1
|
Liang J, Liu Y, Guan Q, Li Y, Zheng MZ, Zhang XL, Chen LX, Li H. Discovery of novel pyrimidinetrione derivatives as DprE1 inhibitors with potent antimycobacterial activities. Eur J Med Chem 2025; 289:117416. [PMID: 39999693 DOI: 10.1016/j.ejmech.2025.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Tuberculosis (TB) is one of the ten major factors threatening human life and health. At present, many factors limit the application of existing anti-tuberculosis drugs, such as a small range of available drug options, poor treatment compliance, and severe toxic and side effects. It is extremely urgent to develop novel anti-tuberculosis drugs. DprE1 is a potential anti-mycobacterial cell wall target, and some DprE1 inhibitors have entered the clinical research stage. Our research group found DprE1 inhibitor G50 with similar activity as isoniazid through virtual screening in the early stage. To obtain better DprE1 inhibitors, 45 new compounds were designed and synthesized based on the structure of G50. Among them, 12 selected DprE1 enzyme inhibitors could significantly inhibit the growth of Mycobacterium tuberculosis (M.tb) H37Ra and H37Rv growth in vitro. The MIC50 value of compound 42 against M.tb H37Ra is 1.071 ± 0.041 μM, with the selective index (SI) value of 186.74 (the SI value of linezolid is 119.9). Compared to G50, compound 42 exhibits a 5-fold increase in DprE1 enzyme inhibitory activity. In addition, the binding affinity of compound 42 is equivalent to that of G50. This study further enriches the examples of developing DprE1 inhibitors based on the backbone of pyrimidinetrione and also provides potential anti-tuberculosis lead compounds.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Guan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yan Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Zhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China; Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Jiang C, Jie J, Wang J, Deng X, Qiu J, Liu H. Sesamol hinders the proliferation of intracellular bacteria by promoting fatty acid metabolism and decreasing excessive inflammation. Int Immunopharmacol 2025; 146:113966. [PMID: 39733644 DOI: 10.1016/j.intimp.2024.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The extraintestinal pathogenic Escherichia coli (ExPEC) is a significant zoonotic bacterial pathogen that can cause severe infections and potentially cross-transmit between different hosts. The treatment of clinical bacterial infections is challenging because of the increasingly severe problem of drug resistance. The development of new strategies for managing bacterial infections is essential. Host-acting antibacterial compound (HAC)-based host-directed therapy (HDT) has emerged as a promising approach to combat bacterial infections by targeting host-pathogen interactions and bacterial intracellular survival strategies. In this study, we conducted a cell-based screening to identify compounds that can inhibit the survival and proliferation of ExPEC within host cells. Our screening revealed that sesamol effectively inhibited ExPEC proliferation but had no effect on the natural growth of bacteria. Analysis of the transcriptome data revealed that sesamol has the ability to increase the metabolism of host fatty acids while also suppressing excessive inflammation. Mechanistic studies have shown that sesamol-induced PPAR-β activation is crucial for increased fatty acid metabolism and clearance of intracellular bacteria. Furthermore, sesamol treatment demonstrated protective effects against ExPEC infection in both Galleria mellonella and mouse models, suggesting its potential use for treating diseases caused by intracellular bacterial pathogens and as a lead compound for further development of anti-infection drugs on the basis of the HDT strategy.
Collapse
Affiliation(s)
- Chenxiao Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Leszczynski D. Wireless radiation and health: making the case for proteomics research of individual sensitivity. Front Public Health 2025; 12:1543818. [PMID: 39866356 PMCID: PMC11758280 DOI: 10.3389/fpubh.2024.1543818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
|
4
|
Maharjan R, Zhang Z, Klenotic PA, Gregor WD, Purdy GE, Yu EW. Cryo-EM structure of the Mycobacterium smegmatis MmpL5-AcpM complex. mBio 2024; 15:e0303524. [PMID: 39480109 PMCID: PMC11633376 DOI: 10.1128/mbio.03035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of the airborne infection tuberculosis (TB), contains 13 mycobacterial membrane protein large (MmpL) transporters that can be divided into two distinct subclasses. These MmpL proteins play important functional roles within the mycobacterium and subsequently are considered attractive drug targets to combat TB infection. Previously, we reported both X-ray and cryo-electron microscopy (cryo-EM) structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Thus far, there is no structural information available for the other subclass, which includes MmpL5, an inner membrane transporter that plays a critical role in iron hemostasis. Here, we report the first cryo-EM structure of the Mycobacterium smegmatis MmpL5 transporter bound with the meromycolate extension acyl carrier protein M (AcpM) to a resolution of 2.81 Å. Our structural data reveals that MmpL5 and AcpM interact in the cytoplasm to form a complex, and this allows us to propose that MmpL5 may also associate with the mycobactin L (MbtL) protein in a similar fashion to form a heterocomplex important for iron acquisition, which enables the survival and replication of the mycobacterium. IMPORTANCE The emergence and spread of multidrug-resistant tuberculosis (TB) present enormous challenges to the global public health. The causative agent, Mycobacterium tuberculosis, has now infected more than one-third of the world's population. Here, we report the first structure of the mycobacterial membrane protein large 5 (MmpL5), an essential transporter for iron acquisition, bound with the meromycolate extension acyl carrier protein M (AcpM), indicating a plausible pathway for mycobactin translocation. Our studies will ultimately inform an era in structure-guided drug design to combat TB infection.
Collapse
Affiliation(s)
- Rakesh Maharjan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - William D. Gregor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Georgiana E. Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Wang Y, Liu Y, Long M, Dong Y, Li L, Zhou X. Nanoparticles target M2 macrophages to silence kallikrein-related peptidase 12 for the treatment of tuberculosis and drug-resistant tuberculosis. Acta Biomater 2024; 188:358-373. [PMID: 39305944 DOI: 10.1016/j.actbio.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Matrix metalloproteinases (MMPs) are involved in the breakdown of lung extracellular matrix and the consequent release of Mycobacterium tuberculosis into the airways. Recent studies indicate that kallikrein-related peptidase 12 (KLK12) regulate MMP-1 and MMP-9, suggesting that targeting the KLK12 gene could be a promising tuberculosis (TB) treatment. To maximise therapeutic potential, this strategy of silencing KLK12 needs to be delivered to the pathogenic cell population while preserving the immunoprotective and tissue homeostatic functions of other lung macrophages. Our research found that KLK12 is highly expressed in M2 macrophages, leading us to design mannose-based bovine serum albumin nanoparticles (MBNPs) for delivering siRNA to silence KLK12 in these cells. The results of in vitro experiments showed that MBNPs could accurately enter M2 macrophages and sustainably release KLK12-siRNA with the help of mannose and mannose receptor targeting. The results of the in vivo experiments showed that MBNPs could reach the lungs within 1 h after intraperitoneal injection and peaked at 6 h. MBNPs increased collagen fibre content in the lungs by decreasing the levels of KLK12/MMPs thereby limiting the progression of TB. Importantly, MBNPs provided greater alleviation of pulmonary TB symptoms and reduced bacterial load in both TB and drug-resistant TB models. These findings provide an alternative and effective option for the treatment of TB, especially when drug resistance occurs. STATEMENT OF SIGNIFICANCE: RNA interference using small interfering RNA (siRNA) can target various genes and has potential for treating diseases such as tuberculosis (TB). However, siRNAs are unstable in the blood and within cells. This study presents bovine serum albumin nanoparticles encapsulating KLK12-siRNA (BNPs) synthesized via desolvation. A mannose layer was added (MBNPs) to target mannose receptors on M2 macrophages, facilitating endocytosis. The low pH-responsive MBNPs enhance lysosomal escape for siRNA delivery, downregulating the KLK12 pathway. Tests confirmed that MBNPs effectively inhibited Mycobacterium bovis proliferation, reduced granulomas, and decreased inflammation in a mouse model. This research aims to reduce antibiotic use, shorten treatment duration, and provide a novel TB treatment option.
Collapse
Affiliation(s)
- Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Maharjan R, Zhang Z, Klenotic PA, Gregor WD, Tringides ML, Cui M, Purdy GE, Yu EW. Structures of the mycobacterial MmpL4 and MmpL5 transporters provide insights into their role in siderophore export and iron acquisition. PLoS Biol 2024; 22:e3002874. [PMID: 39423221 PMCID: PMC11524445 DOI: 10.1371/journal.pbio.3002874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
The Mycobacterium tuberculosis (Mtb) pathogen, the causative agent of the airborne infection tuberculosis (TB), harbors a number of mycobacterial membrane protein large (MmpL) transporters. These membrane proteins can be separated into 2 distinct subclasses, where they perform important functional roles, and thus, are considered potential drug targets to combat TB. Previously, we reported both X-ray and cryo-EM structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Currently, there is no structural information available for the subclass associated with MmpL4 and MmpL5, transporters that play a critical role in iron homeostasis of the bacterium. Here, we report cryo-EM structures of the M. smegmatis MmpL4 and MmpL5 transporters to resolutions of 2.95 Å and 3.00 Å, respectively. These structures allow us to propose a plausible pathway for siderophore translocation via these 2 transporters, an essential step for iron acquisition that enables the survival and replication of the mycobacterium.
Collapse
Affiliation(s)
- Rakesh Maharjan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - William D. Gregor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Marios L. Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States of America
| | - Georgiana E. Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
7
|
Palucci I, Delogu G. Alternative therapies against Mycobacterium abscessus infections. Clin Microbiol Infect 2024; 30:732-737. [PMID: 37820951 DOI: 10.1016/j.cmi.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Mycobacterium abscessus (Mab) is considered as the most pathogenic rapid-growing mycobacteria in humans, causing pulmonary and extra-pulmonary diseases, especially in patients with cystic fibrosis. Mab shows intrinsic and acquired resistance to many drugs, leaving limited treatment options that lead to a generally poor prognosis. The standard therapeutic regimen last for more than 6 months and consists of a drug cocktail that ideally includes a macrolide and amikacin. Yet, toxicity and efficacy are suboptimal due also to the high toxicity. There is a need to introduce innovative and out-of-the-box approaches to improve treatments. OBJECTIVES In this narrative review, we summarize the recent research on the alternative strategies proposed and discuss the importance of using appropriate experimental assays to assess their activity. SOURCES Included articles were identified by searching PubMed and MEDLINE until June 2023. The search terms were 'Mycobacterium abscessus', 'antimicrobial', and 'alternative therapies'. Additional relevant references were obtained from articles retrieved from the primary search. CONTENT Therapies against Mab including host directed therapies, repurposed drugs, phage therapy, anti-virulence strategies, essential oils, and inhalation therapies. IMPLICATIONS Alternative treatments may represent a valid tool to cope the burden of antimicrobial resistance in Mab-caused diseases.
Collapse
Affiliation(s)
- Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy; Mater Olbia Hospital, Olbia, Italy.
| |
Collapse
|
8
|
Yadav S, Rawal G. Understanding the Spectrum and Management of Post-Tuberculosis Lung Disease: A Comprehensive Review. Cureus 2024; 16:e63420. [PMID: 39077302 PMCID: PMC11284254 DOI: 10.7759/cureus.63420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Post-tuberculosis lung disease (PTLD) poses a significant clinical challenge in regions with a high burden of tuberculosis (TB). This review provides a comprehensive overview of PTLD, encompassing its pathogenesis, clinical manifestations, diagnostic modalities, management strategies, long-term outcomes, and public health implications. PTLD arises from residual lung damage following TB treatment and is characterized by a spectrum of pathological changes, including fibrosis, bronchiectasis, and cavitation. Clinical presentation varies widely, from chronic cough and hemoptysis to recurrent respiratory infections, which are oftentimes a diagnostic dilemma. Radiological imaging, pulmonary function tests, and careful consideration of patient history play pivotal roles in diagnosis. Management strategies involve pharmacological interventions to alleviate symptoms and prevent disease progression, which are influenced by the extent of lung damage, comorbidities, and access to healthcare. Rehabilitation programs and surgical options are available for select cases. Prognosis is influenced by the extent of lung damage, comorbidities, and access to healthcare. Prevention efforts through a TB control program and early detection are crucial in reducing the burden of PTLD. This review stresses the importance of understanding and addressing PTLD to mitigate its impact on individuals and public health systems worldwide.
Collapse
Affiliation(s)
- Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| | - Gautam Rawal
- Respiratory Intensive Care, Max Super Speciality Hospital, New Delhi, IND
| |
Collapse
|
9
|
Shao Y, Song W, Song H, Li G, Zhu L, Liu Q, Chen C. Incidence, Outcomes, and Risk Factors for Isoniazid-Resistant Tuberculosis from 2012 to 2022 in Eastern China. Antibiotics (Basel) 2024; 13:378. [PMID: 38667054 PMCID: PMC11047343 DOI: 10.3390/antibiotics13040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Isoniazid-resistant, rifampicin-susceptible tuberculosis (Hr-TB) is the most frequent drug-resistant tuberculosis (DR-TB) in the world, and unfavorable outcomes of Hr-TB are more common compared to drug-susceptible TB. Considering there is no optimal regimen accepted worldwide, we undertook a retrospective cohort study in eastern China to estimate incidence trends and risk factors associated with unfavorable outcomes of Hr-TB. METHODS Between January 2012 and December 2022, all Hr-TB patients' information was extracted from the Tuberculosis Information Management System (TIMS), which is a national electronic information platform, to record TB patients' clinical information in this study. The incidence of Hr-TB was determined by the mid-year population according to census data published by the government. We categorized treatment regimens depending on fluoroquinolone (FQ) use, and potential risk factors were analyzed using multivariable logistic regression. RESULTS A total of 3116 Hr-TB patients fulfilled the inclusion criteria and were enrolled in this study. The average annual rate of Hr-TB in the 11 years under investigation was 0.34 per 100,000 and increased to 0.53 per 100,000 until 2019. In total, six different treatment regimens were utilized in the study sites, and less than 1% of regimens adopted FQ. There was no difference in the unfavorable outcomes between the FQ-included and FQ-excluded groups (p = 0.22). The average treatment duration was 7.06 months, and the longest treatment was 26 months. Approximately 20% (637/3116) of Hr-TB patients had unfavorable outcomes, and 60.13% (383/637) of them proceeded to multidrug-resistant tuberculosis (MDR-TB). Treatment duration and a positive smear at the end of the 5th month were significantly associated with unfavorable outcomes (p < 0.001). CONCLUSION The unfavorable treatment outcomes of Hr-TB are still high in eastern China, and the efficacy of FQ-containing regimens needs to be validated for Hr-TB treatment.
Collapse
Affiliation(s)
- Yan Shao
- Center for Disease Control and Prevention of Jiangsu Province, Department of Chronic Communicable Disease, Nanjing 210009, China; (Y.S.); (H.S.); (G.L.); (L.Z.); (Q.L.)
| | - Wenlei Song
- Center for Disease Control and Prevention of Kunshan, Suzhou 215300, China;
| | - Honghuan Song
- Center for Disease Control and Prevention of Jiangsu Province, Department of Chronic Communicable Disease, Nanjing 210009, China; (Y.S.); (H.S.); (G.L.); (L.Z.); (Q.L.)
| | - Guoli Li
- Center for Disease Control and Prevention of Jiangsu Province, Department of Chronic Communicable Disease, Nanjing 210009, China; (Y.S.); (H.S.); (G.L.); (L.Z.); (Q.L.)
| | - Limei Zhu
- Center for Disease Control and Prevention of Jiangsu Province, Department of Chronic Communicable Disease, Nanjing 210009, China; (Y.S.); (H.S.); (G.L.); (L.Z.); (Q.L.)
| | - Qiao Liu
- Center for Disease Control and Prevention of Jiangsu Province, Department of Chronic Communicable Disease, Nanjing 210009, China; (Y.S.); (H.S.); (G.L.); (L.Z.); (Q.L.)
| | - Cheng Chen
- Center for Disease Control and Prevention of Jiangsu Province, Department of Chronic Communicable Disease, Nanjing 210009, China; (Y.S.); (H.S.); (G.L.); (L.Z.); (Q.L.)
| |
Collapse
|
10
|
Osawa T, Watanabe M, Morimoto K, Yoshiyama T, Matsuda S, Fujiwara K, Furuuchi K, Shimoda M, Ito M, Kodama T, Uesugi F, Okumura M, Tanaka Y, Sasaki Y, Ogata H, Goto H, Kudoh S, Ohta K. Activities of Daily Living, Hypoxemia, and Lymphocytes Score for Predicting Mortality Risk in Patients With Pulmonary TB. Chest 2024; 165:267-277. [PMID: 37726072 DOI: 10.1016/j.chest.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND A clinically applicable mortality risk prediction system for pulmonary TB may improve treatment outcomes, but no easy-to-calculate and accurate score has yet been reported. The aim of this study was to construct a simple and objective disease severity score for patients with pulmonary TB. RESEARCH QUESTION Does a clinical score consisting of simple objective factors predict the mortality risk of patients with pulmonary TB? STUDY DESIGN AND METHODS The data set from our previous prospective study that recruited patients newly diagnosed with pulmonary TB was used for the development cohort. Patients for the validation cohort were prospectively recruited between March 2021 and September 2022. The primary end point was all-cause in-hospital mortality. Using Cox proportional hazards regression, a mortality risk prediction model was optimized in the development cohort. The disease severity score was developed by assigning integral points to each variate. RESULTS The data from 252 patients in the development cohort and 165 patients in the validation cohort were analyzed, of whom 39 (15.5%) and 17 (10.3%), respectively, died in the hospital. The disease severity score (named the AHL score) included three clinical parameters: activities of daily living (semi-dependent, 1 point; totally dependent, 2 points); hypoxemia (1 point), and lymphocytes (< 720/μL, 1 point). This score showed good discrimination with a C statistic of 0.902 in the development cohort and 0.842 in the validation cohort. We stratified the score into three groups (scores of 0, 1-2, and 3-4), which clearly corresponded to low (0% and 1.3%), intermediate (13.5% and 8.9%), and high (55.8% and 39.3%) mortality risk in the development and validation cohorts. INTERPRETATION The easy-to-calculate AHL disease severity score for patients with pulmonary TB was able to categorize patients into three mortality risk groups with great accuracy. CLINICAL TRIAL REGISTRATION University Hospital Medical Information Network Center; No. UMIN000012727 and No. UMIN000043849; URL: www.umin.ac.jp.
Collapse
Affiliation(s)
- Takeshi Osawa
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| | - Kozo Morimoto
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan; Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Takashi Yoshiyama
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan; Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Shuichi Matsuda
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Keiji Fujiwara
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Koji Furuuchi
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masafumi Shimoda
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masashi Ito
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Tatsuya Kodama
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Fumiko Uesugi
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masao Okumura
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Yoshiaki Tanaka
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Yuka Sasaki
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Hideo Ogata
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Shoji Kudoh
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Ken Ohta
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| |
Collapse
|
11
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
12
|
Ashenafi S, Loreti MG, Bekele A, Aseffa G, Amogne W, Kassa E, Aderaye G, Brighenti S. Inflammatory immune profiles associated with disease severity in pulmonary tuberculosis patients with moderate to severe clinical TB or anemia. Front Immunol 2023; 14:1296501. [PMID: 38162636 PMCID: PMC10756900 DOI: 10.3389/fimmu.2023.1296501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background Immune control of Mycobacterium tuberculosis (Mtb) infection is largely influenced by the extensive disease heterogeneity that is typical for tuberculosis (TB). In this study, the peripheral inflammatory immune profile of different sub-groups of pulmonary TB patients was explored based on clinical disease severity, anemia of chronic disease, or the radiological extent of lung disease. Methods Plasma samples were obtained from n=107 patients with active pulmonary TB at the time of diagnosis and after start of standard chemotherapy. A composite clinical TB symptoms score, blood hemoglobin status and chest X-ray imaging were used to sub-group TB patients into 1.) mild and moderate-severe clinical TB, 2.) anemic and non-anemic TB, or 3.) limited and extensive lung involvement. Plasma levels of biomarkers associated with inflammation pathways were assessed using a Bio-Plex Magpix 37-multiplex assay. In parallel, Th1/Th2 cytokines were quantified with a 27-multiplex in matched plasma and cell culture supernatants from whole blood stimulated with M. tuberculosis-antigens using the QuantiFERON-TB Gold assay. Results Clinical TB disease severity correlated with low blood hemoglobin levels and anemia but not with radiological findings in this study cohort. Multiplex protein analyses revealed that distinct clusters of inflammation markers and cytokines separated the different TB disease sub-groups with variable efficacy. Several top-ranked markers overlapped, while other markers were unique with regards to their importance to differentiate the TB disease severity groups. A distinct immune response profile defined by elevated levels of BAFF, LIGHT, sTNF-R1 and 2, IP-10, osteopontin, chitinase-3-like protein 1, and IFNα2 and IL-8, were most effective in separating TB patients with different clinical disease severity and were also promising candidates for treatment monitoring. TB patients with mild disease displayed immune polarization towards mixed Th1/Th2 responses, while pro-inflammatory and B cell stimulating cytokines as well as immunomodulatory mediators predominated in moderate-severe TB disease and anemia of TB. Conclusions Our data demonstrated that clinical disease severity in TB is associated with anemia and distinct inflammatory immune profiles. These results contribute to the understanding of immunopathology in pulmonary TB and define top-ranked inflammatory mediators as biomarkers of disease severity and treatment prognosis.
Collapse
Affiliation(s)
- Senait Ashenafi
- Department of Pathology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Marco Giulio Loreti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Amsalu Bekele
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Getachew Aseffa
- Department of Radiology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Wondwossen Amogne
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Endale Kassa
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Susanna Brighenti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
14
|
Wen Q, Zhang J, Zhang Z, Chen L, Liu H, Han Z, Chen Y, Wang K, Liu J, Sai N, Zhou X, Zhou C, Hu S, Ma L. Cisatracurium besylate rescues Mycobacterium Tuberculosis-infected macrophages from necroptosis and enhances the bactericidal effect of isoniazid. Int Immunopharmacol 2023; 120:110291. [PMID: 37182451 DOI: 10.1016/j.intimp.2023.110291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Tuberculosis is the leading killer among the chronic single-source infectious diseases. Mycobacterium tuberculosis can induce necrotic-dominant multiple modes of cell death in macrophages, which accelerates bacterium dissemination and expands tissue injury in host lungs. Mining drugs to counteract Mycobacterium tuberculosis-induced cell death would be beneficial to tuberculosis patients. METHODS In this study, the protective drug was screened out from the FDA-approved drug library in Mycobacterium tuberculosis-infected macrophages with CCK-8 assay. The death mode regulated by the drug was identified using transcriptomic sequencing, cytomorphological observation, and in the experimental mouse Mycobacterium tuberculosis-infection model. The functional mechanism was explored using western blot, co-immunoprecipitation, and DARTS assay. The intracellular bacterial survival was detected using colony forming unit assays. RESULTS Cisatracurium besylate was identified to be highly protective for the viability of macrophages during Mycobacterium tuberculosis infection via inhibiting necroptosis. Cisatracurium besylate prevented RIPK3 to be associated with the executive molecule MLKL for forming the necroptotic complex, resulting in the inhibition of MLKL phosphorylation and pore formation on cell membrane. However, Cisatracurium besylate did not interfere with the association between RIPK3 with its upstream kinase RIPK1 or ZBP1 but regulated RIPK3 autophosphorylation. Moreover, Cisatracurium besylate significantly inhibited the expansion of intracellular Mycobacterium tuberculosis both in vitro and in vivo, which also displayed a strong auxiliary bacteriostatic effect to support the therapeutic efficacy of isoniazid and rifampicin, the first-line anti-tubercular drugs. CONCLUSION Cisatracurium besylate performs anti-Mycobacterium tuberculosis and anti-necroptotic roles, which potentiates its application to be an adjuvant drug for antituberculosis therapy to assist the battle against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Liru Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Sai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Qahtan MQM, Bakhite EA, Kumari J, M Sayed A, Kandeel M, Sriram D, Abdu-Allah HHM. Synthesis, biological evaluation and molecular docking study of some new 4-aminosalicylic acid derivatives as anti-inflammatory and antimycobacterial agents. Bioorg Chem 2023; 132:106344. [PMID: 36669356 DOI: 10.1016/j.bioorg.2023.106344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
In this study, new derivatives of the antitubercular and anti-inflammatory drug, 4-aminosaliclic acids (4-ASA) were synthesized, characterized, and evaluated for these activities. In vivo and in viro evaluation of anti-inflammatory activity revealed that compounds 10, 19 and 20 are the most active with potent cyclooxygenase-2 (COX-2) and 5-lipooxgenase (5-LOX) inhibition and without causing gasric lesions. The minimum inhibitory concentrations (MIC) of the newly synthesized compound were, also, measured against Mycobacterium tuberculosis H37RV. Among the tested compounds 17, 19 and 20 exhibited significant activities against the growth of M. tuberculosis. 20 is the most potent with (MIC 1.04 µM) 2.5 folds more potent than the parent drug 4-ASA. 20 displayed low cytotoxicity against normal cell providing a high therapeutic index. Important structure features were analyzed by docking and structure-activity relationship analysis to give better insights into the structural determinants for predicting the anti-inflammatory and anti-TB activities. Our results indicated that compounds 19 and 20 are potential lead compounds for the discovery of dual anti-inflammatory and anti-TB drug candidates.
Collapse
Affiliation(s)
- Maha Q M Qahtan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Chemistry Department, Faculty of Science, Taiz University, Taiz, Yemen
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Ahmed M Sayed
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
16
|
Nogueira I, Català M, White AD, Sharpe SA, Bechini J, Prats C, Vilaplana C, Cardona PJ. Surveillance of Daughter Micronodule Formation Is a Key Factor for Vaccine Evaluation Using Experimental Infection Models of Tuberculosis in Macaques. Pathogens 2023; 12:236. [PMID: 36839508 PMCID: PMC9961649 DOI: 10.3390/pathogens12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is still a major worldwide health problem and models using non-human primates (NHP) provide the most relevant approach for vaccine testing. In this study, we analysed CT images collected from cynomolgus and rhesus macaques following exposure to ultra-low dose Mycobacterium tuberculosis (Mtb) aerosols, and monitored them for 16 weeks to evaluate the impact of prior intradermal or inhaled BCG vaccination on the progression of lung disease. All lesions found (2553) were classified according to their size and we subclassified small micronodules (<4.4 mm) as 'isolated', or as 'daughter', when they were in contact with consolidation (described as lesions ≥ 4.5 mm). Our data link the higher capacity to contain Mtb infection in cynomolgus with the reduced incidence of daughter micronodules, thus avoiding the development of consolidated lesions and their consequent enlargement and evolution to cavitation. In the case of rhesus, intradermal vaccination has a higher capacity to reduce the formation of daughter micronodules. This study supports the 'Bubble Model' defined with the C3HBe/FeJ mice and proposes a new method to evaluate outcomes in experimental models of TB in NHP based on CT images, which would fit a future machine learning approach to evaluate new vaccines.
Collapse
Affiliation(s)
- Isabel Nogueira
- Radiology Department, ‘Germans Trias i Pujol’ University Hospital, 08916 Badalona, Spain
| | - Martí Català
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Escola d’Enginyeria Agroalimentària i de Biosistemes de Barcelona Departament de Física, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain
| | - Andrew D. White
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sally A Sharpe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Jordi Bechini
- Radiology Department, ‘Germans Trias i Pujol’ University Hospital, 08916 Badalona, Spain
| | - Clara Prats
- Escola d’Enginyeria Agroalimentària i de Biosistemes de Barcelona Departament de Física, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Direcció Clínica Territorial de Malalties Infeccioses i Salut Internacional de Gerència Territorial Metropolitana Nord, 08916 Badalona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Microbiology Department, North Metropolitan Clinical Laboratory, ‘Germans Trias i Pujol’ University Hospital, 08916 Badalona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Design, synthesis and anti-TB and anti-bacterial activity of Ciprofloxacin derivatives containing N-(amino)piperazine moieties. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Desfontaine V, Guinchard S, Marques S, Vocat A, Moulfi F, Versace F, Huser-Pitteloud J, Ivanyuk A, Bardinet C, Makarov V, Ryabova O, André P, Prod'Hom S, Chtioui H, Buclin T, Cole ST, Decosterd L. Optimized LC-MS/MS quantification of tuberculosis drug candidate macozinone (PBTZ169), its dearomatized Meisenheimer Complex and other metabolites, in human plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123555. [PMID: 36563654 PMCID: PMC9883661 DOI: 10.1016/j.jchromb.2022.123555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Tuberculosis, and especially multidrug-resistant tuberculosis (MDR-TB), is a major global health threat which emphasizes the need to develop new agents to improve and shorten treatment of this difficult-to-manage infectious disease. Among the new agents, macozinone (PBTZ169) is one of the most promising candidates, showing extraordinary potency in vitro and in murine models against drug-susceptible and drug-resistant Mycobacterium tuberculosis. A previous analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed by our group to support phase I clinical trials of PBTZ169. These plasma sample analyses revealed the presence of several additional metabolites among which the most prominent was H2PBTZ, a reduced species obtained by dearomatization of macozinone, one of the first examples of Meisenheimer Complex (MC) metabolites identified in mammals. Identification of these new metabolites required the optimization of our original method for enhancing the selectivity between isobaric metabolites as well as for ensuring optimal stability for H2PBTZ analyses. Sample preparation methods were also developed for plasma and urine, followed by extensive quantitative validation in accordance with international bioanalytical method recommendations, which include selectivity, linearity, qualitative and quantitative matrix effect, trueness, precision and the establishment of accuracy profiles using β-expectation tolerance intervals for known and newer analytes. The newly optimized methods have been applied in a subsequent Phase Ib clinical trial conducted in our University Hospital with healthy subjects. H2PBTZ was found to be the most abundant species circulating in plasma, underscoring the importance of measuring accurately and precisely this unprecedented metabolite. Low concentrations were found in urine for all monitored analytes, suggesting extensive metabolism before renal excretion.
Collapse
Affiliation(s)
- Vincent Desfontaine
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sylvie Guinchard
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sara Marques
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Anthony Vocat
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Farizade Moulfi
- Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - François Versace
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Jeff Huser-Pitteloud
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Anton Ivanyuk
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Carine Bardinet
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Vadim Makarov
- Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland,Federal Research Center “Fundamentals of Biotechnology RAS”, Moscow, Russia
| | - Olga Ryabova
- Federal Research Center “Fundamentals of Biotechnology RAS”, Moscow, Russia
| | - Pascal André
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sylvain Prod'Hom
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Haithem Chtioui
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Thierry Buclin
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland,Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - Stewart T. Cole
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland,Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - Laurent Decosterd
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland,Corresponding author.
| |
Collapse
|
19
|
Palucci I, Salustri A, De Maio F, Pereyra Boza MDC, Paglione F, Sali M, Occhigrossi L, D’Eletto M, Rossin F, Goletti D, Sanguinetti M, Piacentini M, Delogu G. Cysteamine/Cystamine Exert Anti- Mycobacterium abscessus Activity Alone or in Combination with Amikacin. Int J Mol Sci 2023; 24:ijms24021203. [PMID: 36674717 PMCID: PMC9866335 DOI: 10.3390/ijms24021203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Host-directed therapies are emerging as a promising tool in the curing of difficult-to-treat infections, such as those caused by drug-resistant bacteria. In this study, we aim to test the potential activity of the FDA- and EMA-approved drugs cysteamine and cystamine against Mycobacterium abscessus. In human macrophages (differentiated THP-1 cells), these drugs restricted M. abscessus growth similar to that achieved by amikacin. Here, we use the human ex vivo granuloma-like structures (GLS) model of infection with the M. abscessus rough (MAB-R) and smooth (MAB-S) variants to study the activity of new therapies against M. abscessus. We demonstrate that cysteamine and cystamine show a decrease in the number of total GLSs per well in the MAB-S and MAB-R infected human peripheral blood mononuclear cells (PBMCs). Furthermore, combined administration of cysteamine or cystamine with amikacin resulted in enhanced activity against the two M. abscessus morpho variants compared to treatment with amikacin only. Treatment with cysteamine and cystamine was more effective in reducing GLS size and bacterial load during MAB-S infection compared with MAB-R infection. Moreover, treatment with these two drugs drastically quenched the exuberant proinflammatory response triggered by the MAB-R variant. These findings showing the activity of cysteamine and cystamine against the R and S M. abscessus morphotypes support the use of these drugs as novel host-directed therapies against M. abscessus infections.
Collapse
Affiliation(s)
- Ivana Palucci
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria del Carmen Pereyra Boza
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
| | - Francesco Paglione
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
| | - Michela Sali
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Occhigrossi
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
| | - Manuela D’Eletto
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
| | - Federica Rossin
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Translational Research Unit, IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy
| | - Maurizio Sanguinetti
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario “A. Gemelli”, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mauro Piacentini
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Translational Research Unit, IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Mater Olbia Hospital, 07026 Olbia, Italy
- Correspondence:
| |
Collapse
|
20
|
Kumar NP, Nancy A, Viswanathan V, Sivakumar S, Thiruvengadam K, Ahamed SF, Hissar S, Kornfeld H, Babu S. Chitinase and indoleamine 2, 3-dioxygenase are prognostic biomarkers for unfavorable treatment outcomes in pulmonary tuberculosis. Front Immunol 2023; 14:1093640. [PMID: 36814914 PMCID: PMC9939892 DOI: 10.3389/fimmu.2023.1093640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Chitinase, Indoleamine 2,3-dioxygenesae-1 (IDO-1) and heme oxygenase-1 (HO-1) are candidate diagnostic biomarkers for tuberculosis (TB). Whether these immune markers could also serve as predictive biomarkers of unfavorable treatment outcomes in pulmonary TB (PTB) is not known. Methods A cohort of newly diagnosed, sputum culture-positive adults with drug-sensitive PTB were recruited. Plasma chitinase protein, IDO protein and HO-1 levels measured before treatment initiation were compared between 68 cases with unfavorable outcomes (treatment failure, death, or recurrence) and 108 control individuals who had recurrence-free cure. Results Plasma chitinase and IDO protein levels but not HO-1 levels were lower in cases compared to controls. The low chitinase and IDO protein levels were associated with increased risk of unfavourable outcomes in unadjusted and adjusted analyses. Receiver operating characteristic analysis revealed that chitinase and IDO proteins exhibited high sensitivity and specificity in differentiating cases vs controls as well as in differentiating treatment failure vs controls and recurrence vs controls, respectively. Classification and regression trees (CART) were used to determine threshold values for these two immune markers. Discussion Our study revealed a plasma chitinase and IDO protein signature that may be used as a tool for predicting adverse treatment outcomes in PTB.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- Department of Immunology, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Arul Nancy
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India
| | - Vijay Viswanathan
- Diabetology, Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | - Shanmugam Sivakumar
- Department of Bacteriology, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Kannan Thiruvengadam
- Epidemiology Statistics, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Shaik Fayaz Ahamed
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India
| | - Syed Hissar
- Clinical Research, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Subash Babu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
21
|
Cha GY, Seo H, Oh J, Kim BJ, Kim BJ. Potential Use of Mycobacterium paragordonae for Antimycobacterial Drug Screening Systems. J Microbiol 2023; 61:121-129. [PMID: 36719620 DOI: 10.1007/s12275-022-00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 02/01/2023]
Abstract
Our recent genome-based study indicated that Mycobacterium paragordonae (Mpg) has evolved to become more adapted to an intracellular lifestyle within free-living environmental amoeba and its enhanced intracellular survival within Acanthamoeba castellanii was also proved. Here, we sought to investigate potential use of Mpg for antimycobacterial drug screening systems. Our data showed that Mpg is more susceptible to various antibiotics compared to the close species M. marinum (Mmar) and M. gordonae, further supporting its intracellular lifestyle in environments, which would explain its protection from environmental insults. In addition, we developed two bacterial whole-cell-based drug screening systems using a recombinant Mpg stain harboring a luciferase reporter vector (rMpg-LuxG13): one for direct application to rMpg-LuxG13 and the other for drug screening via the interaction of rMpg-LuxG13 with A. castellanii. Direct application to rMpg-LuxG13 showed lower inhibitory concentration 50 (IC50) values of rifampin, isoniazid, clarithromycin, and ciprofloxacin against Mpg compared to Mmar. Application of drug screening system via the interaction of rMpg-LuxG13 with A. castellanii also exhibited lower IC50 values for rifampin against Mpg compared to Mmar. In conclusion, our data indicate that Mpg is more susceptible to various antibiotics than other strains. In addition, our data also demonstrate the feasibility of two whole cell-based drug screening systems using rMpg-LuxG13 strain for the discovery of novel anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Ga-Yeong Cha
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 Four Biomedical Science Project, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Oh
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 Four Biomedical Science Project, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea.
- BK21 Four Biomedical Science Project, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Herrera M, Keynan Y, McLaren PJ, Isaza JP, Abrenica B, López L, Marin D, Rueda ZV. Gene expression profiling identifies candidate biomarkers for new latent tuberculosis infections. A cohort study. PLoS One 2022; 17:e0274257. [PMID: 36170228 PMCID: PMC9518923 DOI: 10.1371/journal.pone.0274257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To determine the gene expression profile in individuals with new latent tuberculosis infection (LTBI), and to compare them with people with active tuberculosis (TB) and those exposed to TB but not infected. Design A prospective cohort study. Recruitment and follow-up were conducted between September 2016 to December 2018. Gene expression and data processing and analysis from April 2019 to April 2021. Setting Two male Colombian prisons. Participants 15 new tuberculin skin test (TST) converters (negative TST at baseline that became positive during follow-up), 11 people that continued with a negative TST after two years of follow-up, and 10 people with pulmonary ATB. Main outcome measures Gene expression profile using RNA sequencing from PBMC samples. The differential expression was assessed using the DESeq2 package in Bioconductor. Genes with |logFC| >1.0 and an adjusted p-value < 0.1 were differentially expressed. We analyzed the differences in the enrichment of KEGG pathways in each group using InterMiner. Results The gene expression was affected by the time of incarceration. We identified group-specific differentially expressed genes between the groups: 289 genes in people with a new LTBI and short incarceration (less than three months of incarceration), 117 in those with LTBI and long incarceration (one or more years of incarceration), 26 in ATB, and 276 in the exposed but non-infected individuals. Four pathways encompassed the largest number of down and up-regulated genes among individuals with LTBI and short incarceration: cytokine signaling, signal transduction, neutrophil degranulation, and innate immune system. In individuals with LTBI and long incarceration, the only enriched pathway within up-regulated genes was Emi1 phosphorylation. Conclusions Recent infection with MTB is associated with an identifiable RNA pattern related to innate immune system pathways that can be used to prioritize LTBI treatment for those at greatest risk for developing active TB.
Collapse
Affiliation(s)
- Mariana Herrera
- Departments of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Doctorado en Epidemiologia, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
| | - Yoav Keynan
- Departments of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul J. McLaren
- Departments of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Juan Pablo Isaza
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Bernard Abrenica
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lucelly López
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Diana Marin
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Zulma Vanessa Rueda
- Departments of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
- * E-mail:
| |
Collapse
|
23
|
Heyckendorf J, Georghiou SB, Frahm N, Heinrich N, Kontsevaya I, Reimann M, Holtzman D, Imperial M, Cirillo DM, Gillespie SH, Ruhwald M. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clin Microbiol Rev 2022; 35:e0022721. [PMID: 35311552 PMCID: PMC9491169 DOI: 10.1128/cmr.00227-21] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the advent of new diagnostics, drugs and regimens, tuberculosis (TB) remains a global public health threat. A significant challenge for TB control efforts has been the monitoring of TB therapy and determination of TB treatment success. Current recommendations for TB treatment monitoring rely on sputum and culture conversion, which have low sensitivity and long turnaround times, present biohazard risk, and are prone to contamination, undermining their usefulness as clinical treatment monitoring tools and for drug development. We review the pipeline of molecular technologies and assays that serve as suitable substitutes for current culture-based readouts for treatment response and outcome with the potential to change TB therapy monitoring and accelerate drug development.
Collapse
Affiliation(s)
- Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | | | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Norbert Heinrich
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Maja Reimann
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - David Holtzman
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Marjorie Imperial
- University of California San Francisco, San Francisco, California, USA, United States
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephen H. Gillespie
- School of Medicine, University of St Andrewsgrid.11914.3c, St Andrews, Fife, Scotland
| | - Morten Ruhwald
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | | |
Collapse
|
24
|
Singh S, Allwood BW, Chiyaka TL, Kleyhans L, Naidoo CC, Moodley S, Theron G, Segal LN. Immunologic and imaging signatures in post tuberculosis lung disease. Tuberculosis (Edinb) 2022; 136:102244. [PMID: 36007338 PMCID: PMC10061373 DOI: 10.1016/j.tube.2022.102244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
Post Tuberculosis Lung Disease (PTLD) affects millions of tuberculosis survivors and is a global health burden. The immune mechanisms that drive PTLD are complex and have historically been under investigated. Here, we discuss two immune-mediated paradigms that could drive human PTLD. We review the characteristics of a fibrotic granuloma that favors the development of PTLD via an abundance of T-helper-2 and T-regulatory cells and an upregulation of TGF-β mediated collagen deposition. Next, we discuss the post-primary tuberculosis paradigm and the complex mixture of caseous pneumonia, cavity formation and fibrosis that can also lead to PTLD. We review the delicate balance between cellular subsets and cytokines of the innate and adaptive immune system in conjunction with host-derived proteases that can perpetuate the parenchymal lung damage seen in PTLD. Next, we discuss the role of novel host directed therapies (HDT) to limit the development of PTLD and in particular, the recent repurposing of established medications such as statins, metformin and doxycycline. Finally, we review the emerging role of novel imaging techniques as a non-invasive modality for the early recognition of PTLD. While access to computed tomography imaging is unlikely to be available widely in countries with a high TB burden, its use in research settings can help phenotype PTLD. Due to a lack of disease-specific biomarkers and controlled clinical trials, there are currently no evidence-based recommendations for the management of PTLD. It is likely that an integrated antifibrotic strategy that could simultaneously target inflammatory and pro-fibrotic pathways will probably emerge as a successful way to treat this complex condition. In a disease spectrum as wide as PTLD, a single immunologic or radiographic marker may not be sufficient and a combination is more likely to be a successful surrogate that could aid in the development of successful HDTs.
Collapse
Affiliation(s)
- S Singh
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| | - B W Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Hospital, South Africa.
| | - T L Chiyaka
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L Kleyhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - C C Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - S Moodley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - G Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L N Segal
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| |
Collapse
|
25
|
Semenya D, Touitou M, Masci D, Ribeiro CM, Pavan FR, Dos Santos Fernandes GF, Gianibbi B, Manetti F, Castagnolo D. Tapping into the antitubercular potential of 2,5-dimethylpyrroles: A structure-activity relationship interrogation. Eur J Med Chem 2022; 237:114404. [PMID: 35486992 DOI: 10.1016/j.ejmech.2022.114404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/29/2023]
Abstract
An exploration of the chemical space around a 2,5-dimethylpyrrole scaffold of antitubercular hit compound 1 has led to the identification of new derivatives active against Mycobacterium tuberculosis and multidrug-resistant clinical isolates. Analogues incorporating a cyclohexanemethyl group on the methyleneamine side chain at C3 of the pyrrole core, including 5n and 5q, exhibited potent inhibitory effects against the M. tuberculosis strains, substantiating the essentiality of the moiety to their antimycobacterial activity. In addition, selected derivatives showed promising cytotoxicity profiles against human pulmonary fibroblasts and/or murine macrophages, proved to be effective in inhibiting the growth of intracellular mycobacteria, and elicited either bactericidal effects, or bacteriostatic activity comparable to 1. Computational studies revealed that the new compounds bind to the putative target, MmpL3, in a manner similar to that of known inhibitors BM212 and SQ109.
Collapse
Affiliation(s)
- Dorothy Semenya
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, United Kingdom
| | - Meir Touitou
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, United Kingdom
| | - Domiziana Masci
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, United Kingdom
| | - Camila Maringolo Ribeiro
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rod. Araraquara-Jau, km1, 14800-903, Araraquara, Brazil
| | - Fernando Rogerio Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rod. Araraquara-Jau, km1, 14800-903, Araraquara, Brazil
| | | | - Beatrice Gianibbi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022, University of Siena, via A. Moro 2, I-53100, Siena, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022, University of Siena, via A. Moro 2, I-53100, Siena, Italy
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, United Kingdom.
| |
Collapse
|
26
|
Mishra P, Verma VK, Barman L, Sharma J, Gupta P, Mohan A, Arya DS. Correlation of serum amyloid A1 and interleukin-1beta in response to anti-tubercular therapy. Am J Med Sci 2022; 364:316-326. [PMID: 35452629 DOI: 10.1016/j.amjms.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/28/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Host biomarkers are needed to monitor the response to anti-tubercular therapy (ATT) for ensuring effective therapy and preventing drug-resistant tuberculosis. We sought to find the correlation between the serum levels of SAA1 and IL-1beta in response to ATT in adult patients with pulmonary TB (PTB) or extra-pulmonary TB (EPTB). METHODS Blood samples of 32 patients with PTB and 28 patients with EPTB were analyzed. The blood samples were collected at baseline, two months and six months following treatment initiation. SAA1 and IL-1beta levels were measured by enzyme linked immunosorbent assay (ELISA). RESULTS In the PTB group, the mean levels of SAA1 decreased significantly (p <0.001) after the intensive phase (two months) and continuous phase (six months) of ATT in comparison with the baseline value. IL-1beta values also decreased significantly (p = 0.005) after the intensive phase (two months) compared with the baseline values. In the EPTB group, there was a significant reduction in the mean serum level of SAA1 (p <0.001) and IL-1beta (p = 0.001) after the intensive phase (two months) in comparison with the baseline value, whereas the reduction at six months was not significant. CONCLUSIONS SAA1 and IL-1beta may be useful potential treatment-monitoring biomarkers, especially in the intensive phase of therapy for both PTB and EPTB.
Collapse
Affiliation(s)
- Prashant Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Lina Barman
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jatin Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
27
|
Jones A, Saini J, Kriel B, Via LE, Cai Y, Allies D, Hanna D, Hermann D, Loxton AG, Walzl G, Diacon AH, Romero K, Higashiyama R, Liu Y, Berg A. Sputum lipoarabinomannan (LAM) as a biomarker to determine sputum mycobacterial load: exploratory and model-based analyses of integrated data from four cohorts. BMC Infect Dis 2022; 22:327. [PMID: 35366820 PMCID: PMC8976459 DOI: 10.1186/s12879-022-07308-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Despite the high global disease burden of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb) infection, novel treatments remain an urgent medical need. Development efforts continue to be hampered by the reliance on culture-based methods, which often take weeks to obtain due to the slow growth rate of Mtb. The availability of a “real-time” measure of treatment efficacy could accelerate TB drug development. Sputum lipoarabinomannan (LAM; an Mtb cell wall glycolipid) has promise as a pharmacodynamic biomarker of mycobacterial sputum load. Methods The present analysis evaluates LAM as a surrogate for Mtb burden in the sputum samples from 4 cohorts of a total of 776 participants. These include those from 2 cohorts of 558 non-TB and TB participants prior to the initiation of treatment (558 sputum samples), 1 cohort of 178 TB patients under a 14-day bactericidal activity trial with various mono- or multi-TB drug therapies, and 1 cohort of 40 TB patients with data from the first 56-day treatment of a standard 4-drug regimen. Results Regression analysis demonstrated that LAM was a predictor of colony-forming unit (CFU)/mL values obtained from the 14-day treatment cohort, with well-estimated model parameters (relative standard error ≤ 22.2%). Moreover, no changes in the relationship between LAM and CFU/mL were observed across the different treatments, suggesting that sputum LAM can be used to reasonably estimate the CFU/mL in the presence of treatment. The integrated analysis showed that sputum LAM also appears to be as good a predictor of time to Mycobacteria Growth Incubator Tube (MGIT) positivity as CFU/mL. As a binary readout, sputum LAM positivity is a strong predictor of solid media or MGIT culture positivity with an area-under-the-curve value of 0.979 and 0.976, respectively, from receiver-operator curve analysis. Conclusions Our results indicate that sputum LAM performs as a pharmacodynamic biomarker for rapid measurement of Mtb burden in sputum, and thereby may enable more efficient early phase clinical trial designs (e.g., adaptive designs) to compare candidate anti-TB regimens and streamline dose selection for use in pivotal trials. Trial registration NexGen EBA study (NCT02371681) Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07308-3.
Collapse
|
28
|
Liu W, Rodgers GP. Olfactomedin 4 Is a Biomarker for the Severity of Infectious Diseases. Open Forum Infect Dis 2022; 9:ofac061. [PMID: 35291445 PMCID: PMC8918383 DOI: 10.1093/ofid/ofac061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 09/05/2023] Open
Abstract
Biomarkers of infectious diseases are essential tools for patient monitoring, diagnostics, and prognostics. Here we review recent advances in our understanding of olfactomedin 4 (OLFM4) in neutrophil biology and of OLFM4 as a new biomarker for certain infectious diseases. OLFM4 is a neutrophil-specific granule protein that is expressed in a subset of human and mouse neutrophils. OLFM4 expression is upregulated in many viral and bacterial infections, as well as in malaria. OLFM4 appears to play an important role in regulating host innate immunity against bacterial infection. Further, higher expression of OLFM4 is associated with severity of disease for dengue virus, respiratory syncytial virus, and malaria infections. In addition, higher expression of OLFM4 or a higher percentage of OLFM4 + neutrophils is associated with poorer outcomes in septic patients. OLFM4 is a promising biomarker and potential therapeutic target in certain infectious diseases.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Abstract
Antimicrobial peptides (AMPs) have recently become widely publicized because they have the potential to function in alternative therapies as “natural” antibiotics, with their main advantage being a broad spectrum of activity. The potential for antimicrobial peptides to treat diabetes mellitus (DM) has been reported. In diabetes mellitus type I (T1D), cathelicidin-related antimicrobial peptide (CRAMP), cathelicidin antimicrobial peptide (CAMP) and mouse-β- defensin 14 (mBD14) are positively affected. Decreased levels of LL-37 and human neutrophil peptide 1-3 (HNP1-3) have been reported in diabetes mellitus type II (T2D) relative to healthy patients. Moreover, AMPs from amphibians and social wasps have antidiabetic effects. In infections occurring in patients with tuberculosis-diabetes or diabetic foot, granulysin, HNP1, HNP2, HNP3, human beta-defensin 2 (HBD2), and cathelicidins are responsible for pathogen clearance. An interesting alternative is also the use of modified M13 bacteriophages containing encapsulated AMPs genes or phagemids.
Collapse
|
30
|
Wang A, Xu S, Chai Y, Xia G, Wang B, Lv K, Wang D, Qin X, Jiang B, Wu W, Liu M, Lu Y. Design, synthesis and biological evaluation of nitrofuran-1,3,4-oxadiazole hybrids as new antitubercular agents. Bioorg Med Chem 2022; 53:116529. [PMID: 34861474 DOI: 10.1016/j.bmc.2021.116529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
Three series of novel nitrofuran-1,3,4-oxadiazole hybrids were designed and synthesized as new anti-TB agents. The structure activity relationship study indicated that the linkers and the substituents on the oxadiazole moiety greatly influence the activity, and the substituted benzenes are more favoured than the cycloalkyl or heterocyclic groups. Besides, the optimal compound in series 2 was active against both MTB H37Rv strain and MDR-MTB 16883 clinical isolate and also displayed low cytotoxicity, low inhibition of hERG and good oral PK, indicating its promising potential to be a lead for further structural modifications.
Collapse
Affiliation(s)
- Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shijie Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun Chai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing 100149, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Qin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bin Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hebei Medical University, Shijiazhuang 050017, China
| | - Wenhao Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hebei Medical University, Shijiazhuang 050017, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing 100149, China.
| |
Collapse
|
31
|
Interleukin-13 overexpressing mice represent an advanced pre-clinical model for detecting the distribution of anti-mycobacterial drugs within centrally necrotizing granulomas. Antimicrob Agents Chemother 2021; 66:e0158821. [PMID: 34871095 PMCID: PMC9211424 DOI: 10.1128/aac.01588-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Mycobacterium tuberculosis-harboring granuloma with a necrotic center surrounded by a fibrous capsule is the hallmark of tuberculosis (TB). For a successful treatment, antibiotics need to penetrate these complex structures to reach their bacterial targets. Hence, animal models reflecting the pulmonary pathology of TB patients are of particular importance to improve the preclinical validation of novel drug candidates. M. tuberculosis-infected interleukin-13-overexpressing (IL-13tg) mice develop a TB pathology very similar to patients and, in contrast to other mouse models, also share pathogenetic mechanisms. Accordingly, IL-13tg animals represent an ideal model for analyzing the penetration of novel anti-TB drugs into various compartments of necrotic granulomas by matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MS imaging). In the present study, we evaluated the suitability of BALB/c IL-13tg mice for determining the antibiotic distribution within necrotizing lesions. To this end, we established a workflow based on the inactivation of M. tuberculosis by gamma irradiation while preserving lung tissue integrity and drug distribution, which is essential for correlating drug penetration with lesion pathology. MALDI-MS imaging analysis of clofazimine, pyrazinamide, and rifampicin revealed a drug-specific distribution within different lesion types, including cellular granulomas, developing in BALB/c wild-type mice, and necrotic granulomas in BALB/c IL-13tg animals, emphasizing the necessity of preclinical models reflecting human pathology. Most importantly, our study demonstrates that BALB/c IL-13tg mice recapitulate the penetration of antibiotics into human lesions. Therefore, our workflow in combination with the IL-13tg mouse model provides an improved and accelerated evaluation of novel anti-TB drugs and new regimens in the preclinical stage.
Collapse
|
32
|
Padmapriydarsini C, Mamulwar M, Mohan A, Shanmugam P, Gomathy NS, Mane A, Singh UB, Pavankumar N, Kadam A, Kumar H, Suresh C, Reddy D, Devi P, Ramesh PM, Sekar L, Jawahar S, Shandil RK, Singh M, Menon J, Guleria R. Randomized trial of Metformin with Anti-tuberculosis drugs For Early Sputum Conversion in Adults with Pulmonary Tuberculosis. Clin Infect Dis 2021; 75:425-434. [PMID: 34849651 PMCID: PMC9427151 DOI: 10.1093/cid/ciab964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
Background Metformin, by reducing intracellular Mycobacterium tuberculosis growth, can be considered an adjunctive therapy to anti-tuberculosis treatment (ATT). We determined whether metformin with standard ATT reduces time to sputum culture conversion and tissue inflammation in adults with pulmonary tuberculosis (PTB). Methods In a randomized, 8-week, clinical trial, newly diagnosed, culture-positive PTB patients were randomized to standard ATT (HREZ = control arm) or standard ATT plus daily 1000 mg metformin (MET-HREZ = Metformin with Rifampicin [METRIF] arm) for 8 weeks during 2018–2020 at 5 sites in India. The primary end point was time to sputum culture conversion by liquid culture during 8 weeks of ATT. Plasma inflammatory markers were estimated in a subset. A Cox proportional hazard model was used to estimate time and predictors of culture conversion. Results Of the 322 patients randomized, 239 (74%) were male, and 212 (66%) had bilateral disease on chest radiograph with 54 (18%) showing cavitation. The median time to sputum culture conversion by liquid culture was 42 days in the METRIF arm and 41 days in the control arm (hazard ratio, 0.8; 95% confidence interval [CI], .624–1.019). After 8 weeks of ATT, cavitary lesions on X-ray (7, 5.3% vs 18, 12.9%; relative risk, 0.42; 95% CI, .18–.96; P = .041) and inflammatory markers were significantly lower in the METRIF arm. Higher body mass index and lower sputum smear grading were associated with faster sputum culture conversion. Conclusions The addition of metformin to standard ATT did not hasten sputum culture conversion but diminished excess inflammation, thus reducing lung tissue damage as seen by faster clearance on X-ray and reduced inflammatory markers. Clinical Trials Registration Clinical Trial Registry of India (CTRI/2018/01/011176)
Collapse
Affiliation(s)
| | | | - Anant Mohan
- All India Institute for Medical Sciences, New Delhi, India
| | - Prema Shanmugam
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - N S Gomathy
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Aarti Mane
- ICMR-National AIDS Research Institute, Pune, India
| | | | | | | | - Hemanth Kumar
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Chandra Suresh
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Devaraju Reddy
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Poornaganga Devi
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - P M Ramesh
- Government Ottery TB Hospital, Chennai, India
| | - Lakshmanan Sekar
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | | | - R K Shandil
- Open Source Pharma Foundation, Bangalore, India
| | - Manjula Singh
- Indian Council of Medical Research, New Delhi, India
| | | | | | | |
Collapse
|
33
|
Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, Aldridge BB. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst 2021; 12:1046-1063.e7. [PMID: 34469743 PMCID: PMC8617591 DOI: 10.1016/j.cels.2021.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yonatan N Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA.
| |
Collapse
|
34
|
Kumar NP, Moideen K, Nancy A, Viswanathan V, Thiruvengadam K, Nair D, Banurekha VV, Sivakumar S, Hissar S, Kornfeld H, Babu S. Plasma Chemokines Are Baseline Predictors of Unfavorable Treatment Outcomes in Pulmonary Tuberculosis. Clin Infect Dis 2021; 73:e3419-e3427. [PMID: 32766812 DOI: 10.1093/cid/ciaa1104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Plasma chemokines are biomarkers of greater disease severity, higher bacterial burden, and delayed sputum culture conversion in pulmonary tuberculosis (PTB). Whether plasma chemokines could also serve as biomarkers of unfavorable treatment outcomes in PTB is not known. METHODS A cohort of newly diagnosed, sputum smear- and culture-positive adults with drug-sensitive PTB were recruited under the Effect of Diabetes on Tuberculosis Severity study in Chennai, India. Plasma chemokine levels measured before treatment initiation were compared between 68 cases with unfavorable outcomes (treatment failure, death, or recurrence) and 136 control individuals who had recurrence-free cure. A second validation cohort comprising newly diagnosed, culture-positive adults with drug-sensitive TB was used to measure plasma chemokine levels in 20 cases and 40 controls. RESULTS Six chemokines (CCL2, CCL3, CCL4, CXCL8, CXCL10, and CX3CL1) were associated with increased risk, while CXCL1 was associated with decreased risk of unfavorable outcomes in unadjusted and adjusted analyses in the test cohort. Similarly, CCL3, CXCL8, and CXCL10 were associated with increased risk of unfavorable treatment outcomes in the validation cohort. Receiver operating characteristic analysis revealed that combinations of CCL3, CXCL8, and CXCL10 exhibited very high sensitivity and specificity in differentiating cases vs controls. CONCLUSIONS Our study reveals a plasma chemokine signature that can be used as a novel biomarker for predicting adverse treatment outcomes in PTB.
Collapse
Affiliation(s)
- Nathella P Kumar
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis, Chennai, India
| | - Kadar Moideen
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India
| | - Arul Nancy
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India.,Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | | | | | - Dina Nair
- National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Syed Hissar
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Subash Babu
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Miow QH, Vallejo AF, Wang Y, Hong JM, Bai C, Teo FS, Wang AD, Loh HR, Tan TZ, Ding Y, She HW, Gan SH, Paton NI, Lum J, Tay A, Chee CB, Tambyah PA, Polak ME, Wang YT, Singhal A, Elkington PT, Friedland JS, Ong CW. Doxycycline host-directed therapy in human pulmonary tuberculosis. J Clin Invest 2021; 131:e141895. [PMID: 34128838 DOI: 10.1172/jci141895] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDMatrix metalloproteinases (MMPs) are key regulators of tissue destruction in tuberculosis (TB) and may be targets for host-directed therapy. We conducted a phase II double-blind, randomized, controlled trial investigating doxycycline, a licensed broad-spectrum MMP inhibitor, in patients with pulmonary TB.METHODSThirty patients with pulmonary TB were enrolled within 7 days of initiating anti-TB treatment and randomly assigned to receive either 100 mg doxycycline or placebo twice a day for 14 days, in addition to standard care.RESULTSWhole blood RNA-sequencing demonstrated that doxycycline accelerated restoration of dysregulated gene expression in TB towards normality, rapidly down-regulating type I and II interferon and innate immune response genes, and up-regulating B-cell modules relative to placebo. The effects persisted for 6 weeks after doxycycline discontinuation, concurrent with suppressed plasma MMP-1. Doxycycline significantly reduced sputum MMP-1, -8, -9, -12 and -13, suppressed type I collagen and elastin destruction, reduced pulmonary cavity volume without altering sputum mycobacterial loads, and was safe.CONCLUSIONAdjunctive doxycycline with standard anti-TB treatment suppressed pathological MMPs in PTB patients. Larger studies on adjunctive doxycycline to limit TB immunopathology are merited.TRIAL REGISTRATIONClinicalTrials.gov NCT02774993.FUNDINGSingapore National Medical Research Council (NMRC/CNIG/1120/2014, NMRC/Seedfunding/0010/2014, NMRC/CISSP/2015/009a); the Singapore Infectious Diseases Initiative (SIDI/2013/013); National University Health System (PFFR-28 January 14, NUHSRO/2014/039/BSL3-SeedFunding/Jul/01); the Singapore Immunology Network Immunomonitoring platform (BMRC/IAF/311006, H16/99/b0/011, NRF2017_SISFP09); an ExxonMobil Research Fellowship, NUHS Clinician Scientist Program (NMRC/TA/0042/2015, CSAINV17nov014); the UK Medical Research Council (MR/P023754/1, MR/N006631/1); a NUS Postdoctoral Fellowship (NUHSRO/2017/073/PDF/03); The Royal Society Challenge Grant (CHG\R1\170084); the Sir Henry Dale Fellowship, Wellcome Trust (109377/Z/15/Z); and A*STAR.
Collapse
Affiliation(s)
- Qing Hao Miow
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yu Wang
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jia Mei Hong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chen Bai
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Felicia Sw Teo
- Division of Respiratory and Critical Care Medicine, University Medicine Cluster, National University Hospital, National University Health System, Singapore
| | - Alvin Dy Wang
- Department of Medicine, Ng Teng Fong General Hospital, Singapore
| | - Hong Rong Loh
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ying Ding
- National Centre for Infectious Diseases, Singapore
| | - Hoi Wah She
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Suay Hong Gan
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Nicholas I Paton
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Alicia Tay
- Singapore Immunology Network, A*STAR, Singapore
| | - Cynthia Be Chee
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Paul A Tambyah
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yee Tang Wang
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | | | - Paul T Elkington
- NIHR Respiratory Biomedical Research Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Catherine Wm Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore
| |
Collapse
|
36
|
Su CC, Klenotic PA, Cui M, Lyu M, Morgan CE, Yu EW. Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLoS Biol 2021; 19:e3001370. [PMID: 34383749 PMCID: PMC8384468 DOI: 10.1371/journal.pbio.3001370] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/24/2021] [Accepted: 07/21/2021] [Indexed: 01/09/2023] Open
Abstract
The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States of America
| | - Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
37
|
Liu L, Deng J, Yang Q, Wei C, Liu B, Zhang H, Xin H, Pan S, Liu Z, Wang D, Pang Y, Chen X, Gao L, Zheng J, Liu R, Jin Q. Urinary proteomic analysis to identify a potential protein biomarker panel for the diagnosis of tuberculosis. IUBMB Life 2021; 73:1073-1083. [PMID: 34048129 DOI: 10.1002/iub.2509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is one of the primary causes of death worldwide. Rapid and accurate diagnosis of TB is one of the most direct means to reduce the incidence of TB. In this study, urinary proteomic profiling of TB patients and non-TB individual controls (HCs) was performed, and differentially expressed urinary proteins between TB and HCs were compared and exclusively expressed proteins in TB patients were selected to establish a clinically useful disease marker panel. In total, these top 11 targeted proteins with 265 peptides were scheduled for multiple reaction monitoring validation analysis by using urine samples from 52 TB patients and 52 HCs. The result demonstrated that a three-protein combination out of the five-protein panel (namely P22352, Q9P121, P15151, Q13291, and Q8NDA2) exhibited sensitivity rate of 82.7% in the diagnosis of TB. Furthermore, the three-protein combination could differentiate TB from the latent tuberculosis (LTB) effectively, which exhibited specificity rate of 92.3% for the diagnosis of TB from the LTB category. Although more numbers of clinical samples are required for further verification, the results provided preliminary evidence that this "three-protein combination" out of the five-protein panel could probably be a novel TB diagnostic biomarker in clinical application.
Collapse
Affiliation(s)
- Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaheng Deng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianting Yang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Candong Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shouguo Pan
- Center for Diseases Control and Prevention of Zhongmu County, Zhongmu, China
| | - Zisen Liu
- Center for Diseases Control and Prevention of Zhongmu County, Zhongmu, China
| | - Dakuan Wang
- Center for Diseases Control and Prevention of Zhongmu County, Zhongmu, China
| | - Yu Pang
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongmei Liu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010-2020 Review. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050461. [PMID: 34068171 PMCID: PMC8152995 DOI: 10.3390/ph14050461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a curable airborne disease currently treated using a drug regimen consisting of four drugs. Global TB control has been a persistent challenge for many decades due to the emergence of drug-resistant Mtb strains. The duration and complexity of TB treatment are the main issues leading to treatment failures. Other challenges faced by currently deployed TB regimens include drug-drug interactions, miss-matched pharmacokinetics parameters of drugs in a regimen, and lack of activity against slow replicating sub-population. These challenges underpin the continuous search for novel TB drugs and treatment regimens. This review summarizes new TB drugs/drug candidates under development with emphasis on their chemical classes, biological targets, mode of resistance generation, and pharmacokinetic properties. As effective TB treatment requires a combination of drugs, the issue of drug-drug interaction is, therefore, of great concern; herein, we have compiled drug-drug interaction reports, as well as efficacy reports for drug combinations studies involving antitubercular agents in clinical development.
Collapse
|
39
|
Zhang C, Lin Y, Zhang C, Cao J, Yang L, Duan X. Arthroscopic Ankle Arthrodesis for End-Stage Tuberculosis of the Ankle: A 2-Year Follow-Up. J Foot Ankle Surg 2021; 59:577-586. [PMID: 32249152 DOI: 10.1053/j.jfas.2019.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/03/2023]
Abstract
Surgical treatment for end-stage ankle joint tuberculosis (TB) has rarely been reported. This study followed cases treated by arthroscopic arthrodesis for ankle joint TB to evaluate its efficacy and safety in the clinic. Patients who underwent arthroscopic ankle arthrodesis for ankle joint TB between April 11, 2010, and December 31, 2016, were followed. Their diagnoses were confirmed by bacterial culture or pathological examination. During arthroscopy, tissue samples were first obtained to further confirm the diagnosis. Then the necrotic tissue, hyperplasia of synovial tissue, and exfoliated cartilage were removed. Ankle joint arthrodesis was performed if the area of articular cartilage damage was >2 cm2. Continued nutritional support and standardized anti-TB drug treatment were given after surgery. Follow-up measurements included visual analogue scale score, American Orthopaedic Foot and Ankle Society score, erythrocyte sedimentation rate, and radiographic imaging. All 9 patients in this study, with an average age of 54 (range 37 to 68) years, were followed. The mean follow-up duration was 55.44 ± 31.15 (range 24 to 96) months. There were significant differences in the visual analogue scale scores, American Orthopaedic Foot and Ankle Society scores, and erythrocyte sedimentation rate between before treatment and 18 months postoperatively (p < .05). All patients (100%) showed union at 18 ± 4 weeks. Arthroscopic treatment for ankle joint TB has the advantages of minor trauma and low complications. It can be used to accurately obtain samples from specific areas of TB for further diagnosis. According to the degree of articular cartilage damage, the surgeon can determine whether to perform arthrodesis. Thorough debridement of necrotic tissue and residual articular cartilage on the fusion surface can improve the rate of ankle fusion.
Collapse
Affiliation(s)
- Changgui Zhang
- Surgeon, Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yangjing Lin
- Surgeon, Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengchang Zhang
- Surgeon, Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Cao
- Surgeon, Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Professor, Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaojun Duan
- Associate Professor, Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
40
|
Angelova VT, Pencheva T, Buyukliev R, Yovkova EK, Valkova I, Momekov G, Vulcheva V. Antimycobacterial Activity, In Silico ADME Evaluation, and Docking Study of Novel Thiazolidinedione and Imidazolidinone Conjugates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Khadka P, Sinha S, Tucker IG, Dummer J, Hill PC, Katare R, Das SC. Studies on the safety and the tissue distribution of inhaled high-dose amorphous and crystalline rifampicin in a rat model. Int J Pharm 2021; 597:120345. [PMID: 33545287 DOI: 10.1016/j.ijpharm.2021.120345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Inhaled delivery of rifampicin has the potential to achieve high drug concentrations in the lung and the blood for efficient treatment of tuberculosis (TB). Due to its existence as polymorphs, in vivo evaluation of the respiratory tract safety of inhalable amorphous and crystalline rifampicin particles, at clinically relevant high-dose, is necessary. This study investigates the lung and liver safety and the tissue distribution of rifampicin after intra-tracheal administration of high (≥25 mg/kg) doses of amorphous and crystalline powder formulations to Sprague Dawley rats. Powder formulations were administered by intra-tracheal insufflation to rats. Lung and liver safety were evaluated by histopathology. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) assays were performed to study the hepatic effects. Rifampicin was quantified in the tissues using LC-MS/MS. Intra-tracheal administration of rifampicin decreased the drug burden on the liver compared to oral administration based on its lower serum ALT activity. Repeated-dose intra-tracheal rifampicin was well tolerated by rats, confirmed by the absence of drug or delivery induced complexities. The histopathological evaluation of rat lungs, after both single and repeated drug administration for seven days, suggested the absence of drug-induced toxicity. Following single intra-tracheal delivery of 50 mg/kg doses, comparable rifampicin concentrations to that from same oral dose were observed in lung, liver, heart and brain. Inhaled delivery of high-dose rifampicin was safe to rat lungs and liver suggesting its potential for localized as well as systemic drug delivery without toxicity concerns.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Shubhra Sinha
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | - Ian G Tucker
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
42
|
Osawa T, Watanabe M, Morimoto K, Okumura M, Yoshiyama T, Ogata H, Goto H, Kudoh S, Ohta K, Sasaki Y. Serum Procalcitonin Levels Predict Mortality Risk in Patients With Pulmonary Tuberculosis: A Single-Center Prospective Observational Study. J Infect Dis 2021; 222:1651-1654. [PMID: 32445568 DOI: 10.1093/infdis/jiaa275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/18/2020] [Indexed: 11/14/2022] Open
Abstract
Globally, tuberculosis is the leading infectious cause of death; discovering biomarkers that predict a high mortality risk may improve treatment outcomes. We prospectively enrolled 252 pulmonary tuberculosis patients who were not coinfected with human immunodeficiency virus and initiated antituberculosis treatment, measured serum procalcitonin levels (PCT), and assessed mortality risk. PCT serum levels higher than 0.13 (day 0), 0.05 (day 7), 0.12 (day 14), or 0.06 (day 28) ng/mL predicted nonsurvivors with odds ratios of 7.9, 14.3, 20.0, and 7.3, respectively (P ≤ .005 for all), respectively. Therefore, serum PCT levels are a promising mortality risk indicator for patients with pulmonary tuberculosis. Main Point. For patients with pulmonary tuberculosis, a promising mortality risk indicator is the level of serum procalcitonin, which is weakly associated with sputum bacterial load and independent of radiographic findings.
Collapse
Affiliation(s)
- Takeshi Osawa
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kozo Morimoto
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan.,Division of Clinical Research, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Masao Okumura
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Takashi Yoshiyama
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan.,Research institute of tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hideo Ogata
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Shoji Kudoh
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Ken Ohta
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Yuka Sasaki
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| |
Collapse
|
43
|
Mave V, Gaikwad S, Barthwal M, Chandanwale A, Lokhande R, Kadam D, Dharmshale S, Bharadwaj R, Kagal A, Pradhan N, Deshmukh S, Atre S, Sahasrabudhe T, Meshram S, Kakrani A, Kulkarni V, Raskar S, Suryavanshi N, Kornfeld H, Dooley KE, Chon S, Gupte A, Gupta A, Gupte N, Golub JE. Diabetes Mellitus and Tuberculosis Treatment Outcomes in Pune, India. Open Forum Infect Dis 2021; 8:ofab097. [PMID: 33884278 PMCID: PMC8047862 DOI: 10.1093/ofid/ofab097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/02/2022] Open
Abstract
Background Diabetes mellitus (DM) increases the risk of tuberculosis (TB) disease. Knowledge of the impact of DM on TB treatment outcomes is primarily based on retrospective studies. Methods We conducted a prospective cohort study of new pulmonary TB patients with and without DM (TB-DM and TB only) in India. The association of DM with a composite unfavorable TB treatment outcome (failure, recurrence, mortality) over 18 months was determined, and the effect of DM on all-cause mortality and early mortality (death during TB treatment) was assessed. Results Of 799 participants, 574 (72%) had TB only and 225 (28%) had TB-DM. The proportion of patients with DM who experienced the composite outcome was 20%, as compared with 21% for TB-only participants (adjusted hazard ratio [aHR], 1.13; 95% CI, 0.75–1.70). Mortality was higher in participants with DM (10% vs 7%), and early mortality was substantially higher among patients with DM (aHR, 4.36; 95% CI, 1.62–11.76). Conclusions DM was associated with early mortality in this prospective cohort study, but overall unfavorable outcomes were similar to participants without DM. Interventions to reduce mortality during TB treatment among people with TB-DM are needed.
Collapse
Affiliation(s)
- Vidya Mave
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Gaikwad
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Madhusudan Barthwal
- Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Ajay Chandanwale
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Rahul Lokhande
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Dileep Kadam
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Sujata Dharmshale
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Renu Bharadwaj
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Anju Kagal
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Neeta Pradhan
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Sona Deshmukh
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Sachin Atre
- Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Tushar Sahasrabudhe
- Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Shailesh Meshram
- Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Arjun Kakrani
- Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Vandana Kulkarni
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Swapnil Raskar
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Nishi Suryavanshi
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | | | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandy Chon
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akshay Gupte
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amita Gupta
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nikhil Gupte
- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan E Golub
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
45
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
46
|
Edwards BD, Edwards J, Cooper R, Kunimoto D, Somayaji R, Fisher D. Rifampin-resistant/multidrug-resistant Tuberculosis in Alberta, Canada: Epidemiology and treatment outcomes in a low-incidence setting. PLoS One 2021; 16:e0246993. [PMID: 33592031 PMCID: PMC7886202 DOI: 10.1371/journal.pone.0246993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Treatment of rifampin-monoresistant/multidrug-resistant Tuberculosis (RR/MDR-TB) requires long treatment courses, complicated by frequent adverse events and low success rates. Incidence of RR/MDR-TB in Canada is low and treatment practices are variable due to the infrequent experience and challenges with drug access. We undertook a retrospective cohort study of all RR/MDR-TB cases in Alberta, Canada from 2007-2017 to explore the epidemiology and outcomes in our low incidence setting. We performed a descriptive analysis of the epidemiology, treatment regimens and associated outcomes, calculating differences in continuous and discrete variables using Student's t and Chi-squared tests, respectively. We identified 24 patients with RR/MDR-TB. All patients were foreign-born with the median time to presentation after immigration being 3 years. Prior treatment was reported in 46%. Treatment was individualized. All patients achieved sputum culture conversion within two months of treatment initiation. The median treatment duration after culture conversion was 18 months (IQR: 15-19). The mean number of drugs utilized during the intensive phase was 4.3 (SD: 0.8) and during the continuation phase was 3.3 (SD: 0.9) and the mean adherence to medications was 95%. Six patients completed national guideline-concordant therapy, with many patients developing adverse events (79%). Treatment success (defined as completion of prescribed therapy or cure) was achieved in 23/24 patients and no acquired drug resistance or relapse was detected over 1.8 years of median follow-up. Many cases were captured upon immigration assessment, representing important prevention of community spread. Despite high rates of adverse events and short treatment compared to international guidelines, success in our cohort was very high at 96%. This is likely due to individualization of therapy, frequent use of medications with high effectiveness, intensive treatment support, and early sputum conversion seen in our cohort. There should be ongoing exploration of treatment shortening with well-tolerated, efficacious oral agents to help patients achieve treatment completion.
Collapse
Affiliation(s)
- Brett D. Edwards
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny Edwards
- Pharmacy Services, Alberta Health Services, Calgary, Alberta, Canada
| | - Ryan Cooper
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Dina Fisher
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
Lima MCRADD, Martinez-Marcos MM, Ballestero JGDA, Weiller TH, Oliveira CBBD, Palha PF. Control de la tuberculosis en un sistema penitenciario brasileño: un estudio con métodos mixtos. ESCOLA ANNA NERY 2021. [DOI: 10.1590/2177-9465-ean-2021-0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumen Objetivo analizar el control de la tuberculosis en un sistema penitenciario de un Estado brasileño. Método estudio mixto explicativo secuencial. Fase I: descriptiva retrospectiva de los casos de tuberculosis en presos del estado de São Paulo en el periodo 2010-2016. Los casos se analizaron con frecuencias simples en el software SPSS 20.0 de la IBM y tendencia temporal en el software Stata/SE 14.0, por auto regresión de Prais-Winsten. Fase II: cualitativa. Se realizó con seis informantes-clave (profesionales sanitarios de una prisión) con base en la Teoría Fundamentada Constructivista. Resultados de 16.640 casos, 95,8% eran pulmonares, la Demanda Ambulatoria posibilitó el diagnóstico del 51,4%, y la curación fue la conclusión de tratamiento más frecuente. La categoría central fue: “Hacer bien su trabajo” y las subcategorías fueron: “Descubrir la enfermedad” e “Implicarse en el tratamiento”. Éstas señalaron las estrategias y acciones desarrolladas por los profesionales para diagnosticar y tratar a los presos enfermos. Conclusión e implicaciones para la práctica los resultados sugieren una importante situación de la tuberculosis en penitenciarías, lo que trae consigo la necesidad de mejor articulación con el equipo de seguridad para un adecuado desarrollo de las estrategias que posibilitan un diagnóstico temprano y un tratamiento adecuado.
Collapse
|
48
|
The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur J Med Chem 2020; 211:113102. [PMID: 33421712 DOI: 10.1016/j.ejmech.2020.113102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Oxindole derivatives are known for their great interest in the field of Medicinal Chemistry, as they display vast biological activities. Recent efforts concerning the preparation of oxindole derivatives using isatin-based multicomponent reactions (MCRs) constitute a great advance in generating druglike libraries fast and with wide scaffold diversity. In this review, we address those recent developments, exploring the synthetic pathways and biological activities described for these compounds, namely antitumor, antibacterial, antifungal, antiparasitic, antiviral, antioxidant, anti-inflammatory and central nervous system (CNS) pathologies. To add new depth to this work, we used a well-established web-based free tool (SwissADME) to evaluate the most promising scaffolds in what concerns their druglike properties, namely by evaluating their compliance with some of the most valuable rules applied by medicinal chemists in both academia and industrial settings (Lipinski, Ghose, Veber, Egan, Muegge). The aim of this review is to endorse isatin-based MCRs as a valuable synthetic approach to attain new hit compounds bearing the oxindole privileged structure, while critically exploring these scaffolds' druglike properties.
Collapse
|
49
|
Meena CL, Singh P, Shaliwal RP, Kumar V, Kumar A, Tiwari AK, Asthana S, Singh R, Mahajan D. Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem 2020; 208:112772. [PMID: 32920342 DOI: 10.1016/j.ejmech.2020.112772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Herein, we report the synthesis and anti-tubercular studies of novel molecules based on thiophene scaffold. We identified two novel small molecules 4a and 4b, which demonstrated 2-fold higher in vitro activity (MIC99: 0.195 μM) compared to first line TB drug, isoniazid (0.39 μM). The identified leads demonstrated additive effect with front line TB drugs (isoniazid, rifampicin and levofloxacin) and synergistic effect with a recently FDA-approved drug, bedaquiline. Mechanistic studies (i) negated the role of Pks13 and (ii) suggested the involvement of KatG in the anti-tubercular activity of these identified leads.
Collapse
Affiliation(s)
- Chhuttan L Meena
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Padam Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ravi P Shaliwal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Varun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Arun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Anoop Kumar Tiwari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| | - Dinesh Mahajan
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
50
|
Kumar NP, Moideen K, Nancy A, Viswanathan V, Thiruvengadam K, Sivakumar S, Hissar S, Nair D, Banurekha VV, Kornfeld H, Babu S. Association of Plasma Matrix Metalloproteinase and Tissue Inhibitors of Matrix Metalloproteinase Levels With Adverse Treatment Outcomes Among Patients With Pulmonary Tuberculosis. JAMA Netw Open 2020; 3:e2027754. [PMID: 33258908 PMCID: PMC7709089 DOI: 10.1001/jamanetworkopen.2020.27754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Identifying biomarkers of treatment response is an urgent need in the treatment of tuberculosis (TB). Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are potential diagnostic biomarkers in pulmonary TB (PTB). OBJECTIVE To assess whether baseline plasma levels of MMPs and TIMPs are also prognostic biomarkers for adverse treatment outcomes in patients with PTB. DESIGN, SETTING, AND PARTICIPANTS Two different cohorts (test and validation) of individuals with PTB were recruited from 2 different sets of primary care centers in Chennai, India, and were followed up for treatment outcomes. Participants were individuals with newly diagnosed TB that was sputum smear and culture positive and drug sensitive. A total of 68 cases and 133 controls were in the test cohort and 20 cases and 40 controls were in the validation cohort. A nested case-control study was performed by matching case patients to control participants in a 1:2 ratio for age, sex, and body mass index. Data for the test cohort was taken from a study performed from 2014 to 2019, and data for the validation cohort, from a study performed from 2008 to 2012. The data analysis was performed from November 2019 to May 2020. INTERVENTIONS Individuals with PTB were treated with antituberculosis chemotherapy for 6 months and followed up for 1 year after completion of treatment. MAIN OUTCOMES AND MEASURES Individuals with PTB with adverse outcomes (treatment failure, all-cause mortality, or recurrent TB) were defined as cases and those with favorable outcomes (recurrence-free cure) were defined as controls. Plasma levels of MMPs and TIMPs were measured before treatment as potential biomarkers. RESULTS In all, 68 cases and 133 matched controls were enrolled in the study (170 [85%] males and 31 [15%] females; median age, 45 years [range, 23-73 years]) in the test cohort and 20 cases with 40 matched controls (51 [85%] males and 9 [15%] females; median age, 45 years [range, 19-61 years]) in the validation cohort. Baseline plasma levels of 5 MMPs and 2 TIMPs in the test cohort and 5 MMPs and all 4 TIMPS in the validation cohort were significantly higher in cases vs controls. In the test cohort, the geometric means (GMs), cases vs controls, were as follows: for MMP-1, 3680 vs 2484 pg/mL (P = .008); for MMP-2, 6523 vs 4762 pg/mL (P < .001); for MMP-7, 3346 vs 2100 pg/mL (P < .001); for MMP-8, 1915 vs 1066 pg/mL (P < .001); for MMP-9, 2774 vs 2336 pg/mL (P = .009); for TIMP-1, 4491 vs 2910 pg/mL (P < .001); and for TIMP-2, 3082 vs 2115 pg/mL (P < .001). In the validation cohort, the GMs, cases vs controls were as follows: for MMP-1, 3680 vs 2484 pg/mL (P < .001); for MMP-2, 6523 vs 4762 pg/mL (P < .001); for MMP-7, 3346 vs 2100 pg/mL (P < .001); for MMP-9, 1915 vs 1066 pg/mL (P < .001); for MMP-13, 2774 vs 2336 pg/mL (P < .001); for TIMP-1, 4491 vs 2910 pg/mL (P = .003); for TIMP-2, 3082 vs 2115 pg/mL (P = .003); for TIMP-3, 2066 vs 1020 pg/mL (P < .001); and for TIMP-4, 2130 vs 694 pg/mL (P < .001). Plasma levels of MMPs and TIMPs were associated with increased risk of adverse outcomes according to both univariate and multivariable analysis in the test cohort (eg, univariate analysis: odds ratio [OR] for MMP-8, 2.04; 95% CI, 1.33-3.14; P = .001; multivariable analysis: OR for MMP-8, 2.16; 95% CI, 1.34-3.47; P = .001). Combined receiver operating characteristic analysis revealed significant area under the curve (AUC), with high sensitivity and specificity in both cohorts (eg, for a combination of MMP-2, MMP-7, and TIMP-1 in the test cohort: sensitivity, 84%; specificity, 83%; and AUC, 0.886; for a combination of MMP-2, MMP-7, TIMP-1, and TIMP-2 in the validation cohort: sensitivity, 85%; specificity, 95%; and AUC, 0.944). CONCLUSIONS AND RELEVANCE Baseline plasma MMP and TIMP levels may be correlates of risk and prognostic biomarkers for treatment failure, relapse, and death in individuals with PTB and merit further evaluation as predictive biomarkers for stratification of patients to shortened or intensified treatment regimens.
Collapse
Affiliation(s)
- Nathella P. Kumar
- National Institutes of Health–National Institute for Research in Tuberculosis–International Center for Excellence in Research, Chennai, India
- National Institute for Research in Tuberculosis, Chennai, India
| | - Kadar Moideen
- National Institutes of Health–National Institute for Research in Tuberculosis–International Center for Excellence in Research, Chennai, India
| | - Arul Nancy
- National Institutes of Health–National Institute for Research in Tuberculosis–International Center for Excellence in Research, Chennai, India
- Prof M. Viswanathan Diabetes Research Center, Chennai, India
| | | | | | | | - Syed Hissar
- National Institute for Research in Tuberculosis, Chennai, India
| | - Dina Nair
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Hardy Kornfeld
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Subash Babu
- National Institutes of Health–National Institute for Research in Tuberculosis–International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|