1
|
Singh S, Kularia S, Shukla S, Singh M, Kumar M, Sharma AK. A current review on animal models of anti-asthmatic drugs screening. Front Pharmacol 2025; 16:1508460. [PMID: 39981184 PMCID: PMC11841448 DOI: 10.3389/fphar.2025.1508460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Asthma is a chronic inflammatory respiratory condition characterised by airway constriction, smooth muscle spasm, and severe morbidity. It affects around 300 million people globally, with children being especially vulnerable. Despite its worldwide effect, the invention of innovative asthma medicines has been slow over the last 5 decades, leaving significant unmet requirements in asthma care. Although intriguing medicines have demonstrated efficacy in animal models, many fail to fulfil safety and effectiveness requirements in human trials, highlighting the critical need for more predictive models that better transfer to human results. This comprehensive review investigates the mechanisms and efficacy of anti-asthmatic drugs using both genetic and conventional animal models. Both genetic and traditional models of anti-asthmatic agents, their characteristics, and their significance are summarized as: In-Vitro Animal Models: Histamine receptor assay, Cell Culture Method, WST Assay, Spasmolytic Activity of the Lungs of Guinea Pigs, Airway and Vascular Responses to an Isolated Lung, The Isolated Perfused Guinea Pig Trachea's Reactivity. In-Vivo Models: In vivo small animal models, Broncho Spasmolytic Activity in anaesthetized Guinea Pigs, Guinea Pigs Respiratory and Vascular Dysfunction Caused by Arachidonic Acid or platelet-activated factor (PAF), Guinea Pig Asphyxia Induced by Serotonin Aerosol and Anaphylactic Microshock, Guinea Pigs Under Anaesthesia: Histamine-Induced Bronchoconstriction, Microshock in Rabbits and Pneumotachography in Guinea Pigs, Guinea Pig Bronchial Hyperactivity, Guinea Pig Airway Microvascular Leakage, Mice With Inflammatory Airways. Conclusion: This review focusses on the benefits and limitations of current animal models in asthma research, emphasising the need for more sophisticated, predictive models to decrease translational failures. By critically evaluating these models, the review emphasises their importance in directing anti-asthmatic drug development and highlights the urgent need for innovation to bridge the gap between preclinical success and clinical efficacy.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Sunita Kularia
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Shivakshi Shukla
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India
| | - Manish Kumar
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Ashish Kumar Sharma
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Bartman CM, Nesbitt L, Lee KK, Khalfaoui L, Fang Y, Pabelick CM, Prakash YS. BMAL1 sex-specific effects in the neonatal mouse airway exposed to moderate hyperoxia. Physiol Rep 2024; 12:e16122. [PMID: 38942729 PMCID: PMC11213646 DOI: 10.14814/phy2.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Kenge K. Lee
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Yun‐Hua Fang
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
3
|
Bartman CM, Schiliro M, Nesbitt L, Lee KK, Prakash YS, Pabelick CM. Exogenous hydrogen sulfide attenuates hyperoxia effects on neonatal mouse airways. Am J Physiol Lung Cell Mol Physiol 2024; 326:L52-L64. [PMID: 37987780 PMCID: PMC11279744 DOI: 10.1152/ajplung.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Nesbitt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kenge K Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Cha J, Choi S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int J Mol Sci 2023; 24:12266. [PMID: 37569643 PMCID: PMC10419280 DOI: 10.3390/ijms241512266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a complex heterogeneous disease caused by gene-environment interactions. Although numerous genome-wide association studies have been conducted, these interactions have not been systemically investigated. We sought to identify genetic factors associated with the asthma phenotype in 66,857 subjects from the Health Examination Study, Cardiovascular Disease Association Study, and Korea Association Resource Study cohorts. We investigated asthma-associated gene-environment (smoking status) interactions at the level of single nucleotide polymorphisms, genes, and gene sets. We identified two potentially novel (SETDB1 and ZNF8) and five previously reported (DM4C, DOCK8, MMP20, MYL7, and ADCY9) genes associated with increased asthma risk. Numerous gene ontology processes, including regulation of T cell differentiation in the thymus (GO:0033081), were significantly enriched for asthma risk. Functional annotation analysis confirmed the causal relationship between five genes (two potentially novel and three previously reported genes) and asthma through genome-wide functional prediction scores (combined annotation-dependent depletion, deleterious annotation of genetic variants using neural networks, and RegulomeDB). Our findings elucidate the genetic architecture of asthma and improve the understanding of its biological mechanisms. However, further studies are necessary for developing preventive treatments based on environmental factors and understanding the immune system mechanisms that contribute to the etiology of asthma.
Collapse
Affiliation(s)
- Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
5
|
Wei Y, Han B, Dai W, Guo S, Zhang C, Zhao L, Gao Y, Jiang Y, Kong X. Exposure to ozone impacted Th1/Th2 imbalance of CD 4+ T cells and apoptosis of ASMCs underlying asthmatic progression by activating lncRNA PVT1-miR-15a-5p/miR-29c-3p signaling. Aging (Albany NY) 2020; 12:25229-25255. [PMID: 33223504 PMCID: PMC7803560 DOI: 10.18632/aging.104124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
This investigation attempted to elucidate whether lncRNA PVT1-led miRNA axes participated in aggravating ozone-triggered asthma progression. One hundred and sixty-eight BALB/c mice were evenly divided into saline+air group, ovalbumin+air group, saline+ozone group and ovalbumin+ozone group. Correlations were evaluated between PVT1 expression and airway smooth muscle function/inflammatory cytokine release among the mice models. Furthermore, pcDNA3.1-PVT1 and si-PVT1 were, respectively, transfected into CD4+T cells and airway smooth muscle cells (ASMCs), and activities of the cells were observed. Ultimately, a cohort of asthma patients was recruited to estimate the diagnostic performance of PVT1. It was demonstrated that mice of ovalbumin+ozone group were associated with higher PVT1 expression, thicker trachea/airway smooth muscle and smaller ratio of Th1/Th2-like cytokines than mice of ovalbumin+air group and saline+ozone group (P<0.05). Moreover, pcDNA3.1-PVT1 significantly brought down Th1/Th2 ratio in CD4+ T cells by depressing miR-15a-5p expression and activating PI3K-Akt-mTOR signaling (P<0.05). The PVT1 also facilitated ASMC proliferation by sponging miR-29c-3p and motivating PI3K-Akt-mTOR signaling (P<0.05). Additionally, PVT1 seemed promising in diagnosis of asthma, with favorable sensitivity (i.e. 0.844) and specificity (i.e. 0.978). Conclusively, lncRNA PVT1-miR-15a-5p/miR-29c-3p-PI3K-Akt-mTOR axis was implicated in ozone-induced asthma development by promoting ASMC proliferation and Th1/Th2 imbalance.
Collapse
Affiliation(s)
- Yangyang Wei
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Baofen Han
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shufang Guo
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Caiping Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lixuan Zhao
- Department of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Gao
- Department of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
6
|
Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-β/Smad2/3 pathway intensification and antifibrotic TGF-β/Smad1/5/(8)9 pathway impairment. Sci Rep 2020; 10:16492. [PMID: 33020537 PMCID: PMC7536388 DOI: 10.1038/s41598-020-73473-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-β1-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-β1-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-β/Smad2/3 and the antifibrotic TGF-β/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-β-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-β1 was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-β/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-β/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-β/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.
Collapse
|
7
|
Pan LY, Han YQ, Wang YZ, Chen QQ, Wu Y, Sun Y. Mechanism of Yanghe Pingchuan granules treatment for airway remodeling in asthma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1941-1951. [PMID: 29983548 PMCID: PMC6027695 DOI: 10.2147/dddt.s159428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose Yanghe Pingchuan granules (YPG), a hospital preparation developed by The First Affiliated Hospital, Anhui University of Chinese Medicine, has been used for the clinical treatment of bronchial asthma (BA) for several decades. This study aimed to explore the mechanism of action of YPG in the treatment of BA. Materials and methods Male Sprague Dawley rats (n=60) were randomly divided into six groups (n=10 per group): control, a BA model, positive drug control (Guilong Kechuanning capsules; a proven effective treatment for BA), and model rats treated with a high, medium, or low dose of YPG. H&E staining was used to detect pathological changes in the bronchial tubes. The mRNA expression levels of PI3K, PKB, PCNA, and AR were determined by real-time PCR, and the protein levels of phospho- (p-)PI3K, p-PKB, p-PCNA, and p-AR were detected by Western blotting. ELISAs were used to detect the expression of PIP2, PIP3 IL-6, IL-8, IL-1β, and epinephrine (EPI). Results H&E staining demonstrated that BA can be ameliorated using YPG. Real-time PCR, Western blotting, and ELISA indicated that use of YPG decreased expression of the phosphoinositide 3-kinase (PI3K) signaling pathway and PCNA, and can also ameliorate the condition kidney Yang deficiency, which is associated with BA in Chinese traditional medicine. Conclusion YPG can attenuate BA therapeutically in a dose-dependent manner. The mechanism underlying its therapeutic effect comprises influences on three features that contribute to BA: the PI3K signaling pathway, cell proliferation, and “kidney-Yang deficiency”.
Collapse
Affiliation(s)
- Ling Yu Pan
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Yan Quan Han
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Yong Zhong Wang
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Qian Qian Chen
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Ying Wu
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Yuan Sun
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| |
Collapse
|
8
|
Fu LQ, Li YL, Fu AK, Wu YP, Wang YY, Hu SL, Li WF. Pidotimod exacerbates allergic pulmonary infection in an OVA mouse model of asthma. Mol Med Rep 2017; 16:4151-4158. [PMID: 28731127 DOI: 10.3892/mmr.2017.7046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
Abstract
Pidotimod is a synthetic dipeptide with biological and immuno‑modulatory properties. It has been widely used for treatment and prevention of recurrent respiratory infections. However, its impact on the regulation of allergic pulmonary inflammation is still not clear. In the current study, an ovalbumin (OVA)‑induced allergic asthma model was used to investigate the immune‑modulating effects of pidotimod on airway eosinophilia, mucus metaplasia and inflammatory factor expression compared with dexamethasone (positive control). The authors determined that treatment with pidotimod exacerbated pulmonary inflammation as demonstrated by significantly increased eosinophil infiltration, dramatically elevated immunoglobulin E production, and enhanced T helper 2 response. Moreover, treatment failed to attenuate mucus production in lung tissue, and did not reduce OVA‑induced high levels of FIZZ1 and Arg1 expression in asthmatic mice. In contrast, administration of dexamethasone was efficient in alleviating allergic airway inflammation in OVA‑induced asthmatic mice. These data indicated that pidotimod as an immunotherapeutic agent should be used cautiously and the effectiveness for controlling allergic asthma needs further evaluation and research.
Collapse
Affiliation(s)
- Luo-Qin Fu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ya-Li Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ai-Kun Fu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yan-Ping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yuan-Yuan Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Sheng-Lan Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, P.R. China
| | - Wei-Fen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
9
|
Garcia-Marcos PW, Soriano-Pérez MJ, Perez-Fernández V, Valverde-Molina J. Exhaled nitric oxide in school children: Searching for the lost variability. Allergol Immunopathol (Madr) 2016; 44:206-13. [PMID: 26674385 DOI: 10.1016/j.aller.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/26/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The factors - including asthma and rhinoconjunctivitis - which influence FeNO values in a general population of school children have been studied in order to know to what extent the variability of those values can be explained. METHODS FeNO was measured in a population of 240 school children aged 6-12 years by means of a Niox-Mino™ device in a standardised way. Parents filled in an ISAAC-validated questionnaire of symptoms and environmental factors. Diagnoses were checked against clinical records. Height and weight were measured. A multivariate regression analysis including all variables in the questionnaire was performed, which was followed by two Xi stepwise tests in order to build a predictive model which included the main variables influencing FeNO values. RESULTS Among the 240 children, 10 suffered from asthma, 16 from rhinoconjunctivitis and 15 from both conditions. FeNO values (GM±GSD) in children with rhinoconjunctivitis (19.61±1.20ppb), with asthma (18.62±1.32ppb), and with both conditions (17.62±1.19ppb) tended to be significantly higher than control children (11.42±1.04ppb), p=0.0016, p=0.08 and p=0.01, respectively. The different predictive models were able to explain only 20-27% of FeNO variability. CONCLUSIONS The proportion of FeNO inter-individual variability which can be explained by individual (including suffering from asthma or rhinoconjunctivitis), family, and environmental factors is very low (20-27%). This could have implications on the usefulness of FeNO as a diagnostic tool in asthma.
Collapse
Affiliation(s)
- P W Garcia-Marcos
- Department of General Pediatrics, Arrixaca University Children's Hospital, University of Murcia, Murcia, Spain.
| | - M J Soriano-Pérez
- Emergency Department, Los Arcos del Mar Menor University Hospital, San Javier, Murcia, Spain
| | - V Perez-Fernández
- Department of General Pediatrics, Arrixaca University Children's Hospital, University of Murcia, Murcia, Spain
| | - J Valverde-Molina
- Department of Pediatric Respiratory Medicine, Los Arcos del Mar Menor University Hospital, San Javier, Murcia, Spain
| |
Collapse
|
10
|
Royce SG, Lim CXF, Patel KP, Wang B, Samuel CS, Tang MLK. Intranasally administered serelaxin abrogates airway remodelling and attenuates airway hyperresponsiveness in allergic airways disease. Clin Exp Allergy 2015; 44:1399-408. [PMID: 25113628 DOI: 10.1111/cea.12391] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/03/2014] [Accepted: 05/08/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The peptide hormone relaxin plays a key role in the systemic hemodynamic and renovascular adaptive changes that occur during pregnancy, which is linked to its antiremodelling effects. Serelaxin (a recombinant form of human gene-2 relaxin) has been shown to inhibit lung fibrosis in various disease models and reverse airway remodelling and airway hyperresponsiveness (AHR) in allergic airways disease (AAD). OBJECTIVE Although continuous systemic delivery of exogenous serelaxin alleviates allergic fibrosis and AHR, more direct routes for administration into the lung have not been investigated. Thus, intranasal administration of serelaxin was evaluated for its ability to reverse airway remodelling and AHR associated with AAD. METHODS Female Balb/c mice were subjected to a 9-week model of chronic AAD. Subgroups of animals (n = 12/group) were then treated intranasally with serelaxin (0.8 mg/mL) or vehicle once daily for 14 days (from weeks 9-11). Saline-sensitized/challenged mice treated with intranasal saline served as additional controls. Differential bronchoalveolar lavage (BAL) cell counts, ovalbumin (OVA)-specific IgE levels, tissue inflammation, parameters of airway remodelling and AHR were then assessed. RESULTS Chronic AAD was associated with significant increases in differential BAL cell counts, OVA-specific IgE levels, inflammation, epithelial thickening, goblet cell metaplasia, TGF-β1 expression, epithelial Smad2 phosphorylation (pSmad2), subepithelial collagen thickness, total lung collagen concentration and AHR (all P < 0.05 vs. respective measurements from saline-treated mice). Daily intranasal delivery of serelaxin significantly diminished AAD-induced epithelial thickening, epithelial pSmad2, subepithelial and total lung collagen content (fibrosis) and AHR (all P < 0.05 vs. vehicle-treated AAD mice). CONCLUSIONS AND CLINICAL RELEVANCE Intranasal delivery of serelaxin can effectively reduce airway remodelling and AHR, when administered once daily. Respirable preparations of serelaxin may have therapeutic potential for the prevention and/or reversal of established airway remodelling and AHR in asthma.
Collapse
Affiliation(s)
- S G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, Vic., Australia; Department of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | | | | | | | | | |
Collapse
|
11
|
Noble PB, Pascoe CD, Lan B, Ito S, Kistemaker LEM, Tatler AL, Pera T, Brook BS, Gosens R, West AR. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther 2014; 29:96-107. [PMID: 25062835 DOI: 10.1016/j.pupt.2014.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.
Collapse
Affiliation(s)
- Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, WA, Australia
| | - Chris D Pascoe
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada
| | - Bo Lan
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada; Bioengineering College, Chongqing University, Chongqing, China
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University, Aichi, Japan
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amanda L Tatler
- Division of Respiratory Medicine, University of Nottingham, United Kingdom
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, United Kingdom
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Adrian R West
- Department of Physiology, University of Manitoba, MB, Canada; Biology of Breathing, Manitoba Institute of Child Health, MB, Canada.
| |
Collapse
|
12
|
West AR, Zaman N, Cole DJ, Walker MJ, Legant WR, Boudou T, Chen CS, Favreau JT, Gaudette GR, Cowley EA, Maksym GN. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2012; 304:L4-16. [PMID: 23125251 DOI: 10.1152/ajplung.00168.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.
Collapse
Affiliation(s)
- Adrian R West
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wright D, Sharma P, Ryu MH, Rissé PA, Ngo M, Maarsingh H, Koziol-White C, Jha A, Halayko AJ, West AR. Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro: implications in understanding asthma. Pulm Pharmacol Ther 2012; 26:24-36. [PMID: 22967819 DOI: 10.1016/j.pupt.2012.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 11/16/2022]
Abstract
Asthma is a chronic obstructive airway disease characterised by airway hyperresponsiveness (AHR) and airway wall remodelling. The effector of airway narrowing is the contraction of airway smooth muscle (ASM), yet the question of whether an inherent or acquired dysfunction in ASM contractile function plays a significant role in the disease pathophysiology remains contentious. The difficulty in determining the role of ASM lies in limitations with the models used to assess contraction. In vivo models provide a fully integrated physiological response but ASM contraction cannot be directly measured. Ex vivo and in vitro models can provide more direct assessment of ASM contraction but the loss of factors that may modulate ASM responsiveness and AHR, including interaction between multiple cell types and disruption of the mechanical environment, precludes a complete understanding of the disease process. In this review we detail key advantages of common in vivo, ex vivo and in vitro models of ASM contraction, as well as emerging tissue engineered models of ASM and whole airways. We also highlight important findings from each model with respect to the pathophysiology of asthma.
Collapse
Affiliation(s)
- David Wright
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Michalik M, Pierzchalska M, Włodarczyk A, Wójcik KA, Czyż J, Sanak M, Madeja Z. Transition of asthmatic bronchial fibroblasts to myofibroblasts is inhibited by cell-cell contacts. Respir Med 2011; 105:1467-75. [PMID: 21802932 DOI: 10.1016/j.rmed.2011.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/14/2023]
Abstract
The role of airway wall remodelling in bronchial asthma is well established. Myofibroblasts, the cells displaying features intermediate between fibroblasts and smooth muscle cells, are involved in this process but the mechanism of myofibroblasts activation in the onset of the disease remains obscure. Myofibroblasts can differentiate from various cell types, including resident fibroblasts, and the fibroblasts to myofibroblasts transition (FMT) can be reproduced in vitro. We aimed to investigate the process of FMT in human bronchial fibroblasts (HBF) derived from non-asthmatic (n = 7) and asthmatic (n = 7) subjects. We also tested whether cell-cell contacts affect FMT by using N-cadherin blocking antibody. HBF plated in low or high cell density were treated with TGF-β(1) up to one week to induce FMT. The percentage of myofibroblsts was counted and expression of α-smooth muscle actin was evaluated by cytoimmunofluorescence, flow cytometry and immunobloting. We demonstrated that the intensity of FMT induced by TGF-β(1)in vitro was strongly enhanced in asthmatic as compared to non-asthmatic HBF populations. This process was facilitated by low cell plating density in both groups of cultures. Furthermore, we proved that neither HBF-conditioned medium nor growth arrest in G(0)/G(1) phase of cell cycle could stop the TGF-β(1)-induced FMT in asthmatic cell populations. However, even in sparse asthmatic HBF, the blocking of N-cadherin resulted in the inhibition of FMT. Our findings show for the first time that the initial absence or an induced loss of cell-cell adhesions in asthmatic HBF populations is important for the completion of FMT.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Thavagnanam S, Williamson G, Ennis M, Heaney LG, Shields MD. Does airway allergic inflammation pre-exist before late onset wheeze in children? Pediatr Allergy Immunol 2010; 21:1002-7. [PMID: 20573036 DOI: 10.1111/j.1399-3038.2010.01052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidemiological studies show that some children develop wheezing after 3 yr of age which tends to persist. It is unknown how this starts or whether there is a period of asymptomatic inflammation. The aim of this study is to determine whether lower airway allergic inflammation pre-exists in late onset childhood wheeze (LOCW). Follow-up study of children below 5 yr who had a non-bronchoscopic bronchoalveolar lavage (BAL) performed during elective surgery. The children had acted as normal controls. A modified ISAAC questionnaire was sent out at least 7 yr following the initial BAL, and this was used to ascertain whether any children had subsequently developed wheezing or other atopic disease (eczema, allergic rhinitis). Cellular and cytokine data from the original BAL were compared between those who never wheezed (NW) and those who had developed LOCW. Eighty-one normal non-asthmatic children were recruited with a median age of 3.2. Of the 65 children contactable, 9 (16.7%) had developed wheeze, 11 (18.5%) developed eczema and 14 (22.2%) developed hay fever. In five patients, wheeze symptoms developed mean 3.3-yr (range: 2-5 yr) post-BAL. Serum IgE and blood eosinophils were not different in the LOCW and NW, although the blood white cell count was lower in the LOCW group. The median BAL eosinophil % was significantly increased in the patients with LOCW (1.55%, IQR: 0.33 to 3.92) compared to the children who never wheezed, NW (0.1, IQR: 0.0 to 0.3, p = 0.01). No differences were detected for other cell types. There were no significant differences in BAL cytokine concentrations between children with LOCW and NW children. Before late onset childhood wheezing developed, we found evidence of elevated eosinophils in the airways. These data suggest pre-existent airways inflammation in childhood asthma some years before clinical presentation.
Collapse
Affiliation(s)
- Surendran Thavagnanam
- Centre for Infection and Immunity, Queen's University of Belfast, Hospital for Sick Children, Belfast, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
16
|
Replication of genetic association studies in asthma and related phenotypes. J Hum Genet 2010; 55:342-9. [PMID: 20395963 DOI: 10.1038/jhg.2010.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In asthma genetics, the association of highly replicated susceptibility genes lacks consistency across populations. To identify genuine associations, we investigated the reproducibility of the 23 most promising asthma and asthma-related candidate genes in a moderately sized sample from the Japanese population. We compared the frequency of 33 polymorphisms in unrelated cases and controls and tested for their association with asthma, atopy and serum total IgE levels using allele frequency, codominant, dominant and recessive genotype models. On the basis of the consistency of our findings with previous meta-analyses and large replication studies, IL13, TNF, ADAM33, IL4RA and TBXA2R might represent common major asthma and asthma-related trait genes. Individual gene assessment was extended to the interactions between two polymorphisms using our original method. Interactions between TBXA2R and ADAM33, and IL4RA and C3 were suggested to increase the risk for childhood and all asthma (adult and childhood asthma combined). The confirmation of previously reported associations between gene polymorphisms and phenotypes was problematic when as few as several hundred samples per group were used. Stratification of the subjects by environmental factors or other confounding factors may be necessary to improve the sensitivity and reliability of association results.
Collapse
|
17
|
Huang MT, Dai YS, Chou YB, Juan YH, Wang CC, Chiang BL. Regulatory T cells negatively regulate neovasculature of airway remodeling via DLL4-Notch signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:4745-54. [PMID: 19752226 DOI: 10.4049/jimmunol.0804371] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Regulatory T cells (Treg) have been shown to prevent the development of allergic asthma; however, the role of Treg in asthma with established airway remodeling is unknown. To address this, we exploited an OVA-induced chronic asthma mouse model wherein Treg were adoptively transferred to the mice at chronic stage of the model. We found that among the structural alterations of airway remodeling, Treg selectively reduced the vessel numbers in both peritracheal and peribronchial regions and the lung parenchyma. Extracellular matrix deposition, mucus metaplasia, muscular hyperplasia, and vasodilation, as were also induced by chronic allergen challenge, were not affected by Treg. TUNEL staining of the lung sections revealed an increased endothelial cell (EC) apoptosis in mice receiving Treg transfers compared with their asthmatic counterparts. By using Matrigel angiogenesis assays, we showed that Treg inhibited EC angiogenesis both in vitro and in vivo. Treg preferentially expressed Notch ligand DLL4, and an anti-DLL4 blocking Ab abrogated the inhibitory effect of Treg on EC tube formation. In vivo, decreased airway and lung vessel numbers as well as ameliorated airway hyperresponsiveness after Treg transfers were reverted when Treg-derived DLL4 signal was blocked by the anti-DLL4 Ab. Our findings demonstrate a novel function of Treg whereby Treg down-regulate remodeling angiogenesis via proapoptotic DLL4-Notch signaling, and suggest a therapeutic potential of Treg in alleviating airway hyperresponsiveness of chronic asthma.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Saglani S, Mathie SA, Gregory LG, Bell MJ, Bush A, Lloyd CM. Pathophysiological features of asthma develop in parallel in house dust mite-exposed neonatal mice. Am J Respir Cell Mol Biol 2009; 41:281-9. [PMID: 19151316 PMCID: PMC3380517 DOI: 10.1165/rcmb.2008-0396oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Asthma frequently commences in early life during airway and immune development and exposure to new environmental challenges. Endobronchial biopsies from children with asthma are abnormal, and lung function is maximally reduced by 6 years of age. As longitudinal biopsy studies are unethical in children, the relationship between development of pathology and reduced lung function is unknown. We aimed to establish a novel neonatal mouse model of allergic airways disease to investigate the developmental sequence of the pathophysiologic features of asthma. Neonatal Balb/c mice were challenged three times weekly from Day 3 of life using intranasal house dust mite (HDM) or saline for up to 12 weeks. Weekly assessments of airway inflammation and remodeling were made. Airway hyperresponsiveness (AHR) to methacholine was assessed from Week 2 onward. Total and eosinophilic inflammation was significantly increased in the lungs of HDM-exposed neonates from Week 2 onwards, and a peak was seen at 3 weeks. Goblet cells and peribronchiolar reticulin deposition were significantly increased in HDM-exposed neonates from Week 3, and peribronchiolar collagen was significantly greater from Week 4. HDM-exposed neonates had increased AHR from Week 2 onward. Although inflammation and AHR had subsided after 4 weeks without allergen challenge, the increased reticulin and collagen deposition persisted in HDM-exposed mice. Neonatal mice exposed to intranasal HDM developed eosinophilic inflammation, airway remodeling, and AHR as reported in pediatric asthma. Importantly, all abnormalities developed in parallel, not sequentially, between 2 and 3 weeks of age.
Collapse
Affiliation(s)
- Sejal Saglani
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, and Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Respiratory Paediatrics, National Heart and Lung Institute, Imperial College London, and Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Sara A. Mathie
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, and Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Lisa G. Gregory
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, and Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Matthew J. Bell
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, and Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Andrew Bush
- Respiratory Paediatrics, National Heart and Lung Institute, Imperial College London, and Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Clare M. Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, and Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
19
|
Dong L, Wang SJ, Camoretti-Mercado B, Li HJ, Chen M, Bi WX. FIZZ1 plays a crucial role in early stage airway remodeling of OVA-induced asthma. J Asthma 2008; 45:648-53. [PMID: 18951255 DOI: 10.1080/02770900802126941] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to elucidate the role of Found in Inflammatory Zone 1 (FIZZ1, also known as RELM-alpha or resistin-like molecule-alpha) in airway remodeling in asthma. We used a rat model of ovalbumin (OVA) sensitization and challenge to induce lung inflammation and remodeling. Expression of alpha -SMA in the lungs of OVA-treated rats was significantly elevated in the peribronchial regions compared with control saline-treated animals. Expression of FIZZ1 mRNA in alveolar epithelial type II cells (AECII) isolated from OVA-treated animals was higher than in control animals. Forced expression of recombinant FIZZ1 in rat-1 lung fibroblast cell line enhanced production of collagen type I and alpha -SMA compared with control transfected cells. These results suggest that FIZZ1 can induce fibroblasts to express markers of myofibroblast differentiation such as alpha -SMA and collagen type I, which are characteristic of early stages of airway remodeling seen in asthma.
Collapse
Affiliation(s)
- Liang Dong
- Department of Pulmonary Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Among the 'allergic' conditions involving the lung, asthma is the more frequent and the most extensively investigated, although asthma itself may be caused by different disorders. The triggering event in allergic subjects is the reaction allergen-specific immunoglobulin E (IgE) that activates mast cells and initiates a complex and redundant inflammatory process, where cells, cytokines and adhesion molecules are involved at different stages. In fact, mucosal eosinophilic inflammation is one of the distinctive features of asthma and the particular T helper type 2 (Th2) phenotype of allergic patients favours it. In general, the clinical severity of asthma correlates well with the degree of inflammation. None the less, other phenomena such as non-specific bronchial hyperresponsiveness and remodelling intervene in the pathophysiology of allergic asthma. These phenomena are only partially inflammation-related. In particular, the remodelling of the bronchial wall seems to start very early in life and also seems to be a distinctive histological feature of the asthmatic bronchus. The recent introduction of biological treatments (monoclonal antibodies) has allowed elucidation of some of the pathogenic features of allergic asthma.
Collapse
Affiliation(s)
- G Passalacqua
- Allergy and Respiratory Diseases, Department of Internatl Medicine, San Martino Hospital, Padigliano Maragliano, Italy.
| | | |
Collapse
|
21
|
Abstract
Airway remodelling is associated with chronic asthma but it remains unclear whether it results from airway inflammation in response to allergens or immune-mediated events such as viral infections. Although the acute inflammation associated with asthma has been modelled extensively both in vitro and in vivo, the structural changes occurring in the lung have only recently been investigated. These in vitro, in vivo and in silico systems have been designed to examine the pathways leading to allergen-induced airway remodelling and have enabled investigators to draw conclusions about the participation of key cells and molecules in the development of allergen-induced airway remodelling. However, fundamental questions remain regarding the genesis of remodelling as well as the relationship between functional symptoms and pathological changes that occur. In this review the key questions relating allergen exposure to development of remodelling are discussed, as well as the steps that are being undertaken to investigate them.
Collapse
Affiliation(s)
- C M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | | |
Collapse
|
22
|
Inhaled corticosteroids for recurrent respiratory symptoms in preschool children in general practice: randomized controlled trial. Pulm Pharmacol Ther 2007; 21:88-97. [PMID: 17350868 DOI: 10.1016/j.pupt.2006.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 09/29/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Therapy with inhaled corticosteroids (ICS) is beneficial in patients with asthma. However, in preschool children with symptoms like cough, wheeze, or shortness of breath diagnosing asthma is difficult. Therefore, the role of ICS in the management of preschool children with recurrent respiratory symptoms is unclear. We assessed the effectiveness of ICS in preschool children with recurrent respiratory symptoms in general practice. METHODS In this multicenter, randomized, double blind, placebo controlled trial, 96 children aged 1-5 years consulting their general practitioners for recurrent respiratory symptoms and in whom treatment with ICS was considered by the general practitioner were randomly allocated to receive ICS (fluticasone propionate 200 mcg/day by metered dose inhaler/spacer combination) or placebo for 6 months. Outcome assessments were carried out 1, 3, and 6 months after randomization. The primary outcome measure was the symptom score (cough, shortness of breath and wheeze during day and night) as measured by a symptom diary card. Secondary endpoints were symptom-free days, use of rescue medication, adverse events, and lung function variables as measured by the interrupter technique and forced oscillation technique. RESULTS During the 6 months treatment period, symptoms improved in both groups, with no differences between ICS and placebo. In addition, none of the secondary outcome parameters showed differences between both treatment groups. CONCLUSION ICS treatment has no beneficial effect in preschool children with recurrent respiratory symptoms in general practice. We therefore recommend a watchful waiting policy with only symptomatic treatment in these children. General practitioners and pediatricians should be aware of the high probability of overtreatment when prescribing ICS in these children.
Collapse
|
23
|
Hyvärinen MK, Kotaniemi‐Syrjänen A, Reijonen TM, Korhonen K, Korppi MO. Teenage asthma after severe early childhood wheezing: an 11-year prospective follow-up. Pediatr Pulmonol 2005; 40:316-23. [PMID: 16082689 PMCID: PMC7167787 DOI: 10.1002/ppul.20273] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of factors related to early wheezing and their associations with subsequent development of asthma are controversial. We reevaluated 81 children who had been prospectively followed up since hospitalization for wheezing at less than 2 years of age. The baseline data on characteristics of the children, family-related factors, and viral causes of wheezing were collected on entry into the study. At the median age of 12.3 years, current symptoms suggestive of asthma and allergy were recorded. As part of the clinical examination, an outdoor exercise challenge test and skin prick tests to common inhalant allergens were performed. Asthma, as indicated by current inhaled anti-inflammatory medication or repeated wheezing and positive result in the challenge test, was present in 32 (40%) children, and 90% of them were sensitized to at least one allergen. Early asthma-predictive factors were atopic dermatitis (odds ratio (OR), 3.5; 95% confidence interval (CI), 1.2-10.1) and the presence of specific IgE to inhalant allergens (OR, 11.3; 95% CI, 1.9-67.6). Respiratory syncytial virus (RSV) identification during wheezing in infancy was relatively rare (20%) among later asthmatics compared with other or no viral identification (52%) or rhinovirus identification (58%). Since the prevalence of childhood asthma in our area is 4.0-5.0%, we conclude that the increased risk of asthma persists until the teenage years after hospitalization for wheezing in infancy. The risk was about 5-fold after respiratory syncytial virus-induced wheezing, and more than 10-fold after rhinovirus-induced wheezing in the present study.
Collapse
Affiliation(s)
- Mari K. Hyvärinen
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | | | - Tiina M. Reijonen
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Kaj Korhonen
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Matti O. Korppi
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
24
|
|
25
|
Saglani S, Malmström K, Pelkonen AS, Malmberg LP, Lindahl H, Kajosaari M, Turpeinen M, Rogers AV, Payne DN, Bush A, Haahtela T, Mäkelä MJ, Jeffery PK. Airway Remodeling and Inflammation in Symptomatic Infants with Reversible Airflow Obstruction. Am J Respir Crit Care Med 2005; 171:722-7. [PMID: 15657459 DOI: 10.1164/rccm.200410-1404oc] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE We hypothesized that the epithelial reticular basement membrane (RBM) thickening and eosinophilic inflammation characteristic of asthma would be present in symptomatic infants with reversible airflow obstruction. METHODS RBM thickness and numbers of inflammatory cells were determined in ultrathin sections of endobronchial biopsies obtained from 53 infants during clinical bronchoscopy for severe wheeze and/or cough. Group A: 16 infants with a median age of 12 months (range 3.4-26 months), with decreased specific airway conductance (sGaw) and bronchodilator reversibility; Group B: 22 infants with a median age of 12.4 months (5.1-25.9 months), with decreased sGaw but without bronchodilator reversibility; and Group C: 15 infants with a median age of 11.5 months (3.4-24.3 months) with normal sGaw. Additional comparisons were made with the following groups. Group D: 17 children, median age 10.3 years (6-16 years), with difficult asthma; Group E: 10 pediatric control subjects without asthma, median age 10 years (6-16 years); and Group F: nine adult normal, healthy control subjects, median age 27 years (21-42 years). MAIN RESULTS There were no significant differences in RBM thickness or inflammatory cell number between the infant groups. RBM thickness was similar in the infants and Groups E and F. However, the RBM in all infant groups (Group A: median 4.3 microm [range 2.8-9.2 microm]; Group B: median 4.15 microm [range 2.7-5.8 microm]; Group C: median 3.8 microm [range 2.7-5.5 microm]) was significantly less thick than that in the older children with asthma (Group D: median 8.3 microm [range 5.3-12.7 microm]; p < 0.001). CONCLUSION RBM thickening and the eosinophilic inflammation characteristic of asthma in older children and adults are not present in symptomatic infants with reversible airflow obstruction, even in the presence of atopy.
Collapse
Affiliation(s)
- Sejal Saglani
- Lung Pathology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bousquet J, Jacot W, Yssel H, Vignola AM, Humbert M. Epigenetic inheritance of fetal genes in allergic asthma. Allergy 2004; 59:138-47. [PMID: 14763925 DOI: 10.1046/j.1398-9995.2003.00359.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asthma has been associated with an exaggerated T-helper type 2 (Th2) over Th1 responses to allergic and nonallergic stimuli, which leads to chronic airway inflammation and airway remodeling. In the present article, we propose that many of the genes involved in IgE synthesis and airways (re)modeling in asthma are persistent or reminiscent fetal genes which may not be silenced during early infancy (or late pregnancy). Genes of the embryologic differentiation of ectodermic and endodermic tissues may explain some of the patterns of airway remodeling in asthma. In utero programming leads to gene expression, the persistence of which may be associated with epigenetic inheritance phenomena induced by nonspecific environmental factors. Clear delineation of these issues may yield new information on the mechanisms of asthma and new targets for therapeutic intervention and primary prevention.
Collapse
Affiliation(s)
- J Bousquet
- Department of Respiratory Diseases, University Hospital, Montpellier, France INSERM U454, Montpellier, France
| | | | | | | | | |
Collapse
|