1
|
Gent V, Dhar N, Izu A, Jones S, Dangor Z, Briner C, Hosken N, Kwatra G, Madhi SA. Association of serum anti-gbs2106 protein immunoglobulin G (IgG) in newborns and risk reduction of invasive group B streptococcus disease during early infancy. Vaccine 2025; 54:127016. [PMID: 40088514 DOI: 10.1016/j.vaccine.2025.127016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Human immunoglobulin G (IgG) directed against Group B streptococcus (GBS) epitopes is transferred transplacentally from the mother to the fetus. A GBS putative protein, gbs2106, has been previously identified as a potential GBS protein antigen vaccine candidate. However, its genetic prevalence and surface expression in GBS-isolates has not been evaluated. In this study, we evaluated the prevalence, surface expression and association of maternal-acquired serum anti-gbs2106 IgG in newborns and risk reduction of infant invasive GBS disease through to 90 days of age in a South African-based cohort. METHODS We conducted a nested case-control study within a previously established birth cohort that was designed to investigate serological markers associated with risk reduction of invasive GBS disease. In the parent study, additional cases were identified through a hospital surveillance system which included infants diagnosed with culture-confirmed invasive GBS disease outside the original cohort study. In this current study, surface expression of gbs2106 was analyzed on recto-vaginal colonizing isolates from mothers whose infants remained healthy, and on isolates from infants who developed invasive GBS disease. Flow cytometry was used to determine surface expression levels. The anti-gbs2106 IgG in maternal and infant or cord blood was measured using a bead-based assay on the Luminex platform. RESULTS The gbs2106 gene was present on all colonizing GBS-isolates from women in the control group and infant invasive GBS-isolates. The gbs2106 protein was expressed on 81.6 % (71/87) and 82.2 % (48/58) of maternal colonizing isolates and invasive GBS-isolates, respectively. There was a strong positive correlation (r = 0.855, p < 0.0001) of maternal and cord serum anti-gbs2106 IgG levels, with the combined cord to maternal anti-gbs2106 IgG geometric mean concentration ratio being 0.9 (IQR 0.7-1.1). Serum anti-gbs2106 IgG geometric mean concentrations in the infants were lower among the invasive disease cases (158.7 arbitrary units [AU]/ml; 95 %CI: 102.3-246.2) compared with controls (304.8 AU/ml; 95 %CI: 226.8-409.8; p = 0.012). CONCLUSION Our study demonstrates an inverse association between infant serum anti-gbs2106 IgG and risk of invasive GBS disease, indicating gbs2106 protein as a potential vaccine candidate.
Collapse
Affiliation(s)
- Vicky Gent
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Jones
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carmen Briner
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nancy Hosken
- Center for Vaccine Innovation and Access, PATH, Seattle, Washington, USA
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India; Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Manuel G, Twentyman J, Noble K, Eastman AJ, Aronoff DM, Seepersaud R, Rajagopal L, Adams Waldorf KM. Group B streptococcal infections in pregnancy and early life. Clin Microbiol Rev 2025; 38:e0015422. [PMID: 39584819 PMCID: PMC11905376 DOI: 10.1128/cmr.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
SUMMARYBacterial infections with Group B Streptococcus (GBS) are an important cause of adverse outcomes in pregnant individuals, neonates, and infants. GBS is a common commensal in the genitourinary and gastrointestinal tracts and can be detected in the vagina of approximately 20% of women globally. GBS can infect the fetus either during pregnancy or vaginal delivery resulting in preterm birth, stillbirth, or early-onset neonatal disease (EOD) in the first week of life. The mother can also become infected with GBS leading to postpartum endometritis, and rarely, maternal sepsis. An invasive GBS infection of the neonate may present after the first week of life (late-onset disease, LOD) through transmission from caregivers, breast milk, and other sources. Invasive GBS infections in neonates can result in sepsis, pneumonia, meningitis, neurodevelopmental impairment, death, and lifelong disability. A policy of routine screening for GBS rectovaginal colonization in well-resourced countries can trigger the administration of intrapartum antibiotic prophylaxis (IAP) when prenatal testing is positive, which drastically reduces rates of EOD. However, many countries do not routinely screen pregnant women for GBS colonization but may administer IAP in cases with a high risk of EOD. IAP does not reduce rates of LOD. A global vaccination campaign is needed to reduce the significant burden of invasive GBS disease that remains among infants and pregnant individuals. In this narrative review, we provide a comprehensive overview of the global impact of GBS colonization and infection, virulence factors and pathogenesis, and current and future prophylactics and therapeutics.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Joy Twentyman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M. Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Alexander NG, Cutts WD, Hooven TA, Kim BJ. Mechanisms and Manifestations of Group B Streptococcus Meningitis in Newborns. J Pediatric Infect Dis Soc 2025; 14:piae103. [PMID: 39927629 PMCID: PMC11808573 DOI: 10.1093/jpids/piae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/02/2024] [Indexed: 02/11/2025]
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is a gram-positive colonizer of the healthy intestinal and genitourinary microbiota. During and shortly after birth, neonates and infants can be opportunistically infected leading to sepsis, pneumonia, or meningitis among other illnesses. GBS is the leading cause of neonatal meningitis globally, and while prophylactic treatments have been successful for reducing early-onset disease, no decrease in the incidence of late-onset disease has occurred and no vaccine is currently available. In this review, we describe GBS both from a clinical and molecular standpoint. We first describe the history of GBS perinatal disease and its clinical presentation and treatment, as well as patient outcomes. We then present recently discovered GBS interactions at the blood-brain barrier that contribute to disease and inflammatory responses, and efforts to develop a broadly effective GBS vaccine.
Collapse
Affiliation(s)
- Natalie G Alexander
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - William D Cutts
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Thomas A Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Richard King Mellon Institute for Pediatric Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brandon J Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
4
|
Nyiro JU, Bukusi E, Mureithi MW, Walumbe D, Nyaguara A, Kipkoech C, Nyawanda B, Bigogo G, Otieno N, Aol G, Audi A, Murunga N, Berkley JA, Nokes DJ, Munywoki PK. Prevalence and Predictors of Adverse Birth Outcomes and Their Implications in Assessing the Safety of New Maternal Vaccines in Kenya. Pediatr Infect Dis J 2025; 44:S114-S118. [PMID: 39951088 PMCID: PMC7617502 DOI: 10.1097/inf.0000000000004660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
BACKGROUND Successful introduction, high uptake and program effectiveness of new maternal vaccines aimed to prevent disease among infants require prior knowledge of their safety during pregnancy. We aimed to identify background adverse birth outcomes and their predictors in Kenya by which to aid future interpretation of outcomes for new maternal vaccination programs. METHODS A cross-sectional survey was conducted to assess birth outcomes from women residents within the health and demographic surveillance systems of Kilifi, Siaya and Nairobi, Kenya. All selected women had pregnancies registered in the years 2017-2020 through census rounds and had a birth outcome recorded by the time of data collection. They were traced at home for interviews and abstraction of birth outcome records from mother and child health booklets. Multivariable logistic regression was used to identify independent predictors of adverse birth outcomes. RESULTS A total of 2702 women were interviewed. Adverse birth outcomes occurred in 788/2702 (29.2%) of pregnancies: 433 (16.0%) were preterm (gestational age <37 weeks), 298 (11.0%) low birth weight (<2500 g), 99 (3.7%) macrosomic (>4000 g) and 41 (1.5%) stillbirths. Predictors of adverse birth outcomes were gestational diabetes [adjusted Odds Ratio (aOR): 3.32 (1.53-7.20)], malaria during pregnancy [aOR: 1.74 (1.23-2.48)], not attending antenatal care [aOR: 12.89 (2.17-76.68)] and home delivery [aOR: 1.58 (1.18-2.12)]. CONCLUSIONS In 3 Kenyan settings, almost a third of pregnancies had adverse birth outcomes. Recognizing this baseline prevalence and the factors associated with adverse birth outcomes will be important in validating the safety of new maternal vaccines.
Collapse
Affiliation(s)
- Joyce U Nyiro
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
| | - Elizabeth Bukusi
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI), Centre for Microbiology Research
| | | | - David Walumbe
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
| | - Amek Nyaguara
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
| | - Collins Kipkoech
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
| | - Bryan Nyawanda
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Godfrey Bigogo
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Nancy Otieno
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - George Aol
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Allan Audi
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Nickson Murunga
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
| | - James A Berkley
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
- Department of Epidemiology and Demography, Centre for Tropical Medicine & Global Health, University of Oxford
| | - D James Nokes
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
- Department of Epidemiology and Demography, School of Life Sciences and Zeeman Institute (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Patrick K Munywoki
- From the Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi
| |
Collapse
|
5
|
Goh E, Chavatte JM, Lin RTP, Ng LFP, Rénia L, Oon HH. Vaccines in Dermatology-Present and Future: A Review. Vaccines (Basel) 2025; 13:125. [PMID: 40006672 PMCID: PMC11860801 DOI: 10.3390/vaccines13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dermatological vaccines have emerged as critical tools in preventing and managing a wide spectrum of skin conditions ranging from infectious diseases to malignancies. By synthesizing evidence from existing literature, this review aims to comprehensively evaluate the efficacy, safety, and immunogenicity of vaccines used in dermatology, including both approved vaccines and those currently being researched. Vaccines discussed in this paper include those targeting dermatoses and malignancies (e.g., acne vulgaris, atopic dermatitis, and melanoma); infectious diseases (e.g., human papillomavirus (HPV); varicella zoster virus (VZV); herpes zoster (HZ); warts; smallpox; mpox (monkeypox); hand, foot, and mouth disease (HFMD); candidiasis and Group B Streptococcus (GBS); and neglected tropical diseases (e.g., Buruli ulcer, leprosy, and leishmaniasis). Through this review, we aim to provide a detailed understanding of the role of vaccines in dermatology, identify knowledge gaps, and propose areas for future research.
Collapse
Affiliation(s)
- Eyan Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
| | - Jean-Marc Chavatte
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
| | - Raymond T. P. Lin
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
- National University Hospital Singapore, Singapore 119077, Singapore
| | - Lisa F. P. Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Laurent Rénia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hazel H. Oon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Skin Centre and Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
6
|
Handigund M, Lee J. Performance Evaluation of Novaplex TM Multiplex Real-Time PCR Assay for Detection of Streptococcus agalactiae Serotypes. Microorganisms 2024; 12:2043. [PMID: 39458352 PMCID: PMC11510028 DOI: 10.3390/microorganisms12102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus agalactiae, or group B streptococcus (GBS), is a Gram-positive pathogen with an extended track record of colonization in the gastrointestinal and genitourinary tracts. GBS can induce disease in individuals across all age demographics, yet it predominantly triggers infections in neonates and the elderly. Identification of the serotype is vital for effective management of the disease as it provides critical information for clinicians on the cause of the disease. In this study, we evaluated the rapid, simple, and easy-to-adopt multiplex real-time PCR technique, NovaplexTM (NovaPCR). A total of 131 clinical isolates of different serotypes were tested using NovaPCR. Observations revealed that 129 isolates showed the same observations as LA and conventional mPCR. NovaPCR accurately identified serotypes IV and V, which were first classified as serotype Ia in the LA test and mPCR, and the difference between the traditional (LA test and mPCR) and NovaPCR methods is only 1.52%. Accurate serotype identification is helpful for monitoring the epidemics and achieving optimal clinical outcomes, and NovaPCR showed a reliable, fast, easy-to-interpret, and cost-efficient performance in GBS serotyping.
Collapse
Affiliation(s)
- Mallikarjun Handigund
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
7
|
Kokori E, Olatunji G, Komolafe R, Ogieuhi IJ, Oyebiyi B, Ajayi I, Muogbo I, Ukoaka B, Samuel O, Aderinto N. Maternal GBS vaccination for preventing group B streptococcus disease in newborns: A mini review of current evidence. Int J Gynaecol Obstet 2024; 166:639-643. [PMID: 38445529 DOI: 10.1002/ijgo.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Group B streptococcus (GBS) poses a significant threat to neonates, leading to morbidity and mortality. Intrapartum antibiotics, although effective, have limitations, prompting the exploration of maternal vaccination. This study reviews the current evidence for maternal GBS vaccination in the prevention of early-onset GBS disease in newborns. A search on Google Scholar, PubMed, and Scopus identified studies assessing the impact of maternal GBS vaccination on early-onset GBS disease. Inclusion criteria comprised English-language clinical trials or observational studies. Data extraction included study details, immunogenicity profiles, effectiveness, safety outcomes, and relevant findings. Qualitative synthesis was employed for data analysis. Five studies meeting the inclusion criteria were reviewed. Maternal GBS vaccines demonstrated efficacy with sustained immunogenicity. Adverse events, although documented, were predominantly non-severe. Variability in immune responses and maternal-to-infant antibody ratios show the need for tailored vaccination approaches. Long-term follow up and surveillance are essential to assess persistence and identify unintended effects. Positive outcomes in vaccine efficacy support GBS vaccination integration into maternal health programs. Implementation challenges in diverse healthcare infrastructures require tailored approaches, especially in resource-limited settings. Overcoming cultural barriers and ensuring healthcare provider awareness are crucial for successful vaccination.
Collapse
Affiliation(s)
- Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Rosemary Komolafe
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Babajide Oyebiyi
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Irene Ajayi
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Ifeanyichukwu Muogbo
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bonaventure Ukoaka
- Department of Internal Medicine, Asokoro District Hospital, Abuja, Nigeria
| | - Owolabi Samuel
- Department of Medicine, Lagos State Health Service Commission, Lagos, Nigeria
| | - Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
8
|
Liu Y, Ai H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front Pharmacol 2024; 15:1395673. [PMID: 38953105 PMCID: PMC11215423 DOI: 10.3389/fphar.2024.1395673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.
Collapse
Affiliation(s)
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
9
|
Davies HG, Thorley EV, Al-Bahadili R, Sutton N, Burt J, Hookham L, Karampatsas K, Lambach P, Muñoz F, Cutland CL, Omer S, Le Doare K. Defining and reporting adverse events of special interest in comparative maternal vaccine studies: a systematic review. Vaccine X 2024; 18:100464. [PMID: 38495929 PMCID: PMC10943481 DOI: 10.1016/j.jvacx.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The GAIA (Global Alignment on Immunisation Safety Assessment in Pregnancy) consortium was established in 2014 with the aim of creating a standardised, globally coordinated approach to monitoring the safety of vaccines administered in pregnancy. The consortium developed twenty-six standardised definitions for classifying obstetric and infant adverse events. This systematic review sought to evaluate the current state of adverse event reporting in maternal vaccine trials following the publication of the case definitions by GAIA, and the extent to which these case definitions have been adopted in maternal vaccine safety research. Methods A comprehensive search of published literature was undertaken to identify maternal vaccine research studies. PubMed, EMBASE, Web of Science, and Cochrane were searched using a combination of MeSH terms and keyword searches to identify observational or interventional studies that examined vaccine safety in pregnant women with a comparator group. A two-reviewer screening process was undertaken, and a narrative synthesis of the results presented. Results 14,737 titles were identified from database searches, 435 titles were selected as potentially relevant, 256 were excluded, the remaining 116 papers were included. Influenza vaccine was the most studied (25.0%), followed by TDaP (20.7%) and SARS-CoV-2 (12.9%).Ninety-one studies (78.4%) were conducted in high-income settings. Forty-eight (41.4%) utilised electronic health-records. The majority focused on reporting adverse events of special interest (AESI) in pregnancy (65.0%) alone or in addition to reactogenicity (27.6%). The most frequently reported AESI were preterm birth, small for gestational age and hypertensive disorders. Fewer than 10 studies reported use of GAIA definitions. Gestational age assessment was poorly described; of 39 studies reporting stillbirths 30.8% provided no description of the gestational age threshold. Conclusions Low-income settings remain under-represented in comparative maternal vaccine safety research. There has been poor uptake of GAIA case definitions. A lack of harmonisation and standardisation persists limiting comparability of the generated safety data.
Collapse
Affiliation(s)
- Hannah G Davies
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
- MRC, UVRI & LSHTM Uganda Research Centre, Entebbe, Uganda
- Makerere University John Hopkins Research Unit, Kampala, Uganda
| | - Emma V Thorley
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Rossul Al-Bahadili
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Natalina Sutton
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Jessica Burt
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Lauren Hookham
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Kostas Karampatsas
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | | - Flor Muñoz
- Paediatric Infectious Diseases Department, Baylor College of Medicine, Houston, TX, USA
| | - Clare L Cutland
- Wits African Leadership in Vaccinology Expertise (Wits-Alive), School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Saad Omer
- O’Donnell School of Public Health, UT Southwestern Medical Center, Texas, USA
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
- Makerere University John Hopkins Research Unit, Kampala, Uganda
- World Health Organization, Geneva, Switzerland
| |
Collapse
|
10
|
Boscarino G, Romano R, Iotti C, Tegoni F, Perrone S, Esposito S. An Overview of Antibiotic Therapy for Early- and Late-Onset Neonatal Sepsis: Current Strategies and Future Prospects. Antibiotics (Basel) 2024; 13:250. [PMID: 38534685 DOI: 10.3390/antibiotics13030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Neonatal sepsis is a clinical syndrome mainly associated with a bacterial infection leading to severe clinical manifestations that could be associated with fatal sequalae. According to the time of onset, neonatal sepsis is categorized as early- (EOS) or late-onset sepsis (LOS). Despite blood culture being the gold standard for diagnosis, it has several limitations, and early diagnosis is not immediate. Consequently, most infants who start empirical antimicrobial therapy do not have an underlying infection. Despite stewardship programs partially reduced this negative trend, in neonatology, antibiotic overuse still persists, and it is associated with several relevant problems, the first of which is the increase in antimicrobial resistance (AMR). Starting with these considerations, we performed a narrative review to summarize the main findings and the future prospects regarding antibiotics use to treat neonatal sepsis. Because of the impact on morbidity and mortality that EOS and LOS entail, it is essential to start an effective and prompt treatment as soon as possible. The use of targeted antibiotics is peremptory as soon as the pathogen in the culture is detected. Although prompt therapy is essential, it should be better assessed whether, when and how to treat neonates with antibiotics, even those at higher risk. Considering that we are certainly in the worrying era defined as the "post-antibiotic era", it is still essential and urgent to define novel strategies for the development of antibacterial compounds with new targets or mechanisms of action. A future strategy could also be to perform well-designed studies to develop innovative algorithms for improving the etiological diagnosis of infection, allowing for more personalized use of the antibiotics to treat EOS and LOS.
Collapse
Affiliation(s)
- Giovanni Boscarino
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Rossana Romano
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carlotta Iotti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Francesca Tegoni
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Serafina Perrone
- PNeonatology Unit, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
11
|
Cutland CL, Sawry S, Fairlie L, Barnabas S, Frajzyngier V, Roux JL, Izu A, Kekane-Mochwari KE, Vika C, De Jager J, Munson S, Jongihlati B, Stark JH, Absalon J. Obstetric and neonatal outcomes in South Africa. Vaccine 2024; 42:1352-1362. [PMID: 38310014 DOI: 10.1016/j.vaccine.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Background epidemiologic population data from low- and middle-income countries (LMIC), on maternal, foetal and neonatal adverse outcomes are limited. We aimed to estimate the incidence of maternal, foetal and neonatal adverse outcomes at South African maternal vaccine trial sites as reported directly in the clinical notes as well as using the 'Global Alignment of Immunization Safety Assessment in Pregnancy' case definitions (GAIA-CDs). GAIA-CDs were utilized as a tool to standardise data collection and outcome assessment, and the applicability and utility of the GAIA-CDs was evaluated in a LMIC observational study. METHODS We conducted a retrospective record review of maternity and neonatal case records for births that occurred in Soweto, Inner City- Johannesburg and Metro-East Cape Town, South Africa, between 1st July 2017 and 30th June 2018. Study staff abstracted data from randomly selected medical charts onto standardized study-specific forms. Incidence (per 100,000 population) was calculated for adverse maternal, foetal and neonatal outcomes, which were identified as priority outcomes in vaccine safety studies by the Brighton Collaboration and World Health Organization. Outcomes reported directly in the clinical notes and outcomes which fulfilled GAIA-CDs were compared. Incidence of outcomes was calculated by combining cases which were either reported in clinical notes by attending physicians and/ or fulfilled GAIA-CDs. FINDINGS Of 9371 pregnant women enrolled, 27·6% were HIV-infected, 19·9% attended antenatal clinic in the 1st trimester of pregnancy and 55·3% had ≥1 ultrasound examination. Fourteen percent of women had hypertensive disease of pregnancy, 1·3% had gestational diabetes mellitus and 16% experienced preterm labour. There were 150 stillbirths (1·6%), 26·8% of infants were preterm and five percent had microcephaly. Data available in clinical notes for some adverse outcomes, including maternal- & neonatal death, severe pre-eclampsia/ eclampsia, were able to fulfil GAIA-CDs criteria for all of the clinically-reported cases, however, missing data required to fulfil other GAIA-CD criteria (including stillbirth, gestational diabetes mellitus and gestational hypertension) led to poor correlation between clinically-reported adverse outcomes and outcomes fulfilling GAIA-CDs. Challenges were also encountered in accurately ascertaining gestational age. INTERPRETATION This study contributes to the expanding body of data on background rates of adverse maternal and foetal/ neonatal outcomes in LMICs. Utilization of GAIA-CDs assists with alignment of data, however, some GAIA-CDs require amendment to improve the applicability in LMICs. FUNDING This study was funded by Pfizer (Inc).
Collapse
Affiliation(s)
- Clare L Cutland
- Wits African Leadership in Vaccinology Expertise (Wits-Alive), School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa; South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.
| | - Shobna Sawry
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Lee Fairlie
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shaun Barnabas
- Family Centre for Research with Ubuntu, Department of Paediatrics, University of Stellenbosch, Cape Town, South Africa.
| | | | - Jean Le Roux
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.
| | - Kebonethebe Emmanuel Kekane-Mochwari
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Caroline Vika
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jeanne De Jager
- Family Centre for Research with Ubuntu, Department of Paediatrics, University of Stellenbosch, Cape Town, South Africa.
| | - Samantha Munson
- Pfizer Vaccines Clinical Research & Development, Pfizer, Inc, Pearl River, New York, USA.
| | - Babalwa Jongihlati
- Pfizer Vaccines Clinical Research & Development, Pfizer, Inc, Pearl River, New York, USA.
| | - James H Stark
- Vaccines, Antivirals, and Evidence Generation, Pfizer Biopharma Group, 1 Portland St, Cambridge, MA, USA.
| | - Judith Absalon
- Pfizer Vaccines Clinical Research & Development, Pfizer, Inc, Pearl River, New York, USA.
| |
Collapse
|
12
|
Quincer EM, Cranmer LM, Kamidani S. Prenatal Maternal Immunization for Infant Protection: A Review of the Vaccines Recommended, Infant Immunity and Future Research Directions. Pathogens 2024; 13:200. [PMID: 38535543 PMCID: PMC10975994 DOI: 10.3390/pathogens13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
Prenatal maternal immunization is an effective tool to protect mothers and infants from poor health outcomes due to infectious diseases. We provide an overview of the rationale for the use of prenatal vaccines, discuss the immunologic environment of the maternal-fetal interface including the impact of maternal vaccines prenatally and subsequently on the infant's immune response, and review vaccines currently recommended in pregnancy and landscape for the future of maternal vaccination. This review aims to provide an understanding of the recent history and progress made in the field and highlight the importance of continued research and development into new vaccines for pregnant populations.
Collapse
Affiliation(s)
- Elizabeth M. Quincer
- Immunization Safety Office, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Lisa M. Cranmer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Satoshi Kamidani
- Immunization Safety Office, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Bjerkhaug AU, Ramalingham S, Mboizi R, Le Doare K, Klingenberg C. The immunogenicity and safety of Group B Streptococcal maternal vaccines: A systematic review. Vaccine 2024; 42:84-98. [PMID: 38072754 DOI: 10.1016/j.vaccine.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/01/2024]
Abstract
PURPOSE To systematically review immunogenicity and safety data of maternal group B streptococcal (GBS) vaccines in published clinical trials until July 2023. METHODS EMBASE, MEDLINE, Cochrane Library and clinicaltrial.gov. databases were searched for clinical studies that reported immunogenicity and/or safety of GBS vaccine in non-pregnant adults, pregnant women and infants between 1st of January 1996 to 31st of July 2023. Pairs of reviewers independently selected, data extracted, and assessed the risk of bias of the studies. Discrepancies were resolved by consensus. (PROSPERO CRD42020185213). RESULTS We retrieved 1472 records from the literature search; 20 studies and 6 sub-studies were included, involving 4440 non-pregnant participants and 1325 pregnant women with their newborns. There was a significantly higher IgG Geometric Mean Concentration (GMC) and IgG placental transfer ratios in vaccinated compared to placebo groups, with peak response 4-8 weeks after vaccination. Placental transfer ratio varied from 0.4 to 1.4 across five studies. The different clinical trials used different assays that limited direct comparison. There were no significant differences in the risk of serious adverse events (adjusted OR 0.73; 95 % CI 0.49-1.07), serious adverse events leading to withdrawal (adjusted OR 0.44; 95 % CI 0.13-1.51), and systemic illness or fever (adjusted OR 1.05; 95 % CI 0.26-4.19) between the vaccine and placebo groups. CONCLUSIONS The published clinical trials show significant IgG GMC response in subjects receiving the conjugated capsular polysaccharide and surface subunit protein vaccines compared to placebo. In current clinical trials of experimental GBS maternal vaccines, there have been no observed serious adverse events of special interest directly linked to vaccination.
Collapse
Affiliation(s)
- Aline U Bjerkhaug
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Paediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - Shouwmika Ramalingham
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Robert Mboizi
- Makerere University Johns Hopkins University (MU-JHU) Research Collaboration (MUJHU CARE LTD), Kampala, Uganda
| | - Kirsty Le Doare
- Makerere University Johns Hopkins University (MU-JHU) Research Collaboration (MUJHU CARE LTD), Kampala, Uganda; Centre for Neonatal and Paediatric Infection, Maternal and Neonatal Vaccine Immunology Research Group, St Georgés University of London, United Kingdom
| | - Claus Klingenberg
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Paediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
14
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
15
|
VALENTINE GREGORYC, WALLEN LINDAD. Neonatal Bacterial Sepsis and Meningitis. AVERY'S DISEASES OF THE NEWBORN 2024:439-449.e5. [DOI: 10.1016/b978-0-323-82823-9.00033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Carboni F, Cozzi R, Romagnoli G, Tuscano G, Balocchi C, Buffi G, Bodini M, Brettoni C, Giusti F, Marchi S, Brogioni G, Brogioni B, Cinelli P, Cappelli L, Nocciolini C, Senesi S, Facciotti C, Frigimelica E, Fabbrini M, Stranges D, Savino S, Maione D, Adamo R, Wizel B, Margarit I, Romano MR. Proof of concept for a single-dose Group B Streptococcus vaccine based on capsular polysaccharide conjugated to Qβ virus-like particles. NPJ Vaccines 2023; 8:152. [PMID: 37803013 PMCID: PMC10558462 DOI: 10.1038/s41541-023-00744-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins. The most prevalent polysaccharide serotypes conjugated to tetanus or diphtheria toxoids have been tested in humans as monovalent and multivalent formulations, showing excellent safety profiles and immunogenicity. However, responses were suboptimal in unprimed individuals after a single shot, the ideal schedule for vaccination during the third trimester of pregnancy. In the present study, we obtained and optimized self-assembling virus-like particles conjugated to Group B Streptococcus capsular polysaccharides. The resulting glyco-nanoparticles elicited strong immune responses in mice already after one immunization, providing pre-clinical proof of concept for a single-dose vaccine.
Collapse
|
17
|
Dhar N, Mohamed E, Kirstein F, Williams M, Dorasamy S, van Zyl P, Robertson MJ, Anderson T, Harden LM, Jardine K, Veeraraghavan B, Wilson S, Tippoo P, Madhi SA, Kwatra G. Immune responses against group B Streptococcus monovalent and pentavalent capsular polysaccharide tetanus toxoid conjugate vaccines in Balb/c mice. iScience 2023; 26:107380. [PMID: 37575182 PMCID: PMC10415928 DOI: 10.1016/j.isci.2023.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Immunization of pregnant women with Group B Streptococcus (GBS) capsular polysaccharide (CPS) conjugate vaccine (CV) could protect young infants against invasive GBS disease. We evaluated the immunogenicity of investigational five GBS monovalent (serotypes Ia, Ib, II, III, and V) CPS-tetanus toxoid (TT)-CV with adjuvant and GBS pentavalent CPS-TT-CV with adjuvant (GBS5-CV-adj) and without adjuvant (GBS5-CV-no-adj), in Balb/c mice. Aluminum phosphate was the adjuvant in the formulations, where included. The homotypic immunoglobulin G (IgG) geometric mean concentration (GMC) and opsonophagocytic activity (OPA) geometric mean titer (GMT) did not differ after the third dose of the GBS5-CV-adj vaccine compared with the monovalent counterparts for all five serotypes. The GBS5-CV-adj induced higher post-vaccination serotype-specific IgG GMCs and OPA GMTs compared to GBS5-CV-no_adj. The GBS5-CV with and without adjuvant should be considered for further development as a potential vaccine for pregnant women to protect their infants against invasive GBS disease.
Collapse
Affiliation(s)
- Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | | | | | | - Lois M. Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kimberly Jardine
- Wits Research Animal Facility, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
Madhi SA, Anderson AS, Absalon J, Radley D, Simon R, Jongihlati B, Strehlau R, van Niekerk AM, Izu A, Naidoo N, Kwatra G, Ramsamy Y, Said M, Jones S, Jose L, Fairlie L, Barnabas SL, Newton R, Munson S, Jefferies Z, Pavliakova D, Silmon de Monerri NC, Gomme E, Perez JL, Scott DA, Gruber WC, Jansen KU. Potential for Maternally Administered Vaccine for Infant Group B Streptococcus. N Engl J Med 2023; 389:215-227. [PMID: 37467497 DOI: 10.1056/nejmoa2116045] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Natural history studies have correlated serotype-specific anti-capsular polysaccharide (CPS) IgG in newborns with a reduced risk of group B streptococcal disease. A hexavalent CPS-cross-reactive material 197 glycoconjugate vaccine (GBS6) is being developed as a maternal vaccine to prevent invasive group B streptococcus in young infants. METHODS In an ongoing phase 2, placebo-controlled trial involving pregnant women, we assessed the safety and immunogenicity of a single dose of various GBS6 formulations and analyzed maternally transferred anti-CPS antibodies. In a parallel seroepidemiologic study that was conducted in the same population, we assessed serotype-specific anti-CPS IgG concentrations that were associated with a reduced risk of invasive disease among newborns through 89 days of age to define putative protective thresholds. RESULTS Naturally acquired anti-CPS IgG concentrations were associated with a reduced risk of disease among infants in the seroepidemiologic study. IgG thresholds that were determined to be associated with 75 to 95% reductions in the risk of disease were 0.184 to 0.827 μg per milliliter. No GBS6-associated safety signals were observed among the mothers or infants. The incidence of adverse events and of serious adverse events were similar across the trial groups for both mothers and infants; more local reactions were observed in the groups that received GBS6 containing aluminum phosphate. Among the infants, the most common serious adverse events were minor congenital anomalies (umbilical hernia and congenital dermal melanocytosis). GBS6 induced maternal antibody responses to all serotypes, with maternal-to-infant antibody ratios of approximately 0.4 to 1.3, depending on the dose. The percentage of infants with anti-CPS IgG concentrations above 0.184 μg per milliliter varied according to serotype and formulation, with 57 to 97% of the infants having a seroresponse to the most immunogenic formulation. CONCLUSIONS GBS6 elicited anti-CPS antibodies against group B streptococcus in pregnant women that were transferred to infants at levels associated with a reduced risk of invasive group B streptococcal disease. (Funded by Pfizer and the Bill and Melinda Gates Foundation; C1091002 ClinicalTrials.gov number, NCT03765073.).
Collapse
MESH Headings
- Female
- Humans
- Infant
- Infant, Newborn
- Pregnancy
- Antibodies, Bacterial
- Immunoglobulin G
- Seroepidemiologic Studies
- Streptococcal Infections/epidemiology
- Streptococcal Infections/immunology
- Streptococcal Infections/prevention & control
- Streptococcus agalactiae
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/adverse effects
- Vaccines, Combined/immunology
- Vaccines, Combined/therapeutic use
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/adverse effects
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/adverse effects
- Streptococcal Vaccines/immunology
- Streptococcal Vaccines/therapeutic use
- Immunity, Maternally-Acquired/immunology
Collapse
Affiliation(s)
- Shabir A Madhi
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Annaliesa S Anderson
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Judith Absalon
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - David Radley
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Raphael Simon
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Babalwa Jongihlati
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Renate Strehlau
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Anika M van Niekerk
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Alane Izu
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Niree Naidoo
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Gaurav Kwatra
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Yogandree Ramsamy
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Mohamed Said
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Stephanie Jones
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Lisa Jose
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Lee Fairlie
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Shaun L Barnabas
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Ryan Newton
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Samantha Munson
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Zahra Jefferies
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Danka Pavliakova
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Natalie C Silmon de Monerri
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Emily Gomme
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - John L Perez
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Daniel A Scott
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - William C Gruber
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| | - Kathrin U Jansen
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (S.A.M., R. Strehlau, A.I., G.K., S.J., L.J.), the Department of Paediatrics and Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital (R. Strehlau), and Wits RHI, Faculty of Health Sciences, University of the Witwatersrand (L.F.), Johannesburg, the Division of Neonatal Medicine, School of Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, and Mowbray Maternity Hospital, Cape Town (A.M.N.), the Clinical Neonatology Unit, Prince Mshiyeni Memorial Hospital (N.N.), and the Department of Medical Microbiology, National Health Laboratory Services, Prince Mshiyeni Memorial Hospital and College of Health Sciences, University of KwaZulu-Natal (Y.R.), Durban, the University of Pretoria and the Tshwane Academic Division, National Health Laboratory Services, Pretoria (M.S.), and the Family Center for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch (S.L.B.) - all in South Africa; and Vaccine Research and Development, Pfizer, Pearl River, NY (A.S.A., J.A., D.R., R. Simon, B.J., R.N., S.M., Z.J., D.P., N.C.S.M., E.G., J.L.P., D.A.S., W.C.G., K.U.J.)
| |
Collapse
|
19
|
Dangor Z, Seale AC, Baba V, Kwatra G. Early-onset group B streptococcal disease in African countries and maternal vaccination strategies. Front Public Health 2023; 11:1214844. [PMID: 37457277 PMCID: PMC10338870 DOI: 10.3389/fpubh.2023.1214844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Invasive group B streptococcal (GBS) disease is the commonest perinatally-acquired bacterial infection in newborns; the burden is higher in African countries where intrapartum antibiotic prophylaxis strategies are not feasible. In sub-Saharan Africa, almost one in four newborns with GBS early-onset disease will demise, and one in ten survivors have moderate or severe neurodevelopmental impairment. A maternal GBS vaccine to prevent invasive GBS disease in infancy is a pragmatic and cost-effective preventative strategy for Africa. Hexavalent polysaccharide protein conjugate and Alpha family surface protein vaccines are undergoing phase II clinical trials. Vaccine licensure may be facilitated by demonstrating safety and immunological correlates/thresholds suggestive of protection against invasive GBS disease. This will then be followed by phase IV effectiveness studies to assess the burden of GBS vaccine preventable disease, including the effect on all-cause neonatal infections, neonatal deaths and stillbirths.
Collapse
Affiliation(s)
- Ziyaad Dangor
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna C. Seale
- Bill and Melinda Gates Foundation, Seattle, WA, United States
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vuyelwa Baba
- Department of Obstetrics and Gynaecology, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
20
|
Gonzalez-Miro M, Pawlowski A, Lehtonen J, Cao D, Larsson S, Darsley M, Kitson G, Fischer PB, Johansson-Lindbom B. Safety and immunogenicity of the group B streptococcus vaccine AlpN in a placebo-controlled double-blind phase 1 trial. iScience 2023; 26:106261. [PMID: 36915681 PMCID: PMC10005905 DOI: 10.1016/j.isci.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Group B streptococcus (GBS) is a leading cause of life-threatening neonatal infections and subsets of adverse pregnancy outcomes. Essentially all GBS strains possess one allele of the alpha-like protein (Alp) family. A maternal GBS vaccine, consisting of the fused N-terminal domains of the Alps αC and Rib (GBS-NN), was recently demonstrated to be safe and immunogenic in healthy adult women. To enhance antibody responses to all clinically relevant Alps, a second-generation vaccine has been developed (AlpN), also containing the N-terminal domain of Alp1 and the one shared by Alp2 and Alp3. In this study, the safety and immunogenicity of AlpN is assessed in a randomized, double-blind, placebo-controlled, and parallel-group phase I study, involving 60 healthy non-pregnant women. AlpN is well tolerated and elicits similarly robust and persistent antibody responses against all four Alp-N-terminal domains, resulting in enhanced opsonophagocytic killing of all Alp serotypes covered by the vaccine.
Collapse
Affiliation(s)
| | | | - Janne Lehtonen
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Duojia Cao
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | - Sara Larsson
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | | | - Geoff Kitson
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Per B Fischer
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, BMC D14, Lund, Sweden.,Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Delara M, Vadlamudi NK, Sadarangani M. Strategies to Prevent Early and Late-Onset Group B Streptococcal Infection via Interventions in Pregnancy. Pathogens 2023; 12:pathogens12020229. [PMID: 36839501 PMCID: PMC9959229 DOI: 10.3390/pathogens12020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Group B Streptococcus is a Gram-positive bacterium that typically colonizes 10-30% of pregnant women, causing chorioamnionitis, preterm birth, and stillbirth, as well as neonatal sepsis and meningitis with early-onset disease (EOD) or late-onset disease (LOD) due to ascending infection or transmission during delivery. While there are some differences between EOD and LOD in terms of route of transmission, risk factors, and serotypes, the only preventive approach currently is maternal intrapartum antibiotic prophylaxis (IAP) which will not be able to fully address the burden of the disease since this has no impact on LOD. Probiotics and immunization in pregnancy may be more effective than IAP for both EOD and LOD. There is mixed evidence of probiotic effects on the prevention of GBS colonization, and the data from completed and ongoing clinical trials investigating different GBS vaccines are promising. Current vaccine candidates target bacterial proteins or the polysaccharide capsule and include trivalent, tetravalent, and hexavalent protein-polysaccharide conjugate vaccines. Some challenges in developing novel GBS vaccines include the lack of a correlate of protection, the potential for serotype switching, a need to understand interactions with other vaccines, and optimal timing of administration in pregnancy to maximize protection for both term and preterm infants.
Collapse
Affiliation(s)
- Mahin Delara
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
- Correspondence: (M.D.); (M.S.)
| | - Nirma Khatri Vadlamudi
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
- Correspondence: (M.D.); (M.S.)
| |
Collapse
|
22
|
Tesfay N, Tariku R, Zenebe A, Hailu G, Taddese M, Woldeyohannes F. Timing of perinatal death; causes, circumstances, and regional variations among reviewed deaths in Ethiopia. PLoS One 2023; 18:e0285465. [PMID: 37159458 PMCID: PMC10168579 DOI: 10.1371/journal.pone.0285465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Ethiopia is one of the countries facing a very high burden of perinatal death in the world. Despite taking several measures to reduce the burden of stillbirth, the pace of decline was not that satisfactory. Although limited perinatal mortality studies were conducted at a national level, none of the studies stressed the timing of perinatal death. Thus, this study is aimed at determining the magnitude and risk factors that are associated with the timing of perinatal death in Ethiopia. METHODS National perinatal death surveillance data were used in the study. A total of 3814 reviewed perinatal deaths were included in the study. Multilevel multinomial analysis was employed to examine factors associated with the timing of perinatal death in Ethiopia. The final model was reported through the adjusted relative risk ratio with its 95% Confidence Interval, and variables with a p-value less than 0.05 were declared statistically significant predictors of the timing of perinatal death. Finally, a multi-group analysis was carried out to observe inter-regional variation among selected predictors. RESULT Among the reviewed perinatal deaths, 62.8% occurred during the neonatal period followed by intrapartum stillbirth, unknown time of stillbirth, and antepartum stillbirth, each contributing 17.5%,14.3%, and 5.4% of perinatal deaths, respectively. Maternal age, place of delivery, maternal health condition, antennal visit, maternal education, cause of death (infection and congenital and chromosomal abnormalities), and delay to decide to seek care were individual-level factors significantly associated with the timing of perinatal death. While delay reaching a health facility, delay to receive optimal care health facility, type of health facility and type region were provincial-level factors correlated with the timing of perinatal death. A statistically significant inter-regional variation was observed due to infection and congenital anomalies in determining the timing of perinatal death. CONCLUSION Six out of ten perinatal deaths occurred during the neonatal period, and the timing of perinatal death was determined by neonatal, maternal, and facility factors. As a way forward, a concerted effort is needed to improve the community awareness of institutional delivery and ANC visit. Moreover, strengthening the facility level readiness in availing quality service through all paths of the continuum of care with special attention to the lower-level facilities and selected poor-performing regions is mandatory.
Collapse
Affiliation(s)
- Neamin Tesfay
- Centre of Public Health Emergency Management, Ethiopian Public Health Institutes, Addis Ababa, Ethiopia
| | - Rozina Tariku
- Centre of Public Health Emergency Management, Ethiopian Public Health Institutes, Addis Ababa, Ethiopia
| | - Alemu Zenebe
- Centre of Public Health Emergency Management, Ethiopian Public Health Institutes, Addis Ababa, Ethiopia
| | - Girmay Hailu
- Centre of Public Health Emergency Management, Ethiopian Public Health Institutes, Addis Ababa, Ethiopia
| | - Muse Taddese
- Centre of Public Health Emergency Management, Ethiopian Public Health Institutes, Addis Ababa, Ethiopia
| | - Fitsum Woldeyohannes
- Health Financing Program, Clinton Health Access Initiative, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Absalon J, Simon R, Radley D, Giardina PC, Koury K, Jansen KU, Anderson AS. Advances towards licensure of a maternal vaccine for the prevention of invasive group B streptococcus disease in infants: a discussion of different approaches. Hum Vaccin Immunother 2022; 18:2037350. [PMID: 35240933 PMCID: PMC9009955 DOI: 10.1080/21645515.2022.2037350] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Group B streptococcus (Streptococcus agalactiae, GBS) is an important cause of life-threatening disease in newborns. Pregnant women colonized with GBS can transmit the bacteria to the developing fetus, as well as to their neonates during or after delivery where infection can lead to sepsis, meningitis, pneumonia, or/and death. While intrapartum antibiotic prophylaxis (IAP) is the standard of care for prevention of invasive GBS disease in some countries, even in such settings a substantial residual burden of disease remains. A GBS vaccine administered during pregnancy could potentially address this important unmet medical need and provide an adjunct or alternative to IAP for the prevention of invasive GBS disease in neonates. A hurdle for vaccine development has been relatively low disease rates making efficacy studies difficult. Given the well-accepted inverse relationship between anti-GBS capsular polysaccharide antibody titers at birth and risk of disease, licensure using serological criteria as a surrogate biomarker represents a promising approach to accelerate the availability of a GBS vaccine.
Collapse
Affiliation(s)
- Judith Absalon
- Pfizer Vaccine Research & Development, Pearl River, NY, USA
| | - Raphael Simon
- Pfizer Vaccine Research & Development, Pearl River, NY, USA
| | - David Radley
- Pfizer Vaccine Research & Development, Pearl River, NY, USA
| | | | - Kenneth Koury
- Pfizer Vaccine Research & Development, Pearl River, NY, USA
| | | | | |
Collapse
|
24
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
25
|
Beudeker CR, Vijlbrief DC, van Montfrans J, Rooijakkers SH, van der Flier M. Neonatal sepsis and transient immunodeficiency: Potential for novel immunoglobulin therapies? Front Immunol 2022; 13:1016877. [PMID: 36330515 PMCID: PMC9623314 DOI: 10.3389/fimmu.2022.1016877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 10/30/2023] Open
Abstract
Neonates, especially preterm neonates, have the highest risk of sepsis of all age groups. Transient immaturity of the neonatal immune system is an important risk factor. Neonates suffer from hypogammaglobulinemia as nor IgA nor IgM is transferred over the placenta and IgG is only transferred over the placenta late in gestation. In addition, neutrophil numbers and complement function are also decreased. This mini-review focuses on strategies to improve neonatal host-defense. Both clinical and preclinical studies have attempted to boost neonatal immunity to lower the incidence of sepsis and improve outcome. Recent advances in the development of (monoclonal) antibodies show promising results in preclinical studies but have yet to be tested in clinical trials. Strategies to increase complement activity seem efficient in vitro but potential disadvantages such as hyperinflammation have held back further clinical development. Increase of neutrophil numbers has been tested extensively in clinical trials but failed to show improvement in mortality. Future research should focus on clinical applicability of promising new prevention strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Coco R. Beudeker
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel C. Vijlbrief
- Department of Neonatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joris M. van Montfrans
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
26
|
Rodgus J, Prakapaite R, Mitsidis P, Grigaleviciute R, Planciuniene R, Kavaliauskas P, Jauneikaite E. Molecular Epidemiology of Group B Streptococci in Lithuania Identifies Multi-Drug Resistant Clones and Sporadic ST1 Serotypes Ia and Ib. Pathogens 2022; 11:1060. [PMID: 36145492 PMCID: PMC9504518 DOI: 10.3390/pathogens11091060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of neonatal infections. Yet, detailed assessment of the genotypic and phenotypic factors associated with GBS carriage, mother-to-baby transmission, and GBS infection in neonates and adults is lacking. Understanding the distribution of GBS genotypes, including the predominance of different serotypes, antimicrobial resistance (AMR) genes, and virulence factors, is likely to help to prevent GBS diseases, as well as inform estimates of the efficacy of future GBS vaccines. To this end, we set out to characterise GBS isolates collected from pregnant and non-pregnant women in Kaunas region in Lithuania. Whole genome sequences of 42 GBS isolates were analysed to determine multi-locus sequence typing (MLST), the presence of acquired AMR and surface protein genes, and the phylogenetic relatedness of isolates. We identified serotypes Ia (42.9%, 18/42), III (33.3%, 14/42), V (21.4%, 9/42), and a single isolate of serotype Ib. Genomic analyses revealed high diversity among the isolates, with 18 sequence types (STs) identified, including three novel STs. 85.7% (36/42) of isolates carried at least one AMR gene: tetM or tetO (35/42), ermB or lsaC (8/42) and ant6-Ia and aph3-III (2/42). This study represents the first genomic analysis of GBS isolated from women in Lithuania and contributes to an improved understanding of the global spread of GBS genotypes and phenotypes, laying the foundations for future GBS surveillance in Lithuania.
Collapse
Affiliation(s)
- Jonah Rodgus
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Ruta Prakapaite
- Institute of Infectious Diseases and Pathogenic Microbiology, 59116 Prienai, Lithuania
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Panagiotis Mitsidis
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Ramune Grigaleviciute
- Biological Research Centre, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Rita Planciuniene
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Institute of Infectious Diseases and Pathogenic Microbiology, 59116 Prienai, Lithuania
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
27
|
Chaguza C, Jamrozy D, Bijlsma MW, Kuijpers TW, van de Beek D, van der Ende A, Bentley SD. Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion. Nat Commun 2022; 13:4215. [PMID: 35864107 PMCID: PMC9304382 DOI: 10.1038/s41467-022-31858-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA.
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Merijn W Bijlsma
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Reference Laboratory for Bacterial Meningitis, Center of Infection and Immunity Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
28
|
Ecclesia FG, Alonso Cadenas JA, Gómez B, Gangoiti I, Hernández-Bou S, de la Torre Espí M. Late-onset Group B Streptococcus Bacteremia Evaluated in the Pediatric Emergency Department and Risk Factors for Severe Infection. Pediatr Infect Dis J 2022; 41:455-459. [PMID: 35446825 DOI: 10.1097/inf.0000000000003520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To describe the infants presenting to pediatric emergency departments (PEDs) and diagnosed with group B Streptococcus (GBS) late-onset disease (LOD) bacteremia and identify risk factors for severe infection and pediatric intensive care unit (PICU) admission. METHODS Observational study and subanalysis of a multicenter prospective registry. Setting: pediatric emergency department. Inclusion criteria: infants between 7 and 89 days of age with positive blood culture for GBS seen between 2011 and 2016 at any of 22 Spanish PEDs. Main outcome: risk factors (clinical and laboratory variables) for severe infection (sepsis/septic shock or meningitis) and PICU admission. Second, the prevalence of poor outcomes (acute complications, sequelae or death). RESULTS Among 118 patients with LOD, 74 (62.7%) presented a severe infection: 66 sepsis/septic shock (11 with associated meningitis) and 8 meningitis. Thirty-five patients (29.7%) were admitted to a PICU. An altered Pediatric Assessment Triangle (PAT) upon arrival and leukopenia were the only independent risk factors for severe infection [odds ratio (OR): 43.6; 95% confidence interval (CI): 8.1-235.7, P < 0.01] and PICU admission (OR: 11.6; 95% CI: 1.5-91.4; P < 0.019), respectively. Six patients (5.1%) developed a poor outcome, including 2 deaths (1.7%); all had an altered PAT, elevated procalcitonin (range 4.7-100 ng/ml), and were diagnosed with sepsis/septic shock and admitted to a PICU. Four developed leukopenia. CONCLUSIONS Infants with GBS LOD frequently develop sepsis/septic shock and bacterial meningitis, associated with non-negligible morbidity and mortality. Clinical appearance was the only risk factor for severe infection, whereas leukopenia was related to PICU admission.
Collapse
Affiliation(s)
| | | | - Borja Gómez
- Pediatric Emergency Department, Hospital Cruces (Barakaldo), Vizcaya, Spain
| | - Iker Gangoiti
- Pediatric Emergency Department, Hospital Cruces (Barakaldo), Vizcaya, Spain
| | - Susanna Hernández-Bou
- Pediatric Emergency Department, Hospital Sant Joan de Déu (Esplugues de Llobregat), Barcelona, Spain Bacteremia Study Working Group from the Infectious Diseases Working Group, Spanish Society of Pediatric Emergencies (SEUP)
| | | |
Collapse
|
29
|
Mutanga JN, Whitaker BI, Forshee RA. Regulatory considerations for study of infant protection through maternal immunization. Vaccine 2022; 40:3556-3565. [PMID: 35570075 DOI: 10.1016/j.vaccine.2022.04.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Childhood Immunization is one of the critical strategies to decrease infant morbidity and mortality due to infectious diseases, but primary immunization schedules for infants in most countries start at 2 months of age. Childhood vaccines therefore begin providing adequate protection later in life, leaving infants vulnerable to infectious diseases and creating an immunity gap that results in higher morbidity and mortality among younger infants. Maternal immunization, the practice of vaccinating individuals during pregnancy, reduces the risk of infant infection primarily through the transfer of protective maternal antibodies to the fetus during late pregnancy. Although much progress has been made in public health policies to support maternal immunization research, inclusion of pregnant individuals and children in clinical trials remains challenging. This has resulted in paucity of evidence regarding safety and effectiveness of vaccines to support licensure of products intended for use during pregnancy and lactation to prevent disease in the infant. In addition, although safeguards for clinical research in pregnancy are supportive, experimental vaccines, e.g., Respiratory Syncytial Virus, are more complicated to study because data on safety, efficacy, and dosing are limited. This requires randomized controlled trials with safety monitoring for the mother, the fetus, and the infant with follow-up for at least 1 year or longer to assess long-term health outcomes that may be associated with peripartum vaccine exposure. The goal of this paper is to discuss the general regulatory considerations for clinical research to evaluate safety and effectiveness of vaccines administered during pregnancy to protect infants from disease. This could be useful to inform future vaccine trials. This discussion is not intended to provide agency guidance nor to articulate agency policy.
Collapse
Affiliation(s)
- Jane Namangolwa Mutanga
- US Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.
| | - Barbee I Whitaker
- US Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Richard A Forshee
- US Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
30
|
Brokaw A, Nguyen S, Quach P, Orvis A, Furuta A, Johansson-Lindbom B, Fischer PB, Rajagopal L. A Recombinant Alpha-Like Protein Subunit Vaccine (GBS-NN) Provides Protection in Murine Models of Group B Streptococcus Infection. J Infect Dis 2022; 226:177-187. [PMID: 35429401 PMCID: PMC9890916 DOI: 10.1093/infdis/jiac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) transmission during pregnancy causes preterm labor, stillbirths, fetal injury, or neonatal infections. Rates of adult infections are also rising. The GBS-NN vaccine, engineered by fusing N-terminal domains of GBS Alpha C and Rib proteins, is safe in healthy, nonpregnant women, but further assessment is needed for use during pregnancy. Here, we tested GBS-NN vaccine efficacy using mouse models that recapitulate human GBS infection outcomes. METHODS Following administration of GBS-NN vaccine or adjuvant, antibody profiles were compared by ELISA. Vaccine efficacy was examined by comparing infection outcomes in GBS-NN vaccinated versus adjuvant controls during systemic and pregnancy-associated infections, and during intranasal infection of neonatal mice following maternal vaccination. RESULTS Vaccinated mice had higher GBS-NN-specific IgG titers versus controls. These antibodies bound alpha C and Rib on GBS clinical isolates. Fewer GBS were recovered from systemically challenged vaccinated mice versus controls. Although vaccination did not eliminate GBS during ascending infection in pregnancy, vaccinated dams experienced fewer in utero fetal deaths. Additionally, maternal vaccination prolonged neonatal survival following intranasal GBS challenge. CONCLUSIONS These findings demonstrate GBS-NN vaccine efficacy in murine systemic and perinatal GBS infections and suggest that maternal vaccination facilitates the transfer of protective antibodies to neonates.
Collapse
Affiliation(s)
- Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Shayla Nguyen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Phoenicia Quach
- Present affiliation: Phoenicia Quach, Universal Cells, Seattle 98121, Washington
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | | | - Lakshmi Rajagopal
- Correspondence: L. Rajagopal, PhD, Department of Pediatrics, University of Washington, Seattle Children’s Hospital Research Institute, 307 Westlake Ave N, Seattle, WA 98109 ()
| |
Collapse
|
31
|
Izu A, Kwatra G, Madhi SA, Rigat F. Estimation of invasive Group B Streptococcus disease risk in young infants from case-control serological studies. BMC Med Res Methodol 2022; 22:85. [PMID: 35350991 PMCID: PMC8961496 DOI: 10.1186/s12874-022-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
Background Group B Streptococcus (GBS) infections are a major cause of invasive disease (IGbsD) in young infants and cause miscarriage and stillbirths. Immunization of pregnant women against GBS in addition to intrapartum antibiotic prophylaxis could prevent disease. Establishing accurate serological markers of protection against IGbsD could enable use of efficient clinical trial designs for vaccine development and licensure, without needing to undertake efficacy trials in prohibitively large number of mother-infant dyads. The association of maternal naturally acquired serotype-specific anti-capsular antibodies (IgG) against serotype-specific IGbsD in their infants has been studied in case-control studies. The statistical models used so far to estimate IGbsD risk from these case-control studies assumed that the antibody concentrations measured sharing the same disease status are sampled from the same population, not allowing for differences between mothers colonised by GBS and mothers also potentially infected (e.g urinary tract infection or chorioamnionitis) by GBS during pregnancy. This distinction is relevant as infants born from infected mothers with occult medical illness may be exposed to GBS prior to the mother developing antibodies measured in maternal or infant sera. Methods Unsupervised mixture model averaging (MMA) is proposed and applied here to accurately estimate infant IGbsD risk from case-control study data in presence or absence of antibody concentration subgroups potentially associated to maternal GBS carriage or infection. MMA estimators are compared to non-parametric disease risk estimators in simulation studies and by analysis of two published GBS case-control studies. Results MMA provides more accurate relative risk estimates under a broad range of data simulation scenarios and more accurate absolute disease risk estimates when the proportion of IGbsD cases with high antibody levels is not ignorable. MMA estimates of the relative and absolute disease risk curves are more amenable to clinical interpretation compared to non-parametric estimates with no detectable overfitting of the data. Antibody concentration thresholds predictive of protection from infant IGbsD estimated by MMA from maternal and infant sera are consistent with non-parametric estimates. Conclusions MMA is a flexible and robust method for design, accurate analysis and clinical interpretation of case-control studies estimating relative and absolute IGbsD risk from antibody concentrations measured at or after birth.
Collapse
Affiliation(s)
- Alane Izu
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa. .,Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.
| | - Gaurav Kwatra
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Fabio Rigat
- Statistics and Decision Sciences, Janssen Pharmaceuticals R & D, High Wycombe, United Kingdom.
| |
Collapse
|
32
|
Khan UB, Jauneikaite E, Andrews R, Chalker VJ, Spiller OB. Identifying large-scale recombination and capsular switching events in Streptococcus agalactiae strains causing disease in adults in the UK between 2014 and 2015. Microb Genom 2022; 8:000783. [PMID: 35290175 PMCID: PMC9176283 DOI: 10.1099/mgen.0.000783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cases of invasive group B streptococcal infection in the adult UK population have steadily increased over recent years, with the most common serotypes being V, III and Ia, but less is known of the genetic background of these strains. We have carried out in-depth analysis of the whole-genome sequences of 193 clinically important group B Streptococcus (GBS) isolates (184 were from invasive infection, 8 were from non-invasive infection and 1 had no information on isolation site) isolated from adults and submitted to the National Reference Laboratory at the UK Health Security Agency between January 2014 and December 2015. We have determined that capsular serotypes III (26.9%), Ia (26.4%) and V (15.0%) were most commonly identified, with slight differences in gender and age distribution. Most isolates (n=182) grouped to five clonal complexes (CCs), CC1, CC8/CC10, CC17, CC19 and CC23, with common associations between specific serotypes and virulence genes. Additionally, we have identified large recombination events mediating potential capsular switching events between sequence type (ST)1 serotype V and serotypes Ib (n=2 isolates), II (n=2 isolates) and VI (n=2 isolates); between ST19 serotype III and serotype V (n=5 isolates); and between CC17 serotype III and serotype IV (n=1 isolate). The high genetic diversity of disease-causing isolates and multiple recombination events reported in this study highlight the need for routine surveillance of the circulating disease-causing GBS strains. This information is crucial to better understand the global spread of GBS serotypes and genotypes, and will form the baseline information for any future GBS vaccine research in the UK and worldwide.
Collapse
Affiliation(s)
- Uzma Basit Khan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Present address: Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- *Correspondence: Elita Jauneikaite,
| | - Robert Andrews
- Systems Immunity University Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Victoria J. Chalker
- National Infection Service, United Kingdom Health Security Agency, Colindale, London, UK
| | - Owen B. Spiller
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- National Infection Service, United Kingdom Health Security Agency, Colindale, London, UK
- *Correspondence: Owen B. Spiller,
| |
Collapse
|
33
|
Carboni F, Kitowski A, Sorieul C, Veggi D, Marques MC, Oldrini D, Balducci E, Brogioni B, Del Bino L, Corrado A, Angiolini F, Dello Iacono L, Margarit I, Romano MR, Bernardes GJL, Adamo R. Retaining the structural integrity of disulfide bonds in diphtheria toxoid carrier protein is crucial for the effectiveness of glycoconjugate vaccine candidates. Chem Sci 2022; 13:2440-2449. [PMID: 35310500 PMCID: PMC8864718 DOI: 10.1039/d1sc01928g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of glycoconjugate vaccines marks an important point in the fight against various infectious diseases. The covalent conjugation of relevant polysaccharide antigens to immunogenic carrier proteins enables the induction of a long-lasting and robust IgG antibody response, which is not observed for pure polysaccharide vaccines. Although there has been remarkable progress in the development of glycoconjugate vaccines, many crucial parameters remain poorly understood. In particular, the influence of the conjugation site and strategy on the immunogenic properties of the final glycoconjugate vaccine is the focus of intense research. Here, we present a comparison of two cysteine selective conjugation strategies, elucidating the impact of both modifications on the structural integrity of the carrier protein, as well as on the immunogenic properties of the resulting glycoconjugate vaccine candidates. Our work suggests that conjugation chemistries impairing structurally relevant elements of the protein carrier, such as disulfide bonds, can have a dramatic effect on protein immunogenicity.
Collapse
Affiliation(s)
| | - Annabel Kitowski
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
| | | | | | - Marta C Marques
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
| | | | | | | | | | | | | | | | | | | | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | |
Collapse
|
34
|
Miselli F, Frabboni I, Di Martino M, Zinani I, Buttera M, Insalaco A, Stefanelli F, Lugli L, Berardi A. Transmission of Group B Streptococcus in late-onset neonatal disease: a narrative review of current evidence. Ther Adv Infect Dis 2022; 9:20499361221142732. [PMID: 36569815 PMCID: PMC9780763 DOI: 10.1177/20499361221142732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Group B streptococcus (GBS) late-onset disease (LOD, occurring from 7 through 89 days of life) is an important cause of sepsis and meningitis in infants. The pathogenesis and modes of transmission of LOD to neonates are yet to be elucidated. Established risk factors for the incidence of LOD include maternal GBS colonisation, young maternal age, preterm birth, HIV exposure and African ethnicity. The mucosal colonisation by GBS may be acquired perinatally or in the postpartum period from maternal or other sources. Growing evidence has demonstrated the predominant role of maternal sources in the transmission of LOD. Intrapartum antibiotic prophylaxis (IAP) to prevent early-onset disease reduces neonatal GBS colonisation during delivery; however, a significant proportion of IAP-exposed neonates born to GBS-carrier mothers acquire the pathogen at mucosal sites in the first weeks of life. GBS-infected breast milk, with or without presence of mastitis, is considered a potential vehicle for transmitting GBS. Furthermore, horizontal transmission is possible from nosocomial and other community sources. Although unfrequently reported, nosocomial transmission of GBS in the neonatal intensive care unit is probably less rare than is usually believed. GBS disease can sometime recur and is usually caused by the same GBS serotype that caused the primary infection. This review aims to discuss the dynamics of transmission of GBS in the neonatal LOD.
Collapse
Affiliation(s)
- Francesca Miselli
- Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Ilaria Frabboni
- Pediatric Post-Graduate School, University of Modena e Reggio Emilia, Modena, Italy
| | - Marianna Di Martino
- Pediatric Post-Graduate School, University of Modena e Reggio Emilia, Modena, Italy
| | - Isotta Zinani
- Pediatric Post-Graduate School, University of Modena e Reggio Emilia, Modena, Italy
| | - Martina Buttera
- Pediatric Post-Graduate School, University of Modena e Reggio Emilia, Modena, Italy
| | - Anna Insalaco
- Pediatric Post-Graduate School, University of Modena e Reggio Emilia, Modena, Italy
| | - Francesca Stefanelli
- Pediatric Post-Graduate School, University of Modena e Reggio Emilia, Modena, Italy
| | - Licia Lugli
- Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Policlinico University Hospital, 41124 Modena, Italy
| |
Collapse
|
35
|
Barros RR, Alves KB, Luiz FBO, Ferreira DG. Prevalence of Streptococcus agalactiae capsular types among pregnant women in Rio de Janeiro and the impact of a capsular based vaccine. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-979020222e20633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
van de Beek D, Brouwer MC, Koedel U, Wall EC. Community-acquired bacterial meningitis. Lancet 2021; 398:1171-1183. [PMID: 34303412 DOI: 10.1016/s0140-6736(21)00883-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Progress has been made in the prevention and treatment of community-acquired bacterial meningitis during the past three decades but the burden of the disease remains high globally. Conjugate vaccines against the three most common causative pathogens (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae) have reduced the incidence of disease, but with the replacement by non-vaccine pneumococcal serotypes and the emergence of bacterial strains with reduced susceptibility to antimicrobial treatment, meningitis continues to pose a major health challenge worldwide. In patients presenting with bacterial meningitis, typical clinical characteristics (such as the classic triad of neck stiffness, fever, and an altered mental status) might be absent and cerebrospinal fluid examination for biochemistry, microscopy, culture, and PCR to identify bacterial DNA are essential for the diagnosis. Multiplex PCR point-of-care panels in cerebrospinal fluid show promise in accelerating the diagnosis, but diagnostic accuracy studies to justify routine implementation are scarce and randomised, controlled studies are absent. Early administration of antimicrobial treatment (within 1 hour of presentation) improves outcomes and needs to be adjusted according to local emergence of drug resistance. Adjunctive dexamethasone treatment has proven efficacy beyond the neonatal age but only in patients from high-income countries. Further progress can be expected from implementing preventive measures, especially the development of new vaccines, implementation of hospital protocols aimed at early treatment, and new treatments targeting checkpoints of the inflammatory cascade.
Collapse
Affiliation(s)
- Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands.
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Emma C Wall
- Research Department of Infection, University College London, London, UK; Francis Crick Institute, London, UK
| |
Collapse
|
37
|
Updates in prevention policies of early-onset group B streptococcal infection in newborns. Pediatr Neonatol 2021; 62:465-475. [PMID: 34099416 DOI: 10.1016/j.pedneo.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/20/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
Invasive disease owing to group B Streptococcus (GBS) is a major cause of illness and death among newborns. Maternal GBS colonization of gastrointestinal tract and/or vagina is the primary risk factor for neonatal GBS early-onset disease (EOD). In Europe and America, there are marked declines in neonatal GBS-EOD through widespread implementation of guidelines for maternal GBS screening and subsequent intrapartum antibiotic prophylaxis (IAP). The key measures necessary for prevention of GBS-EOD include correct specimen collection and processing, nucleic acid amplification testing (NAAT) for GBS identification, regimens for mothers with premature rupture of membranes (PROM), preterm labor or penicillin allergy, and coordination between obstetrics and pediatrics. Antibiotic prophylaxis has some disadvantages, so researchers should develop other preventive measures. Maternal vaccines to prevent perinatal GBS infection are currently under development. However, as large, population-based sampling studies are rarely conducted, the colonization rate and the disease burden of GBS in perinatal period are poorly understood in developing countries. The harm of GBS to newborns has been recognized in recent years in mainland China, but authorized prevention measures are still lacking. In order to enhance the understanding of GBS-EOD prevention, the most recent guidelines updates by the American College of Obstetricians and Gynecologists (ACOG) and American Academy of Pediatrics (AAP) in 2019-2020 are summarized in this article.
Collapse
|
38
|
Safety and immunogenicity of a prototype recombinant alpha-like protein subunit vaccine (GBS-NN) against Group B Streptococcus in a randomised placebo-controlled double-blind phase 1 trial in healthy adult women. Vaccine 2021; 39:4489-4499. [PMID: 34215454 DOI: 10.1016/j.vaccine.2021.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Group B Streptococcus (GBS) is the leading cause of life-threatening infections in new-borns and may cause invasive disease, stillbirth and preterm delivery during pregnancy. While no licensed vaccine exists, maternal immunization might protect against neonatal disease and adverse pregnancy outcomes. We assessed the safety and immunogenicity of a prototype vaccine consisting of the fused N-terminal domains of the AlphaC and Rib surface proteins of GBS (GBS-NN). METHODS GBS-NN was tested in a randomised, double-blind, placebo-controlled, parallel group, phase I study, in healthy non-pregnant women. A dose-escalation phase, with two doses, four weeks apart, of 10, 50 or 250 µg, administered with or without aluminium hydroxide, was initially assessed (n = 60). This was followed by a dose-confirmation study, where one dose of 100 µg adjuvanted GBS-NN was compared with two doses of either 50 or 100 µg adjuvanted GBS-NN, again administered with four weeks interval between the doses (n = 180). Safety and immunogenicity were monitored for one year. RESULTS GBS-NN was well tolerated with some, mostly mild, injection site reactions observed. Adjuvant significantly increased antibody concentrations and the response was boosted by a second dose. The IgG GMCs remained strongly elevated during the whole one-year duration of the study. Maximal responses occurred after two 50 µg doses, resulting in IgG GMC of 16.9 µg/ml at the primary immunological endpoint, twelve weeks after the first dose. For this regimen, 100% and 89% of the subjects achieved antibody levels above the arbitrary thresholds of 1 and 4 µg/ml, respectively. The added beneficial effect of a second dose was most pronounced for subjects with pre-existing IgG levels below the median of the entire cohort. CONCLUSION The prototype GBS-NN vaccine was found to be well tolerated and highly immunogenic with an optimal regimen of two doses of 50 µg in the presence of adjuvant. Further development of a maternal vaccine based on the N-terminal domains of the alpha-like protein family of GBS is warranted (NCT02459262).
Collapse
|
39
|
Garcia VR. Impact of Intrapartum Antibiotic Prophylaxis for Group B Streptococcus on the Term Infant Gut Microbiome: A State of the Science Review. J Midwifery Womens Health 2021; 66:351-359. [PMID: 34114318 DOI: 10.1111/jmwh.13245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 01/15/2023]
Abstract
Since the implementation of screening and prophylaxis guidelines for group B streptococcus (GBS) in the early 1990s there has been considerable advancement in scientific knowledge about the gut microbiome and its role in both health and disease processes. Research assessing early influences during the development of the infant gut microbiome has advanced considerably in the last 15 years. It is now widely accepted that early introduction of antibiotics in infancy is associated with increased risk for illness later in life. Research on antibiotic administration to pregnant individuals during labor for GBS colonization and its potential impact on the developing gut microbiome of term infants is now emerging. Despite the growing body of evidence of the negative impact of antibiotics on the gut microbiome, the guidelines for GBS prophylaxis among pregnant individuals have not changed significantly since their inception in the 1990s. This state of the science review examines the association between intrapartum antibiotic administration and alterations in the gut microbiome of term infants born vaginally, specifically in relation to microbial composition; the occurrence of and effect on antibiotic resistance genes in the infant gut; and the factors that may compound or mitigate these effects.
Collapse
|
40
|
Development and Validation of Enzyme-Linked Immunosorbent Assay for Group B Streptococcal Polysaccharide Vaccine. Vaccines (Basel) 2021; 9:vaccines9060545. [PMID: 34064299 PMCID: PMC8224333 DOI: 10.3390/vaccines9060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of neonatal sepsis and meningitis in infants. Limitations of prenatal GBS screening and intrapartum antibiotic prophylaxis render developing GBS vaccines a high priority. In this study, we developed an enzyme-linked immunosorbent assay (ELISA) for the practical and large-scale evaluation of GBS capsular polysaccharide (PS) vaccine immunogenicity against three main serotypes, Ia, III, and V. GBS-ELISA was developed and subsequently validated using a standardized curve-fitting four-parameter logistic method. Specificity was measured using adsorption of serum with homologous and heterologous PS. Homologous adsorption showed a ≥75% inhibition of all three serotypes, whereas with heterologous PS, IgG GBS-ELISA inhibited only ≤25% of serotypes III and V. However, with serotype Ia, IgG antibody levels decreased by >50%, even after adsorption with heterologous PS (III or V). In comparison, the inhibition opsonophagocytic killing assay (OPA) of serotypes Ia GBS exhibited a reduction in opsonophagocytic activity of only 20% and 1.1% for serotypes III and V GBS, respectively. The precision of the GBS-ELISA was assessed in five independent experiments using four serum samples. The coefficient of variation was <5% for all three serotypes. This standardized GBS-ELISA would be useful for GBS vaccine development and its evaluation.
Collapse
|
41
|
Hahn BA, de Gier B, van Kassel MN, Bijlsma MW, van Leeuwen E, Wouters MGAJ, van der Ende A, van de Beek D, Wallinga J, Hahné SJM, Jan van Hoek A. Cost-effectiveness of maternal immunization against neonatal invasive Group B Streptococcus in the Netherlands. Vaccine 2021; 39:2876-2885. [PMID: 33895018 DOI: 10.1016/j.vaccine.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neonatal invasive Group B Streptococcus (GBS) infection causes considerable disease burden in the Netherlands. Intrapartum antibiotic prophylaxis (IAP) prevents early-onset disease (EOD), but has no effect on late-onset disease (LOD). A potential maternal GBS vaccine could prevent both EOD and LOD by conferring immunity in neonates. OBJECTIVE Explore under which circumstances maternal vaccination against GBS would be cost-effective as an addition to, or replacement for the current risk factor-based IAP prevention strategy in the Netherlands. METHODS We assessed the maximum cost-effective price per dose of a trivalent (serotypes Ia, Ib, and III) and hexavalent (additional serotypes II, IV, and V) GBS vaccine in addition to, or as a replacement for IAP. To project the prevented costs and disease burden, a decision tree model was developed to reflect neonatal GBS disease and long-term health outcomes among a cohort based on 169,836 live births in the Netherlands in 2017. RESULTS Under base-case conditions, maternal immunization with a trivalent vaccine would gain 186 QALYs and prevent more than €3.1 million in health care costs when implemented in addition to IAP. Immunization implemented as a replacement for IAP would gain 88 QALYs compared to the current prevention strategy, prevent €1.5 million in health care costs, and avoid potentially ~ 30,000 IAP administrations. The base-case results correspond to a maximum price of €58 per dose (vaccine + administration costs; using a threshold of €20,000/QALY). Expanding the serotype coverage to a hexavalent vaccine would only have a limited additional impact on the cost-effectiveness in the Netherlands. CONCLUSIONS A maternal GBS vaccine could be cost-effective when implemented in addition to the current risk factor-based IAP prevention strategy in the Netherlands. Discontinuation of IAP would save costs and prevent antibiotic use, however, is projected to lead to a lower health gain compared to vaccination in addition to IAP.
Collapse
Affiliation(s)
- Brett A Hahn
- Athena Institute, VU Amsterdam, the Netherlands; National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Brechje de Gier
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands.
| | - Merel N van Kassel
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands
| | - Merijn W Bijlsma
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands
| | | | - Maurice G A J Wouters
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands; Amsterdam UMC, Department of Obstetrics and Gynaecology, Amsterdam, The Netherlands
| | - Arie van der Ende
- Amsterdam UMC, Department of Medical Microbiology, Infection and Immunity, and Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands
| | - Jacco Wallinga
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Susan J M Hahné
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Albert Jan van Hoek
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| |
Collapse
|
42
|
Invasive Bacterial Infections in Subjects with Genetic and Acquired Susceptibility and Impacts on Recommendations for Vaccination: A Narrative Review. Microorganisms 2021; 9:microorganisms9030467. [PMID: 33668334 PMCID: PMC7996259 DOI: 10.3390/microorganisms9030467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The WHO recently endorsed an ambitious plan, “Defeating Meningitis by 2030”, that aims to control/eradicate invasive bacterial infection epidemics by 2030. Vaccination is one of the pillars of this road map, with the goal to reduce the number of cases and deaths due to Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus agalactiae. The risk of developing invasive bacterial infections (IBI) due to these bacterial species includes genetic and acquired factors that favor repeated and/or severe invasive infections. We searched the PubMed database to identify host risk factors that increase the susceptibility to these bacterial species. Here, we describe a number of inherited and acquired risk factors associated with increased susceptibility to invasive bacterial infections. The burden of these factors is expected to increase due to the anticipated decrease in cases in the general population upon the implementation of vaccination strategies. Therefore, detection and exploration of these patients are important as vaccination may differ among subjects with these risk factors and specific strategies for vaccination are required. The aim of this narrative review is to provide information about these factors as well as their impact on vaccination against the four bacterial species. Awareness of risk factors for IBI may facilitate early recognition and treatment of the disease. Preventive measures including vaccination, when available, in individuals with increased risk for IBI may prevent and reduce the number of cases.
Collapse
|
43
|
Leroux-Roels G, Bebia Z, Maes C, Aerssens A, De Boever F, Grassano L, Buffi G, Margarit I, Karsten A, Cho S, Slobod K, Corsaro B, Henry O. Safety and Immunogenicity of a Second Dose of an Investigational Maternal Trivalent Group B Streptococcus Vaccine in Nonpregnant Women 4-6 Years After a First Dose: Results From a Phase 2 Trial. Clin Infect Dis 2021; 70:2570-2579. [PMID: 31394574 PMCID: PMC7286364 DOI: 10.1093/cid/ciz737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background Maternal immunization against group B streptococcus (GBS) could protect infants from invasive GBS disease. Additional doses in subsequent pregnancies may be needed. We evaluated the safety and immunogenicity of a second dose of an investigational trivalent CRM197-glycoconjugate GBS vaccine (targeting serotypes Ia/Ib/III), administered to nonpregnant women 4–6 years postdose 1. Methods Healthy women either previously vaccinated with 1 dose of trivalent GBS vaccine 4–6 years before enrollment (n = 53) or never GBS vaccinated (n = 27) received a single trivalent GBS vaccine injection. Adverse events (AEs) were recorded. Serotype-specific (Ia/Ib/III) anti-GBS antibodies were measured by multiplex immunoassay prevaccination and 30/60 days postvaccination. Results AEs were reported with similar rates after a first or second dose; none were serious. Of previously GBS-vaccinated women, 92%–98% had anti-GBS concentrations that exceeded an arbitrary threshold (8 µg/mL) for each serotype 60 days postdose 2 vs 36%–56% postdose 1 in previously non–GBS-vaccinated women. Of previously GBS-vaccinated women with undetectable baseline (predose 1) anti-GBS levels, 90%–98% reached this threshold postdose 2. For each serotype, anti-GBS geometric mean concentrations (GMCs) 30/60 days postdose 2 in previously GBS-vaccinated women were ≥200-fold higher than baseline GMCs. Among women with undetectable baseline anti-GBS levels, postdose 2 GMCs in previously GBS-vaccinated women exceeded postdose 1 GMCs in previously non–GBS-vaccinated women (≥7-fold). Conclusions A second trivalent GBS vaccine dose administered 4–6 years postdose 1 was immunogenic with a favorable safety profile. Women with undetectable preexisting anti-GBS concentrations may benefit from a sufficiently spaced second vaccine dose. Clinical Trials Registration NCT02690181
Collapse
Affiliation(s)
- Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Belgium
| | | | - Cathy Maes
- Center for Vaccinology, Ghent University and Ghent University Hospital, Belgium
| | - Annelies Aerssens
- Center for Vaccinology, Ghent University and Ghent University Hospital, Belgium
| | - Fien De Boever
- Center for Vaccinology, Ghent University and Ghent University Hospital, Belgium
| | | | | | | | | | - Stephen Cho
- Novartis, Cambridge, Massachusetts.,GSK, Cambridge, Massachusetts
| | - Karen Slobod
- Novartis, Cambridge, Massachusetts.,GSK, Cambridge, Massachusetts
| | | | | |
Collapse
|
44
|
Abu-Raya B, Maertens K. Protection of the Newborn Through Vaccination in Pregnancy. Neoreviews 2021; 22:e25-e39. [PMID: 33386312 DOI: 10.1542/neo.22-1-e25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Newborns and infants are at risk for severe infections with some pathogens (eg, Bordetella pertussis, influenza, respiratory syncytial virus, group B Streptococcus) during early life. To decrease this window of high susceptibility to some infections during early life and protect young infants, vaccination in pregnancy against some vaccine-preventable diseases (eg, influenza, pertussis, tetanus) has been recommended in an increasing number of countries with notable success. In addition, recent advances have been made in developing vaccines for pregnant women with the aim of reducing the respiratory syncytial virus and group B Streptococcus burden in infancy. In this article, we review the vaccines currently recommended during pregnancy and their benefits to newborns and infants. We also discuss progress made in the development of other vaccines that are expected to be evaluated in pregnant women in the near future.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Maertens
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Diseases Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
45
|
Keij FM, Achten NB, Tramper-Stranders GA, Allegaert K, van Rossum AMC, Reiss IKM, Kornelisse RF. Stratified Management for Bacterial Infections in Late Preterm and Term Neonates: Current Strategies and Future Opportunities Toward Precision Medicine. Front Pediatr 2021; 9:590969. [PMID: 33869108 PMCID: PMC8049115 DOI: 10.3389/fped.2021.590969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections remain a major cause of morbidity and mortality in the neonatal period. Therefore, many neonates, including late preterm and term neonates, are exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual differences and disease signatures are accumulating. Differences that may potentially influence treatment requirement and success rate. However, currently, many neonates are treated following a "one size fits all" approach, based on general protocols and standard antibiotic treatment regimens. Precision medicine has emerged in the last years and is perceived as a new, holistic, way of stratifying patients based on large-scale data including patient characteristics and disease specific features. Specific to sepsis, differences in disease susceptibility, disease severity, immune response and pharmacokinetics and -dynamics can be used for the development of treatment algorithms helping clinicians decide when and how to treat a specific patient or a specific subpopulation. In this review, we highlight the current and future developments that could allow transition to a more precise manner of antibiotic treatment in late preterm and term neonates, and propose a research agenda toward precision medicine for neonatal bacterial infections.
Collapse
Affiliation(s)
- Fleur M Keij
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Niek B Achten
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Clinical Pharmacy, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annemarie M C van Rossum
- Division of Infectious Diseases, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - René F Kornelisse
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
46
|
Madhi SA, Izu A, Kwatra G, Jones S, Dangor Z, Wadula J, Moultrie A, Adam Y, Pu W, Henry O, Briner C, Cutland CL. Association of Group B streptococcus serum serotype-specific anti-capsular IgG concentration and risk reduction for invasive Group B streptococcus disease in South African infants: an observational birth-cohort, matched case-control study. Clin Infect Dis 2020; 73:e1170-e1180. [PMID: 33341870 DOI: 10.1093/cid/ciaa1873] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Licensure of a Group B streptococcus (GBS) polysaccharide-protein conjugate vaccine for protecting infants against invasive GBS disease (IGbsD) will likely need to be based on demonstrating vaccine safety in pregnant women, and benchmarking immunogenicity against a serological threshold associated with risk reduction of IGbsD. We investigated the association between naturally-derived GBS serotype-Ia and III IgG and risk reduction of IGbsD in infants' ≤90 days of age. METHODS In a matched case-control study (ClinicalTrials.gov NCT02215226), IGbsD cases were identified from a cohort of 38,233 mother-newborn dyads. Mothers colonized vaginally with serotype-Ia or III at birth, and their healthy infants were eligible as matched controls. GBS serotype-specific anti-capsular IgG was measured on maternal and cord blood/infant sera by multiplex Luminex assay; and the IgG threshold associated with 90% risk reduction of IGbsD derived by estimating absolute disease risk. RESULTS In infants born ≥34 weeks gestational age, cord-blood IgG geometric mean concentrations (GMC) were lower in cases than controls for serotype-Ia (0.05 vs. 0.50µg/ml; p=0.004) and III (0.20 vs. 0.38µg/ml; p=0.078). Cord-blood IgG concentration ≥1.04 and ≥1.53µg/ml were associated with 90% risk reduction of serotype-Ia and III IGbsD, respectively. The maternal sera IgG threshold associated with 90% risk reduction was ≥2.31 and ≥3.41µg/ml for serotype-Ia and III, respectively. CONCLUSIONS The threshold associated with a reduced risk for serotype-Ia and III IGbsD identified on infant sera supports the case for licensure of a GBS polysaccharide-protein conjugate vaccine based on immunogenicity evaluation benchmarked against the defined thresholds.
Collapse
Affiliation(s)
- Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Stephanie Jones
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Ziyaad Dangor
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.,Department of Paediatrics, Chris Hani Baragwanath Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeanette Wadula
- National Health Laboratory Services, Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Andrew Moultrie
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Yasmin Adam
- Department of Obstetrics and Gynecology, Chris Hani-Baragwanath Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Carmen Briner
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Clare L Cutland
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| |
Collapse
|
47
|
Carboni F, Adamo R. Structure-based glycoconjugate vaccine design: The example of Group B Streptococcus type III capsular polysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:23-33. [PMID: 33388125 DOI: 10.1016/j.ddtec.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Microbial surface polysaccharides are important virulence factors and targets for vaccine development. Glycoconjugate vaccines, obtained by covalently linking carbohydrates and proteins, are well established tools for prevention of bacterial infections. Elucidation of the minimal portion involved in the interactions with functional antibodies is of utmost importance for the understanding of their mechanism of induction of protective immune responses and the design of synthetic glycan based vaccines. Typically, this is achieved by combination of different techniques, which include ELISA, glycoarray, Surface Plasmon Resonance in conjunction with approaches for mapping at atomic level the position involved in binding, such as Saturation Transfer NMR and X-ray crystallography. This review provides an overview of the structural studies performed to map glycan epitopes (glycotopes), with focus on the highly complex structure of Group B Streptococcus type III (GBSIII) capsular polysaccharide. Furthermore, it describes the rational process followed to translate the obtained information into the design of a protective glycoconjugate vaccine based on a well-defined synthetic glycan epitope.
Collapse
|
48
|
Bianchi-Jassir F, Paul P, To KN, Carreras-Abad C, Seale AC, Jauneikaite E, Madhi SA, Russell NJ, Hall J, Madrid L, Bassat Q, Kwatra G, Le Doare K, Lawn JE. Systematic review of Group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates. Vaccine 2020; 38:6682-6694. [PMID: 32888741 PMCID: PMC7526974 DOI: 10.1016/j.vaccine.2020.08.052] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND 21 million pregnant women worldwide (18%) are estimated to carry Group B Streptococcus (GBS), which is a risk for invasive disease in newborns, pregnant women, and stillbirths. Adults ≥ 60 years or with underlying health conditions are also vulnerable to invasive GBS disease. We undertook systematic reviews on GBS organism characteristics including: capsular polysaccharide (serotype), sequence type (multi-locus sequence types (MLST)), and virulence proteins. We synthesised data by at-risk populations, to inform vaccine development. METHODS We conducted systematic reviews and meta-analyses to estimate proportions of GBS serotypes for at risk populations: maternal colonisation, invasive disease in pregnant women, stillbirths, infants 0-90 days age, and older adults (≥60 years). We considered regional variation and time trends (2001-2018). For these at-risk population groups, we summarised reported MLST and surface proteins. RESULTS Based on 198 studies (29247isolates), 93-99% of GBS isolates were serotypes Ia, Ib, II, III, IV and V. Regional variation is likely, but data gaps are apparent, even for maternal colonisation which has most data. Serotype III dominates for infant invasive disease (60%) and GBS-associated stillbirths (41%). ST17 accounted for a high proportion of infant invasive disease (41%; 95%CI: 35-47) and was found almost exclusively in serotype III strains, less present in maternal colonisation (9%; 95%CI:6-13),(4%; 95%CI:0-11) infant colonisation, and adult invasive disease (4%, 95%CI:2-6). Percentages of strains with at least one of alp 1, alp2/3, alpha C or Rib surface protein targets were 87% of maternal colonisation, 97% infant colonisation, 93% infant disease and 99% adult invasive disease. At least one of three pilus islands proteins were reported in all strains. DISCUSSION A hexavalent vaccine (serotypes Ia, Ib, II, III, IV and V) might provide comprehensive cover for all at-risk populations. Surveillance of circulating, disease-causing target proteins is useful to inform vaccines not targeting capsular polysaccharide. Addressing data gaps especially by world region and some at-risk populations (notably stillbirths) is fundamental to evidence-based decision-making during vaccine design.
Collapse
Affiliation(s)
- Fiorella Bianchi-Jassir
- Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine, London, UK; Dept of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Proma Paul
- Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine, London, UK; Dept of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Ka-Ning To
- Paediatric Infectious Diseases Research Group and Vaccine Institute, St George's, University of London, UK; Department of Infectious Disease, Imperial College London, UK
| | - Clara Carreras-Abad
- Paediatric Infectious Diseases Research Group and Vaccine Institute, St George's, University of London, UK
| | - Anna C Seale
- Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine, London, UK; Dept of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Neal J Russell
- Paediatric Infectious Diseases Research Group and Vaccine Institute, St George's, University of London, UK
| | - Jenny Hall
- EGA Institute for Women's Health, University College London Institute for Women's Health, London, UK
| | - Lola Madrid
- Dept of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Gaurav Kwatra
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group and Vaccine Institute, St George's, University of London, UK; Medical Research Council at the London School of Hygiene & Tropical Medicine, Uganda
| | - Joy E Lawn
- Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine, London, UK; Dept of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
49
|
Absalon J, Segall N, Block SL, Center KJ, Scully IL, Giardina PC, Peterson J, Watson WJ, Gruber WC, Jansen KU, Peng Y, Munson S, Pavliakova D, Scott DA, Anderson AS. Safety and immunogenicity of a novel hexavalent group B streptococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1/2, randomised, placebo-controlled, observer-blinded, dose-escalation trial. THE LANCET. INFECTIOUS DISEASES 2020; 21:263-274. [PMID: 32891191 DOI: 10.1016/s1473-3099(20)30478-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Group B streptococcus (GBS) is a major cause of invasive disease in young infants. Infants born to women with sufficient pre-existing anti-GBS capsular IgG antibodies are at reduced risk of GBS disease, making maternal immunisation a potential strategy for prevention. We aimed to assess the safety and immunogenicity of a novel hexavalent (serotypes Ia, Ib, II, III, IV, and V) GBS conjugate vaccine (GBS6). METHODS This phase 1/2, placebo-controlled, observer-blinded, dose-escalation trial, was done at four clinical research centres in the USA (Kentucky, Georgia, and two sites in Utah). Healthy, non-pregnant adults aged 18-49 years were randomly assigned using an interactive, web-based response technology system. Within each dose group (low, medium, or high), participants in sentinel cohorts were randomly assigned 2:2:1 and expanded cohort participants were randomly assigned 4:4:1 to receive GBS6 with aluminium phosphate (AlPO4), GBS6 without AlPO4, or placebo (saline control). One 0·5 mL dose of either saline placebo or 5 μg capsular polysaccharide per serotype in the low-dose group, 10 μg capsular polysaccharide per serotype in the medium-dose group, or 20 μg capsular polysaccharide per serotype in the high-dose group was administered by intramuscular injection into the deltoid muscle on day 1. The primary outcome was safety up to 6 months after vaccination, including the proportion of sentinel cohort participants with clinical laboratory abnormalities at 1 week, the proportion of all participants reporting solicited local reactions, systemic events, or use of antipyretic or pain medication within 14 days, adverse events up to 1 month, and medically attended or serious adverse events up to 6 months. The secondary outcome was GBS immunogenicity (serotype-specific IgG geometric mean concentrations at 1 month). This study is registered with ClinicalTrials.gov, NCT03170609. FINDINGS Between June 5, 2017, and June 25, 2018, 365 participants were randomly assigned and 364 (52 in each dose group) were vaccinated and included in the safety analysis. Unsolicited adverse events were reported by 15 (29%) participants in the 5 μg with AlPO4 group, 13 (25%) in the 5 μg without AlPO4 group, 22 (42%) in the 10 μg with AlPO4 group, 12 (23%) in the 10 μg without AlPO4 group, 25 (48%) in the 20 μg with AlPO4 group, 21 (40%) in the 20 μg without AlPO4 group, and 20 (38%) in the placebo group. The most common unsolicited adverse events were in the system organ class of infections and infestations in any dose or formulation of GBS6 (ranging from six [12%] in the 10 μg without AlPO4 group to 15 [29%] in the 20 μg with AlPO4 group and placebo group). Three participants reported at least one serious adverse event during the study, one each in the 5 μg GBS6 with AlPO4 group (diabetic ketoacidosis, two events; resolved), 10 μg GBS6 with AlPO4 group (died by suicide), and 20 μg GBS6 with AlPO4 group (metrorrhagia; resolved). None of these serious adverse events were considered related to the vaccine. 11 of the 365 participants were excluded from the evaluable immunogenicity population, including one participant who did not receive the vaccine, and ten who at 1 month after vaccination were withdrawn for various reasons. GBS serotype-specific IgG geometric mean concentrations increased by 1 week after vaccination for all GBS6 groups, peaked at 2 weeks, stabilised by 1 month, and declined gradually but remained higher than placebo at 6 months. INTERPRETATION GBS6 was well tolerated in healthy adults and elicited robust immune responses for all dose levels and formulations that persisted 6 months after vaccination. This study supports further evaluation of GBS6 in pregnant women. FUNDING Pfizer.
Collapse
Affiliation(s)
- Judith Absalon
- Vaccine Research and Development, Pfizer, Pearl River, NY, USA.
| | | | - Stan L Block
- Kentucky Pediatric/Adult Research, Bardstown, KY, USA
| | | | - Ingrid L Scully
- Vaccine Research and Development, Pfizer, Pearl River, NY, USA
| | | | | | - Wendy J Watson
- Vaccine Research and Development, Pfizer, Collegeville, PA, USA
| | | | | | - Yahong Peng
- Vaccine Research and Development, Pfizer, Collegeville, PA, USA
| | - Samantha Munson
- Vaccine Research and Development, Pfizer, Collegeville, PA, USA
| | | | - Daniel A Scott
- Vaccine Research and Development, Pfizer, Collegeville, PA, USA
| | | |
Collapse
|
50
|
Swamy GK, Metz TD, Edwards KM, Soper DE, Beigi RH, Campbell JD, Grassano L, Buffi G, Dreisbach A, Margarit I, Karsten A, Henry O, Lattanzi M, Bebia Z. Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in pregnant women and their infants: Results from a randomized placebo-controlled phase II trial. Vaccine 2020; 38:6930-6940. [PMID: 32883555 DOI: 10.1016/j.vaccine.2020.08.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND This study evaluated the safety and immunogenicity of an investigational trivalent group B streptococcus (GBS) vaccine in US pregnant women, transplacental serotype-specific antibody transfer and persistence in infants, and serotype-specific antibodies in breast milk. METHODS This randomized, observer-blind, placebo-controlled trial administered one dose of trivalent GBS vaccine (n = 49) or placebo (n = 26) to healthy pregnant 18-40-year-old women at 240/7-346/7 weeks' gestation. Women were enrolled from March 2014 to August 2015. Safety follow-up continued through postpartum day 180. Primary immunogenicity objectives were to evaluate serotype Ia/Ib/III-specific immunoglobulin G (IgG) levels in sera from women on day 1 (pre-vaccination), day 31, delivery and postpartum days 42 and 90, and from infants at birth (cord blood), days 42 and 90. Antibody transfer ratios (cord blood/maternal sera at delivery) and serotype-specific secretory immunoglobulin A (sIgA) and IgG in breast milk after delivery and on postpartum days 42 and 90 were evaluated. The planned sample size was not based on statistical assumptions for this descriptive study. RESULTS Baseline characteristics were similar between groups. Serious adverse events were reported for 16% of GBS-vaccinated women and 15% of their infants, and 15% of placebo recipients and 12% of their infants; none were fatal or deemed vaccine-related. Serotype-specific IgG geometric mean concentrations (GMCs) were 13-23-fold higher in vaccine vs placebo recipients on day 31 and persisted until postpartum day 90. Median antibody concentrations were substantially higher in women with detectable pre-vaccination antibody concentrations. Antibody transfer ratios in the vaccine group were 0.62-0.82. Infant IgG GMCs and breast milk sIgA GMCs were higher in the vaccine vs the placebo group at all timepoints. CONCLUSIONS Maternal immunization with the trivalent GBS vaccine in US women had a favorable safety profile, elicited antibodies that were transplacentally transferred and persisted in infants for a minimum of 3 months. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov, NCT02046148.
Collapse
Affiliation(s)
- Geeta K Swamy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.
| | - Torri D Metz
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA.
| | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, TN, USA.
| | - David E Soper
- Medical University of South Carolina, Charleston, SC, USA.
| | - Richard H Beigi
- UPMC Magee-Women's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - James D Campbell
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|