1
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
2
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Ma K, Wang H, Lv Z, Hu Y, Wang H, Shu F, Zhu C, Xue T. The Two-Component System CpxRA Affects Antibiotic Susceptibility and Biofilm Formation in Avian Pathogenic Escherichia coli. Animals (Basel) 2023; 13:ani13030383. [PMID: 36766272 PMCID: PMC9913434 DOI: 10.3390/ani13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the common extraintestinal infectious disease pathogens in chickens, geese, and other birds. It can cause a variety of infections, and even the death of poultry, causing enormous economic losses. However, the misuse and abuse of antibiotics in the poultry industry have led to the development of drug resistance in the gut microbes, posing a challenge for the treatment of APEC infections. It has been reported that the CpxRA two-component system has an effect on bacterial drug resistance, but the specific regulatory mechanism remains unclear. In this study, the regulatory mechanism of CpxRA on APEC biofilm formation and EmrKY efflux pump was investigated. The cpxRA knockout strain of E. coli APEC40 was constructed, and the molecular regulatory mechanism of CpxR on biofilms and efflux pump-coding genes were identified by biofilm formation assays, drug susceptibility test, real-time reverse transcription quantitative PCR, and electrophoretic mobility shift assay (EMSA). The results indicated that CpxR can directly bind to the promoter region of emrKY and negatively regulate the sensitivity of bacteria to ofloxacin and erythromycin. These results confirm the important regulatory role of the CpxRA two-component system under antibiotic stress in APEC.
Collapse
|
4
|
The Wsp system of Pseudomonas aeruginosa links surface sensing and cell envelope stress. Proc Natl Acad Sci U S A 2022; 119:e2117633119. [PMID: 35476526 PMCID: PMC9170161 DOI: 10.1073/pnas.2117633119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SignificanceBacteria must respond quickly to environmental changes to survive. One way bacteria can respond to environmental stress is by undergoing a lifestyle transition from individual, free-swimming cells to a surface-associated community called a biofilm characterized by aggregative growth. The opportunistic pathogen Pseudomonas aeruginosa uses the Wsp chemosensory system to sense an unknown surface-associated cue. Here we show that the Wsp system senses cell envelope stress, specifically conditions that promote unfolded or misregulated periplasmic and inner membrane proteins. This work provides direct evidence that cell envelope stress is an important feature of surface sensing in P. aeruginosa.
Collapse
|
5
|
Sobota M, Rodilla Ramirez PN, Cambré A, Rocker A, Mortier J, Gervais T, Haas T, Cornillet D, Chauvin D, Hug I, Julou T, Aertsen A, Diard M. The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. PLoS Biol 2022; 20:e3001608. [PMID: 35389980 PMCID: PMC9017878 DOI: 10.1371/journal.pbio.3001608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/19/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.g., hilD and hilC). Therefore, understanding the cost of virulence and how it relates to virulence regulation could allow the identification and modulation of ecological factors to drive the evolution of S.Tm toward attenuation. In this study, investigations of membrane status and stress resistance demonstrate that the wild-type (WT) expression level of virulence factors embedded in the envelope increases membrane permeability and sensitizes S.Tm to membrane stress. This is independent from a previously described growth defect associated with virulence gene expression in S.Tm. Pretreating the bacteria with sublethal stress inhibited virulence expression and increased stress resistance. This trade-off between virulence and stress resistance could explain the repression of virulence expression in response to harsh environments in S.Tm. Moreover, we show that virulence-associated stress sensitivity is a burden during infection in mice, contributing to the inherent instability of S.Tm virulence. As most bacterial pathogens critically rely on deploying virulence factors in their membrane, our findings could have a broad impact toward the development of antivirulence strategies.
Collapse
Affiliation(s)
| | | | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Théo Gervais
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | - Dany Chauvin
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Isabelle Hug
- Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Julou
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
London LY, Aubee JI, Nurse J, Thompson KM. Post-Transcriptional Regulation of RseA by Small RNAs RyhB and FnrS in Escherichia coli. Front Mol Biosci 2021; 8:668613. [PMID: 34805264 PMCID: PMC8595263 DOI: 10.3389/fmolb.2021.668613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
RseA is the critical central regulator of the σE-dependent stress response in E. coli and other related bacteria. The synthesis of RseA is controlled at the transcriptional level by several promoters and transcriptional regulators, including σE itself at two σE-dependent promoters: rpoE P and rseA P3. The presence of these two independent polycistrons encoding rseA is potentially redundant. We hypothesized that post-transcriptional control of the rseA P3 transcript was necessary to overcome this redundancy. However, to date, nothing is known about the post-transcriptional control of the rseA P3 transcript. We executed a targeted genetic screen to identify small RNA regulators of the rseA P3 transcript and identified RyhB and FnrS as small RNA activators of the RseA P3 transcript. Through genetic analysis, we confirmed that a direct interaction occurs between RyhB and RseA. We also identified sequences within the 5' untranslated region (UTR) of RseA that were inhibitory for RseA expression. Point mutations predicted to prevent an interaction between RyhB and RseA resulted in increased RseA expression. Taken together, this suggests that the 5' UTR of the RseAP3 transcript prevents optimal expression of RseA, preventing redundancy due to RseA expression from the σE-dependent rpoE P, and this is overcome by the stimulatory activity of RyhB and FnrS.
Collapse
Affiliation(s)
- Laricca Y. London
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL, United States
| | - Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, United States
| | - Jalisa Nurse
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, United States
- Department of Biology, Howard University, Washington, DC, United States
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
7
|
Zhu T, Wang Z, McMullen LM, Raivio T, Simpson DJ, Gänzle MG. Contribution of the Locus of Heat Resistance to Growth and Survival of Escherichia coli at Alkaline pH and at Alkaline pH in the Presence of Chlorine. Microorganisms 2021; 9:701. [PMID: 33800639 PMCID: PMC8067161 DOI: 10.3390/microorganisms9040701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
The locus of heat resistance (LHR) confers resistance to extreme heat, chlorine and oxidative stress in Escherichia coli. This study aimed to determine the function of the LHR in maintaining bacterial cell envelope homeostasis, the regulation of the genes comprising the LHR and the contribution of the LHR to alkaline pH response. The presence of the LHR did not affect the activity of the Cpx two-component regulatory system in E. coli, which was measured to quantify cell envelope stress. The LHR did not alter E. coli MG1655 growth rate in the range of pH 6.9 to 9.2. However, RT-qPCR results indicated that the expression of the LHR was elevated at pH 8.0 when CpxR was absent. The LHR did not improve survival of E. coli MG1655 at extreme alkaline pH (pH = 11.0 to 11.2) but improved survival at pH 11.0 in the presence of chlorine. Therefore, we conclude that the LHR confers resistance to extreme alkaline pH in the presence of oxidizing agents. Resistance to alkaline pH is regulated by an endogenous mechanism, including the Cpx envelope stress response, whereas the LHR confers resistance to extreme alkaline pH only in the presence of additional stress such as chlorine.
Collapse
Affiliation(s)
- Tongbo Zhu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Lynn M. McMullen
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Tracy Raivio
- Department of Biological Science, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - David J. Simpson
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| |
Collapse
|
8
|
Reversible autoinhibitory regulation of Escherichia coli metallopeptidase BepA for selective β-barrel protein degradation. Proc Natl Acad Sci U S A 2020; 117:27989-27996. [PMID: 33093205 DOI: 10.1073/pnas.2010301117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli periplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246-mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.
Collapse
|
9
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
10
|
Guo S, Zhang S, Fang X, Liu Q, Gao J, Bilal M, Wang Y, Zhang X. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila. Microb Cell Fact 2017; 16:203. [PMID: 29141647 PMCID: PMC5688692 DOI: 10.1186/s12934-017-0813-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Xenocoumacin 1 (Xcn1) and Xenocoumacin 2 (Xcn2) are the main antimicrobial compounds produced by Xenorhabdus nematophila. Culture conditions, including pH, had remarkably distinct effects on the antimicrobial activity of X. nematophila. However, the regulatory mechanism of pH on the antimicrobial activity and antibiotic production of this bacterium is still lacking. RESULTS With the increase of initial pH, the antimicrobial activity of X. nematophila YL001 was improved. The levels of Xcn1 and nematophin at pH 8.5 were significantly (P < 0.05) higher than that at pH 5.5 and 7.0. In addition, the expression of xcnA-L, which are responsible for the production of Xcn1 was increased and the expression of xcnMN, which are required for the conversion of Xcn1 to Xcn2 was reduced at pH 8.5. Also, the expression of ompR and cpxR were decreased at pH 8.5. CONCLUSION The alkaline pH environment was found to be beneficial for the production of Xcn1 and nematophin, which in turn led to high antimicrobial activity of X. nematophila at pH 8.5.
Collapse
Affiliation(s)
- Shuqi Guo
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujing Zhang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.,School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Qi Liu
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiangtao Gao
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yonghong Wang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China. .,Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xing Zhang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
11
|
Psp Stress Response Proteins Form a Complex with Mislocalized Secretins in the Yersinia enterocolitica Cytoplasmic Membrane. mBio 2017; 8:mBio.01088-17. [PMID: 28900025 PMCID: PMC5596341 DOI: 10.1128/mbio.01088-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial phage shock protein system (Psp) is a conserved extracytoplasmic stress response that is essential for the virulence of some pathogens, including Yersinia enterocolitica It is induced by events that can compromise inner membrane (IM) integrity, including the mislocalization of outer membrane pore-forming proteins called secretins. In the absence of the Psp system, secretin mislocalization permeabilizes the IM and causes rapid cell death. The Psp proteins PspB and PspC form an integral IM complex with two independent roles. First, the PspBC complex is required to activate the Psp response in response to some inducing triggers, including a mislocalized secretin. Second, PspBC are sufficient to counteract mislocalized secretin toxicity. Remarkably, secretin mislocalization into the IM induces psp gene expression without significantly affecting the expression of any other genes. Furthermore, psp null strains are killed by mislocalized secretins, whereas no other null mutants have been found to share this specific secretin sensitivity. This suggests an exquisitely specific relationship between secretins and the Psp system, but there has been no mechanism described to explain this. In this study, we addressed this deficiency by using a coimmunoprecipitation approach to show that the Psp proteins form a specific complex with mislocalized secretins in the Y. enterocolitica IM. Importantly, analysis of different secretin mutant proteins also revealed that this interaction is absolutely dependent on a secretin adopting a multimeric state. Therefore, the Psp system has evolved with the ability to detect and detoxify dangerous secretin multimers while ignoring the presence of innocuous monomers.IMPORTANCE The phage shock protein (Psp) response has been linked to important phenotypes in diverse bacteria, including those related to antibiotic resistance, biofilm formation, and virulence. This has generated widespread interest in understanding various aspects of its function. Outer membrane secretin proteins are essential components of export systems required for the virulence of many bacterial pathogens. However, secretins can mislocalize into the inner membrane, and this induces the Psp response in a highly specific manner and kills Psp-defective strains with similar specificity. There has been no mechanism described to explain this exquisitely specific relationship between secretins and the Psp system. Therefore, this study provides a critical advance by discovering that Psp effector proteins form a complex with secretins in the Yersinia enterocolitica inner membrane. Remarkably, this interaction is absolutely dependent on a secretin adopting its multimeric state. Therefore, the Psp system detects and detoxifies dangerous secretin multimers, while ignoring the presence of innocuous secretin monomers.
Collapse
|
12
|
Kumar S, Tiwari V, Doerrler WT. Cpx-dependent expression of YqjA requires cations at elevated pH. FEMS Microbiol Lett 2017; 364:3861960. [PMID: 28591809 DOI: 10.1093/femsle/fnx115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Under alkaline pH conditions, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6 that is acidic relative to the environment. Bacteria employ various mechanisms to survive alkaline pH; however, membrane cation/H+ antiporters play a primary role by facilitating inward transport of protons. Escherichia coli YqjA belongs to the DedA/Tvp38 membrane protein family and, along with its paralog YghB, is required for growth at 42°C, proper cell division and antibiotic resistance. YqjA is required for viability at alkaline pH, requiring cations sodium or potassium to support growth under these conditions, suggesting it may be a transporter. We measured yqjA expression at different pHs and cation concentrations using a yqjA promoter-lacZ fusion. We found that yqjA promoter activity was highest at alkaline pH. Increased activity of the yqjA promoter required both the transcriptional regulator CpxR, in agreement with previous results, and sodium or potassium salts at alkaline pH. Extracellular cations are also required for activity of cpxP and degP promoters at alkaline pH, suggesting this is a general property of the Cpx regulon. To our knowledge, this is the first demonstration of cation-dependent expression of Cpx-regulated genes at alkaline pH.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vijay Tiwari
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Grabowicz M, Silhavy TJ. Envelope Stress Responses: An Interconnected Safety Net. Trends Biochem Sci 2016; 42:232-242. [PMID: 27839654 DOI: 10.1016/j.tibs.2016.10.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
The Escherichia coli cell envelope is a protective barrier at the frontline of interaction with the environment. Fidelity of envelope biogenesis must be monitored to establish and maintain a contiguous barrier. Indeed, the envelope must also be repaired and modified in response to environmental assaults. Envelope stress responses (ESRs) sense envelope damage or defects and alter the transcriptome to mitigate stress. Here, we review recent insights into the stress-sensing mechanisms of the σE and Cpx systems and the interaction of these ESRs. Small RNAs (sRNAs) are increasingly prominent regulators of the transcriptional response to stress. These fast-acting regulators also provide avenues for inter-ESR regulation that could be important when cells face multiple contemporaneous stresses, as is the case during infection.
Collapse
Affiliation(s)
- Marcin Grabowicz
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Transcriptional Responses of Escherichia coli to a Small-Molecule Inhibitor of LolCDE, an Essential Component of the Lipoprotein Transport Pathway. J Bacteriol 2016; 198:3162-3175. [PMID: 27645386 PMCID: PMC5105897 DOI: 10.1128/jb.00502-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, a dedicated machinery consisting of LolABCDE components targets lipoproteins to the outer membrane. We used a previously identified small-molecule inhibitor of the LolCDE complex of Escherichia coli to assess the global transcriptional consequences of interference with lipoprotein transport. Exposure of E. coli to the LolCDE inhibitor at concentrations leading to minimal and significant growth inhibition, followed by transcriptome sequencing, identified a small group of genes whose transcript levels were decreased and a larger group whose mRNA levels increased 10- to 100-fold compared to those of untreated cells. The majority of the genes whose mRNA concentrations were reduced were part of the flagellar assembly pathway, which contains an essential lipoprotein component. Most of the genes whose transcript levels were elevated encode proteins involved in selected cell stress pathways. Many of these genes are involved with envelope stress responses induced by the mislocalization of outer membrane lipoproteins. Although several of the genes whose RNAs were induced have previously been shown to be associated with the general perturbation of the cell envelope by antibiotics, a small subset was affected only by LolCDE inhibition. Findings from this work suggest that the efficiency of the Lol system function may be coupled to a specific monitoring system, which could be exploited in the development of reporter constructs suitable for use for screening for additional inhibitors of lipoprotein trafficking. IMPORTANCE Inhibition of the lipoprotein transport pathway leads to E. coli death and subsequent lysis. Early significant changes in the levels of RNA for a subset of genes identified to be associated with some periplasmic and envelope stress responses were observed. Together these findings suggest that disruption of this key pathway can have a severe impact on balanced outer membrane synthesis sufficient to affect viability.
Collapse
|
15
|
Yang H, Li G, Stansbury JW, Zhu X, Wang X, Nie J. Smart Antibacterial Surface Made by Photopolymerization. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28047-28054. [PMID: 27696807 DOI: 10.1021/acsami.6b09343] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
On the basis of the use of photopolymerization technology, a facile and reliable method for in situ preparation of silver nanoparticles (AgNPs) within PNIPAAm functional surfaces is presented as a means to achieve nonfouling, antibacterial films. The surface properties were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), water contact angle, and thermogravimetric analysis (TGA). The antibacterial and release properties of the surfaces were tested against E. coli: at 37 °C (above the LCST of PNIPAAm), the functional films facilitated the attachment of bacteria, which were then killed by the AgNPs. Changing temperature to 4 °C (below the LCST), swollen PNIPAAm chains led the release of dead bacteria. The results showed that AgNPs/PNIPAAm hybrid surfaces offer a "smart" antibacterial capability in response to the change of environmental temperature.
Collapse
Affiliation(s)
| | | | - Jeffrey W Stansbury
- School of Dental Medicine, University of Colorado , Denver, Colorado 80045, United States
| | | | | | | |
Collapse
|
16
|
Braselmann E, Chaney JL, Champion MM, Clark PL. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates. PLoS One 2016; 11:e0162922. [PMID: 27626276 PMCID: PMC5023192 DOI: 10.1371/journal.pone.0162922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress.
Collapse
Affiliation(s)
- Esther Braselmann
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Julie L. Chaney
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
17
|
Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation. Appl Environ Microbiol 2016; 82:5428-43. [PMID: 27342561 DOI: 10.1128/aem.01615-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface using extensions of the outer membrane called bacterial nanowires. These bacterial nanowires link the cell's respiratory chain to external surfaces, including oxidized metals important in bioremediation, and explain why S. oneidensis can be utilized as a component of microbial fuel cells, a form of renewable energy. In this work, we use differential gene expression analysis to focus on which genes function to produce the nanowires and promote extracellular electron transfer during oxygen limitation. Among the genes that are expressed at high levels are those encoding cytochrome proteins necessary for electron transfer. Shewanella coordinates the increased expression of regulators, metabolic pathways, and transport pathways to ensure that cytochromes efficiently transfer electrons along the nanowires.
Collapse
|
18
|
Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M, Stinear TP, Bode HB. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016; 17:537. [PMID: 27488257 PMCID: PMC4971723 DOI: 10.1186/s12864-016-2862-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
Abstract
Background Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes. Results Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes. Conclusions Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2862-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Bagdevi Mishra
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Deepak K Gupta
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Abstract
The phage shock protein (Psp) system was identified as a response to phage infection in Escherichia coli, but rather than being a specific response to a phage, it detects and mitigates various problems that could increase inner-membrane (IM) permeability. Interest in the Psp system has increased significantly in recent years due to appreciation that Psp-like proteins are found in all three domains of life and because the bacterial Psp response has been linked to virulence and other important phenotypes. In this article, we summarize our current understanding of what the Psp system detects and how it detects it, how four core Psp proteins form a signal transduction cascade between the IM and the cytoplasm, and current ideas that explain how the Psp response keeps bacterial cells alive. Although recent studies have significantly improved our understanding of this system, it is an understanding that is still far from complete.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| | - Andrew J Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| |
Collapse
|
20
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|
21
|
Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH. J Bacteriol 2015; 197:2292-300. [PMID: 25917916 DOI: 10.1128/jb.00175-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/22/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. IMPORTANCE The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family is a highly conserved but poorly characterized family of membrane proteins. Here, we show that the DedA/Tvp38 protein YqjA is critical for E. coli to survive at pH 8.5 to 9.5. YqjA requires sodium and potassium for this function. At low cation concentrations, osmolytes, including sucrose, can facilitate rescue of E. coli growth by YqjA at high pH. These data are consistent with YqjA functioning as an osmosensing cation-dependent proton transporter.
Collapse
|
22
|
Almagro-Moreno S, Kim TK, Skorupski K, Taylor RK. Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state. PLoS Genet 2015; 11:e1005145. [PMID: 25849031 PMCID: PMC4388833 DOI: 10.1371/journal.pgen.1005145] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state.
Collapse
Affiliation(s)
- Salvador Almagro-Moreno
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Tae K. Kim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
23
|
The Cpx system regulates virulence gene expression in Vibrio cholerae. Infect Immun 2015; 83:2396-408. [PMID: 25824837 DOI: 10.1128/iai.03056-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/21/2015] [Indexed: 12/30/2022] Open
Abstract
Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway in Vibrio cholerae El Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of the crp gene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production.
Collapse
|
24
|
Li J, Overall CC, Nakayasu ES, Kidwai AS, Jones MB, Johnson RC, Nguyen NT, McDermott JE, Ansong C, Heffron F, Cambronne ED, Adkins JN. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ(E)-regulated SPI-2 gene expression. Front Microbiol 2015; 6:27. [PMID: 25713562 PMCID: PMC4322710 DOI: 10.3389/fmicb.2015.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/08/2015] [Indexed: 02/04/2023] Open
Abstract
The extracytoplasmic functioning sigma factor σE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by σE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σE in at least one of the three conditions. An important finding is that σE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σE and SPI-2 genes, combined with the global regulatory effect of σE, may account for the lethality of rpoE-deficient Salmonella in murine infection.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Christopher C Overall
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Afshan S Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Marcus B Jones
- Department of Infectious Diseases, J. Craig Venter Institute Rockville, MD, USA
| | - Rudd C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Nhu T Nguyen
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Eric D Cambronne
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
25
|
The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron. J Bacteriol 2014; 197:262-76. [PMID: 25368298 DOI: 10.1128/jb.01957-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cpx pathway, a two-component system that employs the sensor histidine kinase CpxA and the response regulator CpxR, regulates crucial envelope stress responses across bacterial species and affects antibiotic resistance. To characterize the CpxR regulon in Vibrio cholerae, the transcriptional profile of the pandemic V. cholerae El Tor C6706 strain was examined upon overexpression of cpxR. Our data show that the Cpx regulon of V. cholerae is enriched in genes encoding membrane-localized and transport proteins, including a large number of genes known or predicted to be iron regulated. Activation of the Cpx pathway further led to the expression of TolC, the major outer membrane pore, and of components of two RND efflux systems in V. cholerae. We show that iron chelation, toxic compounds, or deletion of specific RND efflux components leads to Cpx pathway activation. Furthermore, mutations that eliminate the Cpx response or members of its regulon result in growth phenotypes in the presence of these inducers that, together with Cpx pathway activation, are partially suppressed by iron. Cumulatively, our results suggest that a major function of the Cpx response in V. cholerae is to mediate adaptation to envelope perturbations caused by toxic compounds and the depletion of iron.
Collapse
|
26
|
Yun S, Lee EG, Kim SY, Shin JM, Jung WS, Oh DB, Lee SY, Kwon O. The CpxRA two-component system is involved in the maintenance of the integrity of the cell envelope in the rumen bacterium Mannheimia succiniciproducens. Curr Microbiol 2014; 70:103-9. [PMID: 25231942 DOI: 10.1007/s00284-014-0686-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/29/2014] [Indexed: 11/28/2022]
Abstract
In this study, we characterized the CpxRA two-component signal transduction system of the rumen bacterium Mannheimia succiniciproducens. The truncated form of the CpxA sensor kinase protein without its transmembrane domain was able to autophosphorylate and transphosphorylate the CpxR response regulator protein in vitro. We identified 152 putative target genes for the Cpx system in M. succiniciproducens, which were differentially expressed by more than twofold upon overexpression of the CpxR protein. Genes of a putative 16-gene operon related to the cell wall and lipopolysaccharide biosynthesis were induced strongly upon CpxR overexpression. The promoter region of the first gene of this operon, wecC encoding UDP-N-acetyl-D-mannosaminuronate dehydrogenase, was analyzed and found to contain a sequence homologous to the CpxR box of Escherichia coli. An electrophoretic mobility shift assay showed that the phosphorylated CpxR proteins were able to bind specifically to PCR-amplified DNA fragments containing the promoter sequence of wecC. Furthermore, a cpxR-disrupted mutant strain exhibited increased envelope permeability compared with a wild-type strain. These results suggest that the Cpx system of M. succiniciproducens is involved in the maintenance of the integrity of the cell envelope.
Collapse
Affiliation(s)
- Seulgi Yun
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
King T, Kocharunchitt C, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt temperature downshift. PLoS One 2014; 9:e99627. [PMID: 24926786 PMCID: PMC4057180 DOI: 10.1371/journal.pone.0099627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/17/2014] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli O157∶H7 is a mesophilic food-borne pathogen. We investigated the growth kinetics of E. coli O157∶H7 Sakai during an abrupt temperature downshift from 35°C to either 20°C, 17°C, 14°C or 10°C; as well as the molecular mechanisms enabling growth after cold stress upon an abrupt downshift from 35°C to 14°C in an integrated transcriptomic and proteomic analysis. All downshifts caused a lag period of growth before growth resumed at a rate typical of the post-shift temperature. Lag and generation time increased with the magnitude of the shift or with the final temperature, while relative lag time displayed little variation across the test range. Analysis of time-dependent molecular changes revealed, in keeping with a decreased growth rate at lower temperature, repression of genes and proteins involved in DNA replication, protein synthesis and carbohydrate catabolism. Consistent with cold-induced remodelling of the bacterial cell envelope, alterations occurred in the expression of genes and proteins involved in transport and binding. The RpoS regulon exhibited sustained induction confirming its importance in adaptation and growth at 14°C. The RpoE regulon was transiently induced, indicating a potential role for this extracytoplasmic stress response system in the early phase of low temperature adaptation during lag phase. Interestingly, genes previously reported to be amongst the most highly up-regulated under oxidative stress were consistently down-regulated. This comprehensive analysis provides insight into the molecular mechanisms operating during adaptation of E. coli to growth at low temperature and is relevant to its physiological state during chilling in foods, such as carcasses.
Collapse
Affiliation(s)
- Thea King
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
- * E-mail:
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
28
|
Reciprocal regulation of resistance-nodulation-division efflux systems and the Cpx two-component system in Vibrio cholerae. Infect Immun 2014; 82:2980-91. [PMID: 24799626 DOI: 10.1128/iai.00025-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Cpx two-component regulatory system has been shown in Escherichia coli to alleviate stress caused by misfolded cell envelope proteins. The Vibrio cholerae Cpx system was previously found to respond to cues distinct from those in the E. coli system, suggesting that this system fulfills a different physiological role in the cholera pathogen. Here, we used microarrays to identify genes that were regulated by the V. cholerae Cpx system. Our observations suggest that the activation of the V. cholerae Cpx system does not induce expression of genes involved in the mitigation of stress generated by misfolded cell envelope proteins but promotes expression of genes involved in antimicrobial resistance. In particular, activation of the Cpx system induced expression of the genes encoding the VexAB and VexGH resistance-nodulation-division (RND) efflux systems and their cognate outer membrane pore protein TolC. The promoters for these loci contained putative CpxR consensus binding sites, and ectopic cpxR expression activated transcription from the promoters for the RND efflux systems. CpxR was not required for intrinsic antimicrobial resistance, but CpxR activation enhanced resistance to antimicrobial substrates of VexAB and VexGH. Mutations that inactivated VexAB or VexGH efflux activity resulted in the activation of the Cpx response, suggesting that vexAB and vexGH and the cpxP-cpxRA system are reciprocally regulated. We speculate that the reciprocal regulation of the V. cholerae RND efflux systems and the Cpx two-component system is mediated by the intracellular accumulation of an endogenously produced metabolic by-product that is normally extruded from the cell by the RND efflux systems.
Collapse
|
29
|
Mechaly AE, Sassoon N, Betton JM, Alzari PM. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol 2014; 12:e1001776. [PMID: 24492262 PMCID: PMC3904827 DOI: 10.1371/journal.pbio.1001776] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023] Open
Abstract
Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.
Collapse
Affiliation(s)
- Ariel E. Mechaly
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Nathalie Sassoon
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Jean-Michel Betton
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Pedro M. Alzari
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| |
Collapse
|
30
|
Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1529-41. [PMID: 24184210 DOI: 10.1016/j.bbamcr.2013.10.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The Cpx envelope stress response (ESR) has been linked to proteins that are integrated into and secreted across the inner membrane for several decades. Initial studies of the cpx locus linked it to alterations in the protein content of both the inner and outer membrane, together with changes in proton motive driven transport and conjugation. Since the mid 1990s, the predominant view of the Cpx envelope stress response has been that it serves to detect and respond to secreted, misfolded proteins in the periplasm. Recent studies in Escherichia coli and other Gram negative organisms highlight a role for the Cpx ESR in specifically responding to perturbations that occur at the inner membrane (IM). It is clear that Cpx adaptation involves a broad suite of changes that encompass many functions in addition to protein folding. Interestingly, recent studies have refocused attention on Cpx-regulated phenotypes that were initially published over 30years ago, including antibiotic resistance and transport across the IM. In this review I will focus on the insights and models that have arisen from recent studies and that may help explain some of the originally published Cpx phenotypes. Although the molecular nature of the inducing signal for the Cpx ESR remains enigmatic, recently solved structures of signaling proteins are yielding testable models concerning the molecular mechanisms behind signaling. The identification of connections between the Cpx ESR and other stress responses in the cell reveals a complex web of interactions that involves Cpx-regulated expression of other regulators as well as small proteins and sRNAs. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Tracy L Raivio
- Department of Biological Sciences, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
31
|
Silva IJ, Ortega ÁD, Viegas SC, García-del Portillo F, Arraiano CM. An RpoS-dependent sRNA regulates the expression of a chaperone involved in protein folding. RNA (NEW YORK, N.Y.) 2013; 19:1253-1265. [PMID: 23893734 PMCID: PMC3753932 DOI: 10.1261/rna.039537.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/08/2013] [Indexed: 06/02/2023]
Abstract
Small noncoding RNAs (sRNAs) are usually expressed in the cell to face a variety of stresses. In this report we disclose the first target for SraL (also known as RyjA), a sRNA present in many bacteria, which is highly induced in stationary phase. We also demonstrate that this sRNA is directly transcribed by the major stress σ factor σ(S) (RpoS) in Salmonella enterica serovar Typhimurium. We show that SraL sRNA down-regulates the expression of the chaperone Trigger Factor (TF), encoded by the tig gene. TF is one of the three major chaperones that cooperate in the folding of the newly synthesized cytosolic proteins and is the only ribosome-associated chaperone known in bacteria. By use of bioinformatic tools and mutagenesis experiments, SraL was shown to directly interact with the 5' UTR of the tig mRNA a few nucleotides upstream of the Shine-Dalgarno region. Namely, point mutations in the sRNA (SraL*) abolished the repression of tig mRNA and could only down-regulate a tig transcript target with the respective compensatory mutations. We have also validated in vitro that SraL forms a stable duplex with the tig mRNA. This work constitutes the first report of a small RNA affecting protein folding. Taking into account that both SraL and TF are very well conserved in enterobacteria, this work will have important repercussions in the field.
Collapse
Affiliation(s)
- Inês Jesus Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Álvaro Darío Ortega
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Sandra Cristina Viegas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
32
|
Abstract
Yersinia pestis, the causative agent of plague, uses a type III secretion system (T3SS) to inject cytotoxic Yop proteins directly into the cytosol of mammalian host cells. The T3SS can also be activated in vitro at 37°C in the absence of calcium. The chromosomal gene rfaL (waaL) was recently identified as a virulence factor required for proper function of the T3SS. RfaL functions as a ligase that adds the terminal N-acetylglucosamine to the lipooligosaccharide core of Y. pestis. We previously showed that deletion of rfaL prevents secretion of Yops in vitro. Here we show that the divalent cations calcium, strontium, and magnesium can partially or fully rescue Yop secretion in vitro, indicating that the secretion phenotype of the rfaL mutant may be due to structural changes in the outer membrane and the corresponding feedback inhibition on the T3SS. In support of this, we found that the defect can be overcome by deleting the regulatory gene lcrQ. Consistent with a defective T3SS, the rfaL mutant is less virulent than the wild type. We show here that the virulence defect of the mutant correlates with a decrease in both T3SS gene expression and ability to inject innate immune cells, combined with an increased sensitivity to cationic antimicrobial peptides.
Collapse
|
33
|
Barchinger SE, Ades SE. Regulated proteolysis: control of the Escherichia coli σ(E)-dependent cell envelope stress response. Subcell Biochem 2013; 66:129-60. [PMID: 23479440 DOI: 10.1007/978-94-007-5940-4_6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, regulatory proteolysis has emerged as a paradigm for transmembrane signal transduction in all organisms, from bacteria to humans. These conserved proteolytic pathways share a common design that involves the sequential proteolysis of a membrane-bound regulatory protein by two proteases. Proteolysis releases the regulator, which is inactive in its membrane-bound form, into the cytoplasm where it performs its cellular function. One of the best-characterized examples of signal transduction via regulatory proteolysis is the pathway governing the σ(E)-dependent cell envelope stress response in Escherichia coli. In unstressed cells, σ(E) is sequestered at the membrane by the transmembrane anti-sigma factor, RseA. Stresses that compromise the cell envelope and interfere with the proper folding of outer membrane proteins (OMPs) activate the proteolytic pathway. The C-terminal residues of unfolded OMPs bind to the inner membrane protease, DegS, to initiate the proteolytic cascade. DegS removes the periplasmic domain of RseA creating a substrate for the next protease in the pathway, RseP. RseP cleaves RseA in the periplasmic region in a process called regulated intramembrane proteolysis (RIP). The remaining fragment of RseA is released into the cytoplasm and fully degraded by the ATP-dependent protease, ClpXP, with the assistance of the adaptor protein, SspB, thereby freeing σ(E) to reprogram gene expression. A growing body of evidence indicates that the overall proteolytic framework that governs the σ(E) response is used to regulate similar anti-sigma factor/sigma factor pairs throughout the bacterial world and has been adapted to recognize a wide variety of signals and control systems as diverse as envelope stress responses, sporulation, virulence, and iron-siderophore uptake. In this chapter, we review the extensive physiological, biochemical, and structural studies on the σ(E) system that provide remarkable insights into the mechanistic underpinnings of this regulated proteolytic signal transduction pathway. These studies reveal design principles that are applicable to related proteases and regulatory proteolytic pathways in all domains of life.
Collapse
Affiliation(s)
- Sarah E Barchinger
- Graduate Program in BMMB, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
34
|
Abstract
The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. However, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeostasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity, altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the DedA membrane protein family.
Collapse
|
35
|
Rizzello L, Galeone A, Vecchio G, Brunetti V, Sabella S, Pompa PP. Molecular response of Escherichia coli adhering onto nanoscale topography. NANOSCALE RESEARCH LETTERS 2012; 7:575. [PMID: 23078758 PMCID: PMC3552789 DOI: 10.1186/1556-276x-7-575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/10/2012] [Indexed: 05/23/2023]
Abstract
Bacterial adhesion onto abiotic surfaces is an important issue in biology and medicine since understanding the bases of such interaction represents a crucial aspect in the design of safe implant devices with intrinsic antibacterial characteristics. In this framework, we investigated the effects of nanostructured metal substrates on Escherichia coli adhesion and adaptation in order to understand the bio-molecular dynamics ruling the interactions at the interface. In particular, we show how highly controlled nanostructured gold substrates impact the bacterial behavior in terms of morphological changes and lead to modifications in the expression profile of several genes, which are crucially involved in the stress response and fimbrial synthesis. These results mainly demonstrate that E. coli cells are able to sense even slight changes in surface nanotopography and to actively respond by activating stress-related pathways. At the same time, our findings highlight the possibility of designing nanoengineered substrates able to trigger specific bio-molecular effects, thus opening the perspective of smartly tuning bacterial behavior by biomaterial design.
Collapse
Affiliation(s)
- Loris Rizzello
- Center for Bio-Molecular Nanotechnologies, Instituto Italiano di Tecnologia@UniLe, Via Barsanti, Arnesano, Lecce, 73010, Italy
| | - Antonio Galeone
- Center for Bio-Molecular Nanotechnologies, Instituto Italiano di Tecnologia@UniLe, Via Barsanti, Arnesano, Lecce, 73010, Italy
| | - Giuseppe Vecchio
- Center for Bio-Molecular Nanotechnologies, Instituto Italiano di Tecnologia@UniLe, Via Barsanti, Arnesano, Lecce, 73010, Italy
| | - Virgilio Brunetti
- Center for Bio-Molecular Nanotechnologies, Instituto Italiano di Tecnologia@UniLe, Via Barsanti, Arnesano, Lecce, 73010, Italy
| | - Stefania Sabella
- Center for Bio-Molecular Nanotechnologies, Instituto Italiano di Tecnologia@UniLe, Via Barsanti, Arnesano, Lecce, 73010, Italy
| | - Pier Paolo Pompa
- Center for Bio-Molecular Nanotechnologies, Instituto Italiano di Tecnologia@UniLe, Via Barsanti, Arnesano, Lecce, 73010, Italy
| |
Collapse
|
36
|
Multiple envelope stress response pathways are activated in an Escherichia coli strain with mutations in two members of the DedA membrane protein family. J Bacteriol 2012; 195:12-24. [PMID: 23042993 DOI: 10.1128/jb.00762-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have reported that simultaneous deletion of two Escherichia coli genes, yqjA and yghB, encoding related and conserved inner membrane proteins belonging to the DedA protein family results in a number of intriguing phenotypes, including temperature sensitivity at 42°C, altered membrane lipid composition, and cell division defects. We sought to characterize these and other phenotypes in an effort to establish a function for this protein family in E. coli. Here, using reporter assays, we show that the major envelope stress response pathways Cpx, Psp, Bae, and Rcs are activated in strain BC202 (W3110; ΔyqjA ΔyghB) at the permissive growth temperature of 30°C. We previously demonstrated that 10 mM Mg(2+), 400 mM NaCl, and overexpression of tatABC are capable of restoring normal growth to BC202 at elevated growth temperatures. Deletion of the cpxR gene from BC202 results in the loss of the ability of these supplements to restore growth at 42°C. Additionally, we report that the membrane potential of BC202 is significantly reduced and that cell division and growth can be restored either by expression of the multidrug transporter MdfA from a multicopy plasmid or by growth at pH 6.0. Together, these results suggest that the DedA family proteins YqjA and YghB are required for general envelope maintenance and homeostasis of the proton motive force under a variety of growth conditions.
Collapse
|
37
|
Kato A, Hayashi H, Nomura W, Emori H, Hagihara K, Utsumi R. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella. BMC Microbiol 2012; 12:224. [PMID: 23031642 PMCID: PMC3533512 DOI: 10.1186/1471-2180-12-224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/21/2012] [Indexed: 12/27/2022] Open
Abstract
Background Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Results Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation. Conclusions We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system.
Collapse
Affiliation(s)
- Akinori Kato
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Kwon E, Kim DY, Ngo TD, Gross CA, Gross JD, Kim KK. The crystal structure of the periplasmic domain of Vibrio parahaemolyticus CpxA. Protein Sci 2012; 21:1334-43. [PMID: 22760860 PMCID: PMC3631362 DOI: 10.1002/pro.2120] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Cpx two-component system of Gram-negative bacteria senses extracytoplasmic stresses using the histidine kinase CpxA, a membrane-bound sensor, and controls the transcription of the genes involved in stress response by the cytosolic response regulator CpxR, which is activated by the phosphorelay from CpxA. CpxP, a CpxA-associated protein, also plays an important role in the regulation of the Cpx system by inhibiting the autophosphorylation of CpxA. Although the stress signals and physiological roles of the Cpx system have been extensively studied, the lack of structural information has limited the understanding of the detailed mechanism of ligand binding and regulation of CpxA. In this study, we solved the crystal structure of the periplasmic domain of Vibrio parahaemolyticus CpxA (VpCpxA-peri) to a resolution of 2.1 Å and investigated its interaction with CpxP. VpCpxA-peri has a globular Per-ARNT-SIM (PAS) domain and a protruded C-terminal tail, which may be required for ligand sensing and CpxP binding, respectively. The direct interaction of the PAS core of VpCpxA-peri with VpCpxP was not detected by NMR, suggesting that the C-terminal tail or other factors, such as the membrane environment, are necessary for the binding of CpxA to CpxP.
Collapse
Affiliation(s)
- Eunju Kwon
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of MedicineSuwon 440-746, Korea,Department of Pharmaceutical Chemistry, University of CaliforniaSan Francisco, 600 16th Street, San Francisco, California 94107
| | - Dong Young Kim
- Department of Pharmaceutical Chemistry, University of CaliforniaSan Francisco, 600 16th Street, San Francisco, California 94107
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of MedicineSuwon 440-746, Korea
| | - Carol A Gross
- Department of Microbiology & Immunology, University of CaliforniaSan Francisco, 600 16th Street, San Francisco, California 94143
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of CaliforniaSan Francisco, 600 16th Street, San Francisco, California 94107
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of MedicineSuwon 440-746, Korea,*Correspondence to: Kyeong Kyu Kim, Ph.D., Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea. E-mail: or John D. Gross, Ph.D., University of California San Francisco, 600 16th Street, San Francisco, CA 94107, USA. E-mail:
| |
Collapse
|
39
|
Genetic, biochemical, and molecular characterization of the polypeptide transport-associated domain of Escherichia coli BamA. J Bacteriol 2012; 194:3512-21. [PMID: 22544271 DOI: 10.1128/jb.06740-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The BamA protein of Escherichia coli plays a central role in the assembly of β-barrel outer membrane proteins (OMPs). The C-terminal domain of BamA folds into an integral outer membrane β-barrel, and the N terminus forms a periplasmic polypeptide transport-associated (POTRA) domain for OMP reception and assembly. We show here that BamA misfolding, caused by the deletion of the R44 residue from the α2 helix of the POTRA 1 domain (ΔR44), can be overcome by the insertion of alanine 2 residues upstream or downstream from the ΔR44 site. This highlights the importance of the side chain orientation of the α2 helix residues for normal POTRA 1 activity. The ΔR44-mediated POTRA folding defect and its correction by the insertion of alanine were further demonstrated by using a construct expressing just the soluble POTRA domain. Besides misfolding, the expression of BamA(ΔR44) from a low-copy-number plasmid confers a severe drug hypersensitivity phenotype. A spontaneous drug-resistant revertant of BamA(ΔR44) was found to carry an A18S substitution in the α1 helix of POTRA 1. In the BamA(ΔR44, A18S) background, OMP biogenesis improved dramatically, and this correlated with improved BamA folding, BamA-SurA interactions, and LptD (lipopolysaccharide transporter) biogenesis. The presence of the A18S substitution in the wild-type BamA protein did not affect the activity of BamA. The discovery of the A18S substitution in the α1 helix of the POTRA 1 domain as a suppressor of the folding defect caused by ΔR44 underscores the importance of the helix 1 and 2 regions in BamA folding.
Collapse
|
40
|
Reversal of the ΔdegP phenotypes by a novel rpoE allele of Escherichia coli. PLoS One 2012; 7:e33979. [PMID: 22439016 PMCID: PMC3306311 DOI: 10.1371/journal.pone.0033979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/20/2012] [Indexed: 11/20/2022] Open
Abstract
RseA sequesters RpoE (σE) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σE to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σE regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σE levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σE-dependent RybB::LacZ construct showed only a weak activation of the σE pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σE and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrAL222Q, it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σE-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σE-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σE may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σE levels.
Collapse
|
41
|
|
42
|
Signal perception by the secretion stress-responsive CssRS two-component system in Bacillus subtilis. J Bacteriol 2012; 194:1800-14. [PMID: 22307758 DOI: 10.1128/jb.05767-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CssRS two-component system responds to heat and secretion stresses in Bacillus subtilis by controlling expression of HtrA and HtrB chaperone-type proteases and positively autoregulating its own expression. Here we report on the features of the CssS extracellular loop domain that are involved in signal perception and on CssS subcellular localization. Individual regions of the CssS extracellular loop domain contribute differently to signal perception and activation. The conserved hydrophilic 26-amino-acid segment juxtaposed to transmembrane helix 1 is involved in the switch between the deactivated and activated states, while the conserved 19-amino-acid hydrophobic segment juxtaposed to transmembrane 2 is required for signal perception and/or transduction. Perturbing the size of the extracellular loop domain increases CssS kinase activity and makes it unresponsive to secretion stress. CssS is localized primarily at the septum but is also found in a punctate pattern with lower intensity throughout the cell cylinder. Moreover, the CssRS-controlled HtrA and HtrB proteases are randomly distributed in foci throughout the cell surface, with more HtrB than HtrA foci in unstressed cells.
Collapse
|
43
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol Cell Proteomics 2012; 11:M111.009019. [PMID: 22008207 PMCID: PMC3270098 DOI: 10.1074/mcp.m111.009019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An integrated transcriptomic and proteomic analysis was undertaken to determine the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions relevant to low temperature and water activity conditions experienced during meat carcass chilling in cold air. The response of E. coli during exponential growth at 25 °C a(w) 0.985, 14 °C a(w) 0.985, 25 °C a(w) 0.967, and 14 °C a(w) 0.967 was compared with that of a reference culture (35 °C a(w) 0.993). Gene and protein expression profiles of E. coli were more strongly affected by low water activity (a(w) 0.967) than by low temperature (14 °C). Predefined group enrichment analysis revealed that a universal response of E. coli to all test conditions included activation of the master stress response regulator RpoS and the Rcs phosphorelay system involved in the biosynthesis of the exopolysaccharide colanic acid, as well as down-regulation of elements involved in chemotaxis and motility. However, colanic acid-deficient mutants were shown to achieve comparable growth rates to their wild-type parents under all conditions, indicating that colanic acid is not required for growth. In contrast to the transcriptomic data, the proteomic data revealed that several processes involved in protein synthesis were down-regulated in overall expression at 14 °C a(w) 0.985, 25 °C a(w) 0.967, and 14 °C a(w) 0.967. This result suggests that during growth under these conditions, E. coli, although able to transcribe the required mRNA, may lack the cellular resources required for translation. Elucidating the global adaptive response of E. coli O157:H7 during exposure to chilling and water activity stress has provided a baseline of knowledge of the physiology of this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Thea King
- CSIRO Food and Nutritional Sciences, PO Box 52, North Ryde NSW 1670, Australia
| | - Kari Gobius
- CSIRO Food and Nutritional Sciences, PO Box 745, Archerfield BC QLD 4108, Australia
| | - John P Bowman
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia.
| |
Collapse
|
44
|
Baud C, Gutsche I, Willery E, de Paepe D, Drobecq H, Gilleron M, Locht C, Jamin M, Jacob-Dubuisson F. Membrane-associated DegP in Bordetella chaperones a repeat-rich secretory protein. Mol Microbiol 2011; 80:1625-36. [DOI: 10.1111/j.1365-2958.2011.07672.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Le Y, Peng J, Wu H, Sun J, Shao W. An approach to the production of soluble protein from a fungal gene encoding an aggregation-prone xylanase in Escherichia coli. PLoS One 2011; 6:e18489. [PMID: 21494625 PMCID: PMC3072991 DOI: 10.1371/journal.pone.0018489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 03/09/2011] [Indexed: 11/18/2022] Open
Abstract
The development of new procedures and protocols that allow researchers to obtain recombinant proteins is of fundamental importance in the biotechnology field. A strategy was explored to overcome inclusion-body formation observed when expressing an aggregation-prone fungal xylanase in Escherichia coli. pHsh is an expression plasmid that uses a synthetic heat-shock (Hsh) promoter, in which gene expression is regulated by an alternative sigma factor (σ(32)). A derivative of pHsh was constructed by fusing a signal peptide to xynA2 gene to facilitate export of the recombinant protein to the periplasm. The xylanase was produced in a soluble form. Three factors were essential to achieving such soluble expression of the xylanase: 1) the target gene was under the control of the Hsh promoter, 2) the gene product was exported into the periplasm, and 3) gene expression was induced by a temperature upshift. For the first time we report the expression of periplasmic proteins under the control of an Hsh promoter regulated by σ(32). One unique feature of this approach was that over 200 copies of the Hsh promoter in an E. coli cell significantly increased the concentration of σ(32). The growth inhibition of the recombinant cells corresponded to an increase in the levels of soluble periplasmic protein. Therefore, an alternative protocol was designed to induce gene expression from pHsh-ex to obtain high levels of active soluble enzymes.
Collapse
Affiliation(s)
- Yilin Le
- Research Center for Biotechnology and Biomass
Energy and College of Life Sciences, Nanjing Normal University, Nanjing,
Jiangsu, PR China
- Biofuels Institute, School of Environment,
Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jingjing Peng
- Research Center for Biotechnology and Biomass
Energy and College of Life Sciences, Nanjing Normal University, Nanjing,
Jiangsu, PR China
| | - Huawei Wu
- Research Center for Biotechnology and Biomass
Energy and College of Life Sciences, Nanjing Normal University, Nanjing,
Jiangsu, PR China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment,
Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Weilan Shao
- Research Center for Biotechnology and Biomass
Energy and College of Life Sciences, Nanjing Normal University, Nanjing,
Jiangsu, PR China
- * E-mail:
| |
Collapse
|
46
|
Bennion D, Charlson ES, Coon E, Misra R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol 2011; 77:1153-71. [PMID: 20598079 DOI: 10.1111/j.1365-2958.2010.07280.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BamA of Escherichia coli is an essential component of the hetero-oligomeric machinery that mediates β-barrel outer membrane protein (OMP) assembly. The C- and N-termini of BamA fold into trans-membrane β-barrel and five soluble POTRA domains respectively. Detailed characterization of BamA POTRA 1 missense and deletion mutants revealed two competing OMP assembly pathways, one of which is followed by the archetypal trimeric β-barrel OMPs, OmpF and LamB, and is dependent on POTRA 1. Interestingly, our data suggest that BamA also requires its POTRA 1 domain for proper assembly. The second pathway is independent of POTRA 1 and is exemplified by TolC. Site-specific cross-linking analysis revealed that the POTRA 1 domain of BamA interacts with SurA, a periplasmic chaperone required for the assembly of OmpF and LamB, but not that of TolC and BamA. The data suggest that SurA and BamA POTRA 1 domain function in concert to assist folding and assembly of most β-barrel OMPs except for TolC, which folds into a unique soluble α-helical barrel and an OM-anchored β-barrel. The two assembly pathways finally merge at some step beyond POTRA 1 but presumably before membrane insertion, which is thought to be catalysed by the trans-membrane β-barrel domain of BamA.
Collapse
Affiliation(s)
- Drew Bennion
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
47
|
Weatherspoon-Griffin N, Zhao G, Kong W, Kong Y, Morigen, Andrews-Polymenis H, McClelland M, Shi Y. The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. J Biol Chem 2010; 286:5529-39. [PMID: 21149452 DOI: 10.1074/jbc.m110.200352] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that the twin arginine translocation (Tat) system contributes to bacterial resistance to cationic antimicrobial peptides (CAMPs). Our results show that a deletion at the tatC gene, which encodes a subunit of the Tat complex, caused Salmonella and Escherichia coli to become susceptible to protamine. We screened chromosomal loci that encode known and predicted Tat-dependent proteins and found that two N-acetylmuramoyl-l-alanine amidases, encoded by amiA and amiC, elevated bacterial resistance to protamine and α-helical peptides magainin 2 and melittin but not to β-sheet defensin HNP-1 and lipopeptide polymyxin B. Genetic analysis suggests that transcription of both amiA and amiC loci in Salmonella is up-regulated by the CpxR/CpxA two-component system when nlpE is overexpressed. A footprinting analysis reveals that CpxR protein can interact with amiA and amiC promoters at the CpxR box, which is localized between the predicted -10 and -35 regions but present on different strands in these two genes. In addition, our results show that activation of the CpxR/CpxA system can facilitate protamine resistance because nlpE overexpression elevates this resistance in the wild-type strain but not the cpxR deletion mutant. Thus, we uncover a new transcriptional regulation pathway in which the Cpx envelope stress response system modulates the integrity of the cell envelope in part by controlling peptidoglycan amidase activity, which confers bacterial resistance to protamine and α-helical CAMPs. Our studies have important implications for understanding transcriptional regulation of peptidoglycan metabolism and also provide new insights into the role of the bacterial envelope in CAMP resistance.
Collapse
|
48
|
Frankel MB, Wojcik BM, DeDent AC, Missiakas DM, Schneewind O. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus. Mol Microbiol 2010; 78:238-52. [PMID: 20923422 PMCID: PMC3538852 DOI: 10.1111/j.1365-2958.2010.07334.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.
Collapse
Affiliation(s)
- Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
49
|
Matern Y, Barion B, Behrens-Kneip S. PpiD is a player in the network of periplasmic chaperones in Escherichia coli. BMC Microbiol 2010; 10:251. [PMID: 20920237 PMCID: PMC2956729 DOI: 10.1186/1471-2180-10-251] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The inner membrane-anchored periplasmic folding factor PpiD is described as a parvulin-like peptidyl prolyl isomerase (PPIase) that assists in the maturation of the major beta-barrel outer membrane proteins (OMPs) of Escherichia coli. More recent work however, calls these findings into question. Here, we re-examined the role of PpiD in the E. coli periplasm by analyzing its functional interplay with other folding factors that influence OMP maturation as well as general protein folding in the periplasmic compartment of the cell, such as SurA, Skp, and DegP. RESULTS The analysis of the effects of both deletion and overexpression of ppiD on cell envelope phenotypes revealed that PpiD in contrast to prior observations plays only a minor role, if any, in the maturation of OMPs and cannot compensate for the lack of SurA in the periplasm. On the other hand, our results show that overproduction of PpiD rescues a surA skp double mutant from lethality. In the presence of increased PpiD levels surA skp cells show reduced activities of both the SigmaE-dependent and the Cpx envelope stress responses, and contain increased amounts of folded species of the major OMP OmpA. These effects require the anchoring of PpiD in the inner membrane but are independent of its parvulin-like PPIase domain. Moreover, a PpiD protein lacking the PPIase domain also complements the growth defects of an fkpA ppiD surA triple PPIase mutant and exhibits chaperone activity in vitro. In addition, PpiD appears to collaborate with DegP, as deletion of ppiD confers a temperature-dependent conditional synthetic phenotype in a degP mutant. CONCLUSIONS This study provides first direct evidence that PpiD functions as a chaperone and contributes to the network of periplasmic chaperone activities without being specifically involved in OMP maturation. Consistent with previous work, our data support a model in which the chaperone function of PpiD is used to aid in the early periplasmic folding of many newly translocated proteins.
Collapse
Affiliation(s)
- Yvonne Matern
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr, 8, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
50
|
Karlinsey JE, Maguire ME, Becker LA, Crouch MLV, Fang FC. The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Mol Microbiol 2010; 78:669-85. [PMID: 20807201 DOI: 10.1111/j.1365-2958.2010.07357.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The phage shock protein (Psp) system is induced by extracytoplasmic stress and thought to be important for the maintenance of proton motive force. We investigated the contribution of PspA to Salmonella virulence. A pspA deletion mutation significantly attenuates the virulence of Salmonella enterica serovar Typhimurium following intraperitoneal inoculation of C3H/HeN (Ity(r) ) mice. PspA was found to be specifically required for virulence in mice expressing the natural resistance-associated macrophage protein 1 (Nramp1) (Slc11a1) divalent metal transporter, which restricts microbial growth by limiting the availability of essential divalent metals within the phagosome. Salmonella competes with Nramp1 by expressing multiple metal uptake systems including the Nramp-homologue MntH, the ABC transporter SitABCD and the ZIP family transporter ZupT. PspA was found to facilitate Mn(2+) transport by MntH and SitABCD, as well as Zn(2+) and Mn(2+) transport by ZupT. In vitro uptake of (54) Mn(2+) by MntH and ZupT was reduced in the absence of PspA. Transport-deficient mutants exhibit reduced viability in the absence of PspA when grown under metal-limited conditions. Moreover, the ZupT transporter is required for Salmonella enterica serovar Typhimurium virulence in Nramp1-expressing mice. We propose that PspA promotes Salmonella virulence by maintaining proton motive force, which is required for the function of multiple transporters mediating bacterial divalent metal acquisition during infection.
Collapse
Affiliation(s)
- Joyce E Karlinsey
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|