1
|
O'Connor MH, Rhodin KE, Tyler DS, Beasley GM. Management of In-transit Disease: Regional Therapies, Intralesional Therapies, and Systemic Therapy. Surg Oncol Clin N Am 2025; 34:393-410. [PMID: 40413006 PMCID: PMC12104569 DOI: 10.1016/j.soc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
In-transit (IT) melanoma represents a distinct, heterogeneous pattern of disease that arises as superficial tumors along the track between the primary site and the draining regional lymph node basin. Many therapies have been explored for treatment of this disease with the goal of maximizing delivery of the therapeutic agent to the tumor while minimizing systemic toxicities. These include regional chemotherapies, intralesional injections, checkpoint inhibitors, immunomodulators, and vaccines in various combinations or as monotherapy. Here, we review the general managemnt of patients with ITmelanoma, the range of currently available treatment options, and recommendations for specific therapies for individual patients.
Collapse
Affiliation(s)
- Margaret H O'Connor
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristen E Rhodin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Douglas S Tyler
- Department of Surgery, Texas Medical Branch, Galveston, TX, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Giudice GC, Beckermann KE, Siqueira Do Amaral P, Rini BI. Immunotherapy Strategies After Immune Checkpoint Inhibitor Exposure in Renal Cell Carcinoma: A Review. JAMA Oncol 2025; 11:554-561. [PMID: 40146173 DOI: 10.1001/jamaoncol.2025.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Importance Immune checkpoint inhibitors have transformed the treatment landscape for metastatic renal cell carcinoma; however, the failure of first-line therapeutic strategies remains a considerable challenge. Currently, clinicians face various issues, such as managing cases in patients who progress during treatment or relapse after adjuvant immunotherapy. Observations This review evaluates different strategies for treating patients with advanced kidney cancer previously exposed to immunotherapy. Evidence from other malignant neoplasms suggests potential effectiveness for rechallenging with immune checkpoint inhibitors. The most important available data are presented, including retrospective, prospective, and randomized clinical trials, to explore the role of immunotherapy in patients with renal cell carcinoma who have experienced prior failure of immune checkpoint inhibitors. Conclusions and Relevance Although retrospective data suggest modest effectiveness of an immunotherapy rechallenge treatment, larger phase 3 trials failed to demonstrate substantial benefit in progression-free survival and overall survival. Currently, no randomized evidence supports the use of agents targeting conventional immune checkpoints in patients with renal cell carcinoma who have previously received immunotherapy.
Collapse
Affiliation(s)
- Giulia Claire Giudice
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kathryn E Beckermann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Paulo Siqueira Do Amaral
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Brian I Rini
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
3
|
Dara L, De Martin E. Immune-Mediated Liver Injury From Checkpoint Inhibitor: An Evolving Frontier With Emerging Challenges. Liver Int 2025; 45:e16198. [PMID: 39868913 PMCID: PMC11771569 DOI: 10.1111/liv.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have transformed the treatment of cancer, though they come with the risk of immune-related adverse (irAEs) events such as hepatotoxicity or Immune-mediated Liver Injury from Checkpoint Inhibitors (ILICI). ILICI is a serious irAE that, when severe, requires cessation of ICI and initiation of immunosuppression. Cytotoxic T Lymphocytes (CTLs) play a central role in ILICI; however, they are just part of the picture as immunotherapy broadly impacts all aspects of the immune microenvironment and can directly and indirectly activate innate and adaptive immune cells. Clinically, as our understanding of this entity grows, we encounter new challenges. The presentation of ILICI is heterogeneous with respect to latency, pattern of injury (hepatitis vs. cholangitis) and severity. This review focuses on our knowledge regarding risk factors, presentation and treatment of ILICI including ILICI refractory to steroids. An emerging topic, the possibility of rechallenge while accepting some risk, in patients who experience ILICI but require immunotherapy, is also discussed. This review provides an update on the current knowns and unknowns in ILICI and highlights several knowledge gaps where studies are needed.
Collapse
Affiliation(s)
- Lily Dara
- Research Center for Liver DiseaseKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eleonora De Martin
- APHP, Hôpital Paul‐BrousseCentre Hépato‐Biliaire, Inserm, Unité 1193, Université Paris‐Saclay, FHU HepatinovVillejuifFrance
| |
Collapse
|
4
|
Savino A, Rossi A, Fagiuoli S, Invernizzi P, Gerussi A, Viganò M. Hepatotoxicity in Cancer Immunotherapy: Diagnosis, Management, and Future Perspectives. Cancers (Basel) 2024; 17:76. [PMID: 39796705 PMCID: PMC11718971 DOI: 10.3390/cancers17010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Cancer immunotherapy, particularly immune checkpoint inhibitors, has positively impacted oncological treatments. Despite its effectiveness, immunotherapy is associated with immune-related adverse events (irAEs) that can affect any organ, including the liver. Hepatotoxicity primarily manifests as immune-related hepatitis and, less frequently, cholangitis. Several risk factors, such as pre-existing autoimmune and liver diseases, the type of immunotherapy, and combination regimens, play a role in immune-related hepatotoxicity (irH), although reliable predictive markers or models are still lacking. The severity of irH ranges from mild to severe cases, up to, in rare instances, acute liver failure. Management strategies require regular monitoring for early diagnosis and interventions, encompassing strict monitoring for mild cases to the permanent suspension of immunotherapy for severe forms. Corticosteroids are the backbone of treatment in moderate and high-grade damage, alone or in combination with additional immunosuppressive drugs for resistant or refractory cases. Given the relatively low number of events and the lack of dedicated prospective studies, much uncertainty remains about the optimal management of irH, especially in the most severe cases. This review presents the main features of irH, focusing on injury patterns and mechanisms, and provides an overview of the management landscape, from standard care to the latest evidence.
Collapse
Affiliation(s)
- Alberto Savino
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Alberto Rossi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefano Fagiuoli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Pietro Invernizzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, ERN-RARE LIVER, 20900 Monza, Italy
| | - Alessio Gerussi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, ERN-RARE LIVER, 20900 Monza, Italy
| | - Mauro Viganò
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
5
|
Sasaki Y, Maeda T, Hojo M, Miura T, Ishikawa K, Funayama E, Okada K, Yamamoto Y. Synergistic anti-tumor effects of oncolytic virus and anti-programmed cell death protein 1 antibody combination therapy: For suppression of lymph node and distant metastasis in a murine melanoma model. Biochem Biophys Res Commun 2024; 740:151011. [PMID: 39571230 DOI: 10.1016/j.bbrc.2024.151011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
It is believed that oncolytic viruses (OVs) exert both direct anti-tumor effects by intratumoral injection as well as indirect anti-tumor effects by activating systemic immunity. In phase III clinical trials, OV and anti-programmed cell death-1 (aPD-1) antibody combination therapy showed no significant differences in overall survival and progression-free survival in patients with unresectable advanced melanoma. In the study, OVs can exert only indirect anti-tumor effects in non-injected, systemic lesions. If the tumor is at a stage where both direct and indirect anti-tumor effects of OVs can be expected, OVs may further enhance the therapeutic effect, in addition to the clinically expected therapeutic effect. Therefore, we investigated whether canerpaturev (C-REV) and aPD-1 antibody combination therapy suppresses tumor progression in a murine melanoma model. Our findings showed that the C-REV and aPD-1 antibody combination therapy suppressed tumor progression in a murine melanoma model. The combination therapy stimulated systemic immunity in lymphoid tissues by activating helper T cells and B cells to enhance adaptive and humoral immunity, as well as by increasing effector/memory T cell fractions. Synergistically enhanced systemic anti-tumor effects suppressed lymph node and lung metastases. These findings suggest that direct anti-tumor effects by infecting and destroying cancer cells from within and indirect anti-tumor effects enhanced by the combination therapy worked simultaneously to suppress tumor progression. Our results may provide evidence to support the usefulness of OV and aPD-1 antibody combination therapy as a neoadjuvant therapy in the surgical treatment of melanoma.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Masahiro Hojo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Japan.
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
6
|
Lengyel AS, Meznerics FA, Galajda NÁ, Gede N, Kói T, Mohammed AA, Péter PN, Lakatos AI, Krebs M, Csupor D, Bánvölgyi A, Hegyi P, Holló P, Kemény LV. Safety and Efficacy Analysis of Targeted and Immune Combination Therapy in Advanced Melanoma-A Systematic Review and Network Meta-Analysis. Int J Mol Sci 2024; 25:12821. [PMID: 39684531 DOI: 10.3390/ijms252312821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The combinations of BRAF inhibitor-based targeted therapies with immune checkpoint inhibitors currently represent less common therapeutic approaches in advanced melanoma. The aim of this study was to assess the safety and efficacy of currently available melanoma treatments by conducting a systematic review and network meta-analysis. Four databases were systematically searched for randomized clinical studies that included patients with advanced/metastatic melanoma receiving chemotherapy, immune checkpoint inhibitors, BRAF/MEK inhibitor therapy, or combinations thereof. The primary endpoints were treatment-related adverse events (TRAE), serious adverse events (SAE) of grade ≥ 3 adverse events, therapy discontinuation, progression-free survival (PFS), as well as objective response rate (ORR) and complete response rate (CRR). A total of 63 articles were eligible for our systematic review; 59 of them were included in the statistical analysis. A separate subgroup analysis was conducted to evaluate the efficacy outcomes, specifically in BRAF-positive patients. Triple combination therapy or triple therapy (inhibiting BRAF, MEK and PD1/PDL1 axis) showed significantly longer progression-free survival compared to BRAF + MEK combination therapies (HR = 0.76; 95% CI 0.64-0.9), but similar objective and complete response rates in BRAF-mutated melanoma. This safety analysis suggests that triple therapy is not inferior to combined immune checkpoint inhibitors (ICI) and BRAF/MEK therapies in terms of serious adverse events and therapy discontinuation rates. However, monotherapies and BRAF/MEK combinations showed notable advantage over triple therapy in terms of treatment-related adverse events. Combination strategies including BRAF/MEK-targeted therapies with ICI therapies are effective first-line options for advanced, BRAF-mutant melanoma; however, they are associated with more frequent side effects. Therefore, future RCTs are required to evaluate and identify high-risk subpopulations where triple therapy therapies should be considered.
Collapse
Affiliation(s)
- Anna Sára Lengyel
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Fanni Adél Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Ágnes Galajda
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Gede
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Alzahra Ahmed Mohammed
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - Petra Nikolett Péter
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Alexandra It Lakatos
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Máté Krebs
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Dezső Csupor
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Lajos V Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
- MTA-SE Lendület "Momentum" Dermatooncology Research Group, 1094 Budapest, Hungary
| |
Collapse
|
7
|
Song Q, Jiang M, Pan X, Zhou G, Zhang X. A study on the efficacy and Safety Evaluation of a novel PD-1/CTLA-4 bispecific antibody. Immunobiology 2024; 229:152844. [PMID: 39226691 DOI: 10.1016/j.imbio.2024.152844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Tumors constitute a significant health concern for humans, and PD-1 and CTLA-4 monoclonal antibodies have been proven effective in cancer treatment. Some researchers have identified that the combination of PD-1 and CTLA-4 dual blockade demonstrates superior therapeutic efficacy. However, the development of PD-1/CTLA-4 bispecific antibodies faces challenges in terms of both safety and efficacy. The present study discloses a novel PD-1/CTLA-4 bispecific antibody, designated as SH010. Experimental validation through surface plasmon resonance (SPR) confirmed that SH010 exhibits favorable binding activity with both PD-1 and CTLA-4. Flow cytometry analysis demonstrated stable binding of SH010 antibody to CHOK1 cells overexpressing human or cynomolgus monkey PD-1 protein and to 293F cells overexpressing human or cynomolgus monkey CTLA-4 protein. Moreover, it exhibited excellent blocking capabilities in protein binding between human PD-1 and PD-L1, as well as human CTLA-4 and CD80/CD86. Simultaneously, in vitro experiments indicate that SH010 exerts a significant activating effect on hPBMCs. In murine transplant models of human prostate cancer (22RV1) and small cell lung cancer (NCI-H69), administration of varying concentrations of the bispecific antibody significantly inhibits tumor growth. MSD analysis revealed that stimulation of hPBMCs from three different donors with SH010 did not induce the production of cytokine release syndrome. Furthermore, Single or repeated intravenous administrations of SH010 in cynomolgus monkeys show favorable systemic exposure without noticeable drug accumulation or apparent toxicity. In conclusion, SH010 represents a novel cancer therapeutic drug poised to enter clinical trials and obtain market approval.
Collapse
Affiliation(s)
- Qi Song
- Department of Pharmacology, SanHome, Nanjing, PR China; College of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Meiling Jiang
- Department of Pharmacology, SanHome, Nanjing, PR China
| | - Xinrong Pan
- Department of Pharmacology, SanHome, Nanjing, PR China
| | - Guanyue Zhou
- Department of Pharmacology, SanHome, Nanjing, PR China
| | | |
Collapse
|
8
|
Yang Z, Xu C, Lee JX, Lum GZ. Magnetic Miniature Soft Robot with Reprogrammable Drug-Dispensing Functionalities: Toward Advanced Targeted Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408750. [PMID: 39246210 DOI: 10.1002/adma.202408750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Miniature robots are untethered actuators, which have great prospects to transform targeted drug delivery because they can potentially deliver high concentrations of medicine to the disease site(s) with minimal complications. However, existing miniature robots cannot perform advanced targeted combination therapy; majority of them can at most transport one type of drug, while those that can carry multiple drugs are unable to change their drug-dispensing sequence and dosage. Furthermore, the latter robots cannot transport more than three types of drugs, selectively dispense their drugs, maintain their mobility, or release their drugs at multiple sites. Here, a millimeter-scale soft robot is proposed, which can be actuated by alternating magnetic fields to dispense four types of drugs with reprogrammable drug-dispensing sequence and dosage (dispensing rates: 0.0992-0.231 µL h-1). This robot has six degrees-of-freedom motions, and it can deliver its drugs to multiple desired sites by rolling and two-anchor crawling across unstructured environments with negligible drug leakage. Such dexterity is highly desirable and unprecedented for miniature robots with drug-dispensing capabilities. The soft robot therefore has great potential to enable advanced targeted combination therapy, where four types of drugs must be delivered to various disease sites, each with a specific sequence and dosage of drugs.
Collapse
Affiliation(s)
- Zilin Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changyu Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jia Xin Lee
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
9
|
Huang AY, Burke KP, Porter R, Meiger L, Fatouros P, Yang J, Robitschek E, Vokes N, Ricker C, Rosado V, Tarantino G, Chen J, Aprati TJ, Glettig MC, He Y, Wang C, Fu D, Ho LL, Galani K, Freeman GJ, Buchbinder EI, Stephen Hodi F, Kellis M, Boland GM, Sharpe AH, Liu D. Stratified analysis identifies HIF-2 α as a therapeutic target for highly immune-infiltrated melanomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620300. [PMID: 39554029 PMCID: PMC11565796 DOI: 10.1101/2024.10.29.620300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
While immune-checkpoint blockade (ICB) has revolutionized treatment of metastatic melanoma over the last decade, the identification of broadly applicable robust biomarkers has been challenging, driven in large part by the heterogeneity of ICB regimens and patient and tumor characteristics. To disentangle these features, we performed a standardized meta-analysis of eight cohorts of patients treated with anti-PD-1 (n=290), anti-CTLA-4 (n=175), and combination anti-PD-1/anti-CTLA-4 (n=51) with RNA sequencing of pre-treatment tumor and clinical annotations. Stratifying by immune-high vs -low tumors, we found that surprisingly, high immune infiltrate was a biomarker for response to combination ICB, but not anti-PD-1 alone. Additionally, hypoxia-related signatures were associated with non-response to anti-PD-1, but only amongst immune infiltrate-high melanomas. In a cohort of scRNA-seq of patients with metastatic melanoma, hypoxia also correlated with immunosuppression and changes in tumor-stromal communication in the tumor microenvironment (TME). Clinically actionable targets of hypoxia signaling were also uniquely expressed across different cell types. We focused on one such target, HIF-2α, which was specifically upregulated in endothelial cells and fibroblasts but not in immune cells or tumor cells. HIF-2α inhibition, in combination with anti-PD-1, enhanced tumor growth control in pre-clinical models, but only in a more immune-infiltrated melanoma model. Our work demonstrates how careful stratification by clinical and molecular characteristics can be leveraged to derive meaningful biological insights and lead to the rational discovery of novel clinical targets for combination therapy.
Collapse
Affiliation(s)
- Amy Y Huang
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kelly P Burke
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Porter
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynn Meiger
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Fatouros
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jiekun Yang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
- Rutgers University, New Brunswick, NJ, USA
| | - Emily Robitschek
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natalie Vokes
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Cora Ricker
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Valeria Rosado
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiajia Chen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler J Aprati
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc C Glettig
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- ETH Zürich, Zurich, Switzerland
| | - Yiwen He
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassia Wang
- Massachusetts Institute of Technology, Cambridge, USA
| | - Doris Fu
- Massachusetts Institute of Technology, Cambridge, USA
| | - Li-Lun Ho
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kyriakitsa Galani
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Gordon J Freeman
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - F Stephen Hodi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Manolis Kellis
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Genevieve M Boland
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Arlene H Sharpe
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Liu
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Cheema PK, Iafolla MAJ, Abdel-Qadir H, Bellini AB, Chatur N, Chandok N, Comondore VR, Cunningham M, Halperin I, Hu AB, Jaskolka D, Darvish-Kazem S, Khandaker MH, Kitchlu A, Sachdeva JS, Shapera S, Woolnough NRJ, Nematollahi M. Managing Select Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitors. Curr Oncol 2024; 31:6356-6383. [PMID: 39451777 PMCID: PMC11506662 DOI: 10.3390/curroncol31100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The increased use of immune checkpoint inhibitors (ICIs) across cancer programs has created the need for standardized monitoring and management of immune-related adverse events (irAEs). Delayed recognition without appropriate treatment can have serious and life-threatening consequences. The management of irAEs presents a unique set of challenges that must be addressed at a multidisciplinary level. Although various national and international guidelines and working groups provide high-level recommendations for the management of irAEs, practical guidance is lacking. Furthermore, timely collaboration between specialists requires institutional protocols that enable the early recognition, assessment, and treatment of irAEs. Such protocols should be developed by institution specialists and include algorithms for all healthcare providers involved in the care of patients treated with ICIs. At William Osler Health System in Brampton, Ontario, practical step-by-step multidisciplinary treatment approaches with recommendations for the management of irAEs were developed in collaboration with experts across Canada. Here, we provide an in-depth description of the approaches, outlining baseline investigations prior to the initiation of ICIs, as well as the monitoring and management of irAEs based on symptoms, severity, and involved organ systems. We encourage other centres to adapt and modify our approaches according to their specific needs and requirements.
Collapse
Affiliation(s)
- Parneet K. Cheema
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Marco A. J. Iafolla
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Husam Abdel-Qadir
- Women’s College Hospital Research Institute, Toronto, ON M5S 1B2, Canada;
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Andrew B. Bellini
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Nazira Chatur
- Division of Gastroenterology, Faculty of Medicine, Vancouver General Hospital (Sanders), University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Natasha Chandok
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Vikram R. Comondore
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Morven Cunningham
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Ilana Halperin
- Division of Endocrinology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
| | - Anne B. Hu
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Diana Jaskolka
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Saeed Darvish-Kazem
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Masud H. Khandaker
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Abhijat Kitchlu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
| | - Jasdip S. Sachdeva
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Shane Shapera
- Department of Medicine, University of Toronto, Toronto, ON M5G 2N2, Canada;
| | - Nicholas R. J. Woolnough
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| | - Massey Nematollahi
- William Osler Health System, Brampton, ON L6R 3J7, Canada; (M.A.J.I.); (A.B.B.); (N.C.); (V.R.C.); (A.B.H.); (D.J.); (S.D.-K.); (M.H.K.); (J.S.S.); (N.R.J.W.); (M.N.)
| |
Collapse
|
11
|
Claeys A, Van den Eynden J. MHC class II genotypes are independent predictors of anti-PD1 immunotherapy response in melanoma. COMMUNICATIONS MEDICINE 2024; 4:184. [PMID: 39349759 PMCID: PMC11443121 DOI: 10.1038/s43856-024-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade is a highly successful anti-cancer immunotherapy. Both CTLA4 and PD1 checkpoint blockers are clinically available for melanoma treatment, with anti-PD1 therapy reaching response rates of 35-40%. These responses, which are mediated via neoantigen presentation by the polymorphic MHC complex, are hard to predict and the tumor mutation burden is currently one of the few available biomarkers. While MHC genotypes are expected to determine therapy responses, association studies have remained largely elusive. METHODS We developed an overall MHC genotype binding score (MGBS), indicative of a patient's MHC class I (MHC-I) and class II (MHC-II) neoantigen binding capacity and solely based on the germline MHC-I (MGBS-I) and MHC-II (MGBS-II) genotypes. These scores were then correlated to survival and clinical responses following anti-PD1 immunotherapy in a previously published dataset of 144 melanoma patients. RESULTS We demonstrate that MGBS scores are TMB-independent predictors of anti-PD1 immunotherapy responses in melanoma. Opposite outcomes were found for both MHC classes, with high MGBS-I and MGBS-II predicting good and bad outcomes, respectively. Interestingly, high MGBS-II is mainly associated with treatment response failure in a subgroup of anti-CTLA4 pretreated patients. CONCLUSIONS Our results suggest that MGBS, calculated solely from the MHC genotype, has clinical potential as a non-invasive and tumor-independent biomarker to guide anti-cancer immunotherapy in melanoma.
Collapse
Affiliation(s)
- Arne Claeys
- Department of Human Structure and Repair, Unit of Anatomy and Embryology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Unit of Anatomy and Embryology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
12
|
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes? Int J Mol Sci 2024; 25:10120. [PMID: 39337605 PMCID: PMC11432671 DOI: 10.3390/ijms251810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enhancing anti-tumour immune responses, demonstrating significant efficacy in various malignancies, including melanoma. However, over 50% of patients experience limited or no response to ICI therapy. Resistance to ICIs is influenced by a complex interplay of tumour intrinsic and extrinsic factors. This review summarizes current ICIs for melanoma and the factors involved in resistance to the treatment. We also discuss emerging evidence that the microbiota can impact ICI treatment outcomes by modulating tumour biology and anti-tumour immune function. Furthermore, microbiota profiles may offer a non-invasive method for predicting ICI response. Therefore, future research into microbiota manipulation could provide cost-effective strategies to enhance ICI efficacy and improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kevin Ly
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Yih Jian Sung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
13
|
Wang K, Coutifaris P, Brocks D, Wang G, Azar T, Solis S, Nandi A, Anderson S, Han N, Manne S, Kiner E, Sachar C, Lucas M, George S, Yan PK, Kier MW, Laughlin AI, Kothari S, Giles J, Mathew D, Ghinnagow R, Alanio C, Flowers A, Xu W, Tenney DJ, Xu X, Amaravadi RK, Karakousis GC, Schuchter LM, Buggert M, Oldridge D, Minn AJ, Blank C, Weber JS, Mitchell TC, Farwell MD, Herati RS, Huang AC. Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8 + T cells. Cancer Cell 2024; 42:1582-1597.e10. [PMID: 39214097 PMCID: PMC11387127 DOI: 10.1016/j.ccell.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Combination checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies has shown promising efficacy in melanoma. However, the underlying mechanism in humans remains unclear. Here, we perform paired single-cell RNA and T cell receptor (TCR) sequencing across time in 36 patients with stage IV melanoma treated with anti-PD-1, anti-CTLA-4, or combination therapy. We develop the algorithm Cyclone to track temporal clonal dynamics and underlying cell states. Checkpoint blockade induces waves of clonal T cell responses that peak at distinct time points. Combination therapy results in greater magnitude of clonal responses at 6 and 9 weeks compared to single-agent therapies, including melanoma-specific CD8+ T cells and exhausted CD8+ T cell (TEX) clones. Focused analyses of TEX identify that anti-CTLA-4 induces robust expansion and proliferation of progenitor TEX, which synergizes with anti-PD-1 to reinvigorate TEX during combination therapy. These next generation immune profiling approaches can guide the selection of drugs, schedule, and dosing for novel combination strategies.
Collapse
Affiliation(s)
- Kevin Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulina Coutifaris
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Guanning Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tarek Azar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sabrina Solis
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Ajeya Nandi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaneaka Anderson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Han
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Minke Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sangeeth George
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick K Yan
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie W Kier
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy I Laughlin
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn Kothari
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reem Ghinnagow
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Clinical Immunology and Immunomonitoring Laboratory, Institut Curie, Paris, France
| | - Ahron Flowers
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xiaowei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcus Buggert
- Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Christian Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Department of Hematology and Oncology, University Clinic of Regensburg (UKR), 93053 Regensburg, Germany
| | - Jeffrey S Weber
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Tara C Mitchell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA.
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Nicol PB, Paulson D, Qian G, Liu XS, Irizarry R, Sahu AD. Robust identification of perturbed cell types in single-cell RNA-seq data. Nat Commun 2024; 15:7610. [PMID: 39218971 PMCID: PMC11366752 DOI: 10.1038/s41467-024-51649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Single-cell transcriptomics has emerged as a powerful tool for understanding how different cells contribute to disease progression by identifying cell types that change across diseases or conditions. However, detecting changing cell types is challenging due to individual-to-individual and cohort-to-cohort variability and naive approaches based on current computational tools lead to false positive findings. To address this, we propose a computational tool, scDist, based on a mixed-effects model that provides a statistically rigorous and computationally efficient approach for detecting transcriptomic differences. By accurately recapitulating known immune cell relationships and mitigating false positives induced by individual and cohort variation, we demonstrate that scDist outperforms current methods in both simulated and real datasets, even with limited sample sizes. Through the analysis of COVID-19 and immunotherapy datasets, scDist uncovers transcriptomic perturbations in dendritic cells, plasmacytoid dendritic cells, and FCER1G+NK cells, that provide new insights into disease mechanisms and treatment responses. As single-cell datasets continue to expand, our faster and statistically rigorous method offers a robust and versatile tool for a wide range of research and clinical applications, enabling the investigation of cellular perturbations with implications for human health and disease.
Collapse
Affiliation(s)
| | | | - Gege Qian
- University of California San Diego School of Medicine, San Diego, CA, USA
| | | | | | - Avinash D Sahu
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
15
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
16
|
Yao J, Tan X, Sha Y, Chen Y, Chen R, Shi D. An updated review of immunotherapy in esophageal cancer: PD-L1 footprint. Cent Eur J Immunol 2024; 49:77-90. [PMID: 38812606 PMCID: PMC11130989 DOI: 10.5114/ceji.2024.139269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/15/2023] [Indexed: 05/31/2024] Open
Abstract
Esophageal cancer is considered one of the most significant challenges to public health worldwide. While various therapeutic options exist for esophageal cancer, including chemotherapy, radiotherapy, and surgery, several adverse effects of these medications have been reported. Therefore, a new generation of therapeutic lines should be applied to minimize complications. In this regard, immunotherapy is a novel approach that aims to kill tumor cells directly by targeting them. Specifically, monoclonal antibodies can target specific markers of esophageal cancer tumor cells, keeping other normal cells safe. Multiple monoclonal antibodies optimized for esophageal cancer, such as pembrolizumab, ramucirumab, trastuzumab, nivolumab, and ipilimumab, are available. On the other hand, esophageal cancer tumor cells express a specific inhibitory ligand and its receptor called programmed cell death, which can suppress T cell immune responses. This receptor provides an inhibitory signal, causing the highest expression of the PD-L1 ligand on tumor cells. The outcomes of this interaction lead to the suppression of the activation and function of T lymphocytes. Therefore, immunotherapy for esophageal cancer targeting the PD-1/PD-L1 pathway has shown a remarkable correlation with cancer care. This study presents a comprehensive review of the latest findings related to immunotherapy in esophageal cancer.
Collapse
Affiliation(s)
- Juan Yao
- Department of Radiation Oncology, Huaian Hospital of Huaian City (Huai’a Cancer Hospital), Huaian, Jiangsu 223200, P.R. of China
| | - Xiaoyan Tan
- Department of Obstetrics and Gynecology, Huaian Hospital of Huaian City (Huai’an Cancer Hospital), Huaian, Jiangsu 223200, P.R. of China
| | - Yanping Sha
- Department of Radiation Oncology, Huaian Hospital of Huaian City (Huai’a Cancer Hospital), Huaian, Jiangsu 223200, P.R. of China
| | - Yurao Chen
- Department of Radiation Oncology, Huaian Hospital of Huaian City (Huai’a Cancer Hospital), Huaian, Jiangsu 223200, P.R. of China
| | - Ronghuai Chen
- Department of Radiation Oncology, Huaian Hospital of Huaian City (Huai’a Cancer Hospital), Huaian, Jiangsu 223200, P.R. of China
| | - Dongping Shi
- Department of Infection, Huaian Hospital of Huaian City (Huai’a Cancer Hospital), Huaian, Jiangsu 223200, P.R. of China
| |
Collapse
|
17
|
Ji Y, Sy SKB. Utility and impact of quantitative pharmacology on dose selection and clinical development of immuno-oncology therapy. Cancer Chemother Pharmacol 2024; 93:273-293. [PMID: 38430307 DOI: 10.1007/s00280-024-04643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Immuno-oncology (IO) therapies have changed the cancer treatment landscape. Immune checkpoint inhibitors (ICIs) have improved overall survival in 20-40% of patients with malignancies that were previously refractory. Due to the uniqueness in biology, modalities and patient responses, drug development strategies for IO differed from that traditionally used for cytotoxic and target therapies in oncology, and quantitative pharmacology utilizing modeling approach can be applied in all phases of the development process. In this review, we used case studies to showcase how various modeling methodologies were applied from translational science and dose selection through to label change, using examples that included anti-programmed-death-1 (anti-PD-1), anti-programmed-death ligand-1 (anti-PD-L1), anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4), and anti-glucocorticoid-induced tumor necrosis factor receptor-related protein (anti-GITR) antibodies. How these approaches were utilized to support phase I-III dose selection, the design of phase III trials, and regulatory decisions on label change are discussed to illustrate development strategies. Model-based quantitative approaches have positively impacted IO drug development, and a better understanding of the biology and exposure-response relationship may benefit the development and optimization of new IO therapies.
Collapse
Affiliation(s)
- Yan Ji
- Novartis Pharmaceuticals Corporation, 1 Health Plaza, East Hanover, NJ, 07936, USA.
| | - Sherwin K B Sy
- Novartis Pharmaceuticals Corporation, 1 Health Plaza, East Hanover, NJ, 07936, USA.
| |
Collapse
|
18
|
Shah V, Panchal V, Shah A, Vyas B, Agrawal S, Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). MEDICINE INTERNATIONAL 2024; 4:13. [PMID: 38410760 PMCID: PMC10895472 DOI: 10.3892/mi.2024.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
An increase in the incidence of melanoma has been observed in recent decades, which poses a significant challenge due to its poor prognosis in the advanced and metastatic stages. Previously, chemotherapy and high doses of interleukin-2 were available treatments for melanoma; however, they offered limited survival benefits and were associated with severe toxicities. The treatment of metastatic melanoma has been transformed by new developments in immunotherapy. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that target cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and its ligand, PDL-1, have emerged as promising therapeutic options. Commonly used ICIs, such as ipilimumab, nivolumab and pembrolizumab, have been found to be associated with an improved median overall survival, recurrence-free survival and response rates compared to traditional chemotherapies. Combination therapies involving different types of ICIs, such as anti-PD1 with anti-CTLA-4, have further enhanced the overall survival and response rates by targeting various phases of T-cell activation. Additionally, the development of novel biomarkers has facilitated the assessment of responses to ICI therapy, with tissue and serum-based prognostic and predictive biomarkers now available. The increased response observed with ICIs also provides potential for immune-related adverse effects on various organ systems. Further research is required to evaluate the efficacy and safety of various combinations of ICIs, while ongoing clinical trials explore the potential of newer ICIs. Concerns regarding the development of resistance to ICIs also warrant attention. The present review summarizes and discusses the advent of ICIs with a marked significant breakthrough in the treatment of metastatic melanoma, providing improved outcomes compared to traditional therapies.
Collapse
Affiliation(s)
- Vedant Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Viraj Panchal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Abhi Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Bhavya Vyas
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Siddharth Agrawal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Sanket Bharadwaj
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| |
Collapse
|
19
|
Curkovic NB, Bai K, Ye F, Johnson DB. Incidence of Cutaneous Immune-Related Adverse Events and Outcomes in Immune Checkpoint Inhibitor-Containing Regimens: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:340. [PMID: 38254829 PMCID: PMC10814132 DOI: 10.3390/cancers16020340] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are used to treat many cancers, and cutaneous immune-related adverse events (cirAEs) are among the most frequently encountered toxic effects. Understanding the incidence and prognostic associations of cirAEs is of importance as their uses in different settings, combinations, and tumor types expand. To evaluate the incidence of cirAEs and their association with outcome measures across a variety of ICI regimens and cancers, we performed a systematic review and meta-analysis of published trials of anti-programmed death-1/ligand-1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) ICIs, both alone and in combination with chemotherapy, antiangiogenic agents, or other ICIs in patients with melanoma, renal cell carcinoma, non-small cell lung cancer, and urothelial carcinoma. Key findings of our study include variable cirAE incidence among tumors and ICI regimens, positive association with increased cirAE incidence and response rate, as well as significant association between increased vitiligo incidence and overall survival. Across 174 studies, rash, pruritis, and vitiligo were the most reported cirAEs, with incidences of 16.7%, 18.0%, and 6.6%, respectively. Higher incidence of cirAEs was associated with ICI combination regimens and with CTLA-4-containing regimens, particularly with higher doses of ipilimumab, as compared to PD-1/L1 monotherapies. Outcome measures including response rate and progression-free survival were positively correlated with incidence of cirAEs. The response rate and incidence of pruritis, vitiligo, and rash were associated with expected rises in incidence of 0.17% (p = 0.0238), 0.40% (p = 0.0010), and 0.18% (p = 0.0413), respectively. Overall survival was positively correlated with the incidence of pruritis, vitiligo, and rash; this association was significant for vitiligo (p = 0.0483). Our analysis provides benchmark incidence rates for cirAEs and links cirAEs with favorable treatment outcomes at a study level across diverse solid tumors and multiple ICI regimens.
Collapse
Affiliation(s)
- Nina B. Curkovic
- School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Kun Bai
- Vanderbilt Ingram Cancer Center, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fei Ye
- Vanderbilt Ingram Cancer Center, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Douglas B. Johnson
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
20
|
Sato T, Montazeri K, Gragoudas ES, Lane AM, Aronow MB, Cohen JV, Boland GM, Banks E, Kachulis C, Fleharty M, Cibulskis C, Lawless A, Adalsteinsson VA, Sullivan RJ, Kim IK. Detection of Copy-Number Variation in Circulating Cell-Free DNA in Patients With Uveal Melanoma. JCO Precis Oncol 2024; 8:e2300368. [PMID: 38237100 DOI: 10.1200/po.23.00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 01/23/2024] Open
Abstract
PURPOSE Somatic chromosomal alterations, particularly monosomy 3 and 8q gains, have been associated with metastatic risk in uveal melanoma (UM). Whole genome-scale evaluation of detectable alterations in cell-free DNA (cfDNA) in UM could provide valuable prognostic information. Our pilot study evaluates the correlation between genomic information using ultra-low-pass whole-genome sequencing (ULP-WGS) of cfDNA in UM and associated clinical outcomes. MATERIALS AND METHODS ULP-WGS of cfDNA was performed on 29 plasma samples from 16 patients, 14 metastatic UM (mUM) and two non-metastatic, including pre- and post-treatment mUM samples from 10 patients treated with immunotherapy and one with liver-directed therapy. We estimated tumor fraction (TFx) and detected copy-number alterations (CNAs) using ichorCNA. Presence of 8q amplification was further analyzed using the likelihood ratio test (LRT). RESULTS Eleven patients with mUM (17 samples) of 14 had detectable circulating tumor DNA (ctDNA). 8q gain was detected in all 17, whereas monosomy 3 was detectable in 10 of 17 samples. TFx generally correlated with disease status, showing an increase at the time of disease progression (PD). 8q gain detection sensitivity appeared greater with the LRT than with ichorCNA at lower TFxs. The only patient with mUM with partial response on treatment had a high pretreatment TFx and undetectable on-treatment ctDNA, correlating with her profound response and durable survival. CONCLUSION ctDNA can be detected in mUM using ULP-WGS, and the TFx correlates with DS. 8q gain was consistently detectable in mUM, in line with previous studies indicating 8q gains early in primary UM and higher amplification with PD. Our work suggests that detection of CNAs by ULP-WGS, particularly focusing on 8q gain, could be a valuable blood biomarker to monitor PD in UM.
Collapse
Affiliation(s)
- Takuto Sato
- Broad Institute of MIT and Harvard, Boston, MA
| | - Kamaneh Montazeri
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Evangelos S Gragoudas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Anne Marie Lane
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | | | | | - Genevieve M Boland
- Department of Surgery MD, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Eric Banks
- Broad Institute of MIT and Harvard, Boston, MA
| | | | | | | | - Aleigha Lawless
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | | | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Ivana K Kim
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Hajareh Haghighi F, Binaymotlagh R, Fratoddi I, Chronopoulou L, Palocci C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023; 9:953. [PMID: 38131939 PMCID: PMC10742474 DOI: 10.3390/gels9120953] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
Torrejon DY, Galvez M, Abril-Rodriguez G, Campbell KM, Medina E, Vega-Crespo A, Kalbasi A, Comin-Anduix B, Ribas A. Antitumor Immune Responses in B2M-Deficient Cancers. Cancer Immunol Res 2023; 11:1642-1655. [PMID: 37801341 PMCID: PMC10842455 DOI: 10.1158/2326-6066.cir-23-0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/03/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
β2-microglobulin (B2M) is a critical component of the MHC class I molecule and is required to present tumor antigens to T cells. Its loss results in acquired resistance to immune checkpoint blockade (ICB) therapies. However, there have been well-documented cases of B2M-inactivated tumors responding to ICB, justifying investigation of how an antitumor immune response can be generated to tumors without surface MHC class I. We knocked out B2M in three murine models with varying baseline MHC class I expression and sensitivity to anti-programmed death receptor (PD-1) therapy and analyzed the immune responses. MC38 and YUMMER2.1 without B2M responded to anti-PD-1 alone or with an IL2 agonist, and this was mediated by CD4+ T cells and natural killer (NK) cells. The more aggressive B16 without B2M expression only partially responded to the IL2 agonist, and this was dependent on NK cells. When analyzing nearly 300 pretreatment biopsies from patients with melanoma receiving PD-1 blockade-based therapies, we found infrequent B2M mutations or homozygous loss but more frequent LOH or copy-number gains. B2M LOH was enriched in biopsies from patients without response to therapy, and these biopsies were more frequently infiltrated by activated NK cells. We conclude that in the absence of B2M, activation of CD4+ T cells and NK cells can mediate responses to murine models of PD-1 blockade therapy. In addition, in human melanoma, the intratumoral presence of activated NK cells upon partial B2M loss likely selects against tumor escape through low surface MHC class I expression.
Collapse
Affiliation(s)
- Davis Y. Torrejon
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | | | - Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
- Department of Molecular and Medical Pharmacology, UCLA
| | - Katie M. Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | - Agustin Vega-Crespo
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | | | - Begoña Comin-Anduix
- Department of Surgery, Division of Surgical Oncology, UCLA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
- Department of Molecular and Medical Pharmacology, UCLA
- Department of Surgery, Division of Surgical Oncology, UCLA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
23
|
Mitra A, Thompson B, Strange A, Amato CM, Vassallo M, Dolgalev I, Hester-McCullough J, Muramatsu T, Kimono D, Puranik AS, Weber JS, Woods D. A Population of Tumor-Infiltrating CD4+ T Cells Co-Expressing CD38 and CD39 Is Associated with Checkpoint Inhibitor Resistance. Clin Cancer Res 2023; 29:4242-4255. [PMID: 37505479 PMCID: PMC10592215 DOI: 10.1158/1078-0432.ccr-23-0653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/21/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE We previously showed that elevated frequencies of peripheral blood CD3+CD4+CD127-GARP-CD38+CD39+ T cells were associated with checkpoint immunotherapy resistance in patients with metastatic melanoma. In the present study, we sought to further investigate this population of ectoenzyme-expressing T cells (Teee). EXPERIMENTAL DESIGN Teee derived from the peripheral blood of patients with metastatic melanoma were evaluated by bulk RNA-sequencing (RNA-seq) and flow cytometry. The presence of Teee in the tumor microenvironment was assessed using publically available single-cell RNA-seq datasets of melanoma, lung, and bladder cancers along with multispectral immunofluorescent imaging of melanoma patient formalin-fixed, paraffin-embedded specimens. Suppressive function of Teee was determined by an in vitro autologous suppression assay. RESULTS Teee had phenotypes associated with proliferation, apoptosis, exhaustion, and high expression of inhibitory molecules. Cells with a Teee gene signature were present in tumors of patients with melanoma, lung, and bladder cancers. CD4+ T cells co-expressing CD38 and CD39 in the tumor microenvironment were preferentially associated with Ki67- CD8+ T cells. Co-culture of patient Teee with autologous T cells resulted in decreased proliferation of target T cells. High baseline intratumoral frequencies of Teee were associated with checkpoint immunotherapy resistance and poor overall survival in patients with metastatic melanoma. CONCLUSIONS These results demonstrate that a novel population of CD4+ T cells co-expressing CD38 and CD39 is found both in the peripheral blood and tumor of patients with melanoma and is associated with checkpoint immunotherapy resistance.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Brian Thompson
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Ann Strange
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Carol M Amato
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Melinda Vassallo
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | | | - Tomoaki Muramatsu
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Diana Kimono
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Amrutesh S Puranik
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - David Woods
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
24
|
Cerella C, Dicato M, Diederich M. Enhancing personalized immune checkpoint therapy by immune archetyping and pharmacological targeting. Pharmacol Res 2023; 196:106914. [PMID: 37714393 DOI: 10.1016/j.phrs.2023.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are an expanding class of immunotherapeutic agents with the potential to cure cancer. Despite the outstanding clinical response in patient subsets, most individuals become refractory or develop resistance. Patient stratification and personalized immunotherapies are limited by the absence of predictive response markers. Recent findings show that dominant patterns of immune cell composition, T-cell status and heterogeneity, and spatiotemporal distribution of immune cells within the tumor microenvironment (TME) are becoming essential determinants of prognosis and therapeutic response. In this context, ICIs also function as investigational tools and proof of concept, allowing the validation of the identified mechanisms. After reviewing the current state of ICIs, this article will explore new comprehensive predictive markers for ICIs based on recent discoveries. We will discuss the recent establishment of a classification of TMEs into immune archetypes as a tool for personalized immune profiling, allowing patient stratification before ICI treatment. We will discuss the developing comprehension of T-cell diversity and its role in shaping the immune profile of patients. We describe the potential of strategies that score the mutual spatiotemporal modulation between T-cells and other cellular components of the TME. Additionally, we will provide an overview of a range of synthetic and naturally occurring or derived small molecules. We will compare compounds that were recently identified by in silico prediction to wet lab-validated drug candidates with the potential to function as ICIs and/or modulators of the cellular components of the TME.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
25
|
Pavlick AC, Ariyan CE, Buchbinder EI, Davar D, Gibney GT, Hamid O, Hieken TJ, Izar B, Johnson DB, Kulkarni RP, Luke JJ, Mitchell TC, Mooradian MJ, Rubin KM, Salama AK, Shirai K, Taube JM, Tawbi HA, Tolley JK, Valdueza C, Weiss SA, Wong MK, Sullivan RJ. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. J Immunother Cancer 2023; 11:e006947. [PMID: 37852736 PMCID: PMC10603365 DOI: 10.1136/jitc-2023-006947] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 10/20/2023] Open
Abstract
Since the first approval for immune checkpoint inhibitors (ICIs) for the treatment of cutaneous melanoma more than a decade ago, immunotherapy has completely transformed the treatment landscape of this chemotherapy-resistant disease. Combination regimens including ICIs directed against programmed cell death protein 1 (PD-1) with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) agents or, more recently, anti-lymphocyte-activation gene 3 (LAG-3) agents, have gained regulatory approvals for the treatment of metastatic cutaneous melanoma, with long-term follow-up data suggesting the possibility of cure for some patients with advanced disease. In the resectable setting, adjuvant ICIs prolong recurrence-free survival, and neoadjuvant strategies are an active area of investigation. Other immunotherapy strategies, such as oncolytic virotherapy for injectable cutaneous melanoma and bispecific T-cell engager therapy for HLA-A*02:01 genotype-positive uveal melanoma, are also available to patients. Despite the remarkable efficacy of these regimens for many patients with cutaneous melanoma, traditional immunotherapy biomarkers (ie, programmed death-ligand 1 expression, tumor mutational burden, T-cell infiltrate and/or microsatellite stability) have failed to reliably predict response. Furthermore, ICIs are associated with unique toxicity profiles, particularly for the highly active combination of anti-PD-1 plus anti-CTLA-4 agents. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of melanoma, including rare subtypes of the disease (eg, uveal, mucosal), with the goal of improving patient care by providing guidance to the oncology community. Drawing from published data and clinical experience, the Expert Panel developed evidence- and consensus-based recommendations for healthcare professionals using immunotherapy to treat melanoma, with topics including therapy selection in the advanced and perioperative settings, intratumoral immunotherapy, when to use immunotherapy for patients with BRAFV600-mutated disease, management of patients with brain metastases, evaluation of treatment response, special patient populations, patient education, quality of life, and survivorship, among others.
Collapse
Affiliation(s)
| | - Charlotte E Ariyan
- Department of Surgery Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Diwakar Davar
- Hillman Cancer Center, University of Pittsburg Medical Center, Pittsburgh, Pennsylvania, USA
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | - Tina J Hieken
- Department of Surgery and Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rajan P Kulkarni
- Departments of Dermatology, Oncological Sciences, Biomedical Engineering, and Center for Cancer Early Detection Advanced Research, Knight Cancer Institute, OHSU, Portland, Oregon, USA
- Operative Care Division, VA Portland Health Care System (VAPORHCS), Portland, Oregon, USA
| | - Jason J Luke
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tara C Mitchell
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meghan J Mooradian
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Krista M Rubin
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - April Ks Salama
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, Carolina, USA
| | - Keisuke Shirai
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Janis M Taube
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J Keith Tolley
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Caressa Valdueza
- Cutaneous Oncology Program, Weill Cornell Medicine, New York, New York, USA
| | - Sarah A Weiss
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Michael K Wong
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Ryan J Sullivan
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Perdikis-Prati S, Sheikh S, Bouroumeau A, Lang N. Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review. Biomedicines 2023; 11:1720. [PMID: 37371815 DOI: 10.3390/biomedicines11061720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized the prognosis of several advanced-stage solid tumors. However, its success has been far more limited in hematological malignancies and is mostly restricted to classical Hodgkin lymphoma (cHL) and primary mediastinal B cell lymphoma (PMBCL). In patients with non-Hodgkin lymphoma (NHL), response to PD-1/PD-L1 ICB monotherapy has been relatively limited, although some subtypes are more sensitive than others. Numerous predictive biomarkers have been investigated in solid malignancies, such as PD-L1 expression, tumor mutational burden (TMB) and microsatellite instability (MSI), among others. This review aims to appraise the current knowledge on PD-1/PD-L1 ICB efficacy in lymphoma when used either as monotherapy or combined with other agents, and describes potential biomarkers of response in this specific setting.
Collapse
Affiliation(s)
| | - Semira Sheikh
- Department of Hematology, Universitätsspital Basel, 4031 Basel, Switzerland
| | - Antonin Bouroumeau
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Noémie Lang
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
- Center of Translational Research in Oncohematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
27
|
Zheng Y, Liu X, Li N, Zhao A, Sun Z, Wang M, Luo J. Radiotherapy combined with immunotherapy could improve the immune infiltration of melanoma in mice and enhance the abscopal effect. Radiat Oncol J 2023; 41:129-139. [PMID: 37403355 DOI: 10.3857/roj.2023.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023] Open
Abstract
PURPOSE To analyze the gene mutation, immune infiltration and tumor growth of primary tumor and distant tumor under different treatment modes. MATERIALS AND METHODS Twenty B16 murine melanoma cells were injected subcutaneously into the of both sides of the thigh, simulating a primary tumor and a secondary tumor impacted by the abscopal effect, respectively. They were divided into blank control group, immunotherapy group, radiotherapy group, and radiotherapy combined immunotherapy group. During this period, tumor volume was measured, and RNA sequencing was performed on tumor samples after the test. R software was used to analyze differentially expressed genes, functional enrichment, and immune infiltration. RESULTS We found that any treatment mode could cause changes in differentially expressed genes, especially the combination treatment. The different therapeutic effects might be caused by gene expression. In addition, the proportions of infiltrating immune cells in the irradiated and abscopal tumors were different. In the combination treatment group, T-cell infiltration in the irradiated site was the most obvious. In the immunotherapy group, CD8+ T-cell infiltration in the abscopal tumor site was obvious, but immunotherapy alone might have a poor prognosis. Whether the irradiated or abscopal tumor was evaluated, radiotherapy combined with anti-programmed cell death protein 1 (anti-PD-1) therapy produced the most obvious tumor control and might have a positive impact on prognosis. CONCLUSION Combination therapy not only improves the immune microenvironment but may also have a positive impact on prognosis.
Collapse
Affiliation(s)
- Yufeng Zheng
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xue Liu
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Dalian Medical University, Dalian, China
| | - Na Li
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Aimei Zhao
- Department of Obstetrics and Gynecology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Meihua Wang
- Department of Pathology, Changzhou Fourth People's Hospital, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
28
|
Parvini S, Majidpoor J, Mortezaee K. The impact of PD-L1 as a biomarker of cancer responses to combo anti-PD-1/CTLA-4. Pathol Res Pract 2023; 247:154583. [PMID: 37267723 DOI: 10.1016/j.prp.2023.154583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Combination therapy of solid tumors with immune checkpoint inhibitors (ICIs) is a promising and rapidly evolving area of clinical research. Combo nivolumab-ipilimumab therapy has demonstrated potent efficacy in recent years, and PD-L1 expression profile has shown to play a key role in determining the most optimal immunotherapeutic regimen in advanced cancer patients. Here, the focus is over the impact of PD-L1 on combo nivolumab-ipilimumab in advanced solid cancer patients. Interpretations of this review indicate that patient responses to combo nivolumab-ipilimumab can be affected from different levels of PD-L1 expression states. A point required attention is the variations in responses among diverse cancer types or between different doses of the immunotherapy drugs. In general, higher rates of responses are seen with higher PD-L1 expression levels in many cancer types. This, however, is not coincided with survival of patients. Taken all into consideration, it could be asserted that considering PD-L1 as a solo biomarker may not be reliable for predicting clinical efficacy of combo nivolumab-ipilimumab. Thus, a search for other biomarkers or combination of PD-L1 with other factors may be considered for predicting patient responses.
Collapse
Affiliation(s)
- Sasan Parvini
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
29
|
Campbell KM, Amouzgar M, Pfeiffer SM, Howes TR, Medina E, Travers M, Steiner G, Weber JS, Wolchok JD, Larkin J, Hodi FS, Boffo S, Salvador L, Tenney D, Tang T, Thompson MA, Spencer CN, Wells DK, Ribas A. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell 2023; 41:791-806.e4. [PMID: 37037616 PMCID: PMC10187051 DOI: 10.1016/j.ccell.2023.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
Collapse
Affiliation(s)
- Katie M Campbell
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Meelad Amouzgar
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | | | - Timothy R Howes
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Egmidio Medina
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Travers
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Gabriela Steiner
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Jeffrey S Weber
- Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - James Larkin
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Silvia Boffo
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Lisa Salvador
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Daniel Tenney
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Tracy Tang
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | | | | | - Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Antoni Ribas
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
30
|
Grunberger JW, Ghandehari H. Layer-by-Layer Hollow Mesoporous Silica Nanoparticles with Tunable Degradation Profile. Pharmaceutics 2023; 15:832. [PMID: 36986693 PMCID: PMC10057406 DOI: 10.3390/pharmaceutics15030832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Silica nanoparticles (SNPs) have shown promise in biomedical applications such as drug delivery and imaging due to their versatile synthetic methods, tunable physicochemical properties, and ability to load both hydrophilic and hydrophobic cargo with high efficiency. To improve the utility of these nanostructures, there is a need to control the degradation profile relative to specific microenvironments. The design of such nanostructures for controlled combination drug delivery would benefit from minimizing degradation and cargo release in circulation while increasing intracellular biodegradation. Herein, we fabricated two types of layer-by-layer hollow mesoporous SNPs (HMSNPs) containing two and three layers with variations in disulfide precursor ratios. These disulfide bonds are redox-sensitive, resulting in a controllable degradation profile relative to the number of disulfide bonds present. Particles were characterized for morphology, size and size distribution, atomic composition, pore structure, and surface area. No difference was observed between in vitro cytotoxicity profiles of the fabricated nanoparticles at 24 h in the concentration range below 100 µg mL-1. The degradation profiles of particles were evaluated in simulated body fluid in the presence of glutathione. The results demonstrate that the composition and number of layers influence degradation rates, and particles containing a higher number of disulfide bridges were more responsive to enzymatic degradation. These results indicate the potential utility of layer-by-layer HMSNPs for delivery applications where tunable degradation is desired.
Collapse
Affiliation(s)
- Jason William Grunberger
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
31
|
Immune-related adverse events as potential surrogates of immune checkpoint inhibitors' efficacy: a systematic review and meta-analysis of randomized studies. ESMO Open 2023; 8:100787. [PMID: 36842300 PMCID: PMC9984799 DOI: 10.1016/j.esmoop.2023.100787] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Immune-related adverse events (irAEs) are frequently reported during immune checkpoint inhibitor (ICI) therapy and are associated with long-term outcomes. It is unknown if the irAE occurrence is a valid surrogate of ICIs' efficacy. METHODS We identified articles reporting the results of randomized trials of experimental ICI therapy in solid tumors with a systematic search. The control arms could be placebo, cytotoxic/targeted therapy, or ICI therapy. We extracted the hazard ratios for overall survival (OS) with the number of OS events per arm and the number and percentages of overall and specific irAEs of grade 1-2 and grade 3-4 per arm. We estimated the treatment effect on the potential surrogate outcome with the odds ratio of the irAE rate between the experimental and the control arm. The statistical analysis consisted of weighted linear regression on a logarithmic scale between treatment effects on irAE rate and treatment effects on OS. RESULTS Sixty-two randomized trials were included for a total of 79 contrasts and 42 247 patients. The analyses found no significant association between the treatment effects for overall grade 1-2 or grade 3-4 irAE rates or specific (skin, gastrointestinal, endocrine) irAE rates. In the non-small-cell lung cancer (NSCLC) trial subset, we observed a negative association between treatment effects on overall grade 1-2 irAEs and treatment effects on OS in studies with patients selected for programmed death-ligand 1 expression (R2 = 0.55; 95% confidence interval 0.20-0.95; R = -0.69). In the melanoma trial subset, a negative association was shown between treatment effects on gastrointestinal grade 3-4 irAEs and treatment effects on OS in trials without an ICI-based control arm (R2 = 0.77; 95% confidence interval 0.24-0.99; R = -0.89). CONCLUSIONS We found low-strength correlations between the ICI therapy effects on overall or specific irAE rates and the treatment effects on OS in several cancer types.
Collapse
|
32
|
Hu H, Archer C, Yip D, Peters G. Clinical predictors of survival in real world practice in stage IV melanoma. Cancer Rep (Hoboken) 2023; 6:e1691. [PMID: 36161287 PMCID: PMC9939985 DOI: 10.1002/cnr2.1691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND AIM While studies continually identify new clinical prognostic factors in stage IV melanoma, the introduction of targeted and immunotherapies have revolutionised the prognosis of advanced melanoma since 2011. The study aims to investigate the prognostic significance of past and newly identified clinical factors in a contemporary cohort. METHODS A retrospective analysis of The Canberra Hospital melanoma database identified 161 patients with Stage IV melanoma between 2011 and 2017. Survival was analysed by demographics and clinical factors with chi-square tests to determine significance. Logistic binary regression was performed to test the independence of the clinical factors on predicting the survival outcome. RESULTS Overall, the 3-month, 6-month, 9-month, and 12-month stage IV melanoma survival rate of our cohort was 79%, 67%, 55%, and 45%, respectively. Age, sex, and BRAF mutation status were found to have no impact on survival, whereas M1d category of the American Joint Committee on Cancer (AJCC) staging (8th edition), neutrophil-lymphocyte ratio (NLR) >3, elevated serum LDH, more than three metastatic sites, brain metastases, poorer Eastern cooperative oncology group (ECOG) status were associated with poorer survival. Binary logistic regression test identified AJCC staging, NLR (cutoff score 3), LDH, and brain metastases as independent prognostic factors. CONCLUSION Most clinical factors investigated in this study were found to have a statistically significant impact on survival, with AJCC (8th edition) staging M1a-M1d, NLR (cutoff score 3), LDH, and brain metastases identified as independent prognostic factors in stage IV melanoma from a contemporary cohort treated with targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hsien‐Pang Hu
- ANU Medical SchoolAustralian National UniversityCanberraAustralia
| | - Christine Archer
- Department of Medical OncologyThe Canberra HospitalCanberraAustralia
- College of Nursing & Health SciencesFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Desmond Yip
- ANU Medical SchoolAustralian National UniversityCanberraAustralia
- Department of Medical OncologyThe Canberra HospitalCanberraAustralia
| | - Geoffrey Peters
- ANU Medical SchoolAustralian National UniversityCanberraAustralia
- Department of Medical OncologyThe Canberra HospitalCanberraAustralia
| |
Collapse
|
33
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Switzer B, Piperno-Neumann S, Lyon J, Buchbinder E, Puzanov I. Evolving Management of Stage IV Melanoma. Am Soc Clin Oncol Educ Book 2023; 43:e397478. [PMID: 37141553 DOI: 10.1200/edbk_397478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Significant advancements have been made in the treatment of advanced melanoma with the use of immune checkpoint inhibitors, novel immunotherapies, and BRAF/MEK-targeted therapies with numerous frontline treatment options. However, there remains suboptimal evidence to guide treatment decisions in many patients. These include patients with newly diagnosed disease, immune checkpoint inhibitor (ICI)-resistant/ICI-refractory disease, CNS metastases, history of autoimmune disease, and/or immune-related adverse events (irAEs). Uveal melanoma (UM) is a rare melanoma associated with a poor prognosis in the metastatic setting. Systemic treatments, including checkpoint inhibitors, failed to demonstrate any survival benefit. Tebentafusp, a bispecific molecule, is the first treatment to improve overall survival (OS) in patients with HLA A*02:01-positive metastatic UM.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | - James Lyon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
35
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
- Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
36
|
Zeng Z, Gu SS, Ouardaoui N, Tymm C, Yang L, Wong CJ, Li D, Zhang W, Wang X, Weirather JL, Rodig SJ, Hodi FS, Brown M, Liu XS. Hippo Signaling Pathway Regulates Cancer Cell-Intrinsic MHC-II Expression. Cancer Immunol Res 2022; 10:1559-1569. [PMID: 36219700 DOI: 10.1158/2326-6066.cir-22-0227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/02/2022] [Accepted: 10/06/2022] [Indexed: 01/10/2023]
Abstract
MHC-II is known to be mainly expressed on the surface of antigen-presenting cells. Evidence suggests MHC-II is also expressed by cancer cells and may be associated with better immunotherapy responses. However, the role and regulation of MHC-II in cancer cells remain unclear. In this study, we leveraged data mining and experimental validation to elucidate the regulation of MHC-II in cancer cells and its role in modulating the response to immunotherapy. We collated an extensive collection of omics data to examine cancer cell-intrinsic MHC-II expression and its association with immunotherapy outcomes. We then tested the functional relevance of cancer cell-intrinsic MHC-II expression using a syngeneic transplantation model. Finally, we performed data mining to identify pathways potentially involved in the regulation of MHC-II expression, and experimentally validated candidate regulators. Analyses of preimmunotherapy clinical samples in the CheckMate 064 trial revealed that cancer cell-intrinsic MHC-II protein was positively correlated with more favorable immunotherapy outcomes. Comprehensive meta-analyses of multiomics data from an exhaustive collection of data revealed that MHC-II is heterogeneously expressed in various solid tumors, and its expression is particularly high in melanoma. Using a syngeneic transplantation model, we further established that melanoma cells with high MHC-II responded better to anti-PD-1 treatment. Data mining followed by experimental validation revealed the Hippo signaling pathway as a potential regulator of melanoma MHC-II expression. In summary, we identified the Hippo signaling pathway as a novel regulator of cancer cell-intrinsic MHC-II expression. These findings suggest modulation of MHC-II in melanoma could potentially improve immunotherapy response.
Collapse
Affiliation(s)
- Zexian Zeng
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shengqing Stan Gu
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nofal Ouardaoui
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Carly Tymm
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Lin Yang
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Cheryl J Wong
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Dian Li
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Wubing Zhang
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaoqing Wang
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L Weirather
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott J Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - X Shirley Liu
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
37
|
Malaty MM, Amarasekera AT, Li C, Scherrer-Crosbie M, Tan TC. Incidence of immune checkpoint inhibitor mediated cardiovascular toxicity: A systematic review and meta-analysis. Eur J Clin Invest 2022; 52:e13831. [PMID: 35788986 DOI: 10.1111/eci.13831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) are a novel class of anti-cancer therapy becoming increasingly associated with fatal cardiovascular toxicities (CVTs). The aim is to determine the incidence of CVTs in cohorts treated with ICIs as sole anti-cancer therapy. METHODS A systematic literature search of scientific and medical databases was performed using PRISMA principles to identify relevant cohorts (PROSPERO registration CRD42021272470). Data for specific CVTs (pericardial disease, myocarditis, heart failure, arrhythmia, myocardial infarction/ischaemia and angina), CVT-related death and CV risk factors were extracted. Presence of CVTs in ICI-monotherapy versus combination-ICI therapy, and programmed death 1/programmed death ligand 1- (PD1/PDL1-) versus cytotoxic T-lymphocyte-associated protein 4- (CTLA4-) inhibitor groups were dichotomised and meta-analysed using random-effect models. RESULTS Forty-eight studies (11,207 patients) were identified, from which 146 CVTs were observed (incidence 1.30%). ICI-monotherapy led to more CVTs than combination therapy (119/9009; 1.32% vs. 18/2086; 0.86%). Across monotherapies, PD1/PDL1-inhibitors had lower incidence of CVTs compared to CTLA4-inhibitors (62/6950; 0.89% vs. 57/2059; 2.77%). Based on eight studies that were meta-analysed, no significant difference was observed comparing monotherapy versus combination-ICI therapy (RR-0.69, 95% CI -1.47 to 0.09) for all CVTs, or PD1/PDL1- to CTLA4-inhibitors (RR-0.27, 95% CI -2.06 to 1.53), for all CVTs including CVT-death. CV risk factors could not be attributed to an ICI group as data was population based rather than individual based. CONCLUSION ICI-mediated CVTs are rare and potentially fatal. The role of CV risk factors in their development remains unclear.
Collapse
Affiliation(s)
- Michael M Malaty
- Department of Cardiology, Blacktown Hospital, Western Sydney Local Health District, Sydney, Australia
| | - Anjalee Thanuja Amarasekera
- School of Medicine, Western Sydney University, Sydney, Australia.,Department of Cardiology, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia.,Westmead Applied Research Centre (WARC), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Cindy Li
- Department of Cardiology, Blacktown Hospital, Western Sydney Local Health District, Sydney, Australia
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy C Tan
- Department of Cardiology, Blacktown Hospital, Western Sydney Local Health District, Sydney, Australia.,School of Medicine, Western Sydney University, Sydney, Australia.,Department of Cardiology, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
38
|
Shui IM, Scherrer E, Frederickson A, Li JW, Mynzhassarova A, Druyts E, Tawbi H. Resistance to anti-PD1 therapies in patients with advanced melanoma: systematic literature review and application of the Society for Immunotherapy of Cancer Immunotherapy Resistance Taskforce anti-PD1 resistance definitions. Melanoma Res 2022; 32:393-404. [PMID: 36223314 DOI: 10.1097/cmr.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nearly half of advanced melanoma patients do not achieve a clinical response with anti-programmed cell death 1 protein (PD1) therapy (i.e. primary resistance) or initially achieve a clinical response but eventually progress during or following further treatment (i.e. secondary resistance). A consensus definition for tumor resistance to anti-PD1 monotherapy was published by Society for Immunotherapy of Cancer Immunotherapy Resistance Taskforce (SITC) in 2020. A systematic literature review (SLR) of clinical trials and observational studies was conducted to characterize the proportions of advanced melanoma patients who have progressed on anti-PD1 therapies. The SLR included 55 unique studies and the SITC definition of primary resistance was applied to 37 studies that specified disease progression by best overall response. Median and range of patients with primary resistance in studies that specified first-line and second-line or higher anti-PD1 monotherapy was 35.50% (21.19-39.13%; n = 4 studies) and 41.54% (30.00-56.41%, n = 3 studies); median and range of patients with primary resistance in studies that specified first-line and second-line or higher combination therapy was 30.23% (15.79-33.33%; n = 6 studies), and 70.00% (61.10-73.33%; n = 3 studies). Primary resistance to anti-PD1 monotherapies and when in combination with ipilimumab are higher in patients receiving second-line or higher therapies, in patients with acral, mucosal, and uveal melanoma, and in patients with active brain metastases. The percentage of patients with primary resistance was generally consistent across clinical trials, with variability in resistance noted for observational studies. Limitations include applying the SITC definitions to combination therapies, where consensus definitions are not yet available. Future studies should highly consider utilizing the SITC definitions to harmonize how resistance is classified and facilitate meaningful context for clinical activity.
Collapse
Affiliation(s)
| | | | | | - Joyce W Li
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | | | - Eric Druyts
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
39
|
Zeng Z, Gu SS, Wong CJ, Yang L, Ouardaoui N, Li D, Zhang W, Brown M, Liu XS. Machine learning on syngeneic mouse tumor profiles to model clinical immunotherapy response. SCIENCE ADVANCES 2022; 8:eabm8564. [PMID: 36240281 PMCID: PMC9565795 DOI: 10.1126/sciadv.abm8564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Most patients with cancer are refractory to immune checkpoint blockade (ICB) therapy, and proper patient stratification remains an open question. Primary patient data suffer from high heterogeneity, low accessibility, and lack of proper controls. In contrast, syngeneic mouse tumor models enable controlled experiments with ICB treatments. Using transcriptomic and experimental variables from >700 ICB-treated/control syngeneic mouse tumors, we developed a machine learning framework to model tumor immunity and identify factors influencing ICB response. Projected on human immunotherapy trial data, we found that the model can predict clinical ICB response. We further applied the model to predicting ICB-responsive/resistant cancer types in The Cancer Genome Atlas, which agreed well with existing clinical reports. Last, feature analysis implicated factors associated with ICB response. In summary, our computational framework based on mouse tumor data reliably stratified patients regarding ICB response, informed resistance mechanisms, and has the potential for wide applications in disease treatment studies.
Collapse
Affiliation(s)
- Zexian Zeng
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Shengqing Stan Gu
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cheryl J. Wong
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115 USA
| | - Lin Yang
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Nofal Ouardaoui
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Dian Li
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Wubing Zhang
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- School of Life Science and Technology, Tongji University, Shanghai 200060, China
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - X. Shirley Liu
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
40
|
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol 2022; 13:996145. [PMID: 36275750 PMCID: PMC9581325 DOI: 10.3389/fimmu.2022.996145] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a significant contributor to cancer progression containing complex connections between cellular and chemical components and provides a suitable substrate for tumor growth and development. Growing evidence shows targeting tumor cells while ignoring the surrounding TME is not effective enough to overcome the cancer disease. Fibroblasts are essential sentinels of the stroma that due to certain conditions in TME, such as oxidative stress and local hypoxia, become activated, and play the prominent role in the physical support of tumor cells and the enhancement of tumorigenesis. Activated fibroblasts in TME, defined as cancer-associated fibroblasts (CAFs), play a crucial role in regulating the biological behavior of tumors, such as tumor metastasis and drug resistance. CAFs are highly heterogeneous populations that have different origins and, in addition to their role in supporting stromal cells, have multiple immunosuppressive functions via a membrane and secretory patterns. The secretion of different cytokines/chemokines, interactions that mediate the recruitment of regulatory immune cells and the reprogramming of an immunosuppressive function in immature myeloid cells are just a few examples of how CAFs contribute to the immune escape of tumors through various direct and indirect mechanisms on specific immune cell populations. Moreover, CAFs directly abolish the role of cytotoxic lymphocytes. The activation and overexpression of inhibitory immune checkpoints (iICPs) or their ligands in TME compartments are one of the main regulatory mechanisms that inactivate tumor-infiltrating lymphocytes in cancer lesions. CAFs are also essential players in the induction or expression of iICPs and the suppression of immune response in TME. Based on available studies, CAF subsets could modulate immune cell function in TME through iICPs in two ways; direct expression of iICPs by activated CAFs and indirect induction by production soluble and then upregulation of iICPs in TME. With a focus on CAFs’ direct and indirect roles in the induction of iICPs in TME as well as their use in immunotherapy and diagnostics, we present the evolving understanding of the immunosuppressive mechanism of CAFs in TME in this review. Understanding the complete picture of CAFs will help develop new strategies to improve precision cancer therapy.
Collapse
|
41
|
Kaakour D, Hagopian G, Lee S, Lee FC. Durable Responses in Patients With Advanced Cholangiocarcinoma on Sequential Dual-agent Immunotherapy After Progressing on Single-agent Immunotherapy. Am J Clin Oncol 2022; 45:410-414. [PMID: 36102355 PMCID: PMC9508973 DOI: 10.1097/coc.0000000000000941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Biliary tract tumors have a poor prognosis despite advancements in targeted therapies. More recent studies have started to investigate the use of combination immunotherapy in advanced biliary cancers. However, currently, there are no clinical trials investigating the use of dual-agent immunotherapy with ipilimumab and nivolumab as a sequential treatment after patients have progressed on single-agent immunotherapy. In this case series, we discussed 3 patients with advanced cholangiocarcinoma who have an objective response to dual-agent immunotherapy with ipilimumab and nivolumab after having disease progression on pembrolizumab and multiple other failed lines of treatment. MATERIALS AND METHODS A case series, including 3 patients treated at the University of California, Irvine Chao Family Comprehensive Cancer Center, was completed. RESULTS Although none of the 3 patients had microsatellite instability or high tumor-mutation burden and were not necessarily predicted to have a response to dual-agent immunotherapy, all 3 patients had an objective radiographic and/or tumor-marker response to a combination of ipilimumab and nivolumab. CONCLUSIONS This case series serves as proof of the concept that sequential immunotherapy can be beneficial after progression on single-agent immunotherapy for patients with advanced cholangiocarcinoma. This study can also serve as the foundation to build further tests on the true effectiveness and ideal duration of sequential therapy with dual immunotherapy agents.
Collapse
Affiliation(s)
| | | | | | - Fa Chyi Lee
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine. Irvine, CA
| |
Collapse
|
42
|
Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers (Basel) 2022; 14:cancers14153779. [PMID: 35954441 PMCID: PMC9367420 DOI: 10.3390/cancers14153779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapies and molecularly targeted therapies have drastically changed the therapeutic approach for unresectable advanced or metastatic melanoma. The majority of melanoma patients have benefitted from these therapies; however, some patients acquire resistance to them. Novel combinations of immunotherapies and molecularly targeted therapies may be more efficient in treating these patients. In this review, we discuss various combination therapies under pre-clinical and clinical development which can reduce toxicity, enhance efficacy, and prevent recurrences in patients with metastatic melanoma. Abstract Melanoma possesses invasive metastatic growth patterns and is one of the most aggressive types of skin cancer. In 2021, it is estimated that 7180 deaths were attributed to melanoma in the United States alone. Once melanoma metastasizes, traditional therapies are no longer effective. Instead, immunotherapies, such as ipilimumab, pembrolizumab, and nivolumab, are the treatment options for malignant melanoma. Several biomarkers involved in tumorigenesis have been identified as potential targets for molecularly targeted melanoma therapy, such as tyrosine kinase inhibitors (TKIs). Unfortunately, melanoma quickly acquires resistance to these molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been employed and have been shown to improve the prognosis of melanoma patients compared to monotherapy. This review discusses several combination therapies that target melanoma biomarkers, such as BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K. Several of these regimens are already FDA-approved for treating metastatic melanoma, while others are still in clinical trials. Continued research into the causes of resistance and factors influencing the efficacy of these combination treatments, such as specific mutations in oncogenic proteins, may further improve the effectiveness of combination therapies, providing a better prognosis for melanoma patients.
Collapse
|
43
|
STING expression is an independent prognostic factor in patients with mycosis fungoides. Sci Rep 2022; 12:12739. [PMID: 35882970 PMCID: PMC9325889 DOI: 10.1038/s41598-022-17122-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
Mycosis fungoides is recognized as an indolent cutaneous malignant T-cell lymphoma. In contrast, there are few therapeutic options for advanced forms of mycosis fungoides. Since immunotherapy is desirable as an alternative therapeutic option, identifying candidate molecules is an important goal for clinicians. Although tumor-derived negative immunomodulatory molecules, such as PD-1/PD-L1, have been identified in various malignancies, the useful positive immunological drivers of mycosis fungoides are largely unknown. We found that the stimulator of interferon (IFN) genes (STING) was highly upregulated in early-stage mycosis fungoides. Immunohistochemical examination revealed different STING staining patterns in patients with mycosis fungoides. Although there were no significant differences in clinical factors’ characteristics, STING expression was associated with the survival of patients with mycosis fungoides. The survival rate was significantly poor in patients with low STING-expressing mycosis fungoides. Univariate and multivariate analyses revealed that low STING expression was associated with an increased hazard ratio. Our results indicate that STING expression independently influences the prognosis of mycosis fungoides.
Collapse
|
44
|
Pharmacological Treatments Available for Immune-Checkpoint-Inhibitor-Induced Colitis. Biomedicines 2022; 10:biomedicines10061334. [PMID: 35740355 PMCID: PMC9219666 DOI: 10.3390/biomedicines10061334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor treatment has shown revolutionary therapeutic effects in various carcinomas. However, immune-related adverse events (irAE) following this treatment can sometimes lead to treatment discontinuation. One such frequently encountered adverse event is immune-related colitis (irAE colitis). Corticosteroids (CS) are the first-line treatment for irAE colitis, but we often encounter CS-refractory or -resistant cases. The application of multiple biologics has been proposed as a therapy to be administered after CS treatment; however, the efficacy and safety of biologics for patients with irAE colitis who do not respond to CS have not been established. This review summarizes the treatment regimens available for irAE colitis, focusing on the mechanism of action of corticosteroids, infliximab, vedolizumab, and other drugs.
Collapse
|
45
|
Marconcini R, Pezzicoli G, Stucci LS, Sergi MC, Lospalluti L, Porta C, Tucci M. Combination of immunotherapy and other targeted therapies in advanced cutaneous melanoma. Hum Vaccin Immunother 2022; 18:1980315. [PMID: 34613889 PMCID: PMC9302493 DOI: 10.1080/21645515.2021.1980315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous Melanoma (CM) is an aggressive cancer whose incidence is increasing worldwide. However, the knowledge of its biology and genes driving cell growth and survival allowed to develop new drugs that have improved PFS and OS of advanced disease. Both BRAF targeting agents and immune checkpoint inhibitors (ICIs) have been adopted for the treatment of metastatic disease and the adjuvant setting. Several melanoma patients show innate or acquired drug-resistance and thus new strategies are required for overcoming this complication. New ICIs have been developed, and strategies of combination or sequencing are under investigation in ongoing clinical trials. In addition, pre-clinical data have demonstrated that many strategies induce the release of neoantigens within the tumor microenvironment, thus suggesting the combination of new agents with ICIs. Here, we review the ongoing strategies in advanced CM including a dedicated section on treatment of brain metastases.
Collapse
Affiliation(s)
- Riccardo Marconcini
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gaetano Pezzicoli
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
- Dermatology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Luigia Stefania Stucci
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Lucia Lospalluti
- Dermatology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Camillo Porta
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncolog, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Marco Tucci
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncolog, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
46
|
Aroldi F, Middleton MR. Long-Term Outcomes of Immune Checkpoint Inhibition in Metastatic Melanoma. Am J Clin Dermatol 2022; 23:331-338. [PMID: 35359259 DOI: 10.1007/s40257-022-00681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/14/2022]
Abstract
Increasing knowledge about the biology of melanoma and of immunology has led to the development and regulatory approval of the immune checkpoint inhibitors ipilimumab, nivolumab, and pembrolizumab, which are indicated for the treatment of melanoma irrespective of the B-Raf proto-oncogene mutation status of the tumour. Only a subset of patients will respond, but those who do can expect long-lasting, previously unheard-of responses. Long-term survival results for the registration trials, including CheckMate 067, Keynote-006, and Keynote-001, have recently been published. In particular, the combination of ipilimumab and nivolumab showed an impressive 5-year overall survival of just over 50%. However, toxicity remains a significant concern, with some of the side effects being life threatening and/or life changing. In this review, we discuss the safety and efficacy data of all the agents currently approved for the first-line treatment of advanced melanoma, identifying factors that influence the choice of a single agent rather than combination therapy. We highlight the potential biomarkers of response, effects of long-term toxicity, and options after progression.
Collapse
|
47
|
Plazy C, Hannani D, Gobbini E. Immune Checkpoint Inhibitor Rechallenge and Resumption: a Systematic Review. Curr Oncol Rep 2022; 24:1095-1106. [PMID: 35389138 DOI: 10.1007/s11912-022-01241-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF THE REVIEW The reintroduction of immune checkpoint inhibitors (ICIs) after disease progression (rechallenge) or immune-related adverse events (irAEs) recovering (resumption) raises questions in terms of efficacy and safety. RECENT FINDINGS Here, we reviewed literature data about ICIs rechallenge/resumption in cancer patients along with their clinical characteristics to explore those factors associated with better outcomes. Heterogenous results were pointed out across rechallenge studies with an overall response rate between 0 and 54%, and a progression free survival ranged from 1.5 to 12.9 months and an overall survival between 6.5 and 23.8 months. Better outcomes have been recorded in patients with good ECOG PS, longer duration of initial ICI, discontinuation reason of initial ICI other than progression, and those who received ICI sequence other than the switch between anti-PD1 and anti-PDL1. Studies about ICI resumption highlighted that certain types of irAEs were more likely to relapse at retreatment. These results suggest that ICI rechallenge/resumption can be an interesting strategy for selected patients.
Collapse
Affiliation(s)
- Caroline Plazy
- CHU Grenoble-Alpes, Biological and Pathological Institute, Avenue Maquis du Gresivaudan, 38700, La Tronche, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR 5525, VetAgro Sup, 38000, Grenoble, France
| | - Dalil Hannani
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR 5525, VetAgro Sup, 38000, Grenoble, France
| | - Elisa Gobbini
- Thoracic Oncology Unit, CHU Grenoble-Alpes, Avenue Maquis du Gresivaudan, 38700, La Tronche, France.
- Cancer Research Center of Lyon, CISTAR Research Team, 28 rue Laennec, 69008, Lyon, France.
| |
Collapse
|
48
|
Enhanced T-Cell Priming and Improved Anti-Tumor Immunity through Lymphatic Delivery of Checkpoint Blockade Immunotherapy. Cancers (Basel) 2022; 14:cancers14071823. [PMID: 35406595 PMCID: PMC8997812 DOI: 10.3390/cancers14071823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
An infusion of checkpoint blockade immunotherapy (CBI) has revolutionized cancer treatments for some patients, but the majority of patients experience disappointing responses. Because adaptive immune responses are mounted by the concentrated assembly of antigens, immune cells, and mediators in the secluded and protective environment of draining lymph nodes (dLNs), we hypothesize that lymphatic delivery of CBI (αCTLA-4 and αPD-1) to tumor dLNs (tdLNs) improves anti-tumor responses over intravenous (i.v.) administration, and that vaccination against tumor associated antigen (TAA) further enhances these responses. Mono- and combination CBI were administered i.v. or through image-guided intradermal (i.d.) injection to reach tdLNs in vaccinated and unvaccinated animals bearing either primary or orthotopically metastasizing B16F10 melanoma. Vaccination and boost against TAA, Melan-A, was accomplished with virus-like particles (VLP) directed to tdLNs followed by VLP boost after CBI administration. Lymphatic delivery of CBIs reduced primary tumor size and metastatic tumor burden, alleviated the pro-tumorigenic immune environment, and improved survival over systemic administration of CBIs. Animals receiving CBIs lymphatically exhibited significantly enhanced survival over those receiving therapies administered partially or completely through systemic routes. By combining vaccination and CBI for effective T-cell priming in the protected environment of dLNs, anti-tumor responses may be improved.
Collapse
|
49
|
Han L, Li G, Li H, Zhao L. Risk of Immune-Related Pneumonitis with PD-1/PD-L1 Inhibitors in Different Cancer Types and Treatment Regimens: A Systematic Review and Meta-Analysis of 22 Randomized Controlled Trials. Chemotherapy 2022; 68:1-15. [PMID: 35249037 DOI: 10.1159/000523904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pneumonitis, the specific toxicity associated with PD-1/PD-L1 inhibitors, is severe and potentially life-threatening, and its incidence and severity are poorly understood among different tumor types or treatment methods. This meta-analysis was performed to compare the incidence and severity of pneumonitis among different tumor types and treatment regimens. METHODS MEDLINE and Embase were retrieved until September 2021. Meta-analysis of the risk of pneumonitis was calculated using a fixed-effect model. Pooled analysis of the incidence of pneumonitis in different tumor types was performed using a metaprop function. RESULTS Twenty two randomized controlled trials (RCTs) (n = 10,700) were included for pool analysis, and eighteen RCTs (n = 8,852) were eligible for meta-analysis. For all-grade pneumonitis, the risk of the combination therapy (PD-1/PD-L1 plus CTLA-4 inhibitor) was 3.62 times significantly higher than that of monotherapy, and 4.06 and 1.78 times significantly higher than that of chemotherapy and placebo than monotherapy. The incidence of pneumonitis was not significantly different between PD-1/PD-L1 inhibitor versus ipilimumab or between low doses versus high doses. For high-grade (grade ≥3) pneumonitis, the risk in PD-1/PD-L1 inhibitors alone was 3.62 times significantly higher than chemotherapy. No significant difference was found in the incidence of pneumonitis between combination versus monotherapy, monotherapy versus placebo, combination versus ipilimumab alone, monotherapy versus ipilimumab alone, or low doses versus high doses. CONCLUSIONS Compared with chemotherapy, PD-1/PD-L1 inhibitor monotherapy may cause more treatment-related pneumonitis. Increasing the dose of PD-1/PD-L1 inhibitor does not significantly increase the incidence of pneumonitis. Compared with the monotherapy, combination therapy does not increase the incidence of pneumonitis significantly.
Collapse
Affiliation(s)
- Lei Han
- Department of Oncology, Daxing Hospital Affiliated to Capital Medical University, Beijing, China
| | - Guangxin Li
- Radiation Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University Beijing, Beijing, China
| | - Huihui Li
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Napier TS, Hunter CL, Song PN, Larimer BM, Sorace AG. Preclinical PET Imaging of Granzyme B Shows Promotion of Immunological Response Following Combination Paclitaxel and Immune Checkpoint Inhibition in Triple Negative Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14020440. [PMID: 35214172 PMCID: PMC8875418 DOI: 10.3390/pharmaceutics14020440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Advancements in monitoring and predicting of patient-specific response of triple negative breast cancer (TNBC) to immunotherapy (IMT) with and without chemotherapy are needed. Using granzyme B-specific positron emission tomography (GZP-PET) imaging, we aimed to monitor changes in effector cell activation in response to IMT with chemotherapy in TNBC. TNBC mouse models received the paclitaxel (PTX) ± immune checkpoint inhibitors anti-programmed death 1 (anti-PD1) and anti-cytotoxic T-lymphocyte 4 (anti-CTLA4). GZP-PET imaging was performed on treatment days 0, 3, and 6. Mean standard uptake value (SUVmean), effector cell fractions, and SUV histograms were compared. Mice were sacrificed at early imaging timepoints for cytokine and histological analyses. GZP-PET imaging data revealed differences prior to tumor volume changes. By day six, responders had SUVmean ≥ 2.2-fold higher (p < 0.0037) and effector cell fractions ≥ 1.9-fold higher (p = 0.03) compared to non-responders. IMT/PTX resulted in a significantly different SUV distribution compared to control, indicating broader distribution of activated intratumoral T-cells. IMT/PTX resulted in significantly more necrotic tumor tissue and increased levels of IL-2, 4, and 12 compared to control. Results implicate immunogenic cell death through upregulation of key Th1/Th2 cytokines by IMT/PTX. Noninvasive PET imaging can provide data on the TNBC tumor microenvironment, specifically intratumoral effector cell activation, predicting response to IMT plus chemotherapy.
Collapse
Affiliation(s)
- Tiara S. Napier
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chanelle L. Hunter
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Patrick N. Song
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-934-3116, Fax: +1-(205)-975-6522
| |
Collapse
|