1
|
Yang J, Gui Y, Zheng Y, He H, Chen L, Li T, Liu H, Wang D, Yuan D, Yuan C. Total saponins from Panax japonicus reduced lipid deposition and inflammation in hepatocyte via PHD2 and hepatic macrophage-derived exosomal miR-463-5p. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119376. [PMID: 39842748 DOI: 10.1016/j.jep.2025.119376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) is a traditional Chinese herbal medicine revered as the "King of Herbs" in Tujia and Hmong medical practices. Clinically, it is primarily used to treat weakness and fatigue, wound bleeding, arthritis, hyperlipidemia, and fatty liver. It is rich in saponins, and the total saponins from PJ (TSPJ), possess immunomodulatory, antioxidant, and lipid-lowering effects. These properties hold significant potential in managing liver-related metabolic diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). AIM OF STUDY Evaluate the therapeutic effects of TSPJ on lipid metabolism disorders in a NASH model and explore the possible underlying mechanisms. MATERIALS AND METHODS To model NASH, C57BL/6J mice were fed a high-fat diet (HFD) and RAW264.7 cells were stimulated with lipopolysaccharide (LPS) and palmitic acid (PA). The animal and cell models were also treated with TSPJ, and the changes in inflammation and lipid metabolism were measured. Additional models were created by transfecting lentiviral vectors to cause miR-463-5p knockdown in the C57BL/6J mouse and the RAW264.7 cells. RESULTS In the HFD-induced mice, TSPJ reduced the body weight and liver weight, lowered the serum levels of TG, T-CHO, ALT, and AST, and reduced the hepatic lipid droplet formation and vacuolization. In the RAW264.7 cells, TSPJ upregulated the M2 markers and downregulated the M1 markers. TSPJ also significantly increased the expression of miR-463-5p in the exosomes derived from the RAW264.7 cells or the primary mouse hepatic macrophages, and miR-463-5p suppressed the expression of PHD2 in hepatocytes to improve lipid metabolism. However, when the exosome secretion inhibitor GW4869 was applied, TSPJ became less effective in alleviating the lipid deposition and inflammation in hepatocytes. CONCLUSIONS TSPJ significantly upregulated the expression of miR-463-5p in the exosomes of hepatic macrophages to thus downregulate PHD2 expression in hepatocytes and improve hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jingjie Yang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Yibei Gui
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ying Zheng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haodong He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Lihan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Tongtong Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haoran Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Dongshuo Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China.
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Huang CC, Wang CH, Yeh HY, Tsai HC, Yang CW, Li TH, Su CW, Yang YY, Lin HC, Hou MC. Peroxisome Proliferator-Activated Receptor α/γ and Cannabinoid Receptor 2 Agonist Attenuated Nonalcoholic Steatohepatitis Exosome-Related Abnormalities in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:188-203. [PMID: 39490440 DOI: 10.1016/j.ajpath.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
This study explored the mechanisms and effects of 1 month of peroxisome proliferator-activated receptor (PPAR)α/γ agonist aleglitazar (10 mg/kg per day) or cannabinoid receptor 2 (CB2R) agonist JWH015 (3 mg/kg per day), alone or combined, on visceral adipose tissue (VAT)-derived extracellular vesicle (EV) release and associated systemic/VAT inflammation, decreased VAT capillary density/fibrosis, and intestinal inflammation/hyperpermeability in nonalcoholic steatohepatitis (NASH) mice. High EV release from VAT of NASH mice was associated with severe systemic/VAT/intestinal inflammation, reduced capillary network of VAT, and intestinal hyperpermeability. Combined JWH015 with aleglitazar treatment suppressed high-fat diet-induced obesity/adiposity, inhibited VAT expansion, reduced VAT inflammation/fibrosis, normalized VAT capillary network, and attenuated intestinal mucosal injury, inflammation, and hyperpermeability in NASH + aleglitazar + JWH015 mice. The inhibition of adipose tissue (AT)-derived EV release and hypoxia-inducible factor (HIF)1α levels in AT-derived EV, normalization of CB2R, PPARα, PPARγ, PPARγ1, PPARγ2, tight junction proteins, vascular endothelial growth factor/CD31 expression, and down-regulation of HIF1α, monocyte chemoattractant protein-1, and transforming growth factor-β1 were observed in the VAT and intestine of the NASH + aleglitazar + jwh015 group. In vitro experiments revealed that PPARα/γ and CB2R activation attenuated NASH AT-derived EV-induced pathogenic changes in the J774/SVEC4-10/Caco2/3T3-L1 cell system. This study suggested that VAT-derived EVs contribute to the pathogenesis of NASH and that combined PPARα/γ and CB2R agonist treatment ameliorated the abovementioned abnormalities of NASH mice.
Collapse
Affiliation(s)
- Chia-Chang Huang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Ching-Hsiang Wang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hsiao-Yun Yeh
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Hung-Cheng Tsai
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan; Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ching-Wen Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Tzu-Hao Li
- Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Foundation Hospital, Taipei City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei City, Taiwan
| | - Chien-Wei Su
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ying-Ying Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.
| | - Han-Chieh Lin
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan; Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| |
Collapse
|
3
|
Xiao Q, Zhang X, Chen ZL, Zou YY, Tang CF. An Evidence-Based Narrative Review of Scleral Hypoxia Theory in Myopia: From Mechanisms to Treatments. Int J Mol Sci 2025; 26:332. [PMID: 39796188 PMCID: PMC11719898 DOI: 10.3390/ijms26010332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors. Exploring the pathological mechanism of myopia can provide a scientific basis for developing measures to delay the progression of myopia or even treat it. Recent advances highlight that scleral hypoxia could be an important factor in promoting myopia. In this review, we summarized the role of scleral hypoxia in the pathology of myopia and also provided interventions for myopia that target scleral hypoxia directly or indirectly. We hope this review will aid in the development of novel therapeutic strategies and drugs for myopia.
Collapse
Affiliation(s)
- Qin Xiao
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
- College of Physical Education, Hunan First Normal University, Changsha 410205, China
| | - Xiang Zhang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Zhang-Lin Chen
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Yun-Yi Zou
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Chang-Fa Tang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| |
Collapse
|
4
|
Munkong N, Jantarach N, Yoysungnoen B, Lonan P, Makjaroen J, Pearngam P, Kumpunya S, Ruxsanawet K, Nanthawong S, Somparn P, Thim-Uam A. Elaeagnus latifolia Fruit Extract Ameliorates High-Fat Diet-Induced Obesity in Mice and Alleviates Macrophage-Induced Inflammation in Adipocytes In Vitro. Antioxidants (Basel) 2024; 13:1485. [PMID: 39765814 PMCID: PMC11673262 DOI: 10.3390/antiox13121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Elaeagnus latifolia (EL) is a wild fruit known for containing several health-promoting compounds. This study aimed to evaluate the effects of EL fruit extract on high-fat diet (HFD)-induced obesity and lipopolysaccharide (LPS)-activated macrophages. Mice fed an HFD and given EL fruit extract for 10 weeks exhibited significantly lower body weight, reduced lipid accumulation, diminished oxidative stress in adipocytes, and decreased macrophage infiltration compared to those not receiving the EL extract. Moreover, the EL fruit extract activated the transcription factors Pparg and Cebpa, initiating adipogenesis and modulating the expression of NF-κB/Nrf-2-induced target genes. This resulted in smaller adipocyte size, reduced inflammation, and less oxidative stress in HFD-fed mice. In vitro, the EL extract induced a shift in macrophage phenotype from M1 to M2, reduced IκBα/NF-κB phosphorylation, and effectively decreased energy production in macrophages by downregulating the expression of several proteins involved in glycolysis and the tricarboxylic acid cycle. This mechanistic study suggests that administering EL fruit extract could be an effective strategy for managing obesity and its associated pathologies.
Collapse
Affiliation(s)
- Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand;
| | - Nattanida Jantarach
- Applied Thai Traditional Medicine Program, School of Public Health, University of Phayao, Phayao 56000, Thailand; (N.J.); (K.R.)
| | - Bhornprom Yoysungnoen
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyanuch Lonan
- Traditional Chinese Medicine Program, School of Public Health, University of Phayao, Phayao 56000, Thailand;
| | - Jiradej Makjaroen
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.N.); (P.S.)
| | - Phorutai Pearngam
- International College, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Sarinya Kumpunya
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Kingkarnonk Ruxsanawet
- Applied Thai Traditional Medicine Program, School of Public Health, University of Phayao, Phayao 56000, Thailand; (N.J.); (K.R.)
| | - Saharat Nanthawong
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.N.); (P.S.)
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.N.); (P.S.)
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
5
|
Moon JH, Munna AN, Hong JM, Seol JW, Park SY. HIF-1α stabilization inhibits Japanese encephalitis virus propagation and neurotoxicity via autophagy pathways. Biochem Biophys Res Commun 2024; 736:150853. [PMID: 39454305 DOI: 10.1016/j.bbrc.2024.150853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Japanese encephalitis (JE) is a widespread flavivirus that induces brain inflammation and affects the central nervous system (CNS). Deferoxamine, an iron chelator, has shown promising results in stabilizing HIF-1α, a protein that improves hypoxic conditions, offers protective effects against neurological, and neurodegenerative diseases. This study aimed to assess the impact of HIF-1α stabilization during JEV infection using SH-SY5Y neuroblastoma cell lines as a model. Our findings demonstrated that deferoxamine treatment increased HIF-1α protein levels, leading to a reduction in JEV propagation. Moreover, RT-PCR analysis revealed that deferoxamine ameliorated JEV-induced neuroinflammation and neurotoxicity. We proved that inducing HIF-1α is essential for having an impact of deferoxamine against JEV-mediated neurotoxicity. Thus, our findings offer a potential therapeutic approach to mitigate the detrimental effects of JEV infection on neuronal cells. Further investigations also demonstrated that deferoxamine could reverse JEV-induced autophagy inhibition by stabilizing HIF-1α, which plays a crucial role in mitigating neuronal cell damage and neuroinflammation. Based on our data, HIF-1α stabilization emerges as a vital factor against JEV infection in the neurons, highlighting deferoxamine as a promising and innovative target for developing anti-JEV agents.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
6
|
Kang GS, Kim YE, Oh HR, Jo HJ, Bok S, Jeon YK, Cheon GJ, Roh TY, Chang YT, Park DJ, Ahn GO. Hypoxia-inducible factor-1α-deficient adipose-tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein-1. Lab Anim Res 2024; 40:37. [PMID: 39473019 PMCID: PMC11523771 DOI: 10.1186/s42826-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane generally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming 'beige' adipocytes. RESULTS In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking functional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased glycolysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of co-cultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals. CONCLUSIONS UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Young-Eun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Ho Rim Oh
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Seoyeon Bok
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | | | - Do Joong Park
- Department of Surgery, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea.
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
| |
Collapse
|
7
|
Alwohoush E, Ismail MA, Al-Kurdi B, Barham R, Al Hadidi S, Awidi A, Ababneh NA. Effect of hypoxia on proliferation and differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Heliyon 2024; 10:e38857. [PMID: 39421364 PMCID: PMC11483329 DOI: 10.1016/j.heliyon.2024.e38857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Although mesenchymal stem cells (MSCs) are extensively applied in the regenerative field, the majority of MSCs die after a few weeks of transplantation. Therefore, hypoxia pre-conditioning is a crucial step in increasing the MSCs' tolerance to physiological conditions. Meanwhile, induced pluripotent stem cell-derived MSCs (iMSCs) were proposed as a possible alternative to MSCs, and recently, the interest is growing in applying iMSCs in the regenerative field. This study examined the effect of hypoxia pre-conditioning on the proliferation, viability, and differentiation of iMSCs. Both iMSCs and MSCs were subjected to two rounds of severe short-term hypoxia (1 % O2 for 24h). After that, iMSCs and MSCs were characterized by testing their surface markers' expression, proliferation, viability, oxidative stress, and differentiation potential. Our findings revealed that hypoxia did not have a consistent effect among all the analyzed lines: the severe short-term hypoxia (1 % O2) reduced iMSCs proliferation, cell viability, and MMP while showing a benign effect on surface markers expression, colony formation, ROS accumulation, and osteogenic and adipogenic differentiation. Though hypoxia adversely affected iMSCs' proliferation, this does not necessarily mean that hypoxia is harmful to iMSCs; on the contrary, our results suggest that short-term hypoxia might have a beneficial long-term effect on the proliferation of iMSCs. Thus, the effect of hypoxia on proliferation, viability, and differentiation should also be tested after a long recovery period from iMSCs. Our next step will be to test the effect of hypoxia for a longer period besides uncovering the changes in the expression profile of hypoxic iMSCs.
Collapse
Affiliation(s)
- Enas Alwohoush
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | | | - Ban Al-Kurdi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Raghda Barham
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Sabal Al Hadidi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
- Hemostasis and Thrombosis Laboratory, School of Medicine, the University of Jordan, Amman, Jordan
- Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| | | |
Collapse
|
8
|
Cheng Z, Liu B, Liu X. Circadian gene signatures in the progression of obesity based on machine learning and Mendelian randomization analysis. Front Nutr 2024; 11:1407265. [PMID: 39351493 PMCID: PMC11439728 DOI: 10.3389/fnut.2024.1407265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Obesity, a global health concern, is associated with a spectrum of chronic diseases and cancers. Our research sheds light on the regulatory role of circadian genes in obesity progression, providing insight into the immune landscape of obese patients, and introducing new avenues for therapeutic interventions. Methods Expression files of multiple datasets were retrieved from the GEO database. By 80 machine-learning algorithm combinations and Mendelian randomization analysis, we discovered the key circadian genes contributing to and protecting against obesity. Subsequently, an immune infiltration analysis was conducted to examine the alterations in immune cell types and their abundance in the body and to investigate the relationships between circadian genes and immune cells. Furthermore, we delved into the molecular mechanisms of key genes implicated in obesity. Results Our study identified three key circadian genes (BHLHE40, PPP1CB, and CSNK1E) associated with obesity. BHLHE40 was found to promote obesity through various pathways, while PPP1CB and CSNK1E counteracted lipid metabolism disorders, and modulated cytokines, immune receptors, T cells, and monocytes. Conclusion In conclusion, the key circadian genes (BHLHE40, CSNK1E, and PPP1CB) may serve as novel biomarkers for understanding obesity pathogenesis and have significant correlations with infiltrating immune cells, thus providing potential new targets for obese prevention and treatment.
Collapse
Affiliation(s)
- Zhi’ang Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Binghong Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaoyong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Ophthalmology, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| |
Collapse
|
9
|
Holomková K, Veselá B, Dadáková K, Sharpe PT, Lesot H, Matalová E, Švandová E. Hypoxia-inducible factors in postnatal mouse molar dental pulp development: insights into expression patterns, localisation and metabolic pathways. Pflugers Arch 2024; 476:1411-1421. [PMID: 39101996 DOI: 10.1007/s00424-024-03003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Hypoxia is relevant to several physiological and pathological processes and this also applies for the tooth. The adaptive response to lowering oxygen concentration is mediated by hypoxia-inducible factors (HIFs). Since HIFs were shown to participate in the promotion of angiogenesis, stem cell survival, odontoblast differentiation and dentin formation, they may play a beneficial role in the tooth reparative processes. Although some data were generated in vitro, little is known about the in vivo context of HIFs in tooth development. In order to contribute to this field, the mouse mandibular first molar was used as a model.The expression and in situ localisation of HIFs were examined at postnatal (P) days P0, P7, P14, using RT-PCR and immunostaining. The expression pattern of a broad spectrum of hypoxia-related genes was monitored by customised PCR Arrays. Metabolic aspects were evaluated by determination of the lactate level and mRNA expression of the mitochondrial marker Nd1.The results show constant high mRNA expression of Hif1a, increasing expression of Hif2a, and very low expression of Hif3a during early postnatal molar development. In the examined period the localisation of HIFs in the nuclei of odontoblasts and the subodontoblastic layer identified their presence during odontoblastic differentiation. Additionally, the lower lactate level and higher expression of mitochondrial Nd1 in advanced development points to decreasing glycolysis during differentiation. Postnatal nuclear localisation of HIFs indicates a hypoxic state in specific areas of dental pulp as oxygen demands depend on physiological events such as crown and root dentin mineralization.
Collapse
Affiliation(s)
- Kateřina Holomková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Barbora Veselá
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Physiology, Veterinary University, Brno, Czech Republic
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Paul T Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Hervé Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, Veterinary University, Brno, Czech Republic
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Li Z, Han D, Li Z, Luo L. Hypoxia-Induced Adaptations of Embryonic Fibroblasts: Implications for Developmental Processes. BIOLOGY 2024; 13:598. [PMID: 39194536 DOI: 10.3390/biology13080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Animal embryonic development occurs under hypoxia, which can promote various developmental processes. Embryonic fibroblasts, which can differentiate into bone and cartilage and secrete various members of the collagen protein family, play essential roles in the formation of embryonic connective tissues and basement membranes. However, the adaptations of embryonic fibroblasts under hypoxia remain poorly understood. In this study, we investigated the effects of hypoxia on mouse embryonic fibroblasts (MEFs). We found that hypoxia can induce migration, promote metabolic reprogramming, induce the production of ROS and apoptosis, and trigger the activation of multiple signaling pathways of MEFs. Additionally, we identified several hypoxia-inducible genes, including Proser2, Bean1, Dpf1, Rnf128, and Fam71f1, which are regulated by HIF1α. Furthermore, we demonstrated that CoCl2 partially mimics the effects of low oxygen on MEFs. However, we found that the mechanisms underlying the production of ROS and apoptosis differ between hypoxia and CoCl2 treatment. These findings provide insights into the complex interplay between hypoxia, fibroblasts, and embryonic developmental processes.
Collapse
Affiliation(s)
- Zeyu Li
- College of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Delong Han
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Zhenchi Li
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Lingjie Luo
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| |
Collapse
|
11
|
Pan L, He X, Xu R, Bhattarai U, Niu Z, do Carmo J, Sun Y, Zeng H, Clemmer JS, Chen JX, Chen Y. Endothelial specific prolyl hydroxylase domain-containing protein 2 deficiency attenuates aging-related obesity and exercise intolerance. GeroScience 2024; 46:3945-3956. [PMID: 38462569 PMCID: PMC11226575 DOI: 10.1007/s11357-024-01108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Obesity and exercise intolerance greatly reduce the life quality of older people. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an important enzyme in modulating hypoxia-inducible factor-alpha (HIF) protein. Using vascular endothelial cell-specific PHD2 gene knockout (PHD2 ECKO) mice, we investigated the role of endothelial PHD2 in aging-related obesity and exercise capacity. Briefly, PHD2 ECKO mice were obtained by crossing PHD2-floxed mice with VE-Cadherin (Cdh5)-Cre transgenic mice. The effect of PHD2 ECKO on obesity and exercise capacity in PHD2 ECKO mice and control PHD2f/f mice were determined in young mice (6 to 7 months) and aged mice (16-18 months). We found that aged PHD2 ECKO mice, but not young mice, exhibited a lean phenotype, characterized by lower fat mass, and its ratio to lean weight, body weight, or tibial length, while their food uptake was not reduced compared with controls. Moreover, as compared with aged control mice, aged PHD2 ECKO mice exhibited increased oxygen consumption at rest and during exercise, and the maximum rate of oxygen consumption (VO2 max) during exercise. Furthermore, as compared with corresponding control mice, both young and aged PHD2 ECKO mice demonstrated improved glucose tolerance and lower insulin resistance. Together, these data demonstrate that inhibition of vascular endothelial PHD2 signaling significantly attenuates aging-related obesity, exercise intolerance, and glucose intolerance.
Collapse
Affiliation(s)
- Lihong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xiaochen He
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Rui Xu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Umesh Bhattarai
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ziru Niu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jussara do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
12
|
Elsaid S, Wu X, Tee SS. Fructose vs. glucose: modulating stem cell growth and function through sugar supplementation. FEBS Open Bio 2024; 14:1277-1290. [PMID: 38923793 PMCID: PMC11301265 DOI: 10.1002/2211-5463.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
In multicellular organisms, stem cells are impacted by microenvironmental resources such as nutrient availability and oxygen tension for their survival, growth, and differentiation. However, the accessibility of these resources in the pericellular environment greatly varies from organ to organ. This divergence in resource availability leads to variations in the potency and differentiation potential of stem cells. This study aimed to explore the distinct effects of glucose and fructose, as well as different oxygen tensions, on the growth dynamics, cytokine production, and differentiation of stem cells. We showed that replacing glucose with fructose subjected stem cells to stress, resulting in increased Hif1α expression and stability, which in turn led to a reduction in cell proliferation, and alterations in cytokine production. However, fructose failed to induce differentiation of human mesenchymal stem cells (hMSCs) as well as mouse fibroblasts into mature adipocytes compared to glucose, despite the upregulation of key markers of adipogenesis, including C/EBPβ, and PPARγ. Conversely, we showed that fructose induced undifferentiated mouse fibroblasts to release cytokines associated with senescence, including IL1α1, IL6, IL8, MCP1, and TNF1α, suggesting that these cells were undergoing lipolysis. Taken together, our results suggest that altering the culture conditions through changes in hexose levels and oxygen tension places considerable stress on stem cells. Additional research is required to further characterize the mechanisms governing stem cell response to their microenvironments.
Collapse
Affiliation(s)
- Salaheldeen Elsaid
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xiangdong Wu
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Sui Seng Tee
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
13
|
Greco F, Panunzio A, Bernetti C, Tafuri A, Beomonte Zobel B, Mallio CA. The Radiogenomic Landscape of Clear Cell Renal Cell Carcinoma: Insights into Lipid Metabolism through Evaluation of ADFP Expression. Diagnostics (Basel) 2024; 14:1667. [PMID: 39125543 PMCID: PMC11311402 DOI: 10.3390/diagnostics14151667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
This study aims to explore the relationship between radiological imaging and genomic characteristics in clear cell renal cell carcinoma (ccRCC), focusing on the expression of adipose differentiation-related protein (ADFP) detected through computed tomography (CT). The goal is to establish a radiogenomic lipid profile and understand its association with tumor characteristics. Data from The Cancer Genome Atlas (TCGA) and the Cancer Imaging Archive (TCIA) were utilized to correlate imaging features with adipose differentiation-related protein (ADFP) expression in ccRCC. CT scans assessed various tumor features, including size, composition, margin, necrosis, and growth pattern, alongside measurements of tumoral Hounsfield units (HU) and abdominal adipose tissue compartments. Statistical analyses compared demographics, clinical-pathological features, adipose tissue quantification, and tumoral HU between groups. Among 197 patients, 22.8% exhibited ADFP expression significantly associated with hydronephrosis. Low-grade ccRCC patients expressing ADFP had higher quantities of visceral and subcutaneous adipose tissue and lower tumoral HU values compared to their high-grade counterparts. Similar trends were observed in low-grade ccRCC patients without ADFP expression. ADFP expression in ccRCC correlates with specific imaging features such as hydronephrosis and altered adipose tissue distribution. Low-grade ccRCC patients with ADFP expression display a distinct lipid metabolic profile, emphasizing the relationship between radiological features, genomic expression, and tumor metabolism. These findings suggest potential for personalized diagnostic and therapeutic strategies targeting tumor lipid metabolism.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
| | - Andrea Panunzio
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.)
| | - Caterina Bernetti
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Alessandro Tafuri
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.)
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
14
|
Wang D, Mahmud I, Thakur VS, Kiat Tan S, Isom DG, Lombard DB, Gonzalgo ML, Kryvenko ON, Lorenzi PL, Tcheuyap VT, Brugarolas J, Welford SM. GPR1 and CMKLR1 Control Lipid Metabolism to Support the Development of Clear Cell Renal Cell Carcinoma. Cancer Res 2024; 84:2141-2154. [PMID: 38640229 PMCID: PMC11290988 DOI: 10.1158/0008-5472.can-23-2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer, is largely incurable in the metastatic setting. ccRCC is characterized by excessive lipid accumulation that protects cells from stress and promotes tumor growth, suggesting that the underlying regulators of lipid storage could represent potential therapeutic targets. Here, we evaluated the regulatory roles of GPR1 and CMKLR1, two G protein-coupled receptors of the protumorigenic adipokine chemerin that is involved in ccRCC lipid metabolism. Both genetic and pharmacologic suppression of either receptor suppressed lipid formation and induced multiple forms of cell death, including apoptosis, ferroptosis, and autophagy, thereby significantly impeding ccRCC growth in cell lines and patient-derived xenograft models. Comprehensive lipidomic and transcriptomic profiling of receptor competent and depleted cells revealed overlapping and unique signaling of the receptors granting control over triglyceride synthesis, ceramide production, and fatty acid saturation and class production. Mechanistically, both receptors enforced suppression of adipose triglyceride lipase, but each receptor also demonstrated distinct functions, such as the unique ability of CMKLR1 to control lipid uptake through regulation of sterol regulatory element-binding protein 1c and the CD36 scavenger receptor. Treating patient-derived xenograft models with the CMKLR1-targeting small molecule 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA) led to a dramatic reduction in tumor growth, lipid storage, and clear-cell morphology. Together, these findings provide mechanistic insights into lipid regulation in ccRCC and identify a targetable axis at the core of the histologic definition of this tumor that could be exploited therapeutically. Significance: Extracellular control of lipid accumulation via G protein receptor-mediated cell signaling is a metabolic vulnerability in clear cell renal cell carcinoma, which depends on lipid storage to avoid oxidative toxicity.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Iqbal Mahmud
- Department of Bioinformatics & Computational Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vijay S. Thakur
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Sze Kiat Tan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Daniel G. Isom
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - David B. Lombard
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Bruce W. Carter VAMC, Miami FL 33125, USA
| | - Mark L. Gonzalgo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Oleksandr N. Kryvenko
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics & Computational Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine/Hematology-Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott M. Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| |
Collapse
|
15
|
Rasouli M, Fattahi R, Nuoroozi G, Zarei-Behjani Z, Yaghoobi M, Hajmohammadi Z, Hosseinzadeh S. The role of oxygen tension in cell fate and regenerative medicine: implications of hypoxia/hyperoxia and free radicals. Cell Tissue Bank 2024; 25:195-215. [PMID: 37365484 DOI: 10.1007/s10561-023-10099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Student Research Committee, Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zeinab Zarei-Behjani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, Zanjan University, Zanjan, Iran
| | - Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Nishimura K, Iitaka S, Sakaki T, Tsuji K, Yoshimoto A, Haque MA, Nakagawa H. Effect of long-term treatment with trivalent chromium on erythropoietin production in HepG2 cells. Arch Biochem Biophys 2024; 752:109872. [PMID: 38141908 DOI: 10.1016/j.abb.2023.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Trivalent chromium (Cr(III)) is sometimes taken as a long-term supplement, but its effectiveness is unclear. Recently, Cr(III) reportedly modulates peroxisome proliferator-activated receptor gamma (PPARγ) expression. Our previous study reported that increased PPARγ after 24 h Cr(III) treatment promoted erythropoietin (EPO) production in HepG2 cells. In the current study, we analyzed 4-week Cr(III) treatment effects on PPARγ and EPO production in HepG2 cells. Long-term Cr(III) treatment resulted in significantly elevated mRNA expression levels of PPARγ and EPO compared to controls. Additionally, treatment with a PPARγ inhibitor suppressed EPO mRNA expression. Increased EPO mRNA expression due to stimulation with hypoxia or cobalt was unaffected by long-term Cr(III) treatment. Administration of lipopolysaccharide and pyocyanin which causes oxidative stress, promoted EPO production, but this effect was attenuated in cells treated with Cr(III). Long-term Cr(III) treatment increased hypoxia inducible factor (HIF)-1α and 2α mRNA expression and protein levels. Increased PPARγ, induced by long-term Cr(III) treatment, suppressed sirtuin1 (SIRT1) mRNA expression and increased EPO mRNA expression, suggesting that increased PPARγ attenuated the suppressive effect of SIRT1 on HIF. These results suggest that the sustained increase in PPARγ during long-term Cr(III) treatment maintains increased EPO production through a mechanism different from that observed under hypoxia.
Collapse
Affiliation(s)
- Kazuhiko Nishimura
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Suzuka Iitaka
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Takuya Sakaki
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Keigo Tsuji
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Akari Yoshimoto
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Md Anamul Haque
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Hiroshi Nakagawa
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
17
|
Yu X, Zhang T, Cheng X, Ma L. Breast cancer cells and adipocytes in hypoxia: metabolism regulation. Discov Oncol 2024; 15:11. [PMID: 38236337 PMCID: PMC10796890 DOI: 10.1007/s12672-024-00865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
Adipocytes play a significant role in breast cancer due to the unique histological structure of the breast. These have not only been detected adjacent to breast cancer cells but they have also been implicated in cancer development. Adipocytes in obese individuals and tumor microenvironment (TME) have a common feature, that is, hypoxia. The increased expression of hypoxia-inducible factor (HIF)-1α is known to alter the metabolism and functions of adipocytes. In this study, we described the mechanism linking the hypoxia-sensing pathway manifested by HIF to adipocytes and breast cancer and discussed the mechanism underlying the role of hypoxic adipocytes in breast cancer development from the perspective of metabolic remodeling. The processes and pathways in hypoxic adipocytes could be a promising target in breast cancer therapy.
Collapse
Affiliation(s)
- Xin Yu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianqi Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaozhi Cheng
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li Ma
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
18
|
Sato F, Bhawal UK, Oikawa K, Muragaki Y. Loss of Dec1 inhibits alcohol-induced hepatic lipid accumulation and circadian rhythm disorder. BMC Mol Cell Biol 2024; 25:1. [PMID: 38166556 PMCID: PMC10763066 DOI: 10.1186/s12860-023-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
Chronic alcohol exposure increases liver damage such as lipid accumulation and hepatitis, resulting in hepatic cirrhosis. Chronic alcohol intake is known to disturb circadian rhythms in humans and animals. DEC1, a basic helix-loop-helix transcription factor, plays an important role in the circadian rhythm, inflammation, immune responses, and tumor progression. We have previously shown that Dec1 deficiency inhibits stresses such as periodontal inflammation and perivascular fibrosis of the heart. However, the significance of Dec1 deficiency in chronic alcohol consumption remains unclear. In the present study, we investigated whether the biological stress caused by chronic alcohol intake is inhibited in Dec1 knockout mice. We treated control and Dec1 knockout mice for three months by providing free access to 10% alcohol. The Dec1 knockout mice consumed more alcohol than control mice, however, we observed severe hepatic lipid accumulation and circadian rhythm disturbance in control mice. In contrast, Dec1 knockout mice exhibited little effect on these outcomes. We also investigated the expression of peroxisome proliferator-activated receptors (PPARs) and AMP-activated protein kinase (AMPK), which are involved in the regulation of fatty acid metabolism. Immunohistochemical analysis revealed increases of phosphorylation AMPK and PPARa but decreases PPARg in Dec1 knockout mice compared to that in control mice. This indicates a molecular basis for the inhibition of hepatic lipid accumulation in alcohol-treated Dec1 knockout mice. These results suggest a novel function of Dec1 in alcohol-induced hepatic lipid accumulation and circadian rhythm disorders.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Sunto-gun, 411-8777, Japan.
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, 641- 8509, Japan.
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
- Center for Global Health Research , Saveetha Medical College and Hospitals , Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, 641- 8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, 641- 8509, Japan
| |
Collapse
|
19
|
Engin A. Adipose Tissue Hypoxia in Obesity: Clinical Reappraisal of Hypoxia Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:329-356. [PMID: 39287857 DOI: 10.1007/978-3-031-63657-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thereby, compared to lean subjects, obese individuals have almost half lower capillary density and more than half lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 alpha (HIF-1α) activity also requires phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR)-mediated signaling. Especially HIF-1α is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia contributes to several biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation, and insulin resistance (IR). Pathogenesis of obesity-related comorbidities is attributed to intermittent hypoxia (IH), which is mostly observed in visceral obesity. Proinflammatory phenotype of the adipose tissue is a crucial link between IH and the development of IR. Inhibition of adaptive unfolded protein response (UPR) in hypoxia increases β cell death. Moreover, deletion of HIF-1α worsens β cell function. Oxidative stress, as well as the release of proinflammatory cytokines/adipokines in obesity, is proportional to the severity of IH. Reactive oxygen species (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal; however, mitochondrial ROS production is required for hypoxic HIF-1α protein stabilization. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible for the dysregulated adipocytokines production in obesity. Hypoxia both inhibits adipocyte differentiation from preadipocytes and macrophage migration from the hypoxic adipose tissue. Upon reaching a hypertrophic threshold beyond the adipocyte fat loading capacity, excess extracellular matrix (ECM) components are deposited, causing fibrosis. HIF-1α initiates the whole pathological process of fibrosis and inflammation in the obese adipose tissue. In addition to stressed adipocytes, hypoxia contributes to immune cell migration and activation which further aggravates adipose tissue fibrosis. Therefore, targeting HIF-1α might be an efficient way to suppress hypoxia-induced pathological changes in the ECM. The fibrosis score of adipose tissue correlates negatively with the body mass index and metabolic parameters. Inducers of browning/beiging adipocytes and adipokines, as well as modulations of matrix remodeling enzyme inhibitors, and associated gene regulators, are potential pharmacological targets for treating obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
20
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
21
|
Kudo T, Zhao ML, Jeknić S, Kovary KM, LaGory EL, Covert MW, Teruel MN. Context-dependent regulation of lipid accumulation in adipocytes by a HIF1α-PPARγ feedback network. Cell Syst 2023; 14:1074-1086.e7. [PMID: 37995680 PMCID: PMC11251692 DOI: 10.1016/j.cels.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/03/2022] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Hypoxia-induced upregulation of HIF1α triggers adipose tissue dysfunction and insulin resistance in obese patients. HIF1α closely interacts with PPARγ, the master regulator of adipocyte differentiation and lipid accumulation, but there are conflicting results regarding how this interaction controls the excessive lipid accumulation that drives adipocyte dysfunction. To directly address these conflicts, we established a differentiation system that recapitulated prior seemingly opposing observations made across different experimental settings. Using single-cell imaging and coarse-grained mathematical modeling, we show how HIF1α can both promote and repress lipid accumulation during adipogenesis. Our model predicted and our experiments confirmed that the opposing roles of HIF1α are isolated from each other by the positive-feedback-mediated upregulation of PPARγ that drives adipocyte differentiation. Finally, we identify three factors: strength of the differentiation cue, timing of hypoxic perturbation, and strength of HIF1α expression changes that, when considered together, provide an explanation for many of the previous conflicting reports.
Collapse
Affiliation(s)
- Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Kovary
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Edward L LaGory
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Mary N Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry and the Drukier Institute of Children's Health, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
22
|
Wątroba M, Szewczyk G, Szukiewicz D. The Role of Sirtuin-1 (SIRT1) in the Physiology and Pathophysiology of the Human Placenta. Int J Mol Sci 2023; 24:16210. [PMID: 38003402 PMCID: PMC10671790 DOI: 10.3390/ijms242216210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Sirtuins, especially SIRT1, play a significant role in regulating inflammatory response, autophagy, and cell response to oxidative stress. Since their discovery, sirtuins have been regarded as anti-ageing and longevity-promoting enzymes. Sirtuin-regulated processes seem to participate in the most prevalent placental pathologies, such as pre-eclampsia. Furthermore, more and more research studies indicate that SIRT1 may prevent pre-eclampsia development or at least alleviate its manifestations. Having considered this, we reviewed recent studies on the role of sirtuins, especially SIRT1, in processes determining normal or abnormal development and functioning of the placenta.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (G.S.)
| |
Collapse
|
23
|
Song H, Thompson LP. Effects of Gestational Hypoxia on PGC1α and Mitochondrial Acetylation in Fetal Guinea Pig Hearts. Reprod Sci 2023; 30:2996-3009. [PMID: 37138147 PMCID: PMC10556133 DOI: 10.1007/s43032-023-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Chronic intrauterine hypoxia is a significant pregnancy complication impacting fetal heart growth, metabolism, and mitochondrial function, contributing to cardiovascular programming of the offspring. PGC1α (peroxisome proliferator-activated receptor γ co-activator 1α) is the master regulator of mitochondrial biogenesis. We investigated the effects of hypoxia on PGC1α expression following exposure at different gestational ages. Time-mated pregnant guinea pigs were exposed to normoxia (NMX, 21% O2) or hypoxia (HPX, 10.5% O2) at either 25-day (early-onset) or 50-day (late-onset) gestation, and all fetuses were extracted at term (term = ~65-day gestation). Expression of nuclear PGC1α, sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and mitochondrial sirtuin 3 (SIRT3) was measured, along with SIRT3 activity and mitochondrial acetylation of heart ventricles of male and female fetuses. Early-onset hypoxia increased (P<0.05) fetal cardiac nuclear PGC1α and had no effect on mitochondrial acetylation of either growth-restricted males or females. Late-onset hypoxia had either no effect or decreased (P<0.05) PCC1α expression in males and females, respectively, but increased (P<0.05) mitochondrial acetylation in both sexes. Hypoxia had variable effects on expression of SIRT1, AMPK, SIRT3, and SIRT3 activity depending on the sex. The capacity of the fetal heart to respond to hypoxia differs depending on the gestational age of exposure and sex of the fetus. Further, the effects of late-onset hypoxia on fetal heart function impose a greater risk to male than female fetuses, which has implications toward cardiovascular programming effects of the offspring.
Collapse
Affiliation(s)
- Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Hu M, Tian Y, Liu X, Guo Q, Lu D, Wang X, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. BHLHE40 Maintains the Stemness of PαS Cells In Vitro by Targeting Zbp1 through the Wnt/β-Catenin Signaling Pathway. Biomedicines 2023; 11:2190. [PMID: 37626688 PMCID: PMC10452820 DOI: 10.3390/biomedicines11082190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1+PDGFRα+CD45-TER119-) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS). We investigated the differences in the stemness of PαS cells by proliferation, differentiation, and stemness markers in vitro and by ectopic osteogenesis and chondrogenesis ability in vivo, as well as the changes in the stemness of PαS cells during expansion in vitro. Gain- and loss-of-function experiments were applied to investigate the critical role and underlying mechanism of the basic helix-loop-helix family member E40 (BHLHE40) in maintaining the stemness of PαS cells. The stemness of fresh PαS cells representative in vivo was superior to that of passage 0 (P0) PαS cells in vitro. The stemness of PαS cells in vitro decreased gradually from P0 to passage 4 (P4). Moreover, BHLHE40 plays a critical role in regulating the stemness of PαS cells during in vitro expansion. Mechanically, BHLHE40 regulates the stemness of PαS cells by targeting Zbp1 through the Wnt/β-catenin signaling pathway. This work confirms that BHLHE40 is a critical factor for regulating the stemness of PαS cells during expansion in vitro and may provide significant indications in the exploration of premium culture conditions for PαS cells.
Collapse
Affiliation(s)
- Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yueming Tian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Qian Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
25
|
Tsuyama T, Sato Y, Yoshizawa T, Matsuoka T, Yamagata K. Hypoxia causes pancreatic β-cell dysfunction and impairs insulin secretion by activating the transcriptional repressor BHLHE40. EMBO Rep 2023; 24:e56227. [PMID: 37341148 PMCID: PMC10398664 DOI: 10.15252/embr.202256227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
Hypoxia can occur in pancreatic β-cells in type 2 diabetes. Although hypoxia exerts deleterious effects on β-cell function, the associated mechanisms are largely unknown. Here, we show that the transcriptional repressor basic helix-loop-helix family member e40 (BHLHE40) is highly induced in hypoxic mouse and human β-cells and suppresses insulin secretion. Conversely, BHLHE40 deficiency in hypoxic MIN6 cells or β-cells of ob/ob mice reverses defects in insulin secretion. Mechanistically, BHLHE40 represses the expression of Mafa, encoding the transcription factor musculoaponeurotic fibrosarcoma oncogene family A (MAFA), by attenuating the binding of pancreas/duodenum homeobox protein 1 (PDX1) to its enhancer region. Impaired insulin secretion in hypoxic β-cells was recovered by MAFA re-expression. Collectively, our work identifies BHLHE40 as a key hypoxia-induced transcriptional repressor in β-cells that inhibit insulin secretion by suppressing MAFA expression.
Collapse
Affiliation(s)
- Tomonori Tsuyama
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Takaaki Matsuoka
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazuya Yamagata
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
26
|
Yan L, Guo L. Exercise-regulated white adipocyte differentitation: An insight into its role and mechanism. J Cell Physiol 2023; 238:1670-1692. [PMID: 37334782 DOI: 10.1002/jcp.31056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
White adipocytes play a key role in the regulation of fat mass amount and energy balance. An appropriate level of white adipocyte differentiation is important for maintaining metabolic homeostasis. Exercise, an important way to improve metabolic health, can regulate white adipocyte differentiation. In this review, the effect of exercise on the differentiation of white adipocytes is summarized. Exercise could regulate adipocyte differentiation in multiple ways, such as exerkines, metabolites, microRNAs, and so on. The potential mechanism underlying the role of exercise in adipocyte differentiation is also reviewed and discussed. In-depth investigation of the role and mechanism of exercise in white adipocyte differentiation would provide new insights into exercise-mediated improvement of metabolism and facilitate the application of exercise-based strategy against obesity.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
27
|
Suzuki T, Komatsu T, Shibata H, Tanioka A, Vargas D, Kawabata-Iwakawa R, Miura F, Masuda S, Hayashi M, Tanimura-Inagaki K, Morita S, Kohmaru J, Adachi K, Tobo M, Obinata H, Hirayama T, Kimura H, Sakai J, Nagasawa H, Itabashi H, Hatada I, Ito T, Inagaki T. Crucial role of iron in epigenetic rewriting during adipocyte differentiation mediated by JMJD1A and TET2 activity. Nucleic Acids Res 2023; 51:6120-6142. [PMID: 37158274 PMCID: PMC10325906 DOI: 10.1093/nar/gkad342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Iron metabolism is closely associated with the pathogenesis of obesity. However, the mechanism of the iron-dependent regulation of adipocyte differentiation remains unclear. Here, we show that iron is essential for rewriting of epigenetic marks during adipocyte differentiation. Iron supply through lysosome-mediated ferritinophagy was found to be crucial during the early stage of adipocyte differentiation, and iron deficiency during this period suppressed subsequent terminal differentiation. This was associated with demethylation of both repressive histone marks and DNA in the genomic regions of adipocyte differentiation-associated genes, including Pparg, which encodes PPARγ, the master regulator of adipocyte differentiation. In addition, we identified several epigenetic demethylases to be responsible for iron-dependent adipocyte differentiation, with the histone demethylase jumonji domain-containing 1A and the DNA demethylase ten-eleven translocation 2 as the major enzymes. The interrelationship between repressive histone marks and DNA methylation was indicated by an integrated genome-wide association analysis, and was also supported by the findings that both histone and DNA demethylation were suppressed by either the inhibition of lysosomal ferritin flux or the knockdown of iron chaperone poly(rC)-binding protein 2. In summary, epigenetic regulations through iron-dependent control of epigenetic enzyme activities play an important role in the organized gene expression mechanisms of adipogenesis.
Collapse
Affiliation(s)
- Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Hiroshi Shibata
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Akiko Tanioka
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Diana Vargas
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma371-8511, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Shinnosuke Masuda
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Mayuko Hayashi
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Kyoko Tanimura-Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Junki Kohmaru
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Koji Adachi
- Kaihin Makuhari Laboratory, PerkinElmer Japan Co., Ltd., Chiba261-8501, Japan
| | - Masayuki Tobo
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma371-8511, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Tokyo Institute of Technology, Kanagawa226-8503, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hideyuki Itabashi
- Graduate School of Science and Technology, Gunma University, Gunma376-8515, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research, Gunma371-8511, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| |
Collapse
|
28
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
29
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
30
|
Kuperwaser F, Avital G, Vaz MJ, Noble KN, Dammann AN, Randis TM, Aronoff DM, Ratner AJ, Yanai I. Host inflammatory dynamics reveal placental immune modulation by Group B Streptococcus during pregnancy. Mol Syst Biol 2023; 19:e11021. [PMID: 36744393 PMCID: PMC9996236 DOI: 10.15252/msb.202211021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Group B Streptococcus (GBS) is a pathobiont that can ascend to the placenta and cause adverse pregnancy outcomes, in part through production of the toxin β-hemolysin/cytolysin (β-h/c). Innate immune cells have been implicated in the response to GBS infection, but the impact of β-h/c on their response is poorly defined. We show that GBS modulates innate immune cell states by subversion of host inflammation through β-h/c, allowing worse outcomes. We used an ascending mouse model of GBS infection to measure placental cell state changes over time following infection with a β-h/c-deficient and isogenic wild type GBS strain. Transcriptomic analysis suggests that β-h/c-producing GBS elicit a worse phenotype through suppression of host inflammatory signaling in placental macrophages and neutrophils, and comparison of human placental macrophages infected with the same strains recapitulates these results. Our findings have implications for identification of new targets in GBS disease to support host defense against pathogenic challenge.
Collapse
Affiliation(s)
- Felicia Kuperwaser
- Institute for Computational MedicineNYU Grossman School of MedicineNew YorkNYUSA
| | - Gal Avital
- Institute for Computational MedicineNYU Grossman School of MedicineNew YorkNYUSA
| | - Michelle J Vaz
- Department of PediatricsNYU Grossman School of MedicineNew YorkNYUSA
| | - Kristen N Noble
- Division of Neonatology, Department of PediatricsVanderbilt University Medical CenterNashvilleTNUSA
| | - Allison N Dammann
- Renaissance School of Medicine at Stony Brook UniversityStony BrookNYUSA
| | - Tara M Randis
- Departments of Pediatrics and Molecular Medicine, Morsani School of MedicineUniversity of South FloridaFLTampaUSA
| | | | - Adam J Ratner
- Department of PediatricsNYU Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNYU Grossman School of MedicineNew YorkNYUSA
| | - Itai Yanai
- Institute for Computational MedicineNYU Grossman School of MedicineNew YorkNYUSA
- Department of Biochemistry and Molecular PharmacologyNYU Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
31
|
Ganner A, Philipp A, Lagies S, Wingendorf L, Wang L, Pilz F, Welte T, Grand K, Lienkamp SS, Klein M, Kammerer B, Frew IJ, Walz G, Neumann-Haefelin E. SCD5 Regulation by VHL Affects Cell Proliferation and Lipid Homeostasis in ccRCC. Cells 2023; 12:835. [PMID: 36980176 PMCID: PMC10047146 DOI: 10.3390/cells12060835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cancer, and inactivation of the VHL tumor suppressor gene is found in almost all cases of hereditary and sporadic ccRCCs. CcRCC is associated with the reprogramming of fatty acid metabolism, and stearoyl-CoA desaturases (SCDs) are the main enzymes controlling fatty acid composition in cells. In this study, we report that mRNA and protein expression of the stearoyl-CoA desaturase SCD5 is downregulated in VHL-deficient cell lines. Similarly, in C. elegans vhl-1 mutants, FAT-7/SCD5 activity is repressed, supporting an evolutionary conservation. SCD5 regulation by VHL depends on HIF, and loss of SCD5 promotes cell proliferation and a metabolic shift towards ceramide production. In summary, we identify a novel regulatory function of VHL in relation to SCD5 and fatty acid metabolism, and propose a new mechanism of how loss of VHL may contribute to ccRCC tumor formation and progression.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Antonia Philipp
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Laura Wingendorf
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Lu Wang
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felicitas Pilz
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Welte
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kelli Grand
- Institute of Anatomy, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Soeren S. Lienkamp
- Institute of Anatomy, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Ian J. Frew
- Department of Internal Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
32
|
Hernández-Aguirre LE, Peregrino-Uriarte AB, Duarte-Gutiérrez JL, Leyva-Carrillo L, Ezquerra-Brauer JM, Valenzuela-Soto EM, Yepiz-Plascencia G. Shrimp Glucose-6-phosphatase 2 (G6Pase 2): a second isoform of G6Pase in the Pacific white shrimp and regulation of G6Pase 1 and 2 isoforms via HIF-1 during hypoxia and reoxygenation in juveniles. J Bioenerg Biomembr 2023; 55:137-150. [PMID: 36853470 DOI: 10.1007/s10863-023-09960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Animals suffer hypoxia when their oxygen consumption is larger than the oxygen available. Hypoxia affects the white shrimp Penaeus (Litopenaeus) vannamei, both in their natural habitat and in cultivation farms. Shrimp regulates some enzymes that participate in energy production pathways as a strategy to survive during hypoxia. Glucose-6-phosphatase (G6Pase) is key to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. We previously reported a shrimp G6Pase gene (G6Pase1) and in this work, we report a second isoform that we named G6Pase2. The expression of the two isoforms was evaluated in oxygen limited conditions and during silencing of the transcription factor HIF-1. High G6Pase activity was detected in hepatopancreas followed by muscle and gills under good oxygen and feeding conditions. Gene expression of both isoforms was analyzed in normoxia, hypoxia and reoxygenation in hepatopancreas and gills, and in HIF-1-silenced shrimp. In fed shrimp with normal dissolved oxygen (DO) (5.0 mg L- 1 DO) the expression of G6Pase1 was detected in gills, but not in hepatopancreas or muscle, while G6Pase2 expression was undetectable in all three tissues. In hepatopancreas, G6Pase1 is induced at 3 and 48 h of hypoxia, while G6Pase2 is down-regulated in the same time points but in reoxygenation, both due to the knock-down of HIF-1. In gills, only G6Pase1 was detected, and was induced by the silencing of HIF-1 only after 3 h of reoxygenation. Therefore, the expression of the two isoforms appears to be regulated by HIF-1 at transcriptional level in response to oxygen deprivation and subsequent recovery of oxygen levels.
Collapse
Affiliation(s)
- Laura E Hernández-Aguirre
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Jorge L Duarte-Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Josafat M Ezquerra-Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd Luis Encinas y Rosales s/n, Hermosillo, Sonora, CP 83000, México
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México.
| |
Collapse
|
33
|
Sun Q, Zhao J, Liu L, Wang X, Gu X. Identification of the potential biomarkers associated with circadian rhythms in heart failure. PeerJ 2023; 11:e14734. [PMID: 36699999 PMCID: PMC9869779 DOI: 10.7717/peerj.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background Heart failure (HF) is a syndrome with multiple clinical symptoms resulting from damage to the heart's structure and/or function with various pathogenic factors, which has developed as one of the most severe threats to human health. Approximately 13% of genes and about 8% of proteins contained in the heart are rhythmic, which could lead to HF if disrupted. Herein, we aimed to identify the circadian rhythms-related hub genes as potential biomarkers contributing to the identification and treatment of HF. Methods Expression data of ischemic and dilated cardiomyopathy samples with or without HF were collected from the GEO database. First, genes with differential expression in HF and healthy samples were identified, named as differentially expressed genes (DEGs), which were then intersected with circadian rhythms-related genes to identify circadian rhythms-related DEGs. A protein-protein interaction (PPI) network was established to screen hub genes. The performance of the hub genes to identify HF among healthy controls was assessed by referring to the receiver operating characteristic (ROC) curve. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) was run to further validate the hub genes depending on clinical human peripheral blood samples. Results A total of 10,163 DEGs were determined, composed of 4,615 up-regulated genes and 5,548 down-regulated genes in HF patients in comparison to healthy controls. By overlapping the circadian rhythms-related genes in the Circadian Gene DataBase (CGDB), 723 circadian rhythms-related DEGs were obtained, mainly enriched in regulating lipid metabolic process, circadian rhythm and AMPK signaling pathway. Eight hub genes were screened out through the PPI network. The ROC curve indicated the high accuracy of five hub genes with AUC > 0.7, which also showed high accuracy validated by the external validation dataset. Furthermore, according to the results of quantitative RT-PCR, the HF group showed significantly increased relative mRNA expression of CRY2 and BHLHE41 while the decreased ARNTL and NPAS2 in comparison to controls, indicating the four hub genes as potential biomarkers of HF. Conclusion Our study validated that ARNTL, CRY2, BHLHE41 and NPAS2 could serve as potential biomarkers of circadian rhythm in HF. These results may provide a reference for employing novel markers or targets for the diagnosis and treatment of HF.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China,Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jun Zhao
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Li Liu
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaoliang Wang
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Wang CY, Qiu ZJ, Zhang P, Tang XQ. Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson's Disease: New Insights and Therapeutic Perspectives. Curr Neuropharmacol 2023; 21:2251-2265. [PMID: 37132111 PMCID: PMC10556388 DOI: 10.2174/1570159x21666230502123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023] Open
Abstract
Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Jie Qiu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
35
|
Meszaros M, Bikov A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022; 10:2754. [PMID: 36359273 PMCID: PMC9687681 DOI: 10.3390/biomedicines10112754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with cardiovascular and metabolic comorbidities, including hypertension, dyslipidaemia, insulin resistance and atherosclerosis. Strong evidence suggests that OSA is associated with an altered lipid profile including elevated levels of triglyceride-rich lipoproteins and decreased levels of high-density lipoprotein (HDL). Intermittent hypoxia; sleep fragmentation; and consequential surges in the sympathetic activity, enhanced oxidative stress and systemic inflammation are the postulated mechanisms leading to metabolic alterations in OSA. Although the exact mechanisms of OSA-associated dyslipidaemia have not been fully elucidated, three main points have been found to be impaired: activated lipolysis in the adipose tissue, decreased lipid clearance from the circulation and accelerated de novo lipid synthesis. This is further complicated by the oxidisation of atherogenic lipoproteins, adipose tissue dysfunction, hormonal changes, and the reduced function of HDL particles in OSA. In this comprehensive review, we summarise and critically evaluate the current evidence about the possible mechanisms involved in OSA-associated dyslipidaemia.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
| |
Collapse
|
36
|
Neuper L, Kummer D, Forstner D, Guettler J, Ghaffari-Tabrizi-Wizsy N, Fischer C, Juch H, Nonn O, Gauster M. Candesartan Does Not Activate PPARγ and Its Target Genes in Early Gestation Trophoblasts. Int J Mol Sci 2022; 23:ijms232012326. [PMID: 36293183 PMCID: PMC9603971 DOI: 10.3390/ijms232012326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Angiotensin II receptor 1 blockers are commonly used to treat hypertension in women of childbearing age. While the fetotoxic effects of these drugs in the second and third trimesters of pregnancy are well documented, their possible impacts on placenta development in early gestation are unknown. Candesartan, a member of this group, also acts as a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, a key regulator shown to be important for placental development. We have previously shown that trophoblasts do not express the candesartan target-receptor angiotensin II type 1 receptor AGTR1. This study investigated the possible role of candesartan on trophoblastic PPARγ and its hallmark target genes in early gestation. Candesartan did not affect the PPARγ protein expression or nuclear translocation of PPARγ. To mimic extravillous trophoblasts (EVTs) and cytotrophoblast/syncytiotrophoblast (CTB/SCT) responses to candesartan, we used trophoblast cell models BeWo (for CTB/SCT) and SGHPL-4 (EVT) cells as well as placental explants. In vitro, the RT-qPCR analysis showed no effect of candesartan treatment on PPARγ target genes in BeWo or SGHPL-4 cells. Treatment with positive control rosiglitazone, another PPARγ agonist, led to decreased expressions of LEP and PPARG1 in BeWo cells and an increased expression of PPARG1 in SGHPL-4 cells. Our previous data showed early gestation-placental AGTR1 expression in fetal myofibroblasts only. In a CAM assay, AGTR1 was stimulated with angiotensin II and showed increased on-plant vessel outgrowth. These results suggest candesartan does not negatively affect PPARγ or its target genes in human trophoblasts. More likely, candesartan from maternal serum may first act on fetal-placental AGTR1 and influence angiogenesis in the placenta, warranting further research.
Collapse
Affiliation(s)
- Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Nassim Ghaffari-Tabrizi-Wizsy
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Cornelius Fischer
- Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Herbert Juch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Diagnostic and Research Institute for Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence:
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
37
|
Kurita T, Li X, Bhawal UK. Crosstalk between microRNA-21–5p and the transcription factor Dec1 maintains osteoblast function. Biochem Biophys Res Commun 2022; 632:32-39. [DOI: 10.1016/j.bbrc.2022.09.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
38
|
Li X, Liu X, Meng Q, Wu X, Bing X, Guo N, Zhao X, Hou X, Wang B, Xia M, Li H. Circadian clock disruptions link oxidative stress and systemic inflammation to metabolic syndrome in obstructive sleep apnea patients. Front Physiol 2022; 13:932596. [PMID: 36105285 PMCID: PMC9466597 DOI: 10.3389/fphys.2022.932596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Obstructive sleep apnea (OSA) is an independent risk factor for metabolic syndrome (MetS). Recent studies have indicated that circadian clock genes were dysregulated in OSA. In addition, it is clear that the impairment of circadian clocks drives the progression of MetS. Therefore, we hypothesized that circadian rhythm disruption links OSA with MetS.Methods: A total of 118 participants, who underwent polysomnography (PSG) and were diagnosed as healthy snorers (control, n = 29) or OSA (n = 89) patients based on the apnea–hypopnea index (AHI), were enrolled in the present study. General information, anthropometric data, blood biochemical indicators, clock gene expressions, and levels of oxidative and inflammatory indicators were collected, determined, and compared in all the participants.Results: We found that Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) and Differentiated embryo chondrocyte 1 (Dec1) were upregulated, while Period 1 (Per1) was reduced in OSA patients. In addition, these changing trends were closely associated with the hypoxia indicator of AHI and have a significant impact on the presence of MetS components, such as hyperglycemia (Dec1 and Per1, p < 0.05 and 0.001, respectively), hypertension (Bmal1 and Dec1, p < 0.001 and 0.01, respectively), hyperlipidemia (Dec1, p < 0.01), and obesity (Dec1, p < 0.05). Notably, expressions of Dec1 correlated with IR and predicted the presence of MetS in OSA patients. Finally, we also observed that Dec1 expression was interrelated with levels of both oxidative indicators and inflammatory biomarkers (IL-6) in OSA.Conclusion: This study concluded that circadian clock disruptions, especially Dec1, link OSA with MetS in an oxidative and inflammatory-related manner. Circadian clock Dec1 can be used as a specific biomarker (p < 0.001) and therapeutic target in OSA combined with Mets patients.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuejian Liu
- Department of Thyroid and Breast Surgery, Shandong Provincial Third Hospital, Jinan, China
| | - Qiu Meng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuening Zhao
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhi Hou
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Baowei Wang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hui Li, ; Ming Xia,
| | - Hui Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hui Li, ; Ming Xia,
| |
Collapse
|
39
|
Hirata H, Kamohara A, Murayama M, Nishioka K, Honda H, Urano Y, Soejima H, Oki S, Kukita T, Kawano S, Mawatari M, Kukita A. A novel role of helix-loop-helix transcriptional factor Bhlhe40 in osteoclast activation. J Cell Physiol 2022; 237:3912-3926. [PMID: 35908202 DOI: 10.1002/jcp.30844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
The basic helix-loop-helix transcriptional factor, Bhlhe40 has been shown as a crucial regulator of immune response, tumorigenesis, and circadian rhythms. We identified Bhlhe40 as a possible regulator of osteoclast differentiation and function by shRNA library screening and found that Bhlhe40 was required for osteoclast activation. Bhlhe40 expression was induced in bone marrow macrophages (BMMs) by RANKL, whereas the expression of its homolog Bhlhe41 was decreased in osteoclastogenesis. μCT analysis of tibias revealed that Bhlhe40 knockout (KO) mice exhibited increased bone volume phenotype. Bone morphometric analysis showed that osteoclast number and bone resorption were decreased in Bhlhe40 KO mice, whereas significant differences in the osteoblast parameters were not seen between wild-type (WT) and Bhlhe40 KO mice. In vitro culture of BMMs showed that Bhlhe40 deficiency did not cause difference in osteoclast formation. In contrast, bone resorption activity of Bhlhe40 KO osteoclasts was markedly reduced in comparison with that of WT osteoclasts. Analysis of potential target genes of Bhlhe40 using data-mining platform ChIP-Atlas (http://chip-atlas.org) revealed that predicted target genes of Bhlhe40 were related to proton transport and intracellular vesicle acidification. We then analyzed the expression of proton pump, the vacuolar (V)-ATPases which are responsible for bone resorption. The expression of V-ATPases V1c1 and V0a3 was suppressed in Bhlhe40 KO osteoclasts. In addition, Lysosensor yellow/blue DND 160 staining demonstrated that vesicular acidification was attenuated in vesicles of Bhlhe40 KO osteoclasts. Furthermore, analysis with pH-sensitive fluorescent probe showed that proton secretion was markedly suppressed in Bhlhe40 KO osteoclasts compared to that in WT osteoclasts. Our findings suggest that Bhlhe40 plays a novel important role in the regulation of acid production in osteoclastic bone resorption.
Collapse
Affiliation(s)
- Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Asana Kamohara
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.,Department of Oral & Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichi Nishioka
- Department of Internal Medicine, Musashimurayama Hospital, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuteru Urano
- Department of Chemical Biology & Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Chemistry & Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology & Oral Anatomy, Kyushu University, Fukuoka, Japan
| | - Shunsuke Kawano
- Research Center of Arthroplasty, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Akiko Kukita
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.,Research Center of Arthroplasty, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
40
|
Barzegari A, Aaboulhassanzadeh S, Landon R, Gueguen V, Meddahi-Pellé A, Parvizpour S, Anagnostou F, Pavon-Djavid G. Mitohormesis and mitochondrial dynamics in the regulation of stem cell fate. J Cell Physiol 2022; 237:3435-3448. [PMID: 35775725 DOI: 10.1002/jcp.30820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
The ability of stem cells for self-renewing, differentiation, and regeneration of injured tissues is believed to occur via the hormetic modulation of nuclear/mitochondrial signal transductions. The evidence now indicates that in damaged tissues, the mitochondria set off the alarm under oxidative stress conditions, hence they are the central regulators of stem cell fate decisions. This review aimed to provide an update to a broader concept of stem cell fate in stress conditions of damaged tissues, and insights for the mitochondrial hormesis (mitohormesis), including the integrated stress response (ISR), mitochondrial dynamics, mitochondria uncoupling, unfolded protein response, and mitokines, with implications for the control of stem cells programing in a successful clinical cell therapy.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sobhan Aaboulhassanzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebecca Landon
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, Paris, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fani Anagnostou
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| |
Collapse
|
41
|
Jin M, Xu S, Cao B, Xu Q, Yan Z, Ren Q, Lin C, Tang C. Regulator of G protein signaling 2 is inhibited by hypoxia-inducible factor-1α/E1A binding protein P300 complex upon hypoxia in human preeclampsia. Int J Biochem Cell Biol 2022; 147:106211. [PMID: 35430356 DOI: 10.1016/j.biocel.2022.106211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/25/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Preeclampsia is a pregnancy-related complication that causes maternal and fetal mortality. Despite extensive studies showing the role of hypoxia in preeclampsia progression, the specific mechanism remains unclear. The purpose of this study was to explore the possible mechanism underlying hypoxia in preeclampsia. METHODS Human trophoblast-like JEG-3 cell line was used to investigate the molecular mechanisms underlying hypoxia contribution to preeclampsia and the expression correlation of key molecules was examined in human placental tissues. Methods include JEG-3 cell culture and hypoxia induction, RNA isolation and quantitative real-time PCR, transient transfection and dual-luciferase assay, western blot, immunoprecipitation, immunofluorescence staining, cell proliferation assay, chromatin immunoprecipitation assay, obtainment of human placental tissue sample and immunohistochemistry staining. RESULTS Hypoxia-Inducible Factor-1α is up-regulated in clinical preeclampsia samples, where Regulator of G Protein Signaling 2 is down-regulated. Mechanistically, Hypoxia-Inducible Factor-1α is induced in response to hypoxia, which up-regulates E1A binding protein P300 expression and thereby forms a Hypoxia-Inducible Factor-1α/E1A binding protein P300 protein-protein complex that binds to the promoter of gene Regulator of G Protein Signaling 2 and subsequently inhibits the transcription of Regulator of G Protein Signaling 2, possibly contributing to the preeclampsia development. In addition, the expression of E1A binding protein P300 is increased in preeclampsia samples, and the expression of Regulator of G Protein Signaling 2 in preeclamptic placentas inversely correlates with the levels of E1A binding protein P300. CONCLUSION Our findings may provide novel insights into understanding the molecular pathogenesis of preeclampsia and may be a prognostic biomarker and therapeutic target for preeclampsia.
Collapse
Affiliation(s)
- Meiyuan Jin
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310057, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ziyi Yan
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qianlei Ren
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Lin
- Department of Neurosurgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
42
|
Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022; 13:56. [PMID: 35123554 PMCID: PMC8817503 DOI: 10.1186/s13287-022-02730-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Skeletal muscle-derived stem cells (SC) have become a promising approach for investigating myogenic differentiation and optimizing tissue regeneration. Muscle regeneration is performed by SC, a self-renewal cell population underlying the basal lamina of muscle fibers. Here, we examined the impact of hypoxia condition on the regenerative capacity of SC either in their native microenvironment or via isolation in a monolayer culture using ectopic differentiation inductions. Furthermore, the effect of low oxygen tension on myogenic differentiation protocols of the myoblasts cell line C2C12 was examined.
Methods
Hind limb muscles of wild type mice were processed for both SC/fiber isolation and myoblast extraction using magnetic beads. SC were induced for myogenic, adipogenic and osteogenic commitments under normoxic (21% O2) and hypoxic (3% O2) conditions. SC proliferation and differentiation were evaluated using histological staining, immunohistochemistry, morphometric analysis and RT-qPCR. The data were statistically analyzed using ANOVA.
Results
The data revealed enhanced SC proliferation and motility following differentiation induction after 48 h under hypoxia. Following myogenic induction, the number of undifferentiated cells positive for Pax7 were increased at 72 h under hypoxia. Hypoxia upregulated MyoD and downregulated Myogenin expression at day-7 post-myogenic induction. Hypoxia promoted both SC adipogenesis and osteogenesis under respective induction as shown by using Oil Red O and Alizarin Red S staining. The expression of adipogenic markers; peroxisome proliferator activated receptor gamma (PPARγ) and fatty acid-binding protein 4 (FABP4) were upregulated under hypoxia up to day 14 compared to normoxic condition. Enhanced osteogenic differentiation was detected under hypoxic condition via upregulation of osteocalcin and osteopontin expression up to day 14 as well as, increased calcium deposition at day 21. Hypoxia exposure increases the number of adipocytes and the size of fat vacuoles per adipocyte compared to normoxic culture. Combining the differentiation medium with dexamethasone under hypoxia improves the efficiency of the myogenic differentiation protocol of C2C12 by increasing the length of the myotubes.
Conclusions
Hypoxia exposure increases cell resources for clinical applications and promotes SC multipotency and thus beneficial for tissue regeneration.
Collapse
|
43
|
Zafar A, Ng HP, Kim GD, Chan ER, Mahabeleshwar GH. BHLHE40 promotes macrophage pro-inflammatory gene expression and functions. FASEB J 2021; 35:e21940. [PMID: 34551158 DOI: 10.1096/fj.202100944r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Macrophages are the principal innate immune cells that populate all major organs and provide the first line of cellular defense against infections and/or injuries. The immediate and early-responding macrophages must mount a robust pro-inflammatory response to protect the host by eliminating deleterious agents. The effective pro-inflammatory macrophage response requires the activation of complex transcriptional programs that modulate the dynamic regulation of inflammatory and metabolic gene expression. Therefore, transcription factors that govern pro-inflammatory and metabolic gene expression play an essential role in shaping the macrophage inflammatory response. Herein, we identify the basic helix-loop-helix family member e40 (BHLHE40), as a critical transcription factor that promotes broad pro-inflammatory and glycolytic gene expression by elevating HIF1α levels in macrophages. Our in vivo studies revealed that myeloid-BHLHE40 deficiency significantly attenuates macrophage and neutrophil recruitment to the site of inflammation. Our integrated transcriptomics and gene set enrichment analysis (GSEA) studies show that BHLHE40 deficiency broadly curtails inflammatory signaling pathways, hypoxia response, and glycolytic gene expression in macrophages. Utilizing complementary gain- and loss-of-function studies, our analyses uncovered that BHLHE40 promotes LPS-induced HIF1α mRNA and protein expression in macrophages. More importantly, forced overexpression of oxygen stable form of HIF1α completely reversed attenuated pro-inflammatory and glycolytic gene expression in BHLHE40-deficient macrophages. Collectively, these results demonstrate that BHLHE40 promotes macrophage pro-inflammatory gene expression and functions by elevating HIF1α expression in macrophages.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ganapati H Mahabeleshwar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
44
|
Patel JC, Singh A, Tulswani R, Sharma YK, Khurana P, Ragumani S. Identification of VEGFA-centric temporal hypoxia-responsive dynamic cardiopulmonary network biomarkers. Life Sci 2021; 281:119718. [PMID: 34147483 DOI: 10.1016/j.lfs.2021.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
AIMS Hypoxia, a pathophysiological condition, is profound in several cardiopulmonary diseases (CPD). Every individual's lethality to a hypoxia state differs in terms of hypoxia exposure time, dosage units and dependent on the individual's genetic makeup. Most of the proposed markers for CPD were generally aim to distinguish disease samples from normal samples. Although, as per the 2018 GOLD guidelines, clinically useful biomarkers for several cardio pulmonary disease patients in stable condition have yet to be identified. We attempt to address these key issues through the identification of Dynamic Network Biomarkers (DNB) to detect hypoxia induced early warning signals of CPD before the catastrophic deterioration. MATERIALS AND METHODS The human microvascular endothelial tissues microarray datasets (GSE11341) of lung and cardiac expose to hypoxia (1% O2) for 3, 24 and 48 h were retrieved from the public repository. The time dependent differentially expressed genes were subjected to tissue specificity and promoter analysis to filtrate the noise levels in the networks and to dissect the tissue specific hypoxia induced genes. These filtered out genes were used to construct the dynamic segmentation networks. The hypoxia induced dynamic differentially expressed genes were validated in the lung and heart tissues of male rats. These rats were exposed to hypobaric hypoxia (simulated altitude of 25,000 or PO2 - 282 mm of Hg) progressively for 3, 24 and 48 h. KEY FINDINGS To identify the temporal key genes regulated in hypoxia, we ranked the dominant genes based on their consolidated topological features from tissue specific networks, time dependent networks and dynamic networks. Overall topological ranking described VEGFA as a single node dynamic hub and strongly communicated with tissue specific genes to carry forward their tissue specific information. We named this type of VEGFAcentric dynamic networks as "V-DNBs". As a proof of principle, our methodology helped us to identify the V-DNBs specific for lung and cardiac tissues namely V-DNBL and V-DNBC respectively. SIGNIFICANCE Our experimental studies identified VEGFA, SLC2A3, ADM and ENO2 as the minimum and sufficient candidates of V-DNBL. The dynamic expression patterns could be readily exploited to capture the pre disease state of hypoxia induced pulmonary vascular remodelling. Whereas in V-DNBC the minimum and sufficient candidates are VEGFA, SCL2A3, ADM, NDRG1, ENO2 and BHLHE40. The time dependent single node expansion indicates V-DNBC could also be the pre disease state pathological hallmark for hypoxia-associated cardiovascular remodelling. The network cross-talk and expression pattern between V-DNBL and V-DNBC are completely distinct. On the other hand, the great clinical advantage of V-DNBs for pre disease predictions, a set of samples during the healthy condition should suffice. Future clinical studies might further shed light on the predictive power of V-DNBs as prognostic and diagnostic biomarkers for CPD.
Collapse
Affiliation(s)
- Jai Chand Patel
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Ajeet Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Rajkumar Tulswani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Yogendra Kumar Sharma
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Sugadev Ragumani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
45
|
Woeller CF, Lim SA, Roztocil E, Yee M, Beier EE, Puzas JE, O'Reilly MA. Neonatal hyperoxia impairs adipogenesis of bone marrow-derived mesenchymal stem cells and fat accumulation in adult mice. Free Radic Biol Med 2021; 167:287-298. [PMID: 33757863 PMCID: PMC8096722 DOI: 10.1016/j.freeradbiomed.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Preterm birth is a risk factor for growth failure and development of respiratory disease in children and young adults. Their early exposure to oxygen may contribute to lung disease because adult mice exposed to hyperoxia as neonates display reduced lung function, changes in the host response to respiratory viral infections, and develop pulmonary hypertension and heart failure that shortens their lifespan. Here, we provide new evidence that neonatal hyperoxia also impairs growth by inhibiting fat accumulation. Failure to accumulate fat may reflect a systemic defect in adipogenic potential of stem cells because bone marrow-derived mesenchymal cells (BMSCs) isolated from the mice grew slower and were more oxidized compared to controls. They also displayed reduced capacity to accumulate lipid and differentiate into adipocytes. BMSCs from adult mice exposed to neonatal hyperoxia express lower levels of peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that drives adipocyte differentiation. The defect in adipogenesis was rescued by expressing PPARγ in these cells. These findings reveal early life exposure to high levels of oxygen may suppresses fat accumulation and impair adipogenic differentiation upstream of PPARγ signaling, thus potentially contributing to growth failure seen in people born preterm.
Collapse
Affiliation(s)
- Collynn F Woeller
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| | - Sydney A Lim
- Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Elisa Roztocil
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Min Yee
- Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Eric E Beier
- Departments of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - J Edward Puzas
- Departments of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Michael A O'Reilly
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA; Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
46
|
HIF1α is a direct regulator of steroidogenesis in the adrenal gland. Cell Mol Life Sci 2021; 78:3577-3590. [PMID: 33464382 PMCID: PMC8038963 DOI: 10.1007/s00018-020-03750-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.
Collapse
|
47
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
49
|
Mohammadalipour A, Dumbali SP, Wenzel PL. Mitochondrial Transfer and Regulators of Mesenchymal Stromal Cell Function and Therapeutic Efficacy. Front Cell Dev Biol 2020; 8:603292. [PMID: 33365311 PMCID: PMC7750467 DOI: 10.3389/fcell.2020.603292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) metabolism plays a crucial role in the surrounding microenvironment in both normal physiology and pathological conditions. While MSCs predominantly utilize glycolysis in their native hypoxic niche within the bone marrow, new evidence reveals the importance of upregulation in mitochondrial activity in MSC function and differentiation. Mitochondria and mitochondrial regulators such as sirtuins play key roles in MSC homeostasis and differentiation into mature lineages of the bone and hematopoietic niche, including osteoblasts and adipocytes. The metabolic state of MSCs represents a fine balance between the intrinsic needs of the cellular state and constraints imposed by extrinsic conditions. In the context of injury and inflammation, MSCs respond to reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs), such as damaged mitochondria and mitochondrial products, by donation of their mitochondria to injured cells. Through intercellular mitochondria trafficking, modulation of ROS, and modification of nutrient utilization, endogenous MSCs and MSC therapies are believed to exert protective effects by regulation of cellular metabolism in injured tissues. Similarly, these same mechanisms can be hijacked in malignancy whereby transfer of mitochondria and/or mitochondrial DNA (mtDNA) to cancer cells increases mitochondrial content and enhances oxidative phosphorylation (OXPHOS) to favor proliferation and invasion. The role of MSCs in tumor initiation, growth, and resistance to treatment is debated, but their ability to modify cancer cell metabolism and the metabolic environment suggests that MSCs are centrally poised to alter malignancy. In this review, we describe emerging evidence for adaptations in MSC bioenergetics that orchestrate developmental fate decisions and contribute to cancer progression. We discuss evidence and potential strategies for therapeutic targeting of MSC mitochondria in regenerative medicine and tissue repair. Lastly, we highlight recent progress in understanding the contribution of MSCs to metabolic reprogramming of malignancies and how these alterations can promote immunosuppression and chemoresistance. Better understanding the role of metabolic reprogramming by MSCs in tissue repair and cancer progression promises to broaden treatment options in regenerative medicine and clinical oncology.
Collapse
Affiliation(s)
- Amina Mohammadalipour
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Immunology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
50
|
Pan M, Guan Z, Reinach PS, Kang L, Cao Y, Zhou D, Srinivasalu N, Zhao F, Qu J, Zhou X. PPARγ modulates refractive development and form deprivation myopia in Guinea pigs. Exp Eye Res 2020; 202:108332. [PMID: 33152389 DOI: 10.1016/j.exer.2020.108332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Form deprivation myopia (FDM) is characterized by loss of choroidal thickness (ChT), reduced choroidal blood perfusion (ChBP), and consequently scleral hypoxia. In some tissues, changes in levels of peroxisome proliferator-activated receptor γ (PPARγ) expression modulate hypoxia-induced pathological responses. We determined if PPARγ modulates FDM through changes in ChT, ChBP, scleral hypoxia-inducible transcription factor (HIF-1α) that in turn regulate scleral collagen type 1 (COL1) expression levels in guinea pigs. Myopia was induced by occluding one eye, while the fellow eye served as control. They received daily peribulbar injections of either the PPARγ antagonist GW9662, or the GW1929 agonist, with or without ocular occlusion for 4 weeks. Ocular refraction and biometric parameters were estimated at baseline, 2 and 4 weeks post-treatment. ChT and ChBP were measured at the 2- and 4-week time points. Western blot analysis determined the expression levels of scleral HIF-1α and COL1. GW9662 induced a myopic shift in unoccluded eyes. Conversely, GW1929 inhibited FDM progression without affecting the refraction in unoccluded eyes. GW9662 reduced both ChT and ChBP in unoccluded eyes, while GW1929 inhibited their declines in occluded eyes. Scleral HIF-1α expression rose in GW9662-treated unoccluded eyes whereas GW1929 reduced HIF-1α upregulation in occluded eyes. GW9662 downregulated scleral COL1 expression in unoccluded eyes, while GW1929 reduced their decreases in occluded eyes. Therefore, PPARγ modulates collagen expression levels and FDM through an inverse relationship between changes in PPARγ and HIF-1α expression levels.
Collapse
Affiliation(s)
- Miaozhen Pan
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Zhenqi Guan
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Lin Kang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Dengke Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Nethrajeith Srinivasalu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Fei Zhao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China.
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), China.
| |
Collapse
|