this term represents an actually diverse set of subcellular structures that are involved in various processes. This review especially sheds light on a crucial type of non-constricting ring-like actin networks, and categorizes them under the term 'actin fringe'. These 'actin fringes' are visualized as highly dynamic and yet steady structures in the tip of various polarized growing cells. The present comprehensive overview compares the actin fringe characteristics of rapidly elongating pollen tubes with several related actin arrays in other cell types of diverse species. The current state of knowledge about various actin fringe functions is summarized, and the key role of this structure in the polar growth process is discussed.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria 91058, Germany
| |
Collapse
|
5
|
|
6
|
Paciorek T, Bergmann DC. The secret to life is being different: asymmetric divisions in plant development. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:661-669. [PMID: 20970370 DOI: 10.1016/j.pbi.2010.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/02/2010] [Accepted: 09/23/2010] [Indexed: 05/30/2023]
Abstract
Asymmetric cell divisions (ACDs) are used to create organismal form and cellular diversity during plant development. In several embryonic and postembryonic contexts, genes that specify cell fates and networks that provide positional information have been identified. The cellular mechanisms that translate this information into a physically ACD, however, are still obscure. In this review we examine the cell polarization events that precede asymmetric divisions in plants. Using principles derived from studies of other organisms and from postmitotic polarity generation in plants, we endeavor to provide a framework of what is known, what is on the horizon and what is critically needed to develop a rigorous mechanistic understanding of ACDs in plants.
Collapse
Affiliation(s)
- Tomasz Paciorek
- Biology Department, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
7
|
Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance. Appl Environ Microbiol 2010; 76:7826-35. [PMID: 20889785 DOI: 10.1128/aem.01755-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grx3 and Grx4 are two monothiol glutaredoxins of Saccharomyces cerevisiae that have previously been characterized as regulators of Aft1 localization and therefore of iron homeostasis. In this study, we present data showing that both Grx3 and Grx4 have new roles in actin cytoskeleton remodeling and in cellular defenses against oxidative stress caused by reactive oxygen species (ROS) accumulation. The Grx4 protein plays a unique role in the maintenance of actin cable integrity, which is independent of its role in the transcriptional regulation of Aft1. Grx3 plays an additive and redundant role, in combination with Grx4, in the organization of the actin cytoskeleton, both under normal conditions and in response to external oxidative stress. Each Grx3 and Grx4 protein contains a thioredoxin domain sequence (Trx), followed by a glutaredoxin domain (Grx). We performed functional analyses of each of the two domains and characterized different functions for them. Each of the two Grx domains plays a role in ROS detoxification and cell viability. However, the Trx domain of each Grx4 and Grx3 protein acts independently of its respective Grx domain in a novel function that involves the polarization of the actin cytoskeleton, which also determines cell resistance against oxidative conditions. Finally, we present experimental evidence demonstrating that Grx4 behaves as an antioxidant protein increasing cell survival under conditions of oxidative stress.
Collapse
|
8
|
Affiliation(s)
- Jennifer L Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
9
|
Bartolini F, Gundersen GG. Formins and microtubules. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:164-73. [PMID: 19631698 PMCID: PMC2856479 DOI: 10.1016/j.bbamcr.2009.07.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/29/2009] [Accepted: 07/04/2009] [Indexed: 02/06/2023]
Abstract
Formins have recently been recognized as prominent regulators of the microtubule (MT) cytoskeleton where they modulate the dynamics of selected MTs in interphase and mitosis. The association of formins with the MT cytoskeleton and their action on MT dynamics are relatively unexplored areas, yet growing evidence supports a direct role in their regulation of MT stability independent of their activity on actin. Formins regulate MT stability alone or in combination with accessory MT binding proteins that have previously been implicated in the stabilization of MTs downstream of polarity cues. As actin and MT arrays are typically remodeled downstream of signaling pathways that orchestrate cell shape and division, formins are emerging as excellent candidates for coordinating the responses of the cytoskeletal in diverse regulated and homeostatic processes.
Collapse
Affiliation(s)
- F Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | |
Collapse
|
10
|
Pujol N, Bonet C, Vilella F, Petkova MI, Mozo-Villarías A, de la Torre-Ruiz MA. Two proteins from Saccharomyces cerevisiae: Pfy1 and Pkc1, play a dual role in activating actin polymerization and in increasing cell viability in the adaptive response to oxidative stress. FEMS Yeast Res 2009; 9:1196-207. [PMID: 19765090 DOI: 10.1111/j.1567-1364.2009.00565.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this work, we show that the proteins Pkc1 and Pfy1 play a role in the repolarization of the actin cytoskeleton and in cell survival in response to oxidative stress. We have also developed an assay to determine the actin polymerization capacity of total protein extracts using fluorescence recovery after photobleaching techniques and actin purified from rabbit muscle. This assay allowed us to demonstrate that Pfy1 promotes actin polymerization under conditions of oxidative stress, while Pkc1 induces actin polymerization and cell survival under all the conditions tested. Our assay also points to a relationship between Pkc1 and Pfy1 in the actin cytoskeleton polymerization that is required to adapt to oxidative stress.
Collapse
Affiliation(s)
- Nuria Pujol
- Department de Ciències Mèdiques Bàsiques-IRBLleida, Faculty of Medicine, University of Lleida, Lleida. Spain
| | | | | | | | | | | |
Collapse
|
11
|
Motizuki M, Xu Z. Importance of Polarisome Proteins in Reorganization of Actin Cytoskeleton at Low pH in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2009; 146:705-12. [DOI: 10.1093/jb/mvp116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Motizuki M, Yokota S, Tsurugi K. Effect of low pH on organization of the actin cytoskeleton in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2007; 1780:179-84. [PMID: 17980162 DOI: 10.1016/j.bbagen.2007.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/18/2007] [Accepted: 10/03/2007] [Indexed: 11/29/2022]
Abstract
Cell growth in the yeast Saccharomyces cerevisiae depends on polarization of the actin cytoskeleton. In this study, we investigated how the cell regulates the distribution of actin in response to low pH conditions, focusing on the role of mitogen-activated protein kinases, Hog1 and Slt2. Changing the extracellular pH from 6.0 to 3.0 caused a transient depolarization of the actin cytoskeleton. Actin cables were no longer visible, and actin patches appeared randomly distributed after 30 min at pH 3.0. The deletion strain hog1Delta did not show this low-pH phenotype, suggesting that Hog1 is involved in depolarization of the actin cytoskeleton in response to low-pH stress. Yeast cells incubated at pH 3.0 also showed markedly increased endocytosis compared with the control at neutral pH, as indicated by the uptake of Lucifer Yellow (LY). Both the hog1Delta and slt2Delta mutants took up LY into the vacuole to a similar extent as the wild-type strain. In addition, cells grown at pH 3.0 showed a 2-fold increase in phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) levels, as did the hog1Delta or slt2Delta cells. Efficient uptake of LY and actin repolarization at pH 3.0 might therefore require activation of PI(4,5)P2 synthesis.
Collapse
Affiliation(s)
- M Motizuki
- Department of Biochemistry 2, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| | | | | |
Collapse
|
13
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
14
|
David M, Gabriel M, Kopecká M. Cytoskeletal structures, ultrastructural characteristics and the capsule of the basidiomycetous yeast Cryptococcus laurentii. Antonie van Leeuwenhoek 2006; 92:29-36. [PMID: 17136567 DOI: 10.1007/s10482-006-9131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 10/23/2006] [Indexed: 11/26/2022]
Abstract
The cytoskeleton, capsule and cell ultrastructure were studied during the cell cycle of Cryptococcus laurentii. In an encapsulated strain, cytoplasmic microtubules and a mitotic spindle were detected. Mitosis was preceded by migration of the nucleus into the bud. F-actin failed to be visualised by rhodamine-phalloidin (RhPh) in encapsulated cells and therefore an acapsular strain was used. The following actin structures were found: actin dots, actin cables and cytokinetic ring. Ultrastructural studies showed the presence of a nucleus in the bud before mitosis. A collar-shaped structure was seen at the base of bud emergence. A lamellar cell wall and a rough outer surface of the cells were detected. Cytoskeletal structures found in C. laurentii are similar to those in Cryptococcus neoformans, which is a serious human pathogen.
Collapse
Affiliation(s)
- Marek David
- Department of Biology, Faculty of Medicine, Masaryk University, Tomesova 12, Brno, 602 00, Czech Republic.
| | | | | |
Collapse
|
15
|
Saccharomyces cerevisiae forms actin ring structures in sporulation, similarly to Zygosaccharomyces rouxii. MYCOSCIENCE 2006. [DOI: 10.1007/s10267-006-0321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 2006; 70:605-45. [PMID: 16959963 PMCID: PMC1594590 DOI: 10.1128/mmbr.00013-06] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
17
|
Aguilar RC, Longhi SA, Shaw JD, Yeh LY, Kim S, Schön A, Freire E, Hsu A, McCormick WK, Watson HA, Wendland B. Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc Natl Acad Sci U S A 2006; 103:4116-21. [PMID: 16537494 PMCID: PMC1449656 DOI: 10.1073/pnas.0510513103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epsins are endocytic proteins with a structured epsin N-terminal homology (ENTH) domain that binds phosphoinositides and a poorly structured C-terminal region that interacts with ubiquitin and endocytic machinery, including clathrin and endocytic scaffolding proteins. Yeast has two redundant genes encoding epsins, ENT1 and ENT2; deleting both genes is lethal. We demonstrate that the ENTH domain is both necessary and sufficient for viability of ent1Deltaent2Delta cells. Mutational analysis of the ENTH domain revealed a surface patch that is essential for viability and that binds guanine nucleotide triphosphatase-activating proteins for Cdc42, a critical regulator of cell polarity in all eukaryotes. Furthermore, the epsins contribute to regulation of specific Cdc42 signaling pathways in yeast cells. These data support a model in which the epsins function as spatial and temporal coordinators of endocytosis and cell polarity.
Collapse
Affiliation(s)
- Rubén C. Aguilar
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Silvia A. Longhi
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Jonathan D. Shaw
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Lan-Yu Yeh
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Sean Kim
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Arne Schön
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Ariel Hsu
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - William K. McCormick
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Hadiya A. Watson
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Aspenström P. The verprolin family of proteins: Regulators of cell morphogenesis and endocytosis. FEBS Lett 2005; 579:5253-9. [PMID: 16182290 DOI: 10.1016/j.febslet.2005.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/12/2005] [Accepted: 08/22/2005] [Indexed: 11/28/2022]
Abstract
The verprolin family of proteins, WIP, CR16 and WIRE/WICH, has emerged as critical regulators of cytoskeletal organisation in vertebrate cells. The founding father of the family, verprolin, was originally identified in budding yeast and later shown to be needed for actin polymerisation during polarised growth and during endocytosis. The vertebrate verprolins regulate actin dynamics either by binding directly to actin, by binding the WASP family of proteins or by binding to other actin regulating proteins. Interestingly, also the vertebrate verprolins have been implicated in endocytosis, demonstrating that most of the functional modules in this fascinating group of proteins have been conserved from yeast to man.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Sweden.
| |
Collapse
|
19
|
Moseley JB, Goode BL. Differential activities and regulation of Saccharomyces cerevisiae formin proteins Bni1 and Bnr1 by Bud6. J Biol Chem 2005; 280:28023-33. [PMID: 15923184 DOI: 10.1074/jbc.m503094200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formins are conserved proteins that nucleate actin assembly and tightly associate with the fast growing barbed ends of actin filaments to allow insertional growth. Most organisms express multiple formins, but it has been unclear whether they have similar or distinct activities and how they may be regulated differentially. We isolated and compared the activities of carboxyl-terminal fragments of the only two formins expressed in Saccharomyces cerevisiae, Bni1 and Bnr1. Bnr1 was an order of magnitude more potent than Bni1 in actin nucleation and processive capping, and unlike Bni1, Bnr1 bundled actin filaments. Profilin bound directly to Bni1 and Bnr1 and regulated their activities similarly. However, the cell polarity factor Bud6/Aip3 specifically bound to and stimulated Bni1, but not Bnr1. This was unexpected, since previous two-hybrid studies suggested Bud6 interacts with both formins. We mapped Bud6 binding activity to specific residues in the carboxyl terminus of Bni1 that are adjacent to its diaphanous autoregulatory domain (DAD). Fusion of the carboxyl terminus of Bni1 to Bnr1 conferred Bud6 stimulation to a Bnr1-Bni1 chimera. Thus, Bud6 differentially stimulates Bni1 and not Bnr1. We found that Bud6 is up-regulated during bud growth, when it is delivered to the bud tip on Bni1-nucleated actin cables. We propose that Bud6 stimulation of Bni1 promotes robust cable formation, which in turn delivers more Bud6 to the bud tip, reinforcing polarized cell growth through a positive feedback loop.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
20
|
Miliaras NB, Park JH, Wendland B. The function of the endocytic scaffold protein Pan1p depends on multiple domains. Traffic 2005; 5:963-78. [PMID: 15522098 DOI: 10.1111/j.1600-0854.2004.00238.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pan1p is an essential protein of the yeast Saccharomyces cerevisiae that is required for the internalization step of endocytosis and organization of the actin cytoskeleton. Pan1p, which binds several other endocytic proteins, is composed of multiple protein-protein interaction domains including two Eps15 Homology (EH) domains, a coiled-coil domain, an acidic Arp2/3-activating region, and a proline-rich domain. In this study, we have induced high-level expression of various domains of Pan1p in wild-type cells to assess the dominant consequences on viability, endocytosis, and actin organization. We found that the most severe phenotypes, with blocked endocytosis and aggregated actin, required expression of nearly full length Pan1p, and also required the endocytic regulatory protein kinase Prk1p. The central coiled-coil domain was the smallest fragment whose overexpression caused any dominant effects; these effects were more pronounced by inclusion of the second EH domain. Co-overexpressing nonoverlapping amino- and carboxy-terminal fragments did not mimic the effects of the intact protein, whereas fragments that overlapped within the coiled-coil region could. Yeast two-hybrid and in vivo coimmunoprecipitation analyses suggest that Pan1 may form dimers or higher order oligomers. Collectively, our data support a view of Pan1p as a dimeric/oligomeric scaffold whose functions require both the amino- and carboxy-termini, linked by the central region.
Collapse
Affiliation(s)
- Nicholas B Miliaras
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
21
|
Suda A, Kusama-Eguchi K, Ogawa Y, Watanabe K. Novel actin ring structure in sporulation of Zygosaccharomyces rouxii. MYCOSCIENCE 2005. [DOI: 10.1007/s10267-004-0216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 2005; 20:559-91. [PMID: 15473852 DOI: 10.1146/annurev.cellbio.20.010403.103108] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell polarity, as reflected by polarized growth and organelle segregation during cell division in yeast, appears to follow a simple hierarchy. On the basis of physical cues from previous cell cycles or stochastic processes, yeast cells select a site for bud emergence that also defines the axis of cell division. Once polarity is established, rho protein-based signal pathways set up a polarized cytoskeleton by activating localized formins to nucleate and assemble polarized actin cables. These serve as tracks for the transport of secretory vesicles, the segregation of the trans Golgi network, the vacuole, peroxisomes, endoplasmic reticulum, mRNAs for cell fate determination, and microtubules that orient the nucleus in preparation for mitosis, all by myosin-Vs encoded by the MYO2 and MYO4 genes. Most of the proteins participating in these processes in yeast are conserved throughout the kingdoms of life, so the emerging models are likely to be generally applicable. Indeed, several parallels to cellular organization in animals are evident.
Collapse
Affiliation(s)
- David Pruyne
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
23
|
Norden C, Liakopoulos D, Barral Y. Dissection of septin actin interactions using actin overexpression in Saccharomyces cerevisiae. Mol Microbiol 2005; 53:469-83. [PMID: 15228528 DOI: 10.1111/j.1365-2958.2004.04148.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many proteins can be overexpressed several fold without much effect on cell viability and morphology, some become toxic upon a slight increase in their intracellular level. This is particularly true for cytoskeletal proteins and has proven useful in the past for studying the cytoskeleton. In yeast, actin and tubulin are examples of proteins that cannot be overexpressed without affecting cell viability. Here, we have analysed the effect of actin overexpression in Saccharomyces cerevisiae. We show that actin overexpression interferes differently with distinct aspects of actin function. For example, two- to fourfold overexpression of actin did not affect the establishment of actin polarity, whereas it abrogated its maintenance. Also, actin structures that are barely visible in wild-type cells could be observed upon actin overexpression. This allowed us to identify a new ring-like actin structure genetically distinguishable from the actomyosin contractile ring. Formation of this actin structure upon actin overexpression was dependent on the septin cytoskeleton, the poorly understood cytokinetic protein Hof1 and the Arp2/3 complex. In contrast to the actomyosin ring, the ring formed upon actin overexpression required neither Myo1 nor formins for assembly. Therefore, we propose that Hof1 acts as a linker between actin and septins. Furthermore, we found that, in the absence of actin overexpression, a novel, Hof1-dependent actin belt is formed at the bud neck of anaphase cells. The physiological role of this belt might be related to that of the similar structure observed in dividing fission yeast.
Collapse
Affiliation(s)
- Caren Norden
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
24
|
Firon A, Lesage G, Bussey H. Integrative studies put cell wall synthesis on the yeast functional map. Curr Opin Microbiol 2005; 7:617-23. [PMID: 15556034 DOI: 10.1016/j.mib.2004.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fungal cell wall field, traditionally focused on polysaccharide composition and synthesis, retains a certain static architectural imagery of structural rigidity and integrity, with the wall offering protection from a harsh environment. This picture of the wall is increasingly changing to that of a bustling construction site, as research uncovers the organizational complexity of its assembly. With recent molecular and genomic studies on Saccharomyces cerevisiae, cell wall synthesis and biology appear increasingly to be dynamic and adaptable processes that are fully integrated with the underlying cytoskeletal and polarity machinery that drive cell cycle progression.
Collapse
Affiliation(s)
- Arnaud Firon
- Department of Biology, McGill University, Stewart Biology Building, 1205 Dr Penfield Avenue, Montreal, Québec H3A 1B1, Canada
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Javier E Irazoqui
- Department of Pharmacology and Cancer Biology, Duke University Medical Centre, Durham, NC 27710, USA
| | | |
Collapse
|
26
|
Irazoqui JE, Howell AS, Theesfeld CL, Lew DJ. Opposing roles for actin in Cdc42p polarization. Mol Biol Cell 2004; 16:1296-304. [PMID: 15616194 PMCID: PMC551493 DOI: 10.1091/mbc.e04-05-0430] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399-416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site.
Collapse
Affiliation(s)
- Javier E Irazoqui
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
27
|
Malagon F, Tong AH, Shafer BK, Strathern JN. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition. Genetics 2004; 166:1215-27. [PMID: 15082542 PMCID: PMC1470799 DOI: 10.1534/genetics.166.3.1215] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TFIIS promotes the intrinsic ability of RNA polymerase II to cleave the 3'-end of the newly synthesized RNA. This stimulatory activity of TFIIS, which is dependent upon Rpb9, facilitates the resumption of transcription elongation when the polymerase stalls or arrests. While TFIIS has a pronounced effect on transcription elongation in vitro, the deletion of DST1 has no major effect on cell viability. In this work we used a genetic approach to increase our knowledge of the role of TFIIS in vivo. We showed that: (1) dst1 and rpb9 mutants have a synthetic growth defective phenotype when combined with fyv4, gim5, htz1, yal011w, ybr231c, soh1, vps71, and vps72 mutants that is exacerbated during germination or at high salt concentrations; (2) TFIIS and Rpb9 are essential when the cells are challenged with microtubule-destabilizing drugs; (3) among the SDO (synthetic with Dst one), SOH1 shows the strongest genetic interaction with DST1; (4) the presence of multiple copies of TAF14, SUA7, GAL11, RTS1, and TYS1 alleviate the growth phenotype of dst1 soh1 mutants; and (5) SRB5 and SIN4 genetically interact with DST1. We propose that TFIIS is required under stress conditions and that TFIIS is important for the transition between initiation and elongation in vivo.
Collapse
Affiliation(s)
- Francisco Malagon
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
28
|
Rodal AA, Kozubowski L, Goode BL, Drubin DG, Hartwig JH. Actin and septin ultrastructures at the budding yeast cell cortex. Mol Biol Cell 2004; 16:372-84. [PMID: 15525671 PMCID: PMC539180 DOI: 10.1091/mbc.e04-08-0734] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast has been a powerful model organism for studies of the roles of actin in endocytosis and septins in cell division and in signaling. However, the depth of mechanistic understanding that can be obtained from such studies has been severely hindered by a lack of ultrastructural information about how actin and septins are organized at the cell cortex. To address this problem, we developed rapid-freeze and deep-etch techniques to image the yeast cell cortex in spheroplasted cells at high resolution. The cortical actin cytoskeleton assembles into conical or mound-like structures composed of short, cross-linked filaments. The Arp2/3 complex localizes near the apex of these structures, suggesting that actin patch assembly may be initiated from the apex. Mutants in cortical actin patch components with defined defects in endocytosis disrupted different stages of cortical actin patch assembly. Based on these results, we propose a model for actin function during endocytosis. In addition to actin structures, we found that septin-containing filaments assemble into two kinds of higher order structures at the cell cortex: rings and ordered gauzes. These images provide the first high-resolution views of septin organization in cells.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| | | | | | | | | |
Collapse
|
29
|
Sattlegger E, Swanson MJ, Ashcraft EA, Jennings JL, Fekete RA, Link AJ, Hinnebusch AG. YIH1 Is an Actin-binding Protein That Inhibits Protein Kinase GCN2 and Impairs General Amino Acid Control When Overexpressed. J Biol Chem 2004; 279:29952-62. [PMID: 15126500 DOI: 10.1074/jbc.m404009200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general amino acid control (GAAC) enables yeast cells to overcome amino acid deprivation by activation of the alpha subunit of translation initiation factor 2 (eIF2alpha) kinase GCN2 and consequent induction of GCN4, a transcriptional activator of amino acid biosynthetic genes. Binding of GCN2 to GCN1 is required for stimulation of GCN2 kinase activity by uncharged tRNA in starved cells. Here we show that YIH1, when overexpressed, dampens the GAAC response (Gcn- phenotype) by suppressing eIF2alpha phosphorylation by GCN2. The overexpressed YIH1 binds GCN1 and reduces GCN1-GCN2 complex formation, and, consistent with this, the Gcn- phenotype produced by YIH1 overexpression is suppressed by GCN2 overexpression. YIH1 interacts with the same GCN1 fragment that binds GCN2, and this YIH1-GCN1 interaction requires Arg-2259 in GCN1 in vitro and in full-length GCN1 in vivo, as found for GCN2-GCN1 interaction. However, deletion of YIH1 does not increase eIF2alpha phosphorylation or derepress the GAAC, suggesting that YIH1 at native levels is not a general inhibitor of GCN2 activity. We discovered that YIH1 normally resides in a complex with monomeric actin, rather than GCN1, and that a genetic reduction in actin levels decreases the GAAC response. This Gcn- phenotype was partially suppressed by deletion of YIH1, consistent with YIH1-mediated inhibition of GCN2 in actin-deficient cells. We suggest that YIH1 resides in a YIH1-actin complex and may be released for inhibition of GCN2 and stimulation of protein synthesis under specialized conditions or in a restricted cellular compartment in which YIH1 is displaced from monomeric actin.
Collapse
Affiliation(s)
- Evelyn Sattlegger
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2427, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Boldogh IR, Ramcharan SL, Yang HC, Pon LA. A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol Biol Cell 2004; 15:3994-4002. [PMID: 15215313 PMCID: PMC515334 DOI: 10.1091/mbc.e04-01-0053] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two actin-dependent force generators contribute to mitochondrial inheritance: Arp2/3 complex and the myosin V Myo2p (together with its Rab-like binding partner Ypt11p). We found that deletion of YPT11, reduction of the length of the Myo2p lever arm (myo2-Delta6IQ), or deletion of MYO4 (the other yeast myosin V), had no effect on mitochondrial morphology, colocalization of mitochondria with actin cables, or the velocity of bud-directed mitochondrial movement. In contrast, retention of mitochondria in the bud was compromised in YPT11 and MYO2 mutants. Retention of mitochondria in the bud tip of wild-type cells results in a 60% decrease in mitochondrial movement in buds compared with mother cells. In ypt11Delta mutants, however, the level of mitochondrial motility in buds was similar to that observed in mother cells. Moreover, the myo2-66 mutant, which carries a temperature-sensitive mutation in the Myo2p motor domain, exhibited a 55% decrease in accumulation of mitochondria in the bud tip, and an increase in accumulation of mitochondria at the retention site in the mother cell after shift to restrictive temperatures. Finally, destabilization of actin cables and the resulting delocalization of Myo2p from the bud tip had no significant effect on the accumulation of mitochondria in the bud tip.
Collapse
Affiliation(s)
- Istvan R Boldogh
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
31
|
Abstract
In filamentous fungi, the actin cytoskeleton is required for polarity establishment and maintenance at hyphal tips and for formation of a contractile ring at sites of septation. Recently, formins have been identified as Arp (actin-related protein) 2/3-independent nucleators of actin polymerization, and filamentous fungi contain a single formin that localizes to both sites. Work on cytoplasmic dynein and members of the kinesin and myosin families of motors has continued to reveal new information regarding the function and regulation of motors as well as demonstrate the importance of microtubules in the long-distance transport of vesicles/organelles in the filamentous fungi.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
32
|
Meriin AB, Zhang X, Miliaras NB, Kazantsev A, Chernoff YO, McCaffery JM, Wendland B, Sherman MY. Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 2003; 23:7554-65. [PMID: 14560003 PMCID: PMC207640 DOI: 10.1128/mcb.23.21.7554-7565.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 07/15/2003] [Accepted: 07/25/2003] [Indexed: 11/20/2022] Open
Abstract
The role of aggregation of abnormal proteins in cellular toxicity is of general importance for understanding many neurological disorders. Here, using a yeast model, we demonstrate that mutations in many proteins involved in endocytosis and actin function dramatically enhance the toxic effect of polypeptides with an expanded polyglutamine (polyQ) domain. This enhanced cytotoxicity required polyQ aggregation and was dependent on the yeast protein Rnq1 in its prion form. In wild-type cells, expression of expanded polyQ followed by its aggregation led to specific and acute inhibition of endocytosis, which preceded growth inhibition. Some components of the endocytic machinery were efficiently recruited into the polyQ aggregates. Furthermore, in cells with polyQ aggregates, cortical actin patches were delocalized and actin was recruited into the polyQ aggregates. Aggregation of polyQ in mammalian HEK293 cells also led to defects in endocytosis. Therefore, it appears that inhibition of endocytosis is a direct consequence of polyQ aggregation and could significantly contribute to cytotoxicity.
Collapse
Affiliation(s)
- Anatoli B Meriin
- Department of Biochemistry, Boston University School of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zakrzewska E, Perron M, Laroche A, Pallotta D. A Role for GEA1 and GEA2 in the Organization of the Actin Cytoskeleton in Saccharomyces cerevisiae. Genetics 2003; 165:985-95. [PMID: 14668359 PMCID: PMC1462846 DOI: 10.1093/genetics/165.3.985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Profilin is an actin monomer-binding protein implicated in the polymerization of actin filaments. In the budding yeast Saccharomyces cerevisiae, the pfy1-111 rho2Δ double mutant has severe growth and actin cytoskeletal defects. The GEA1 and GEA2 genes, which code for paralog guanosine exchange factors for Arf proteins, were identified as multicopy suppressors of the mutant phenotype. These two genes restored the polarized distribution of actin cortical patches and produced visible actin cables in both the pfy1-111 rho2Δ and pfy1Δ cells. Thus, overexpression of GEA1 or GEA2 bypassed the requirement for profilin in actin cable formation. In addition, gea1 gea2 double mutants showed defects in budding and in actin cytoskeleton organization, while overexpression of GEA1 or GEA2 led to the formation of supernumerary actin cable-like structures in a Bni1p/Bnr1p-dependent manner. The ADP-ribosylation factor Arf3p may be a target of Gea1p/Gea2p, since overexpression of ARF3 partially suppressed the profilin-deficient phenotype and a deletion of ARF3 exacerbated the phenotype of a pfy1-111 mutant. Gea1p, Gea2p, Arf1p, and Arf2p but not Arf3p are known to function in vesicular transport between the endoplasmic reticulum and the Golgi. In this work, we demonstrate a role for Gea1p, Gea2p, and Arf3p in the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Ewa Zakrzewska
- Centre de Recherche sur la Structure, la Fonction et l'Ingénierie des Protéines, Pavillon Charles-Eugène Marchand, Université Laval, Ste-Foy, Québec G1K 7P4, Canada
| | | | | | | |
Collapse
|
34
|
Dong Y, Pruyne D, Bretscher A. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J Cell Biol 2003; 161:1081-92. [PMID: 12810699 PMCID: PMC2173006 DOI: 10.1083/jcb.200212040] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formins are actin filament nucleators regulated by Rho-GTPases. In budding yeast, the formins Bni1p and Bnr1p direct the assembly of actin cables, which guide polarized secretion and growth. From the six yeast Rho proteins (Cdc42p and Rho1-5p), we have determined that four participate in the regulation of formin activity. We show that the essential function of Rho3p and Rho4p is to activate the formins Bni1p and Bnr1p, and that activated alleles of either formin are able to bypass the requirement for these Rho proteins. Through a separate signaling pathway, Rho1p is necessary for formin activation at elevated temperatures, acting through protein kinase C (Pkc1p), the major effector for Rho1p signaling to the actin cytoskeleton. Although Pkc1p also activates a MAPK pathway, this pathway does not function in formin activation. Formin-dependent cable assembly does not require Cdc42p, but in the absence of Cdc42p function, cable assembly is not properly organized during initiation of bud growth. These results show that formin function is under the control of three distinct, essential Rho signaling pathways.
Collapse
Affiliation(s)
- Yuqing Dong
- Department of Molecular Biology and Genetics, Cornell University, 353 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
35
|
Current awareness on yeast. Yeast 2003; 20:653-60. [PMID: 12769126 DOI: 10.1002/yea.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Abstract
Budding and fission yeast serve as genetic model organisms for the study of the molecular mechanisms of cell polarity in single cells. Similar to other polarized eukaryotic cells, yeast cells have polarity programmes that regulate where they grow and divide. Here, we describe recent advances in defining the proteins that establish cell polarity and the numerous molecular interactions that may link these factors to the actin cytoskeleton. As many of these components are identified, a comprehensive understanding of complex pathways is beginning to emerge.
Collapse
Affiliation(s)
- Fred Chang
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York NY, 10032, USA.
| | | |
Collapse
|
37
|
Bretscher A. Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors. J Cell Biol 2003; 160:811-6. [PMID: 12642608 PMCID: PMC2173777 DOI: 10.1083/jcb.200301035] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 02/05/2003] [Accepted: 02/10/2003] [Indexed: 01/03/2023] Open
Abstract
In yeast, growth and organelle segregation requires formin-dependent assembly of polarized actin cables. These tracks are used by myosin Vs to deliver secretory vesicles for cell growth, organelles for their segregation, and mRNA for fate determination. Several specific receptors have been identified that interact with the cargo-binding tails of the myosin Vs. A recent study implicates specific degradation in the bud of the vacuolar receptor, Vac17, as a mechanism for cell cycle-regulated segregation of this organelle.
Collapse
Affiliation(s)
- Anthony Bretscher
- Dept. of Molecular Biology and Genetics, Biotechnology Bldg., Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|