1
|
van de Sandt CE, McQuilten HA, Aban M, Nguyen THO, Valkenburg SA, Grant EJ, Sant S, Rossjohn J, Gras S, Crowe J, Kedzierska K. Gradual changes within long-lived influenza virus-specific CD8 + T cells are associated with the loss of public TCR clonotypes in older adults. EBioMedicine 2025; 115:105697. [PMID: 40250246 PMCID: PMC12036069 DOI: 10.1016/j.ebiom.2025.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Susceptibility to life-threatening influenza increases with age, partly due to declining immunity. Frequency, phenotype and T-cell receptor (TCR) composition of influenza-specific CD8+ T-cells directed at the prominent A2/M158 influenza epitope change across the human lifespan. METHODS We investigated longevity and mechanisms underlying age-related changes in influenza-specific TCR repertoires by performing longitudinal analyses in young and older adults across 7-12 years within A2/M158+CD8+ T-cells using peptide-HLA tetramers directly ex vivo. Paired TCRαβ-chains were used to track clonotypes over time within individuals. FINDINGS Expanded public and private TCR clonotypes were long-lived but gradually declined over time. Loss of public clonotypes was initially compensated by expansions of clonotypes expressing public-associated features. Once these public-associated TCR clonotypes were abated in older adults, the void was filled by expansions of less similar private TCR clonotypes. Expanded older private TCR clonotypes also declined over time and were gradually replaced by other private TCR clonotypes with low similarity to public TCR clonotypes detected in adults. INTERPRETATION Despite our relatively small cohort, we provided conclusive evidence that CD8+ T-cells to a single HLA-A2-restricted influenza-epitope are long-lived. However, dynamic changes occur at the clonotypic level, which eventually result in loss of public clonotypes, indicating that T-cell-based influenza vaccines are likely more effective in adults than older adults. FUNDING This research was supported by the National Health and Medical Research Council (#1173871, #1159272), the Australian Research Council (#190102704), European Union's Horizon 2020 (#792532), the University of Melbourne. Funders had no role in design, analysis or reporting of the study.
Collapse
MESH Headings
- Humans
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Influenza, Human/immunology
- Influenza, Human/virology
- Aged
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Male
- Female
- Adult
- Middle Aged
- Epitopes, T-Lymphocyte/immunology
- Aged, 80 and over
- Young Adult
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Malet Aban
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Emma J Grant
- Infection and Immunity Program, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Stephanie Gras
- Infection and Immunity Program, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC 3103, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Sanchez-Gonzalez C, Pérez BS, Reyes MP, Aguilar JLF, Villalba JS, Santoyo JS. Recipient With Influenza A Infection: Contraindication to Transplant? A Case Report. Transplant Proc 2023; 55:2299-2300. [PMID: 37827900 DOI: 10.1016/j.transproceed.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023]
Abstract
Active infections in recipients are considered an absolute contraindication to liver transplantation due to the risk of severe disease caused by the required immunosuppression. Even though viral infections, such as Influenza A, have been treated in liver transplant patients both in the immediate and late postoperative period with favorable outcomes, no cases of prediagnosed Influenza A have been described in which the decision to proceed with the indication had to be made. In certain viral infections, like Influenza A, the paucisymptomatic state and the availability of appropriate treatment could open the door to performing liver transplants with positive results.
Collapse
Affiliation(s)
- Claudia Sanchez-Gonzalez
- General Surgery and Digestive System Department, Regional University Hospital of Málaga, Málaga, Spain
| | - Belinda Sánchez Pérez
- General Surgery and Digestive System Department, Regional University Hospital of Málaga, Málaga, Spain.
| | - María Pérez Reyes
- General Surgery and Digestive System Department, Regional University Hospital of Málaga, Málaga, Spain
| | | | - Julio Santoyo Villalba
- General Surgery and Digestive System Department, Regional University Hospital of Málaga, Málaga, Spain
| | - Julio Santoyo Santoyo
- General Surgery and Digestive System Department, Regional University Hospital of Málaga, Málaga, Spain
| |
Collapse
|
3
|
Safety and Immunogenicity of M2-Deficient, Single Replication, Live Influenza Vaccine (M2SR) in Adults. Vaccines (Basel) 2021; 9:vaccines9121388. [PMID: 34960134 PMCID: PMC8707871 DOI: 10.3390/vaccines9121388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
M2SR (M2-deficient single replication) is an investigational live intranasal vaccine that protects against multiple influenza A subtypes in influenza-naïve and previously infected ferrets. We conducted a phase 1, first-in-human, randomized, dose-escalation, placebo-controlled study of M2SR safety and immunogenicity. Adult subjects received a single intranasal administration with either placebo or one of three M2SR dose levels (106, 107 or 108 tissue culture infectious dose (TCID50)) expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (H3N2) (24 subjects per group). Subjects were evaluated for virus replication, local and systemic reactions, adverse events (AE), and immune responses post-vaccination. Infectious virus was not detected in nasal swabs from vaccinated subjects. At least one AE (most commonly mild nasal rhinorrhea/congestion) was reported among 29%, 58%, and 83% of M2SR subjects administered a low, medium or high dose, respectively, and among 46% of placebo subjects. No subject had fever or a severe reaction to the vaccine. Influenza-specific serum and mucosal antibody responses and B- and T-cell responses were significantly more frequent among vaccinated subjects vs. placebo recipients. The M2SR vaccine was safe and well tolerated and generated dose-dependent durable serum antibody responses against diverse H3N2 influenza strains. M2SR demonstrated a multi-faceted immune response in seronegative and seropositive subjects.
Collapse
|
4
|
Tang H, Shen C, Zou L, Cai C, Wang Y, Robertson ID, Edwards J, Huang B, Bruce M. A mixed methods study of stakeholders' practices and attitudes on avian influenza H7N9 vaccination for the yellow broiler industry in Guangxi, China. Transbound Emerg Dis 2021; 69:e224-e235. [PMID: 34379893 DOI: 10.1111/tbed.14286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
In response to a sudden increase in H7N9 human infections, China introduced an H5/H7 bivalent inactivated vaccine for poultry in Guangxi and Guangdong provinces in July 2017, which subsequently became integrated into the existing compulsory national H5N1 vaccination programme from September 2017. Although the vaccination programme effectively reduced H7N9 infections in humans and poultry, there are ongoing arguments against continuing this long-term vaccination. These discussions have drawn policymakers to think about the possibility of stopping routine vaccination for H7N9 avian influenza viruses (AIVs) in China; however, they have not considered the poultry industry stakeholders' practices on and attitudes towards this vaccination. This study investigated H7N9 vaccination practices in the yellow broiler industry in Guangxi and stakeholders' attitudes on H7N9 vaccination, using a mixed methods design. The study found H7N9 vaccination was well adopted in the yellow broiler industry in Guangxi regardless of the source of the vaccines. Most stakeholders believed vaccination was the best measure to control H7N9 and H5N1 AIVs, and they showed a strong willingness to continue with vaccination even without government subsidies or freely provided vaccines. The motivations by stakeholders for using vaccines to control H7N9 and H5N1 were different due to the epidemiological differences between the two strains. Understanding poultry industry stakeholders' practices and attitudes on H7N9 vaccination has important practical implications in planning vaccination policies, particularly when considering the possibility of vaccination withdrawal.
Collapse
Affiliation(s)
- Hao Tang
- China Animal Health and Epidemiology Centre, Qingdao, China.,School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chaojian Shen
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Lianbin Zou
- Guangxi Centre of Animal Disease Prevention and Control, Nanning, China
| | - Chang Cai
- China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Youming Wang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Ian D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, Australia.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - John Edwards
- China Animal Health and Epidemiology Centre, Qingdao, China.,School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Baoxu Huang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Mieghan Bruce
- School of Veterinary Medicine, Murdoch University, Perth, Australia.,Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Australia
| |
Collapse
|
5
|
Jung MK, Shin EC. Phenotypes and Functions of SARS-CoV-2-Reactive T Cells. Mol Cells 2021; 44:401-407. [PMID: 34120892 PMCID: PMC8245315 DOI: 10.14348/molcells.2021.0079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea
| |
Collapse
|
6
|
Jang YH, Seong BL. Immune Responses Elicited by Live Attenuated Influenza Vaccines as Correlates of Universal Protection against Influenza Viruses. Vaccines (Basel) 2021; 9:vaccines9040353. [PMID: 33916924 PMCID: PMC8067561 DOI: 10.3390/vaccines9040353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza virus infection remains a major public health challenge, causing significant morbidity and mortality by annual epidemics and intermittent pandemics. Although current seasonal influenza vaccines provide efficient protection, antigenic changes of the viruses often significantly compromise the protection efficacy of vaccines, rendering most populations vulnerable to the viral infection. Considerable efforts have been made to develop a universal influenza vaccine (UIV) able to confer long-lasting and broad protection. Recent studies have characterized multiple immune correlates required for providing broad protection against influenza viruses, including neutralizing antibodies, non-neutralizing antibodies, antibody effector functions, T cell responses, and mucosal immunity. To induce broadly protective immune responses by vaccination, various strategies using live attenuated influenza vaccines (LAIVs) and novel vaccine platforms are under investigation. Despite superior cross-protection ability, very little attention has been paid to LAIVs for the development of UIV. This review focuses on immune responses induced by LAIVs, with special emphasis placed on the breadth and the potency of individual immune correlates. The promising prospect of LAIVs to serve as an attractive and reliable vaccine platforms for a UIV is also discussed. Several important issues that should be addressed with respect to the use of LAIVs as UIV are also reviewed.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong 1375, Korea;
- Vaccine Industry Research Institute, Andong National University, Andong 1375, Korea
| | - Baik L. Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2123-7416
| |
Collapse
|
7
|
Atalla E, Kalligeros M, Mylona EK, Tsikala-Vafea M, Shehadeh F, Georgakas J, Mylonakis E. Impact of Influenza Infection Among Adult and Pediatric Populations With Hematologic Malignancy and Hematopoietic Stem Cell Transplant: A Systematic Review and Meta-Analysis. Clin Ther 2021; 43:e66-e85. [PMID: 33812700 DOI: 10.1016/j.clinthera.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Influenza is increasingly recognized as a leading cause of morbidity and mortality in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation (HSCT). However, the impact of influenza on this population has not been previously evaluated in a systematic review. This study systematically reviewed and summarized the outcomes of influenza infection as to in-hospital influenza-related mortality, development of lower respiratory tract infection and acute respiratory distress syndrome, need for hospitalization, intensive care unit admission, and mechanical ventilation. METHODS We conducted a systematic search of literature using the PubMed and EMBASE databases for articles published from January 1989 through January 19, 2020, reporting laboratory-confirmed influenza in patients of any age with hematologic malignancies and HSCT. Time from transplantation was not included in the search criteria. The impact of antiviral therapy on influenza outcomes was not assessed due to heterogeneity in antiviral treatment provision across the studies. Patients with influenza-like illness, solid-tumor cancers, or nonmalignant hematologic diseases were excluded from the study. A random-effects meta-analysis was performed to estimate the prevalences and 95% CIs of each outcome of interest. A subgroup analysis was carried out to assess possible sources of heterogeneity and to evaluate the potential impact of age on the influenza infection outcomes. Heterogeneity was assessed using the I2 statistic. FINDINGS Data from 52 studies providing data on 1787 patients were included in this analysis. During seasonal epidemics, influenza-related in-hospital mortality was 16.60% (95% CI, 7.49%-27.7%), with a significantly higher death rate in adults compared to pediatric patients (19.55% [95% CI, 10.59%-29.97%] vs 0.96% [95% CI, 0%-6.77%]; P < 0.001). Complications from influenza, such as lower respiratory tract infection, developed in 35.44% of patients with hematologic malignancies and HSCT recipients, with a statistically significant difference between adults and children (46.14% vs 19.92%; P < 0.001). However, infection resulted in a higher hospital admission rate in pediatric patients compared to adults (61.62% vs 22.48%; P < 0.001). For the 2009 H1N1 pandemic, no statistically significant differences were found between adult and pediatric patients when comparing the rates of influenza-related in-hospital mortality, lower respiratory tract infection, and hospital admission. Similarly, no significant differences were noted in any of the outcomes of interest when comparing H1N1 pandemic with seasonal epidemics. IMPLICATIONS Regardless of influenza season, patients, and especially adults, with underlying hematologic malignancies and HSCT recipients with influenza are at risk for severe outcomes including lower respiratory tract infection and in-hospital mortality.
Collapse
Affiliation(s)
- Eleftheria Atalla
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Markos Kalligeros
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Evangelia K Mylona
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Maria Tsikala-Vafea
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Fadi Shehadeh
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Joanna Georgakas
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island.
| |
Collapse
|
8
|
T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021; 13:v13020199. [PMID: 33525620 PMCID: PMC7911237 DOI: 10.3390/v13020199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.
Collapse
|
9
|
Alcorn JF, Avula R, Chakka AB, Schwarzmann WE, Nowalk MP, Lin CJ, Ortiz MA, Horne WT, Chandran UR, Nagg JP, Zimmerman RK, Cole KS, Moehling KK, Martin JM. Differential gene expression in peripheral blood mononuclear cells from children immunized with inactivated influenza vaccine. Hum Vaccin Immunother 2020; 16:1782-1790. [PMID: 32298194 DOI: 10.1080/21645515.2020.1711677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human immune response to inactivated influenza vaccine is dynamic and impacted by age and preexisting immunity. Our goal was to identify postvaccination transcriptomic changes in peripheral blood mononuclear cells from children. Blood samples were obtained before and at 3 or 7 days postvaccination with 2016-2017 quadrivalent inactivated influenza vaccine and RNA sequencing was performed. There were 1,466 differentially expressed genes (DEGs) for the Day 0-Day 3 group and 513 DEGs for the Day 0-Day 7 group. Thirty-three genes were common between the two groups. The majority of the transcriptomic changes at Day 3 represented innate inflammation and apoptosis pathways. Day 7 DEGs were characterized by activation of cellular processes, including the regulation of cytoskeleton, junctions, and metabolism, and increased expression of immunoglobulin genes. DEGs at Day 3 were compared between older and younger children revealing increased inflammatory gene expression in the older group. Vaccine history in the year prior to the study was characterized by robust DEGs at Day 3 with decreased phagosome and dendritic cell maturation in those who had been vaccinated in the previous year. PBMC responses to inactivated influenza vaccination in children differed significantly by the timing of sampling, patient age, and vaccine history. These data provide insight into the expected molecular pathways to be temporally altered by influenza vaccination in children.
Collapse
Affiliation(s)
- John F Alcorn
- Department of Pediatrics, University of Pittsburgh , Pittsburgh, PA, USA
| | - Raghunandan Avula
- Department of Biomedical Informatics, University of Pittsburgh , Pittsburgh, PA, USA
| | - Anish B Chakka
- Department of Biomedical Informatics, University of Pittsburgh , Pittsburgh, PA, USA
| | - William E Schwarzmann
- Department of Biomedical Informatics, University of Pittsburgh , Pittsburgh, PA, USA
| | | | | | - Marianna A Ortiz
- Department of Pediatrics, University of Pittsburgh , Pittsburgh, PA, USA.,Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA, USA
| | - William T Horne
- Department of Pediatrics, University of Pittsburgh , Pittsburgh, PA, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh , Pittsburgh, PA, USA
| | - Jennifer P Nagg
- Department of Pediatrics, University of Pittsburgh , Pittsburgh, PA, USA
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh , Pittsburgh, PA, USA
| | - Kelly S Cole
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA, USA
| | - Krissy K Moehling
- Department of Family Medicine, University of Pittsburgh , Pittsburgh, PA, USA
| | - Judith M Martin
- Department of Pediatrics, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
10
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
11
|
Prevalence of influenza vaccination among health care workers and adverse effects after vaccination: A cross-sectional study. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.593735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
de Hoog MLA, Venekamp RP, Damoiseaux RAMJ, Schilder AGM, Sanders EAM, Smit HA, Bruijning-Verhagen PCJL. Impact of Repeated Influenza Immunization on Respiratory Illness in Children With Preexisting Medical Conditions. Ann Fam Med 2019; 17:7-13. [PMID: 30670389 PMCID: PMC6342594 DOI: 10.1370/afm.2340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Annual influenza immunization in medical risk groups is recommended in many countries. Recent evidence suggests that repeated inactivated influenza vaccine (IIV) immunization throughout childhood may impair long-term immunity against influenza. We assessed whether prior immunization altered the effect of IIV in children with preexisting medical conditions on primary care-diagnosed respiratory illness (RI) episodes during the influenza season. METHODS Electronic records of IIV-immunized children who met the criteria for annual IIV immunization according to Dutch guidelines were extracted from a primary care database from 2004 to 2015. For each year, we collected information on IIV immunization status, primary care-attended RI episodes (including influenza-like illness, acute RI, and asthma exacerbation), and potential confounders. Generalized estimating equations were used to model the association between prior IIV and occurrence of at least one RI episode during the influenza season, with "current year immunized but without IIV history" as reference group. RESULTS A total of 4,183 children (follow-up duration: 11,493 child-years) were IIV immunized at least once. Adjusted estimates showed lower odds for RI in current year-immunized children with prior IIV compared with those without (odds ratio [OR] = 0.61; 95% CI, 0.47-0.78 for "current year immunized and one IIV in previous 2 years"; OR = 0.85; 95% CI, 0.68-1.07 for "current year immunized and ≥2 IIVs in previous 3 years, including prior year"). CONCLUSION Repeated IIV immunization in children with preexisting medical conditions has no negative impact on, and may even increase, long-term protection against RI episodes diagnosed during the influenza season in primary care.
Collapse
Affiliation(s)
- Marieke L A de Hoog
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, The Netherlands
| | - Roderick P Venekamp
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, The Netherlands
| | - Roger A M J Damoiseaux
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, The Netherlands
| | - Anne G M Schilder
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, The Netherlands.,evidENT, Ear Institute, University College London, London, United Kingdom
| | - Elisabeth A M Sanders
- Wilhelmina Children's Hospital, University Medical Center, Utrecht University, The Netherlands.,Netherlands National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Henriette A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, The Netherlands
| | - Patricia C J L Bruijning-Verhagen
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, The Netherlands.,Netherlands National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
13
|
Epstein SL. Universal Influenza Vaccines: Progress in Achieving Broad Cross-Protection In Vivo. Am J Epidemiol 2018; 187:2603-2614. [PMID: 30084906 DOI: 10.1093/aje/kwy145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Despite all we have learned since 1918 about influenza virus and immunity, available influenza vaccines remain inadequate to control outbreaks of unexpected strains. Universal vaccines not requiring strain matching would be a major improvement. Their composition would be independent of predicting circulating viruses and thus potentially effective against unexpected drift or pandemic strains. This commentary explores progress with candidate universal vaccines based on various target antigens. Candidates include vaccines based on conserved viral proteins such as nucleoprotein and matrix, on the conserved hemagglutinin (HA) stem, and various combinations. Discussion covers the differing evidence for each candidate vaccine demonstrating protection in animals against influenza viruses of widely divergent HA subtypes and groups; durability of protection; routes of administration, including mucosal, providing local immunity; and reduction of transmission. Human trials of some candidate universal vaccines have been completed or are underway. Interestingly, the HA stem, like nucleoprotein and matrix, induces immunity that permits some virus replication and emergence of escape mutants fit enough to cause disease. Vaccination with multiple target antigens will thus have advantages over use of single antigens. Ultimately, a universal vaccine providing long-term protection against all influenza virus strains might contribute to pandemic control and routine vaccination.
Collapse
Affiliation(s)
- Suzanne L Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
14
|
Short KR, Kedzierska K, van de Sandt CE. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Front Cell Infect Microbiol 2018; 8:343. [PMID: 30349811 PMCID: PMC6187080 DOI: 10.3389/fcimb.2018.00343] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ~50 million people worldwide. The severity of this pandemic resulted from a complex interplay between viral, host, and societal factors. Here, we review the viral, genetic and immune factors that contributed to the severity of the 1918 pandemic and discuss the implications for modern pandemic preparedness. We address unresolved questions of why the 1918 influenza H1N1 virus was more virulent than other influenza pandemics and why some people survived the 1918 pandemic and others succumbed to the infection. While current studies suggest that viral factors such as haemagglutinin and polymerase gene segments most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young adults was most likely associated with the host's immune status. Lack of pre-existing virus-specific and/or cross-reactive antibodies and cellular immunity in children and young adults likely contributed to the high attack rate and rapid spread of the 1918 H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to the role of humoral and cellular immunity, there is a growing body of evidence to suggest that individual genetic differences, especially involving single-nucleotide polymorphisms (SNPs), contribute to differences in the severity of influenza virus infections. Co-infections with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition or obesity are also known to affect the severity of influenza disease, and likely influenced 1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new challenges, such as changing population demographics, antibiotic resistance and climate change, which we will face in the context of any future influenza virus pandemic. In the last decade there has been a dramatic increase in the number of severe influenza virus strains entering the human population from animal reservoirs (including highly pathogenic H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the lessons that we have learnt from them has therefore never been more pertinent.
Collapse
Affiliation(s)
- Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
15
|
Valenciano M, Kissling E, Larrauri A, Nunes B, Pitigoi D, O'Donnell J, Reuss A, Horváth JK, Paradowska‐Stankiewicz I, Rizzo C, Falchi A, Daviaud I, Brytting M, Meijer A, Kaic B, Gherasim A, Machado A, Ivanciuc A, Domegan L, Schweiger B, Ferenczi A, Korczyńska M, Bella A, Vilcu A, Mosnier A, Zakikhany K, de Lange M, Kurečić Filipovićović S, Johansen K, Moren A, I‐MOVE primary care multicentre case‐control team. Exploring the effect of previous inactivated influenza vaccination on seasonal influenza vaccine effectiveness against medically attended influenza: Results of the European I-MOVE multicentre test-negative case-control study, 2011/2012-2016/2017. Influenza Other Respir Viruses 2018; 12:567-581. [PMID: 29659149 PMCID: PMC6086844 DOI: 10.1111/irv.12562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Results of previous influenza vaccination effects on current season influenza vaccine effectiveness (VE) are inconsistent. OBJECTIVES To explore previous influenza vaccination effects on current season VE among population targeted for vaccination. METHODS We used 2011/2012 to 2016/2017 I-MOVE primary care multicentre test-negative data. For each season, we compared current season adjusted VE (aVE) between individuals vaccinated and unvaccinated in previous season. Using unvaccinated in both seasons as a reference, we then compared aVE between vaccinated in both seasons, current only, and previous only. RESULTS We included 941, 2645 and 959 influenza-like illness patients positive for influenza A(H1N1)pdm09, A(H3N2) and B, respectively, and 5532 controls. In 2011/2012, 2014/2015 and 2016/2017, A(H3N2) aVE point estimates among those vaccinated in previous season were -68%, -21% and -19%, respectively; among unvaccinated in previous season, these were 33%, 48% and 46%, respectively (aVE not computable for influenza A(H1N1)pdm09 and B). Compared to current season vaccination only, VE for both seasons' vaccination was (i) similar in two of four seasons for A(H3N2) (absolute difference [ad] 6% and 8%); (ii) lower in three of four seasons for influenza A(H1N1)pdm09 (ad 18%, 26% and 29%), in two seasons for influenza A(H3N2) (ad 27% and 39%) and in two of three seasons for influenza B (ad 26% and 37%); (iii) higher in one season for influenza A(H1N1)pdm09 (ad 20%) and influenza B (ad 24%). CONCLUSIONS We did not identify any pattern of previous influenza vaccination effect. Prospective cohort studies documenting influenza infections, vaccinations and vaccine types are needed to understand previous influenza vaccinations' effects.
Collapse
Affiliation(s)
| | | | - Amparo Larrauri
- National Centre of EpidemiologyInstitute of Health Carlos IIIMadridSpain
| | - Baltazar Nunes
- Department of EpidemiologyInstituto Nacional de Saúde, Doctor Ricardo JorgeLisboaPortugal
| | - Daniela Pitigoi
- University of Medicine and Pharmacy Carol DavilaBucharestRomania
- Cantacuzino InstituteNational Institute of Research – Development for Microbiology and ImmunologyBucharestRomania
| | - Joan O'Donnell
- Health Service Executive – Health Protection Surveillance CentreDublinIreland
| | - Annicka Reuss
- Department for Infectious Disease EpidemiologyRobert Koch InstituteBerlinGermany
| | - Judit Krisztina Horváth
- Department of Disease Prevention and SurveillanceNational Centre for EpidemiologyBudapestHungary
| | | | - Caterina Rizzo
- National Center for Epidemiology, Surveillance and Health PromotionIstituto Superiore di SanitàRomeItaly
| | | | | | - Mia Brytting
- The Public Health Agency of SwedenStockholmSweden
| | - Adam Meijer
- Centre for Infectious Disease ControlNational Institute of Public Health and Environment (RIVM)BilthovenThe Netherlands
| | | | - Alin Gherasim
- National Centre of EpidemiologyInstitute of Health Carlos IIIMadridSpain
| | - Ausenda Machado
- Department of EpidemiologyInstituto Nacional de Saúde, Doctor Ricardo JorgeLisboaPortugal
| | - Alina Ivanciuc
- Cantacuzino InstituteNational Institute of Research – Development for Microbiology and ImmunologyBucharestRomania
| | - Lisa Domegan
- Health Service Executive – Health Protection Surveillance CentreDublinIreland
| | - Brunhilde Schweiger
- Department for Infectious Disease EpidemiologyRobert Koch InstituteBerlinGermany
| | - Annamária Ferenczi
- Department of Disease Prevention and SurveillanceNational Centre for EpidemiologyBudapestHungary
| | - Monika Korczyńska
- National Institute of Public Health – National Institute of HygieneWarsawPoland
| | - Antonino Bella
- National Center for Epidemiology, Surveillance and Health PromotionIstituto Superiore di SanitàRomeItaly
| | - Ana‐Maria Vilcu
- Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136)UPMC Univ Paris 06, INSERMSorbonne UniversitésParisFrance
| | | | | | - Marit de Lange
- Centre for Infectious Disease ControlNational Institute of Public Health and Environment (RIVM)BilthovenThe Netherlands
| | | | - Kari Johansen
- European Centre for Disease Prevention and Control (ECDC)StockholmSweden
| | | | | |
Collapse
|
16
|
Mohn KGI, Smith I, Sjursen H, Cox RJ. Immune responses after live attenuated influenza vaccination. Hum Vaccin Immunother 2018; 14:571-578. [PMID: 28933664 PMCID: PMC5861782 DOI: 10.1080/21645515.2017.1377376] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/07/2017] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
Abstract
Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future "universal influenza vaccine". In this review we aim to cover the current understanding of the immune responses induced after LAIV.
Collapse
Affiliation(s)
| | - Ingrid Smith
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Haakon Sjursen
- Medical Department, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- The Influenza Center
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Center for Influenza Vaccines, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Singanayagam A, Zambon M, Lalvani A, Barclay W. Urgent challenges in implementing live attenuated influenza vaccine. THE LANCET. INFECTIOUS DISEASES 2017; 18:e25-e32. [PMID: 28780285 DOI: 10.1016/s1473-3099(17)30360-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022]
Abstract
Conflicting reports have emerged about the effectiveness of the live attenuated influenza vaccine. The live attenuated influenza vaccine appears to protect particularly poorly against currently circulating H1N1 viruses that are derived from the 2009 pandemic H1N1 viruses. During the 2015-16 influenza season, when pandemic H1N1 was the predominant virus, studies from the USA reported a complete lack of effectiveness of the live vaccine in children. This finding led to a crucial decision in the USA to recommend that the live vaccine not be used in 2016-17 and to switch to the inactivated influenza vaccine. Other countries, including the UK, Canada, and Finland, however, have continued to recommend the use of the live vaccine. This policy divergence and uncertainty has far reaching implications for the entire global community, given the importance of the production capabilities of the live attenuated influenza vaccine for pandemic preparedness. In this Personal View, we discuss possible explanations for the observed reduced effectiveness of the live attenuated influenza vaccine and highlight the underpinning scientific questions. Further research to understand the reasons for these observations is essential to enable informed public health policy and commercial decisions about vaccine production and development in coming years.
Collapse
Affiliation(s)
- Anika Singanayagam
- Department of Medicine, Imperial College, London, UK; NIHR Health Protection Research Unit in Respiratory Infections, Imperial College, London, UK
| | - Maria Zambon
- Virus Reference Department, National Infection Service, Public Health England, Colindale, London, UK; NIHR Health Protection Research Unit in Respiratory Infections, Imperial College, London, UK
| | - Ajit Lalvani
- National Heart and Lung Institute, Imperial College, London, UK; NIHR Health Protection Research Unit in Respiratory Infections, Imperial College, London, UK
| | - Wendy Barclay
- Department of Medicine, Imperial College, London, UK; NIHR Health Protection Research Unit in Respiratory Infections, Imperial College, London, UK.
| |
Collapse
|
18
|
Effects of prior influenza virus vaccination on maternal antibody responses: Implications for achieving protection in the newborns. Vaccine 2017; 35:5283-5290. [PMID: 28778612 DOI: 10.1016/j.vaccine.2017.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND In the US, influenza vaccination is recommended annually to everyone ≥6months. Prior receipt of influenza vaccine can dampen antibody responses to subsequent vaccination. This may have implications for pregnant women and their newborns, groups at high risk for complications from influenza infection. OBJECTIVE This study examined effects of prior vaccination on maternal and cord blood antibody levels in a cohort of pregnant women in the US. STUDY DESIGN Influenza antibody titers were measured in 141 pregnant women via the hemagglutination inhibition (HAI) assay prior to receipt of quadrivalent influenza vaccine, 30days post-vaccination, and at delivery (maternal and cord blood). Logistic regression analyses adjusting for age, BMI, parity, gestational age at vaccination, and year of vaccination compared HAI titers, seroprotection, and seroconversion in women with versus without vaccination in the prior year. RESULTS Compared to those without vaccination in the previous year (n=50), women with prior vaccination (n=91) exhibited higher baseline antibody titers and/or seroprotection rates against all four strains after controlling for covariates. Prior vaccination also predicted lower antibody responses and seroconversion rates at one month post-vaccination. However, at delivery, there were no significant differences in antibody titers or seroprotection rates in women or newborns, and no meaningful differences in the efficiency of antibody transfer, as indicated by the ratio of cord blood to maternal antibody titers at the time of delivery. CONCLUSION In this cohort of pregnant women, receipt of influenza vaccine the previous year predicted higher baseline antibody titers and decreased antibody responses at one month post-vaccination against all influenza strains. However, prior maternal vaccination did not significantly affect either maternal antibody levels at delivery or antibody levels transferred to the neonate. This study is registered with the NIH as a clinical trial (NCT02148874).
Collapse
|
19
|
Rondy M, Launay O, Castilla J, Costanzo S, Puig-Barberà J, Gefenaite G, Larrauri A, Rizzo C, Pitigoi D, Syrjänen RK, Machado A, Kurečić Filipović S, Krisztina Horváth J, Paradowska-Stankiewicz I, Marbus S, Moren A. Repeated seasonal influenza vaccination among elderly in Europe: Effects on laboratory confirmed hospitalised influenza. Vaccine 2017; 35:4298-4306. [PMID: 28709555 DOI: 10.1016/j.vaccine.2017.06.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 11/19/2022]
Abstract
In Europe, annual influenza vaccination is recommended to elderly. From 2011 to 2014 and in 2015-16, we conducted a multicentre test negative case control study in hospitals of 11 European countries to measure influenza vaccine effectiveness (IVE) against laboratory confirmed hospitalised influenza among people aged ≥65years. We pooled four seasons data to measure IVE by past exposures to influenza vaccination. We swabbed patients admitted for clinical conditions related to influenza with onset of severe acute respiratory infection ≤7days before admission. Cases were patients RT-PCR positive for influenza virus and controls those negative for any influenza virus. We documented seasonal vaccination status for the current season and the two previous seasons. We recruited 5295 patients over the four seasons, including 465A(H1N1)pdm09, 642A(H3N2), 278 B case-patients and 3910 controls. Among patients unvaccinated in both previous two seasons, current seasonal IVE (pooled across seasons) was 30% (95%CI: -35 to 64), 8% (95%CI: -94 to 56) and 33% (95%CI: -43 to 68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Among patients vaccinated in both previous seasons, current seasonal IVE (pooled across seasons) was -1% (95%CI: -80 to 43), 37% (95%CI: 7-57) and 43% (95%CI: 1-68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Our results suggest that, regardless of patients' recent vaccination history, current seasonal vaccine conferred some protection to vaccinated patients against hospitalisation with influenza A(H3N2) and B. Vaccination of patients already vaccinated in both the past two seasons did not seem to be effective against A(H1N1)pdm09. To better understand the effect of repeated vaccination, engaging in large cohort studies documenting exposures to vaccine and natural infection is needed.
Collapse
Affiliation(s)
| | - Odile Launay
- Inserm, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), Paris, France; CIC De Vaccinologie, Cochin-Pasteur, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jesus Castilla
- Instituto de Salud Pública de Navarra, IdiSNA, Pamplona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (Isernia), Italy
| | - Joan Puig-Barberà
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain; Centro de Salud Pública de Castellón, Castellón, Spain
| | - Giedre Gefenaite
- Department of Infectious Diseases of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Amparo Larrauri
- National Centre of Epidemiology, CIBER Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Spain
| | - Caterina Rizzo
- Epidemiology Unit Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | | | - Ritva K Syrjänen
- Impact Assessment Unit, National Institute for Health and Welfare (THL), Tampere, Finland
| | - Ausenda Machado
- Epidemiology Research Unit, Epidemiology Department, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | | | - Judit Krisztina Horváth
- National Centre for Epidemiology, Department of Communicable Disease Prevention and Surveillance, Budapest, Hungary
| | | | - Sierk Marbus
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
20
|
Belongia EA, Skowronski DM, McLean HQ, Chambers C, Sundaram ME, De Serres G. Repeated annual influenza vaccination and vaccine effectiveness: review of evidence. Expert Rev Vaccines 2017; 16:1-14. [PMID: 28562111 DOI: 10.1080/14760584.2017.1334554] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Studies in the 1970s and 1980s signaled concern that repeated influenza vaccination could affect vaccine protection. The antigenic distance hypothesis provided a theoretical framework to explain variability in repeat vaccination effects based on antigenic similarity between successive vaccine components and the epidemic strain. Areas covered: A meta-analysis of vaccine effectiveness studies from 2010-11 through 2014-15 shows substantial heterogeneity in repeat vaccination effects within and between seasons and subtypes. When negative effects were observed, they were most pronounced for H3N2, especially in 2014-15 when vaccine components were unchanged and antigenically distinct from the epidemic strain. Studies of repeated vaccination across multiple seasons suggest that vaccine effectiveness may be influenced by more than one prior season. In immunogenicity studies, repeated vaccination blunts the hemagglutinin antibody response, particularly for H3N2. Expert commentary: Substantial heterogeneity in repeated vaccination effects is not surprising given the variation in study populations and seasons, and the variable effects of antigenic distance and immunological landscape in different age groups and populations. Caution is required in the interpretation of pooled results across multiple seasons, since this can mask important variation in repeat vaccination effects between seasons. Multi-season clinical studies are needed to understand repeat vaccination effects and guide recommendations.
Collapse
Affiliation(s)
- Edward A Belongia
- a Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute , Marshfield , WI , USA
| | - Danuta M Skowronski
- b Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control , Vancouver , BC , Canada
| | - Huong Q McLean
- a Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute , Marshfield , WI , USA
| | - Catharine Chambers
- b Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control , Vancouver , BC , Canada
| | - Maria E Sundaram
- c University of Minnesota School of Public Health , Minneapolis , MN , USA
| | - Gaston De Serres
- d Institut National de Sante Publique du Quebec [National Institute of Health of Quebec] , Quebec , Canada.,e Department of Social and Preventive Medicine , Laval University , Quebec , Canada
| |
Collapse
|
21
|
Affiliation(s)
- Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Suzanne L Epstein
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
22
|
Influenza Vaccine Effectiveness in Preventing Influenza Illness Among Children During School-based Outbreaks in the 2014-2015 Season in Beijing, China. Pediatr Infect Dis J 2017; 36:e69-e75. [PMID: 27902651 DOI: 10.1097/inf.0000000000001434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Little is known about vaccine effectiveness (VE) against nonmedically attended A(H3N2) influenza illness during 2014-2015 when the vaccine component appeared to be a poor match with circulating strains. METHODS Forty-three eligible school influenza outbreaks in Beijing, China, from November 1, 2014, to December 31, 2014, were included in this study. The VE of 2014-2015 trivalent inactivated influenza vaccine (IIV3) was assessed in preventing laboratory-confirmed influenza among school-age children through a case-control design, using asymptomatic controls. Influenza vaccination was documented from a vaccination registry. VE was estimated adjusting for age group, sex, rural versus urban area, body mass index, chronic conditions, onset week and schools through a mixed effects logistic regression model. RESULTS The average coverage rate of 2014-2015 IIV3 among students across the 43 schools was 47.6%. The fully adjusted VE of 2014-2015 IIV3 against laboratory-confirmed influenza was 38% [95% confidence interval (CI): 12%-57%]. Receipt of previous season's (2013-2014) IIV3 significantly modified VE of the 2014-2015 IIV3; children who received both 2013-2014 and 2014-2015 vaccinations had VE of 29% (95% CI: -8% to 53%), whereas VE for children who received 2014-2015 IIV3 only was 54% (95% CI: 8%-77%). CONCLUSIONS VE for 2014-2015 IIV3 against A(H3N2) illness identified in schools was modest. Children who did not receive the prior season's vaccine with a homologous A(H3N2) component may have enjoyed greater protection than repeated vaccinees.
Collapse
|
23
|
De Serres G, Skowronski DM, Ward BJ, Gardam M, Lemieux C, Yassi A, Patrick DM, Krajden M, Loeb M, Collignon P, Carrat F. Influenza Vaccination of Healthcare Workers: Critical Analysis of the Evidence for Patient Benefit Underpinning Policies of Enforcement. PLoS One 2017; 12:e0163586. [PMID: 28129360 PMCID: PMC5271324 DOI: 10.1371/journal.pone.0163586] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/27/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Four cluster randomized controlled trials (cRCTs) conducted in long-term care facilities (LTCFs) have reported reductions in patient risk through increased healthcare worker (HCW) influenza vaccination. This evidence has led to expansive policies of enforcement that include all staff of acute care hospitals and other healthcare settings beyond LTCFs. We critique and quantify the cRCT evidence for indirect patient benefit underpinning policies of mandatory HCW influenza vaccination. METHODS Plausibility of the four cRCT findings attributing indirect patient benefits to HCW influenza vaccination was assessed by comparing percentage reductions in patient risk reported by the cRCTs to predicted values. Plausibly predicted values were derived according to the basic mathematical principle of dilution, taking into account HCW influenza vaccine coverage and the specificity of patient outcomes for influenza. Accordingly, predicted values were calculated as a function of relevant compound probabilities including vaccine efficacy (ranging 40-60% in HCWs and favourably assuming the same indirect protection conferred through them to patients) × change in proportionate HCW influenza vaccine coverage (as reported by each cRCT) × percentage of a given patient outcome (e.g. influenza-like illness (ILI) or all-cause mortality) plausibly due to influenza virus. The number needed to vaccinate (NNV) for HCWs to indirectly prevent patient death was recalibrated based on real patient data of hospital-acquired influenza, with adjustment for potential under-detection (5.2-fold), and using favourable assumptions of HCW-attributable risk (ranging 60-80%). RESULTS In attributing patient benefit to increased HCW influenza vaccine coverage, each cRCT was found to violate the basic mathematical principle of dilution by reporting greater percentage reductions with less influenza-specific patient outcomes (i.e., all-cause mortality > ILI > laboratory-confirmed influenza) and/or patient mortality reductions exceeding even favourably-derived predicted values by at least 6- to 15-fold. If extrapolated to all LTCF and hospital staff in the United States, the prior cRCT-claimed NNV of 8 would implausibly mean >200,000 and >675,000 patient deaths, respectively, could be prevented annually by HCW influenza vaccination, inconceivably exceeding total US population mortality estimates due to seasonal influenza each year, or during the 1918 pandemic, respectively. More realistic recalibration based on actual patient data instead shows that at least 6000 to 32,000 hospital workers would need to be vaccinated before a single patient death could potentially be averted. CONCLUSIONS The four cRCTs underpinning policies of enforced HCW influenza vaccination attribute implausibly large reductions in patient risk to HCW vaccination, casting serious doubts on their validity. The impression that unvaccinated HCWs place their patients at great influenza peril is exaggerated. Instead, the HCW-attributable risk and vaccine-preventable fraction both remain unknown and the NNV to achieve patient benefit still requires better understanding. Although current scientific data are inadequate to support the ethical implementation of enforced HCW influenza vaccination, they do not refute approaches to support voluntary vaccination or other more broadly protective practices, such as staying home or masking when acutely ill.
Collapse
Affiliation(s)
- Gaston De Serres
- Institut national de santé publique du Québec, Quebec City, Quebec, Canada
- Laval University, Quebec City, Quebec, Canada
| | - Danuta M. Skowronski
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian J. Ward
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Gardam
- University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Camille Lemieux
- University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Annalee Yassi
- University of British Columbia, Vancouver, British Columbia, Canada
| | - David M. Patrick
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Loeb
- McMaster University, Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Peter Collignon
- Australian National University, Acton, Australia
- Canberra Hospital, Garran, ACT, Australia
| | - Fabrice Carrat
- Institut National de la Santé et de la Recherche Médicale, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
- Sorbonne Universités, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Unité de Santé Publique, Paris, France
| |
Collapse
|
24
|
Kang EK, Eun BW, Kim NH, Lim JS, Lee JA, Kim DH. The priming effect of previous natural pandemic H1N1 infection on the immunogenicity to subsequent 2010-2011 influenza vaccination in children: a prospective cohort study. BMC Infect Dis 2016; 16:438. [PMID: 27549626 PMCID: PMC4994212 DOI: 10.1186/s12879-016-1769-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/10/2016] [Indexed: 12/24/2022] Open
Abstract
Background The effect of previous natural pandemic H1N1 (H1N1 pdm09) influenza infection on the immunogenicity to subsequent inactivated influenza vaccination in children has not been well studied. We aimed to evaluate the effect of H1N1 pdm09 natural infection and vaccination on the immunogenicity to subsequent 2010-2011 seasonal inactivated influenza vaccination in children. Methods From October 2010 to May 2011, we conducted an open-label, multi-center study in children aged 6 months -18 years in Korea. We measured antibody titers with a hemagglutination-inhibition (HI) assay at baseline, 1 month, and 6 months after vaccination with trivalent split or subunit vaccines containing H1N1 pdm, A/H3N2, and B. The subjects were classified into 4 groups depending on the presence of laboratory-confirmed H1N1 pdm09 infection and/or vaccination in the 2009-2010 season; Group I: vaccination (-)/infection(-), Group II: vaccination (-)/infection(+), Group III: vaccination (+)/infection(-), Group IV: vaccination (+)/infection(+). Results Among the subjects in group I, 47 subjects who had a baseline titer >1:10 were considered to have an asymptomatic infection. They were included into the final group II (n = 80). We defined the new group II as the infection-primed (IP) group and group III as the vaccine-primed (VP) group. Seroconversion rate (57.5 % vs 35.9 %, p = 0.001), seroprotection rate at 6 months after vaccination (70.8 % vs 61.8 %, p = 0.032), and GMT at 1 month after vaccination (129.9 vs 66.5, p = 0.002) were significantly higher in the IP group than in the VP group. In the 9–18 year-old group, seroconversion rate and immunogenicity at 1 and 6 months were significantly higher in the IP group than in the VP group. However in the 1–7 year-old age group, there was no significant difference between the two groups. Conclusions Previous H1N1 pdm09 infection appears to have positive effects on immunogenicity of subsequent inactivated influenza vaccines against H1N1 pdm09 in older children.
Collapse
Affiliation(s)
- Eun Kyeong Kang
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Byung Wook Eun
- Department of Pediatrics, Eulji University Eulji General Hospital, Seoul, Korea
| | - Nam Hee Kim
- Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Jung Sub Lim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Jun Ah Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Dong Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea.
| |
Collapse
|
25
|
Vesikari T, Forstén A, Arora A, Tsai T, Clemens R. Influenza vaccination in children primed with MF59-adjuvanted or non-adjuvanted seasonal influenza vaccine. Hum Vaccin Immunother 2016; 11:2102-12. [PMID: 26091244 DOI: 10.1080/21645515.2015.1044167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Routine annual influenza immunization is increasingly recommended in young children. We compared the safety and immunogenicity of vaccination with trivalent inactivated influenza vaccine (TIV) versus MF59-adjuvanted TIV (aTIV) in children who received 2 half or full doses of aTIV or TIV, or non-influenza control vaccine, in an efficacy trial conducted 2 years earlier. 197 healthy children aged 30-96 months were randomized to receive vaccination with aTIV or TIV in 2010. To evaluate responses to the first follow-up seasonal vaccination after priming we excluded children who received influenza vaccine(s) in the 2009 pandemic year leaving 40 children vaccinated with aTIV, 26 children with TIV and 10 children with aTIV after a control vaccine in the parent study. Hemagglutination inhibiting antibodies were assayed on Days 1, 22 and 181. aTIV vaccination produced 6.9 to 8.0-fold higher antibody responses than the reference TIV-TIV regimen against A/H3N2 and B strains, which remained higher 6 months following vaccination. The response to the B/Victoria lineage antigen in the second year's vaccine (the first vaccine contained a B/Yamagata lineage antigen) demonstrated that aTIV primed for an adequate response after a single dose on Day 22 (GMTs 160, 95 to antigens in the 2 lineages, respectively), whereas TIV did not (GMTs 38, 20). Vaccination with aTIV produced slightly higher but acceptable local and systemic reactogenicity compared to TIV-TIV and TIV-aTIV mixed regimens. Within the limitations of a small study, the strong immune responses support the use of aTIV for vaccination in young children.
Collapse
Key Words
- AE, adverse event
- CBER, Center for Biologics Evaluation & Research
- CHMP, European Committee for Medicinal Products for Human Use
- CI, confidence interval
- FAS, full analyses set
- GMR, geometric mean ratio
- GMT, geometric mean titer
- HI, hemagglutination inhibition
- LAIV, live-attenuated influenza vaccine
- MF59
- SAE, serious adverse event
- SD, standard deviation
- TIV, trivalent inactivated influenza vaccine
- aTIV, MF59-adjuvanted trivalent inactivated influenza vaccine
- adjuvant
- influenza
- pediatric
- revaccination
- seasonal vaccine
Collapse
Affiliation(s)
- Timo Vesikari
- a University of Tampere Medical School ; Tampere , Finland
| | | | | | | | | |
Collapse
|
26
|
Schotsaert M, Ysenbaert T, Smet A, Schepens B, Vanderschaeghe D, Stegalkina S, Vogel TU, Callewaert N, Fiers W, Saelens X. Long-Lasting Cross-Protection Against Influenza A by Neuraminidase and M2e-based immunization strategies. Sci Rep 2016; 6:24402. [PMID: 27072615 PMCID: PMC4829898 DOI: 10.1038/srep24402] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/29/2016] [Indexed: 12/01/2022] Open
Abstract
There is mounting evidence that in the absence of neutralizing antibodies cross-reactive T cells provide protection against pandemic influenza viruses. Here, we compared protection and CD8+ T cell responses following challenge with H1N1 2009 pandemic and H3N2 viruses of mice that had been immunized with hemagglutinin (HA), neuraminidase (NA) and the extracellular domain of matrix protein 2 (M2e) fused to a virus-like particle (VLP). Mice were challenged a first time with a sublethal dose of H1N1 2009 pandemic virus and, four weeks later, challenged again with an H3N2 virus. Mice that had been vaccinated with HA, NA, NA + M2e-VLP and HA + NA + M2e-VLP were protected against homologous H1N1 virus challenge. Challenged NA and NA + M2e-VLP vaccinated mice mounted CD8+ T cell responses that correlated with protection against secondary H3N2 challenge. HA-vaccinated mice were fully protected against challenge with homologous H1N1 2009 virus, failed to mount cross-reactive CD8+ T cells and succumbed to the second challenge with heterologous H3N2 virus. In summary, NA- and M2e-based immunity can protect against challenge with (homologous) virus without compromising the induction of robust cross-reactive CD8+ T cell responses upon exposure to virus.
Collapse
Affiliation(s)
- Michael Schotsaert
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Tine Ysenbaert
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Anouk Smet
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Dieter Vanderschaeghe
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | | | - Thorsten U Vogel
- Sanofi Pasteur, Research North America, Cambridge, Massachusetts, USA
| | - Nico Callewaert
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | - Walter Fiers
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| |
Collapse
|
27
|
García M, Misplon JA, Price GE, Lo CY, Epstein SL. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice. PLoS One 2016; 11:e0153195. [PMID: 27055234 PMCID: PMC4824498 DOI: 10.1371/journal.pone.0153195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023] Open
Abstract
Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.
Collapse
Affiliation(s)
- Mayra García
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Julia A. Misplon
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Graeme E. Price
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Chia-Yun Lo
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Suzanne L. Epstein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
28
|
Amer A, Fischer H, Li X, Asmar B. Possible Impact of Yearly Childhood Vaccination With Trivalent Inactivated Influenza Vaccine (TIV) on the Immune Response to the Pandemic Strain H1N1. Clin Pediatr (Phila) 2016; 55:245-50. [PMID: 26159622 DOI: 10.1177/0009922815594357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Annual vaccination of children against seasonal influenza with trivalent inactivated influenza vaccine (TIV) has shown to be beneficial. However, this yearly practice may have unintended effect. Studies have shown that infection with wild type influenza A viruses can stimulate protective heterotypic immunity against unrelated or new influenza subtypes. We hypothesized that a consequence of yearly TIV vaccination is lack of induction of heterotypic immunity against the recent H1N1 pandemic. METHODS This was a retrospective case-control study. We reviewed the medical records of polymerase chain reaction-confirmed cases of 2009 H1N1 influenza infection in children 6 months to 18 years and a matched control group seen during the pandemic. RESULTS We identified 353 polymerase chain reaction-confirmed H1N1 cases and 396 matching control subjects. Among the H1N1 group, 202/353 (57%) cases received a total of 477 doses of seasonal TIV compared with 218/396 (55%) in the control group who received a total of 435 doses. Seasonal TIV uptake was significantly higher in the H1N1 group 477/548 (87%) than in the control group, 435/532 (81%) (P = .017). CONCLUSION Seasonal TIV uptake was significantly higher in H1N1-infected group. The finding suggests that the practice of yearly vaccination with TIV might have negatively affected the immune response against the novel pandemic H1N1 strain. Given the rarity of pandemic novel influenza viruses, and the high predictability of seasonal influenza occurrence, the practice of yearly influenza vaccination should be continued. However, the use of live attenuated intranasal vaccine, as opposed to TIV, may allow for the desirable development of a vigorous heterotypic immune response against future pandemics.
Collapse
Affiliation(s)
- Ahdi Amer
- Wayne State University School of Medicine, Detroit, MI, USA Children's Hospital of Michigan, Detroit, MI, USA
| | - Howard Fischer
- Wayne State University School of Medicine, Detroit, MI, USA Children's Hospital of Michigan, Detroit, MI, USA
| | - Xiaoming Li
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Basim Asmar
- Wayne State University School of Medicine, Detroit, MI, USA Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
29
|
Lang YC, Stitt-Fischer M. Evaluation of a University-Based Mandatory Vaccine Program. Workplace Health Saf 2015; 63:179-88; quiz 189. [PMID: 26081474 DOI: 10.1177/2165079915580036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to determine the effectiveness of an educational program for the University's mandatory vaccination program. The study examined the relationship between level of education, gender, and/or job classification and information retention and perceptions of the mandatory vaccination program. The hypothesis was that understanding and information retention level was increased in personnel with increased levels of basic and higher education and job classification complexity. The outcomes identified will be used to revise and improve the vaccine education program and materials, as well as develop recommendations to be used as a model by other institutions that may require a similar mandatory vaccination program.
Collapse
|
30
|
Abstract
Seasonal influenza is a significant public health concern globally. While influenza vaccines are the single most effective intervention to reduce influenza morbidity and mortality, there is considerable debate surrounding the merits and consequences of repeated seasonal vaccination. Here, we describe a two-season influenza epidemic contact network model and use it to demonstrate that increasing the level of continuity in vaccination across seasons reduces the burden on public health. We show that revaccination reduces the influenza attack rate not only because it reduces the overall number of susceptible individuals, but also because it better protects highly connected individuals, who would otherwise make a disproportionately large contribution to influenza transmission. We also demonstrate that our results hold on an empirical contact network, in the presence of assortativity in vaccination status, and are robust for a range of vaccine coverage and efficacy levels. Our work contributes a population-level perspective to debates about the merits of repeated influenza vaccination and advocates for public health policy to incorporate individual vaccine histories.
Collapse
|
31
|
Deng L, Cho KJ, Fiers W, Saelens X. M2e-Based Universal Influenza A Vaccines. Vaccines (Basel) 2015; 3:105-36. [PMID: 26344949 PMCID: PMC4494237 DOI: 10.3390/vaccines3010105] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022] Open
Abstract
The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future.
Collapse
Affiliation(s)
- Lei Deng
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Ki Joon Cho
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Walter Fiers
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Xavier Saelens
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
32
|
Zhang XS, Pebody R, De Angelis D, White PJ, Charlett A, McCauley JW. The Possible Impact of Vaccination for Seasonal Influenza on Emergence of Pandemic Influenza via Reassortment. PLoS One 2014; 9:e114637. [PMID: 25494180 PMCID: PMC4262424 DOI: 10.1371/journal.pone.0114637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One pathway through which pandemic influenza strains might emerge is reassortment from coinfection of different influenza A viruses. Seasonal influenza vaccines are designed to target the circulating strains, which intuitively decreases the prevalence of coinfection and the chance of pandemic emergence due to reassortment. However, individual-based analyses on 2009 pandemic influenza show that the previous seasonal vaccination may increase the risk of pandemic A(H1N1) pdm09 infection. In view of pandemic influenza preparedness, it is essential to understand the overall effect of seasonal vaccination on pandemic emergence via reassortment. METHODS AND FINDINGS In a previous study we applied a population dynamics approach to investigate the effect of infection-induced cross-immunity on reducing such a pandemic risk. Here the model was extended by incorporating vaccination for seasonal influenza to assess its potential role on the pandemic emergence via reassortment and its effect in protecting humans if a pandemic does emerge. The vaccination is assumed to protect against the target strains but only partially against other strains. We find that a universal seasonal vaccine that provides full-spectrum cross-immunity substantially reduces the opportunity of pandemic emergence. However, our results show that such effectiveness depends on the strength of infection-induced cross-immunity against any novel reassortant strain. If it is weak, the vaccine that induces cross-immunity strongly against non-target resident strains but weakly against novel reassortant strains, can further depress the pandemic emergence; if it is very strong, the same kind of vaccine increases the probability of pandemic emergence. CONCLUSIONS Two types of vaccines are available: inactivated and live attenuated, only live attenuated vaccines can induce heterosubtypic immunity. Current vaccines are effective in controlling circulating strains; they cannot always help restrain pandemic emergence because of the uncertainty of the oncoming reassortant strains, however. This urges the development of universal vaccines for prevention of pandemic influenza.
Collapse
Affiliation(s)
- Xu-Sheng Zhang
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, United Kingdom
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College School of Public Health, London, United Kingdom
- * E-mail:
| | - Richard Pebody
- Respiratory Diseases Department, Centre for Infectious Disease Surveillance and Control, Public Health England, London, United Kingdom
| | - Daniela De Angelis
- Statistics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, United Kingdom
- Medical Research Council Biostatistics Unit, University Forvie Site, Cambridge, United Kingdom
| | - Peter J. White
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, United Kingdom
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College School of Public Health, London, United Kingdom
- NIHR Health Protection Research Unit in Modelling Methodology, Department of Infectious Disease Epidemiology, Imperial College School of Public Health, London, United Kingdom
| | - Andre Charlett
- Statistics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, United Kingdom
| | - John W. McCauley
- Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
| |
Collapse
|
33
|
Influenza vaccines: a moving interdisciplinary field. Viruses 2014; 6:3809-26. [PMID: 25302957 PMCID: PMC4213563 DOI: 10.3390/v6103809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 01/05/2023] Open
Abstract
Vaccination is by far the most effective way of preventing morbidity and mortality due to infection of the upper respiratory tract by influenza virus. Current vaccines require yearly vaccine updates as the influenza virus can escape vaccine-induced humoral immunity due to the antigenic variability of its surface antigens. In case of a pandemic, new vaccines become available too late with current vaccine practices. New technologies that allow faster production of vaccine seed strains in combination with alternative production platforms and vaccine formulations may shorten the time gap between emergence of a new influenza virus and a vaccine becoming available. Adjuvants may allow antigen-sparing, allowing more people to be vaccinated with current vaccine production capacity. Adjuvants and universal vaccines can target immune responses to more conserved influenza epitopes, which eventually will result in broader protection for a longer time. In addition, further immunological studies are needed to gain insights in the immune features that contribute to protection from influenza-related disease and mortality, allowing redefinition of correlates of protection beyond virus neutralization in vitro.
Collapse
|
34
|
van de Sandt CE, Kreijtz JHCM, Geelhoed-Mieras MM, Vogelzang-van Trierum SE, Nieuwkoop NJ, van de Vijver DAMC, Fouchier RAM, Osterhaus ADME, Morein B, Rimmelzwaan GF. Novel G3/DT adjuvant promotes the induction of protective T cells responses after vaccination with a seasonal trivalent inactivated split-virion influenza vaccine. Vaccine 2014; 32:5614-23. [PMID: 25140929 DOI: 10.1016/j.vaccine.2014.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Vaccines used against seasonal influenza are poorly effective against influenza A viruses of novel subtypes that may have pandemic potential. Furthermore, pre(pandemic) influenza vaccines are poorly immunogenic, which can be overcome by the use of adjuvants. A limited number of adjuvants has been approved for use in humans, however there is a need for alternative safe and effective adjuvants that can enhance the immunogenicity of influenza vaccines and that promote the induction of broad-protective T cell responses. Here we evaluated a novel nanoparticle, G3, as an adjuvant for a seasonal trivalent inactivated influenza vaccine in a mouse model. The G3 adjuvant was formulated with or without steviol glycosides (DT, for diterpenoid). The use of both formulations enhanced the virus-specific antibody response to all three vaccine strains considerably. The adjuvants were well tolerated without any signs of discomfort. To assess the protective potential of the vaccine-induced immune responses, an antigenically distinct influenza virus strain, A/Puerto Rico/8/34 (A/PR/8/34), was used for challenge infection. The vaccine-induced antibodies did not cross-react with strain A/PR/8/34 in HI and VN assays. However, mice immunized with the G3/DT-adjuvanted vaccine were partially protected against A/PR/8/34 infection, which correlated with the induction of anamnestic virus-specific CD8(+) T cell responses that were not observed with the use of G3 without DT. Both formulations induced maturation of human dendritic cells and promoted antigen presentation to a similar extent. In conclusion, G3/DT is a promising adjuvant formulation that not only potentiates the antibody response induced by influenza vaccines, but also induces T cell immunity which could afford broader protection against antigenically distinct influenza viruses.
Collapse
Affiliation(s)
| | - Joost H C M Kreijtz
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | - Nella J Nieuwkoop
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; ViroClinics Biosciences BV, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
| | - Bror Morein
- Infectious Diseases Department of Medical Sciences, Uppsala University, MoreinX, Dag Hammarskjöldsväg 34 A, 751 83 Uppsala, Sweden
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; ViroClinics Biosciences BV, Marconistraat 16, 3029 AK Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Multivariate analysis of factors affecting the immunogenicity of trivalent inactivated influenza vaccine in school-age children. Epidemiol Infect 2014; 143:540-9. [PMID: 24786933 DOI: 10.1017/s0950268814000855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We examined factors affecting the immunogenicity of trivalent inactivated influenza vaccination (TIV) in children using the antibody titres of children participating in a Hong Kong community-based study. Antibody titres of strains included in the 2009-2010 northern hemisphere TIV [seasonal A(H1N1), seasonal A(H3N2) and B (Victoria lineage)] and those not included in the TIV [2009 pandemic A(H1N1) and B (Yamagata lineage)] were measured by haemagglutination inhibition immediately before and 1 month after vaccination. Multivariate regression models were fitted in a Bayesian framework to characterize the distribution of changes in antibody titres following vaccination. Statistically significant rises in geometric mean antibody titres were observed against all strains, with a wide variety of standard deviations and correlations in rises observed, with the influenza type B antibodies showing more variability than the type A antibodies. The dynamics of antibody titres after vaccination can be used in more complex models of antibody dynamics in populations.
Collapse
|
36
|
Pandemic influenza A(H1N1)pdm09: risk of infection in primary healthcare workers. Br J Gen Pract 2014; 63:e416-22. [PMID: 23735413 DOI: 10.3399/bjgp13x668212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Healthcare workers in primary care are at risk of infection during an influenza pandemic. The 2009 influenza pandemic provided an opportunity to assess this risk. AIM To measure the prevalence of seropositivity to influenza A(H1N1)pdm09 among primary healthcare workers in Canterbury, New Zealand, following the 2009 influenza pandemic, and to examine associations between seropositivity and participants' sociodemographic characteristics, professional roles, work patterns, and seasonal influenza vaccination status. DESIGN AND SETTING An observational study involving a questionnaire and testing for influenza A(H1N1)pdm09 seropositivity in all primary healthcare workers in Canterbury, New Zealand between December 2009 and February 2010. Method Participants completed a questionnaire that recorded sociodemographic and professional data, symptoms of influenza-like illness, history of seasonal influenza vaccination, and work patterns. Serum samples were collected and haemagglutination inhibition antibody titres to influenza A(H1N1)pdm09 measured. RESULTS Questionnaires and serum samples were received from 1027 participants, from a workforce of 1476 (response rate 70%). Seropositivity was detected in 224 participants (22%). Receipt of seasonal influenza vaccine (odds ratio [OR] = 2.0, 95% confidence interval [CI] = 1.2 to 3.3), recall of influenza (OR = 1.9, 95% CI = 1.3 to 2.8), and age ≤45 years (OR = 1.4, 95% CI = 1.0 to 1.9) were associated with seropositivity. CONCLUSION A total of 22% of primary care healthcare workers were seropositive. Younger participants, those who recalled having influenza, and those who had been vaccinated against seasonal influenza were more likely to be seropositive. Working in a dedicated influenza centre was not associated with an increased risk of seropositivity.
Collapse
|
37
|
Skowronski DM, Hamelin ME, De Serres G, Janjua NZ, Li G, Sabaiduc S, Bouhy X, Couture C, Leung A, Kobasa D, Embury-Hyatt C, de Bruin E, Balshaw R, Lavigne S, Petric M, Koopmans M, Boivin G. Randomized controlled ferret study to assess the direct impact of 2008-09 trivalent inactivated influenza vaccine on A(H1N1)pdm09 disease risk. PLoS One 2014; 9:e86555. [PMID: 24475142 PMCID: PMC3903544 DOI: 10.1371/journal.pone.0086555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022] Open
Abstract
During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008-09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008-09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008-09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p>0.05). At Ch+14, both groups had recovered. Findings in influenza-naïve, systematically-infected ferrets may not replicate the human experience. While they cannot be considered conclusive to explain human observations, these ferret findings are consistent with direct, adverse effect of prior 2008-09 TIV receipt on A(H1N1)pdm09 illness. As such, they warrant further in-depth investigation and search for possible mechanistic explanations.
Collapse
Affiliation(s)
- Danuta M. Skowronski
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Marie-Eve Hamelin
- Centre Hospitalier Universitaire de Québec [University Hospital Centre of Québec], Québec, Canada
- Laval University, Québec, Canada
| | - Gaston De Serres
- Centre Hospitalier Universitaire de Québec [University Hospital Centre of Québec], Québec, Canada
- Laval University, Québec, Canada
- Institut National de Santé Publique du Québec [National Institute of Health of Québec], Québec, Canada
| | - Naveed Z. Janjua
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Guiyun Li
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Suzana Sabaiduc
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Xavier Bouhy
- Centre Hospitalier Universitaire de Québec [University Hospital Centre of Québec], Québec, Canada
| | - Christian Couture
- Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Anders Leung
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Darwyn Kobasa
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Erwin de Bruin
- Laboratory for Infectious Disease Research, Diagnostics and Screening, Centre for Infectious Disease Control (CIDC), Rijksinstituut voor Volksgezondheid en Milieu (RIVM) [National Institute of Public Health and the Environment], Bilthoven, The Netherlands
| | - Robert Balshaw
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
- Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sophie Lavigne
- Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Martin Petric
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Marion Koopmans
- Laboratory for Infectious Disease Research, Diagnostics and Screening, Centre for Infectious Disease Control (CIDC), Rijksinstituut voor Volksgezondheid en Milieu (RIVM) [National Institute of Public Health and the Environment], Bilthoven, The Netherlands
- Viroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | - Guy Boivin
- Centre Hospitalier Universitaire de Québec [University Hospital Centre of Québec], Québec, Canada
- Laval University, Québec, Canada
| |
Collapse
|
38
|
Ahout I, Ferwerda G, de Groot R. Influenza vaccination in kids, are you kidding me? J Infect 2014; 68 Suppl 1:S100-7. [DOI: 10.1016/j.jinf.2013.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2013] [Indexed: 11/28/2022]
|
39
|
Abstract
Neuraminidase (NA) is the second most abundant influenza surface glycoprotein and contributes to virus replication in several ways, most notably by removing sialic acids from the host and viral glycoproteins, releasing newly formed virus particles from infected cells. Antibodies that block this enzyme activity restrict virus replication in vitro. This chapter describes foundational epidemiologic and human influenza challenge studies that provide evidence of an association between NA inhibiting antibodies and resistance to disease. Mouse challenge studies show that while NA immunity is infection-permissive, NA-specific antibodies attenuate infection and prevent severe disease. NA immunity is most effective against homologous viruses but there is substantial protection against viruses with a heterologous NA (different lineage within a NA subtype). Monoclonal antibodies specific for conserved antigenic domains of subtype N1 protect against seasonal and pandemic H1N1 as well as H5N1 virus challenge. Clinical studies demonstrate that licensed seasonal vaccines contain immunogenic amounts of NA, but the contribution of this immunity to vaccine efficacy is currently not known. New types of influenza vaccines could be designed to elicit NA immunity. Because NA induces heterologous immunity, it could be an important constituent of universal influenza vaccines that aim to protect against unexpected emerging viruses.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Research and Regulation, US Food and Drug Administration, HFM445, Silver Spring, MD, 20892, USA,
| | | |
Collapse
|
40
|
Haneberg B, Mamelund SE, Mjaaland S. Influenza vaccine--for whom? TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:2376-8. [PMID: 24287838 DOI: 10.4045/tidsskr.13.0857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
41
|
Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 2013; 19:1305-12. [PMID: 24056771 DOI: 10.1038/nm.3350] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
Abstract
The role of T cells in mediating heterosubtypic protection against natural influenza illness in humans is uncertain. The 2009 H1N1 pandemic (pH1N1) provided a unique natural experiment to determine whether crossreactive cellular immunity limits symptomatic illness in antibody-naive individuals. We followed 342 healthy adults through the UK pandemic waves and correlated the responses of pre-existing T cells to the pH1N1 virus and conserved core protein epitopes with clinical outcomes after incident pH1N1 infection. Higher frequencies of pre-existing T cells to conserved CD8 epitopes were found in individuals who developed less severe illness, with total symptom score having the strongest inverse correlation with the frequency of interferon-γ (IFN-γ)(+) interleukin-2 (IL-2)(-) CD8(+) T cells (r = -0.6, P = 0.004). Within this functional CD8(+)IFN-γ(+)IL-2(-) population, cells with the CD45RA(+) chemokine (C-C) receptor 7 (CCR7)(-) phenotype inversely correlated with symptom score and had lung-homing and cytotoxic potential. In the absence of crossreactive neutralizing antibodies, CD8(+) T cells specific to conserved viral epitopes correlated with crossprotection against symptomatic influenza. This protective immune correlate could guide universal influenza vaccine development.
Collapse
|
42
|
Ng S, Ip DKM, Fang VJ, Chan KH, Chiu SS, Leung GM, Peiris JSM, Cowling BJ. The effect of age and recent influenza vaccination history on the immunogenicity and efficacy of 2009-10 seasonal trivalent inactivated influenza vaccination in children. PLoS One 2013; 8:e59077. [PMID: 23554974 PMCID: PMC3595209 DOI: 10.1371/journal.pone.0059077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/11/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is some evidence that annual vaccination of trivalent inactivated influenza vaccine (TIV) may lead to reduced vaccine immunogenicity but evidence is lacking on whether vaccine efficacy is affected by prior vaccination history. The efficacy of one dose of TIV in children 6-8 y of age against influenza B is uncertain. We examined whether immunogenicity and efficacy of influenza vaccination in school-age children varied by age and past vaccination history. METHODS AND FINDINGS We conducted a randomized controlled trial of 2009-10 TIV. Influenza vaccination history in the two preceding years was recorded. Immunogenicity was assessed by comparison of HI titers before and one month after receipt of TIV/placebo. Subjects were followed up for 11 months with symptom diaries, and respiratory specimens were collected during acute respiratory illnesses to permit confirmation of influenza virus infections. We found that previous vaccination was associated with reduced antibody responses to TIV against seasonal A(H1N1) and A(H3N2) particularly in children 9-17 y of age, but increased antibody responses to the same lineage of influenza B virus in children 6-8 y of age. Serological responses to the influenza A vaccine viruses were high regardless of vaccination history. One dose of TIV appeared to be efficacious against confirmed influenza B in children 6-8 y of age regardless of vaccination history. CONCLUSIONS Prior vaccination was associated with lower antibody titer rises following vaccination against seasonal influenza A vaccine viruses, but higher responses to influenza B among individuals primed with viruses from the same lineage in preceding years. In a year in which influenza B virus predominated, no impact of prior vaccination history was observed on vaccine efficacy against influenza B. The strains that circulated in the year of study did not allow us to study the effect of prior vaccination on vaccine efficacy against influenza A.
Collapse
Affiliation(s)
- Sophia Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dennis K. M. Ip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vicky J. Fang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Susan S. Chiu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gabriel M. Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J. S. Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J. Cowling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
43
|
Abstract
The desired effect of vaccination is to elicit protective immune responses against infection with pathogenic agents. An inactivated influenza vaccine is able to induce the neutralizing antibodies directed primarily against two surface antigens, hemagglutinin and neuraminidase. These two antigens undergo frequent antigenic drift and hence necessitate the annual update of a new vaccine strain. Besides the antigenic drift, the unpredictable emergence of the pandemic influenza strain, as seen in the 2009 pandemic H1N1, underscores the development of a new influenza vaccine that elicits broadly protective immunity against the diverse influenza strains. Cold-adapted live attenuated influenza vaccines (CAIVs) are advocated as a more appropriate strategy for cross-protection than inactivated vaccines and extensive studies have been conducted to address the issues in animal models. Here, we briefly describe experimental and clinical evidence for cross-protection by the CAIVs against antigenically distant strains and discuss possible explanations for cross-protective immune responses afforded by CAIVs. Potential barriers to the achievement of a universal influenza vaccine are also discussed, which will provide useful guidelines for future research on designing an ideal influenza vaccine with broad protection without causing pathogenic effects such as autoimmunity or attrition of protective immunity against homologous infection.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Seoul, Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Seoul, Korea
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| |
Collapse
|
44
|
Schotsaert M, Ysenbaert T, Neyt K, Ibañez LI, Bogaert P, Schepens B, Lambrecht BN, Fiers W, Saelens X. Natural and long-lasting cellular immune responses against influenza in the M2e-immune host. Mucosal Immunol 2013; 6:276-87. [PMID: 22806098 DOI: 10.1038/mi.2012.69] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Influenza is a global health concern. Licensed influenza vaccines induce strain-specific virus-neutralizing antibodies but hamper the induction of possibly cross-protective T-cell responses upon subsequent infection.(1) In this study, we compared protection induced by a vaccine based on the conserved extracellular domain of matrix 2 protein (M2e) with that of a conventional whole inactivated virus (WIV) vaccine using single as well as consecutive homo- and heterosubtypic challenges. Both vaccines protected against a primary homologous (with respect to hemagglutinin and neuraminidase in WIV) challenge. Functional T-cell responses were induced after primary challenge of M2e-immune mice but were absent in WIV-vaccinated mice. M2e-immune mice displayed limited inducible bronchus-associated lymphoid tissue, which was absent in WIV-immune animals. Importantly, M2e- but not WIV-immune mice were protected from a primary as well as a secondary, severe heterosubtypic challenge, including challenge with pandemic H1N1 2009 virus. Our findings advocate the use of infection-permissive influenza vaccines, such as those based on M2e, in immunologically naive individuals. The combined immune response induced by M2e-vaccine and by clinically controlled influenza virus replication results in strong and broad protection against pandemic influenza. We conclude that the challenge of the M2e-immune host induces strong and broadly reactive immunity against influenza virus infection.
Collapse
Affiliation(s)
- M Schotsaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schotsaert M, Saelens X, Leroux-Roels G. Influenza vaccines: T-cell responses deserve more attention. Expert Rev Vaccines 2013; 11:949-62. [PMID: 23002976 DOI: 10.1586/erv.12.71] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently licensed influenza vaccines rely predominantly on the induction of strain-matched hemagglutination inhibition antibody responses. These vaccines have a proven record of safety and efficacy in preventing influenza-induced illness and complications. However, they do not confer protection to all vaccinated individuals, and the protection they afford is short-lived, particularly in older adults. Hemagglutination inhibition titers induced by these vaccines are considered correlates of protection, but recent data demonstrate that this is not always the case. It is clear that better insight is needed into the immune responses that correlate with protection against human influenza. Influenza vaccines that can induce cross-reactive cellular immune responses (CD4(+) and/or CD8(+) T-cell responses) might correct some of the shortcomings of currently used influenza vaccines. In the future, the use of infection-permissive and disease-modifying vaccines that allow for the induction of cross-reactive T-cell responses may become a valuable complement to the administration of trivalent inactivated influenza vaccines.
Collapse
|
46
|
Bodewes R, Fraaij PLA, Osterhaus ADME, Rimmelzwaan GF. Pediatric influenza vaccination: understanding the T-cell response. Expert Rev Vaccines 2013; 11:963-71. [PMID: 23002977 DOI: 10.1586/erv.12.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Influenza A virus-specific T cells are highly cross-reactive and contribute to heterosubtypic immunity, which may afford protection against novel pandemic strains of influenza virus. However, the magnitude and nature of virus-specific T-cell responses induced by natural infections and/or vaccination in young children is poorly understood. Host factors, such as the development of the immune system during childhood and environmental factors such as exposure rates to influenza viruses and interference by vaccination contribute to shaping the magnitude and specificity of the T-cell response. Here, the authors review several of these factors, including the differences between T-cell responses of young children and adults, the age-dependent frequency of virus-specific T cells and the impact of annual childhood influenza vaccination. In addition, the authors summarize all currently available studies in which influenza vaccine-induced T-cell responses were evaluated. The authors discuss these findings in the light of developing vaccines and vaccination strategies aiming at the induction of protective immunity to seasonal and pandemic influenza viruses of antigenically distinct subtypes.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
47
|
Huijskens EGW, Reimerink J, Mulder PGH, van Beek J, Meijer A, de Bruin E, Friesema I, de Jong MD, Rimmelzwaan GF, Peeters MF, Rossen JWA, Koopmans M. Profiling of humoral response to influenza A(H1N1)pdm09 infection and vaccination measured by a protein microarray in persons with and without history of seasonal vaccination. PLoS One 2013; 8:e54890. [PMID: 23365683 PMCID: PMC3554683 DOI: 10.1371/journal.pone.0054890] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The influence of prior seasonal influenza vaccination on the antibody response produced by natural infection or vaccination is not well understood. METHODS We compared the profiles of antibody responses of 32 naturally infected subjects and 98 subjects vaccinated with a 2009 influenza A(H1N1) monovalent MF59-adjuvanted vaccine (Focetria, Novartis), with and without a history of seasonal influenza vaccination. Antibodies were measured by hemagglutination inhibition (HI) assay for influenza A(H1N1)pdm09 and by protein microarray (PA) using the HA1 subunit for seven recent and historic H1, H2 and H3 influenza viruses, and three avian influenza viruses. Serum samples for the infection group were taken at the moment of collection of the diagnostic sample, 10 days and 30 days after onset of influenza symptoms. For the vaccination group, samples were drawn at baseline, 3 weeks after the first vaccination and 5 weeks after the second vaccination. RESULTS We showed that subjects with a history of seasonal vaccination generally exhibited higher baseline titers for the various HA1 antigens than subjects without a seasonal vaccination history. Infection and pandemic influenza vaccination responses in persons with a history of seasonal vaccination were skewed towards historic antigens. CONCLUSIONS Seasonal vaccination is of significant influence on the antibody response to subsequent infection and vaccination, and further research is needed to understand the effect of annual vaccination on protective immunity.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Birds
- Female
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/blood
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/virology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Male
- Middle Aged
- Protein Array Analysis
- Vaccination/methods
- Vaccination/statistics & numerical data
Collapse
Affiliation(s)
- Elisabeth G W Huijskens
- Laboratory of Medical Microbiology and Immunology, St. Elisabeth Hospital, Tilburg, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
49
|
Annual influenza vaccination affects the development of heterosubtypic immunity. Vaccine 2012; 30:7407-10. [PMID: 22643217 DOI: 10.1016/j.vaccine.2012.04.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/24/2012] [Indexed: 12/24/2022]
Abstract
Annual vaccination of healthy children >6 months of age against seasonal influenza has been recommended by public health authorities of some countries. However, currently used seasonal vaccines provide only limited protection against (potentially) pandemic influenza viruses. Furthermore, we recently hypothesized that annual vaccination may hamper the development of cross-reactive immunity against influenza A viruses of novel subtypes, that would otherwise be induced by natural infection. Here we summarize our findings in animal models in which we demonstrated that vaccination against influenza A/H3N2 virus reduced the induction of heterosubtypic immunity against highly pathogenic avian influenza A/H5N1 virus, otherwise induced by a prior infection with influenza A/H3N2 virus. The reduction of heterosubtypic immunity correlated with reduced virus-specific CD8+ T cell responses. An additional study was performed in humans, in which we collected peripheral blood mononuclear cells from annually vaccinated children with cystic fibrosis (CF) and age-matched unvaccinated healthy control children to study the virus-specific T cell response. An age-related increase of the virus-specific CD8+ T cell response was observed in unvaccinated children that was absent in vaccinated children with CF. These findings highlight the importance of the development of vaccines that provide protection against influenza A viruses of all subtypes.
Collapse
|
50
|
Fraaij PLA, Bodewes R, Osterhaus ADME, Rimmelzwaan GF. The ins and outs of universal childhood influenza vaccination. Future Microbiol 2012; 6:1171-84. [PMID: 22004036 DOI: 10.2217/fmb.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses continue to cause disease of varying severity among humans. People with underlying disease and the elderly are at increased risk of developing severe disease after infection with an influenza virus. As effective and safe vaccines are available, the WHO has recommended vaccinating these groups against influenza annually. In addition to this recommendation, public health authorities of a number of countries have recently recommended vaccinating all healthy children aged 6-59 months against influenza. Here, we review the currently available data concerning the burden of disease in children, the economical impact of implementing universal vaccination of children, the efficacy of currently available influenza virus vaccines, the theoretical concerns regarding preventing immunity otherwise induced by infections with seasonal influenza viruses, and finally, how to address these concerns.
Collapse
Affiliation(s)
- Pieter L A Fraaij
- Department of Virology, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | |
Collapse
|