1
|
Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, Fu W, Jiang J, Ma X, Song J. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res 2023; 27:3. [PMID: 36647161 PMCID: PMC9843879 DOI: 10.1186/s40824-023-00339-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) brings a heavy burden to individuals and society, and there is no effective treatment at present. Exosomes (EX) are cell secreted vesicles containing molecules such as nucleic acids and proteins, which hold promise for the treatment of SCI. Netrin-1 is an axon guidance factor that regulates neuronal growth. We investigated the effects of engineered EX enriched in netrin-1 chemically synthetic modified message RNA (modRNA) in treating SCI in an attempt to find a novel therapeutic approach for SCI. METHODS Netrin-1 modRNA was transfected into bone marrow mesenchymal stem cells to obtain EX enriched with netrin-1 (EX-netrin1). We built an inflammatory model in vitro with lipopolysaccharide (LPS) in vitro to study the therapeutic effect of EX-netrin1 on SCI. For experiments in vitro, ELISA, CCK-8 assay, immunofluorescence staining, lactate dehydrogenase release experiments test, real-time quantitative polymerase chain reaction, and western blot were conducted. At the same time, we constructed a rat model of SCI. MRI, hematoxylin-eosin and Nissl staining were used to assess the extent of SCI in rats. RESULTS In vitro experiments showed that EX had no effect on the viability of oligodendrocytes and PC12 cells. EX-netrin1 could attenuate LPS-induced inflammation and pyroptosis and accelerate axonal/dentritic growth in PC12 cells/oligodendrocytes. In addition, netrin-1 could activate the PI3K/AKT/mTOR signalling pathway upon binding to its receptor unc5b. When Unc5b and PI3K were inhibited, the effect of EX-netrin1 was weakened, which could be reversed by PI3K or mTOR activator. Our in vivo experiments indicated that EX-netrin1 could promote recovery in rats with SCI. CONCLUSION We found that EX-netrin1 regulated inflammation, pyroptosis and axon growth in SCI via the Unc5b/PI3K/AKT/mTOR pathway, which provides a new strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
2
|
Ju T, Sun L, Fan Y, Wang T, Liu Y, Liu D, Liu T, Zhao C, Wang W, Chi L. Decreased Netrin-1 in Mild Cognitive Impairment and Alzheimer's Disease Patients. Front Aging Neurosci 2022; 13:762649. [PMID: 35250531 PMCID: PMC8888826 DOI: 10.3389/fnagi.2021.762649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Inflammatory mediators are closely associated with the pathogenesis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Netrin-1 is an axon guidance protein and despite its capacity to function as a neuroimmune guidance signal, its role in AD or MCI is poorly understood. In addition, the association among netrin-1, cognitive impairment and serum inflammatory cytokines such as interleukin-17 (IL-17) and tumor necrosis (TNF-α) remains unclear. The aim of this study was to determine serum levels of IL-17, TNF-α and netrin-1in a cohort of AD and MCI patients, and to study the relationship between these cytokines and cognitive status, as well as to assess the possible relationships between netrin-1 levels and inflammatory molecules. METHODS Serum concentrations of netrin-1, TNF-α and IL-17 were determined in 20 AD patients, 22 MCI patients and 22 healthy controls using an enzyme-linked immunosorbent assay (ELISA). In addition, neuropsychological evaluations and psychometric assessments were performed in all subjects. RESULTS Serum netrin-1 levels were decreased in AD and MCI patients and were positively correlated with Mini Mental State Examination (MMSE) scores. In contrast, serum TNF-α and IL-17 levels were elevated in AD and MCI cohorts and negatively correlated with MMSE scores. Serum netrin-1 levels were inversely related with TNF-α and IL-17 levels in AD, but not MCI, patients. CONCLUSION Based on the findings reported here, netrin-1 may serve as a marker for the early recognition of dementia and predict cognitive impairment.
Collapse
Affiliation(s)
- Ting Ju
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuwei Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianhang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanchen Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianyi Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Intensive Care Unit, Jiangyin People’s Hospital, Wuxi, China
| | - Wenxin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurology, Shenzhen Samii Medical Center, Shenzhen, China
| | - Lijun Chi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Schneider M, Vollmer L, Potthoff AL, Ravi VM, Evert BO, Rahman MA, Sarowar S, Kueckelhaus J, Will P, Zurhorst D, Joseph K, Maier JP, Neidert N, d’Errico P, Meyer-Luehmann M, Hofmann UG, Dolf A, Salomoni P, Güresir E, Enger PØ, Chekenya M, Pietsch T, Schuss P, Schnell O, Westhoff MA, Beck J, Vatter H, Waha A, Herrlinger U, Heiland DH. Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro Oncol 2021; 23:1885-1897. [PMID: 33864086 PMCID: PMC8563322 DOI: 10.1093/neuonc/noab092] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma cells assemble to a syncytial communicating network based on tumor microtubes (TMs) as ultra-long membrane protrusions. The relationship between network architecture and transcriptional profile remains poorly investigated. Drugs that interfere with this syncytial connectivity such as meclofenamate (MFA) may be highly attractive for glioblastoma therapy. METHODS In a human neocortical slice model using glioblastoma cell populations of different transcriptional signatures, three-dimensional tumor networks were reconstructed, and TM-based intercellular connectivity was mapped on the basis of two-photon imaging data. MFA was used to modulate morphological and functional connectivity; downstream effects of MFA treatment were investigated by RNA sequencing and fluorescence-activated cell sorting (FACS) analysis. RESULTS TM-based network morphology strongly differed between the transcriptional cellular subtypes of glioblastoma and was dependent on axon guidance molecule expression. MFA revealed both a functional and morphological demolishment of glioblastoma network architectures which was reflected by a reduction of TM-mediated intercellular cytosolic traffic as well as a breakdown of TM length. RNA sequencing confirmed a downregulation of NCAM and axon guidance molecule signaling upon MFA treatment. Loss of glioblastoma communicating networks was accompanied by a failure in the upregulation of genes that are required for DNA repair in response to temozolomide (TMZ) treatment and culminated in profound treatment response to TMZ-mediated toxicity. CONCLUSION The capacity of TM formation reflects transcriptional cellular heterogeneity. MFA effectively demolishes functional and morphological TM-based syncytial network architectures. These findings might pave the way to a clinical implementation of MFA as a TM-targeted therapeutic approach.
Collapse
Affiliation(s)
- Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
- Brain Tumor Translational Research Affiliation, University Hospital Bonn, Bonn, Germany
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Lea Vollmer
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Laura Potthoff
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
- Brain Tumor Translational Research Affiliation, University Hospital Bonn, Bonn, Germany
| | - Vidhya M Ravi
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Neuroelectronic Systems, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | - Shahin Sarowar
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Kueckelhaus
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Will
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Zurhorst
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Kevin Joseph
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Neuroelectronic Systems, Medical Center, University of Freiburg, Freiburg, Germany
| | - Julian P Maier
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Nicolas Neidert
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Paolo d’Errico
- Department of Neurology, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Centre, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich G Hofmann
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Dolf
- Institute of Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Paolo Salomoni
- Nuclear Function in CNS Pathophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Per Ø Enger
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Torsten Pietsch
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
- Brain Tumor Translational Research Affiliation, University Hospital Bonn, Bonn, Germany
| | - Oliver Schnell
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Andreas Waha
- Brain Tumor Translational Research Affiliation, University Hospital Bonn, Bonn, Germany
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ulrich Herrlinger
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Dieter H Heiland
- Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Neuroelectronic Systems, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Claro V, Ferro A. Netrin-1: Focus on its role in cardiovascular physiology and atherosclerosis. JRSM Cardiovasc Dis 2020; 9:2048004020959574. [PMID: 33282228 PMCID: PMC7691900 DOI: 10.1177/2048004020959574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023] Open
Abstract
The netrins form a family of laminin-related proteins which were first
described as modulators of cell migration and axonal guidance during
fetal development. Netrin-1 is the most extensively studied member of
this family and, since its discovery, non-neural roles have been
associated with it. Together with its receptors, DCC/neogenin and
UNC5, netrin-1 has been shown to be involved in the regulation of
angiogenesis, organogenesis, cancer and inflammation. An
NF-κB-dependent truncated isoform of netrin-1 has also been shown to
be produced in endothelial and some types of cancer cells, which both
accumulates in and affects the function of the nucleus. In
atherosclerosis, conflicting roles for netrin-1 have been reported on
plaque progression via its receptor UNC5b. Whereas endothelial-derived
netrin-1 inhibits chemotaxis of leukocytes and reduces the migration
of monocytes to the atherosclerotic plaque, netrin-1 expressed by
macrophages within the plaque plays a pro-atherogenic role, promoting
cell survival, recruiting smooth muscle cells and inhibiting foam cell
egress to the lymphatic system. In contrast, there is evidence that
netrin-1 promotes macrophage differentiation to an alternative
activated phenotype and induces expression of IL-4 and IL-13, while
downregulate expression of IL-6 and COX-2. Further work is needed to
elucidate the precise roles of the two isoforms of netrin-1 in
different cell types in the context of atherosclerosis, and its
potential as a putative novel therapeutic target in this disease.
Collapse
Affiliation(s)
- Vasco Claro
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Albert Ferro
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
6
|
Sato Y, Matsuo A, Kudoh S, Fang L, Hasegawa K, Shinmyo Y, Ito T. Expression of Draxin in Lung Carcinomas. Acta Histochem Cytochem 2018; 51:53-62. [PMID: 29622850 PMCID: PMC5880803 DOI: 10.1267/ahc.17035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Guidance molecules, such as Netrin-1, and their receptors have important roles in controlling axon pathfinding, modulate biological activities of various cancer cells, and may be a useful target for cancer therapy. Dorsal repulsive axon guidance protein (Draxin) is a novel guidance molecule that binds not only common guidance molecule receptors with Netrin-1, but also directly binds the EGF domain of Netrin-1 through a 22-amino-acid peptide (22aa). By immunostaining, Draxin was positively expressed in small cell carcinoma, adenocarcinoma (ADC), and squamous cell carcinoma of the lung. In addition, western blot analysis revealed that Draxin was expressed in all histological types of lung cancer cell lines examined. Knockdown of Draxin in an ADC cell line H358 resulted in altered expression of molecules associated with proliferation and apoptosis. The Ki-67 labeling index of Draxin-knockdown ADC cells was increased compared to that of control ADC cells. In H358 cells, treatment of 22aa induced phosphorylation of histone H3, but did not change apoptosis-associated enzymes. These data suggest that Draxin might be involved in cell proliferation and apoptosis in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Liu Fang
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University
| | - Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University
| | - Yohei Shinmyo
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
7
|
Ylivinkka I, Sihto H, Tynninen O, Hu Y, Laakso A, Kivisaari R, Laakkonen P, Keski-Oja J, Hyytiäinen M. Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness. J Exp Clin Cancer Res 2017; 36:9. [PMID: 28069038 PMCID: PMC5223529 DOI: 10.1186/s13046-016-0482-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma is an untreatable brain cancer. The tumors contain a population of stem-like cells which are highly invasive and resistant to therapies. These cells are the main reason for the lethality of glioblastoma. Extracellular guidance molecule netrin-1 promotes the invasiveness and survival of various cancer cell types. We have previously found that netrin-1 activates Notch signaling, and Notch signaling associates with cell stemness. Therefore, we have here investigated the effects of netrin-1 on glioblastoma pathogenesis and glioblastoma cell stemness. METHODS Glioma tissue microarrays were stained with immunohistochemistry and the results were used to evaluate the association between netrin-1 and survival of glioma patients. The localization of netrin-1 was analyzed utilizing fresh frozen glioblastoma tissues. The glioma cell invasion was investigated using ex vivo glioma tissue cultures and newly established primary cell cultures in 3D in vitro invasion assays. Intracranial mouse xenograft models were utilized to investigate the effects of netrin-1 on glioblastoma growth and invasion in vivo. RESULTS Netrin-1 expression associated with poor patient prognosis in grade II-III gliomas. In addition, its expression correlated with the stem-like cell marker nestin. Netrin-1 overexpression in cultured cells led to increased formation of stem-like cell spheroids. In glioblastoma tumor biopsies netrin-1 localized to hypoxic tumor areas known to be rich in the stem-like cells. In xenograft mouse models netrin-1 expression altered the phenotype of non-invasive glioblastoma cells into diffusively invading and increased the expression of glioma stem-like cell markers. Furthermore, a distinct invasion pattern where netrin-1 positive cells were following the invasive stem-like cells was detected both in mouse models and ex vivo human glioblastoma tissue cultures. Inhibition of netrin-1 signaling targeted especially the stem-like cells and inhibited their infiltrative growth. CONCLUSIONS Our findings describe netrin-1 as an important regulator of glioblastoma cell stemness and motility. Netrin-1 activates Notch signaling in glioblastoma cells resulting in subsequent gain of stemness and enhanced invasiveness of these cells. Moreover, inhibition of netrin-1 signaling may offer a way to target stem-like cells.
Collapse
Affiliation(s)
- Irene Ylivinkka
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,The Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Harri Sihto
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Yizhou Hu
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, Neurosurgery, University of Helsinki, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, Neurosurgery, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Keski-Oja
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,The Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Marko Hyytiäinen
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Translational Cancer Biology Research Program, Biomedicum, University of Helsinki, B530b2, PL 63 (Haartmaninkatu 8), 00014, Helsinki, Finland.
| |
Collapse
|
8
|
Ylivinkka I, Keski-Oja J, Hyytiäinen M. Netrin-1: A regulator of cancer cell motility? Eur J Cell Biol 2016; 95:513-520. [PMID: 27793362 DOI: 10.1016/j.ejcb.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 02/01/2023] Open
Abstract
Netrins form a family of secreted and membrane-associated proteins, netrin-1 being the prototype and most investigated member of the family. The major physiological functions of netrin-1 lie in the regulation of axonal development as well as morphogenesis of different branched organs, by promoting the polarity of migratory/invasive front of the cell. On the other hand, netrin-1 acts as a factor preventing cell apoptosis. These events are mediated via a range of different receptors, including UNC5 and DCC-families. Cancer cells often employ developmental pathways to gain survival and motility advantage. Within recent years, there has been increasing number of observations of upregulation of netrin-1 expression in different forms of cancer, and the increased expression of netrin-1 has been linked to its functions as a survival and invasion promoting factor. We review here recent advances in the netrin-1 related developmental processes that may be of special interest in tumor biology, in addition to the known functions of netrin-1 in tumor biology with special focus on cancer cell migration.
Collapse
Affiliation(s)
- Irene Ylivinkka
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland; The Hospital District of Helsinki and Uusimaa, Finland
| | - Jorma Keski-Oja
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland; The Hospital District of Helsinki and Uusimaa, Finland
| | - Marko Hyytiäinen
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
9
|
Cuna A, Halloran B, Faye-Petersen O, Kelly D, Crossman DK, Cui X, Pandit K, Kaminski N, Bhattacharya S, Ahmad A, Mariani TJ, Ambalavanan N. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation. Am J Respir Cell Mol Biol 2015; 53:60-73. [PMID: 25387348 DOI: 10.1165/rcmb.2014-0160oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.
Collapse
Affiliation(s)
- Alain Cuna
- 1 University of Missouri-Kansas City, Kansas City, Missouri
| | - Brian Halloran
- 2 University of Alabama at Birmingham, Birmingham, Alabama
| | | | - David Kelly
- 2 University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Xiangqin Cui
- 2 University of Alabama at Birmingham, Birmingham, Alabama
| | - Kusum Pandit
- 3 University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Ausaf Ahmad
- 5 University of Rochester Medical Center, Rochester, New York
| | | | | |
Collapse
|
10
|
Ding Q, Liao SJ, Yu J. Axon guidance factor netrin-1 and its receptors regulate angiogenesis after cerebral ischemia. Neurosci Bull 2014; 30:683-91. [PMID: 24875332 DOI: 10.1007/s12264-013-1441-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/11/2014] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis and angiogenesis play important roles in functional recovery after ischemic stroke. When cerebral ischemia occurs, axon regeneration can compensate for the loss of apoptotic neurons in the ischemic area. The formation of new blood vessels ameliorates the local decrease in blood supply, enhancing the supply of oxygen and nutrients to newly-formed neurons. New blood vessels also act as a scaffold for the migration of neuroblasts to the infarct area after ischemic stroke. In light of this, researchers have been actively searching for methods to treat cerebral infarction. Netrins were first identified as a family of proteins that mediate axon guidance and direct axon migration during embryogenesis. Later studies have revealed other functions of this protein family. In this review, we focus on netrin-1, which has been shown to be involved in axon migration and angiogenesis, which are required for recovery after cerebral ischemia. Thus, therapies targeting netrin-1 may be useful for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | | | | |
Collapse
|
11
|
Ranganathan P, Jayakumar C, Li DY, Ramesh G. UNC5B receptor deletion exacerbates DSS-induced colitis in mice by increasing epithelial cell apoptosis. J Cell Mol Med 2014; 18:1290-9. [PMID: 24720832 PMCID: PMC4117732 DOI: 10.1111/jcmm.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/12/2014] [Indexed: 12/21/2022] Open
Abstract
The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B+/− mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.
Collapse
|
12
|
He J, Zhao Y, Deng W, Wang DX. Netrin-1 promotes epithelial sodium channel-mediated alveolar fluid clearance via activation of the adenosine 2B receptor in lipopolysaccharide-induced acute lung injury. Respiration 2014; 87:394-407. [PMID: 24663055 DOI: 10.1159/000358066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The epithelial sodium channel (ENaC) is the driving force for pulmonary edema absorption in acute lung injury (ALI). Netrin-1 is a newly found anti-inflammatory factor that works by activating the adenosine 2B receptor (A2BAR). Meanwhile, activated A2BAR has the potential to enhance ENaC-dependent alveolar fluid clearance (AFC). However, whether netrin-1 can increase ENaC-mediated AFC by activating A2BAR remains unclear. OBJECTIVES To investigate the effect of netrin-1 on AFC in ALI and clarify the pathway via which netrin-1 regulates the expression of ENaC in vivo and in vitro. METHODS An ALI model was established by intratracheal instillation of lipopolysaccharide (LPS; 5 mg/kg) in C57BL/J mice, followed by netrin-1 with or without pretreatment with PSB1115, via the caudal vein. Twenty-four hours later, the lungs were isolated for determination of the bronchoalveolar lavage fluid, the lung wet/dry weight (W/D) ratio, AFC, the expressions of α-, β-, and γ-ENaC, and cyclic adenosine monophosphate (cAMP) levels. LPS-stimulated MLE-12 cells were incubated with netrin-1 with or without preincubation with PSB1115. Twenty-four hours later, the expressions of α-, β-, and γ-ENaC were detected. RESULTS In vivo, netrin-1 expression was significantly decreased during ALI. Substituted netrin-1 significantly dampened the lung injury, decreased the W/D ratio, and enhanced AFC, the expressions of α-, β-, and γ-ENaC, and cAMP levels in ALI, which were abolished by specific A2BAR inhibitor PSB1115. In vitro, netrin-1 increased the expressions of α-, β-, and γ-ENaC, which were prevented by PSB1115. CONCLUSION These results indicate that netrin-1 dampens pulmonary inflammation and increases ENaC-mediated AFC to alleviate pulmonary edema in LPS-induced ALI by enhancing cAMP levels through the activation of A2BAR.
Collapse
Affiliation(s)
- Jing He
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|
13
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
14
|
Kim HY, Nelson CM. Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 2012; 8:56-64. [PMID: 22609561 DOI: 10.4161/org.19813] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Branching morphogenesis is a fundamental developmental process which results in amplification of epithelial surface area for exchanging molecules in organs including the lung, kidney, mammary gland and salivary gland. These complex tree-like structures are built by iterative rounds of simple routines of epithelial morphogenesis, including bud formation, extension, and bifurcation, that require constant remodeling of the extracellular matrix (ECM) and the cytoskeleton. In this review, we highlight the current understanding of the role of the ECM and cytoskeletal dynamics in branching morphogenesis across these different organs. The cellular and molecular mechanisms shared during this morphogenetic process provide insight into the development of other branching organs.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Chemical and Biological Engineering, Princeton University; Princeton, NJ USA
| | | |
Collapse
|
15
|
Aguirre-Chen C, Bülow HE, Kaprielian Z. C. elegans bicd-1, homolog of the Drosophila dynein accessory factor Bicaudal D, regulates the branching of PVD sensory neuron dendrites. Development 2011; 138:507-18. [PMID: 21205795 PMCID: PMC3014636 DOI: 10.1242/dev.060939] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 01/25/2023]
Abstract
The establishment of cell type-specific dendritic arborization patterns is a key phase in the assembly of neuronal circuitry that facilitates the integration and processing of synaptic and sensory input. Although studies in Drosophila and vertebrate systems have identified a variety of factors that regulate dendrite branch formation, the molecular mechanisms that control this process remain poorly defined. Here, we introduce the use of the Caenorhabditis elegans PVD neurons, a pair of putative nociceptors that elaborate complex dendritic arbors, as a tractable model for conducting high-throughput RNAi screens aimed at identifying key regulators of dendritic branch formation. By carrying out two separate RNAi screens, a small-scale candidate-based screen and a large-scale screen of the ~3000 genes on chromosome IV, we retrieved 11 genes that either promote or suppress the formation of PVD-associated dendrites. We present a detailed functional characterization of one of the genes, bicd-1, which encodes a microtubule-associated protein previously shown to modulate the transport of mRNAs and organelles in a variety of organisms. Specifically, we describe a novel role for bicd-1 in regulating dendrite branch formation and show that bicd-1 is likely to be expressed, and primarily required, in PVD neurons to control dendritic branching. We also present evidence that bicd-1 operates in a conserved pathway with dhc-1 and unc-116, components of the dynein minus-end-directed and kinesin-1 plus-end-directed microtubule-based motor complexes, respectively, and interacts genetically with the repulsive guidance receptor unc-5.
Collapse
Affiliation(s)
- Cristina Aguirre-Chen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannes E. Bülow
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Abstract
Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule families and their corresponding receptors are described, including the semaphorins/neuropilins/plexins, ephrins and Eph receptors, netrin/DCC/UNC5, Slit/Robo and Notch/Delta. In addition, the possibility to target these molecules as a therapeutic approach in cancer is discussed.
Collapse
Affiliation(s)
- Patrick Nasarre
- Medical University of South Carolina, Division of Hematology/Oncology, Charleston, SC, USA
| | | | | | | |
Collapse
|
17
|
Dakouane-Giudicelli M, Duboucher C, Fortemps J, Missey-Kolb H, Brulé D, Giudicelli Y, de Mazancourt P. Characterization and expression of netrin-1 and its receptors UNC5B and DCC in human placenta. J Histochem Cytochem 2009; 58:73-82. [PMID: 19826074 DOI: 10.1369/jhc.2009.953463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Netrins are a family of proteins that mediate axonal guidance in the central nervous system (CNS). In addition to the CNS, netrins are involved in cell adhesion, motility, proliferation, differentiation, and survival. Because these processes occur in the placenta, we raised the question of whether netrin-1 is expressed by placental cells during development. In the present study, we analyzed the spatial and temporal distribution of netrin-1 and its two receptors, DCC (deleted in colorectal cancer) and UNC5B (uncoordinated-5 homolog) in human placenta using RT-PCR, Western blotting, and immunohistochemistry analysis. We demonstrated the presence of the proteins and transcripts of netrin-1 and its receptors in placenta and cytotrophoblasts. Furthermore, using immunohistochemistry, we localized endogenous netrin-1 protein staining to villous and extravillous cytotrophoblasts, and secreted netrin-1 outside the syncytiotrophoblasts. The DCC receptor was localized to syncytiotrophoblasts and invasive extravillous cytotrophoblasts during the first trimester and at term. On the other hand, the UNC5B receptor was localized to villous and extravillous cytotrophoblasts proximal to anchoring areas during the first trimester. At term, UNC5B was observed in decidual cells and weakly in extravillous cells. The discrete pattern of netrin-1 and netrin-1 receptor distribution suggested that netrin-1 protein functions might vary with its localization in the placenta and probably with time of gestation.
Collapse
Affiliation(s)
- Mbarka Dakouane-Giudicelli
- Laboratoire de Biochimie, UPRES EA2493, CHI de Poissy-St-Germain, 9, rue du Champ Gaillard, 78303, Poissy, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Delloye-Bourgeois C, Brambilla E, Coissieux MM, Guenebeaud C, Pedeux R, Firlej V, Cabon F, Brambilla C, Mehlen P, Bernet A. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst 2009; 101:237-47. [PMID: 19211441 DOI: 10.1093/jnci/djn491] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Netrin-1 may promote colorectal and breast tumorigenesis, by inhibiting apoptosis induced by its dependence receptors, deleted in colorectal cancer (DCC) and uncoordinated-5-homolog (UNC5H). The status of netrin-1 and its receptors in non-small cell lung cancer (NSCLC) was unknown. METHODS The levels of netrin-1 and its receptors were analyzed in a panel of 92 NSCLC and 25 human lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. In lung cancer cell lines that express netrin-1, the expression of netrin-1 was inhibited by using small interfering RNA (siRNA), or interference with netrin-1 was performed by treatment with a decoy recombinant DCC ectodomain protein (DCC-5Fbn). Cell death was monitored with a trypan blue exclusion assay or by measuring caspase-3 activity. The effect of netrin-1 interference on tumor growth was analyzed by DCC-5Fbn intratumoral or netrin-1 siRNA intraperitoneal injection in mice engrafted with lung cancer cell lines. All statistical tests were two-sided. RESULTS High levels of netrin-1 were found in 43 of the 92 NSCLC tumor samples (47%). Interference with netrin-1 in human lung cancer cell lines was associated with UNC5H-mediated cell death in vitro (percentage of cell death in untreated and in DCC-5Fbn-treated cells = 8% and 26%, respectively, difference = 18%, 95% confidence interval [CI] = 10% to 26%; P = .049) and with lung tumor growth inhibition and/or regression in xenografted nude mice (12 mice in DCC-5Fbn-treated group and 13 mice in control group). Mean volume of control and DCC-5Fbn-treated tumors on day 46 was 489 and 84 mm(3), respectively (difference = 404 mm(3), 95% CI = 145 to 664 mm(3); P < .001). CONCLUSIONS Almost half of the NSCLC tissue samples examined expressed high levels of netrin-1. Extracellular targeting of the interaction between netrin-1 and UNC5H may be a promising therapeutic approach for NSCLCs that express netrin-1.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée La Ligue, CNRS UMR5238, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Netrins are a family of proteins that direct cell and axon migration during development. Three secreted netrins (netrin-1, -3 and -4) have been identified in mammals, in addition to two GPI-anchored membrane proteins, netrin-G1 and G2. Orthologues of netrin-1 play a highly conserved role as guidance cues at the midline of the developing CNS of vertebrates and some bilaterally symmetric invertebrates. In vertebrates, floor plate cells at the ventral midline of the embryonic neural tube secrete netrin-1, generating a circumferential gradient of netrin protein in the neuroepithelium. This protein gradient is bifunctional, attracting some axons to the midline and repelling others. Receptors for the secreted netrins include DCC (deleted in colorectal cancer) and the UNC5 homologues: UNC5A, B, C and D in mammals. DCC mediates chemoattraction, while repulsion requires an UNC5 homologue and, in some cases, DCC. The netrin-G proteins bind NGLs (netrin G ligands), single pass transmembrane proteins unrelated to either DCC or the UNC5 homologues. Netrin function is not limited to the developing CNS midline. Various netrins direct cell and axon migration throughout the embryonic CNS, and in some cases continue to be expressed in the mature nervous system. Furthermore, although initially identified for their ability to guide axons, functional roles for netrins have now been identified outside the nervous system where they influence tissue morphogenesis by directing cell migration and regulating cell-cell and cell-matrix adhesion.
Collapse
|
20
|
Nacht M, St Martin TB, Byrne A, Klinger KW, Teicher BA, Madden SL, Jiang Y. Netrin-4 regulates angiogenic responses and tumor cell growth. Exp Cell Res 2008; 315:784-94. [PMID: 19094984 DOI: 10.1016/j.yexcr.2008.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/21/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
Abstract
Netrin-4 is a 628 amino acid basement membrane component that promotes neurite elongation at low concentrations but inhibits neurite extension at high concentrations. There is a growing body of literature suggesting that several molecules, including netrins, are regulators of both neuronal and vascular growth. It is believed that molecules that guide neural growth and development are also involved in regulating morphogenesis of the vascular tree. Further, netrins have recently been implicated in controlling epithelial cell branching morphogenesis in the breast, lung and pancreas. Characterization of purified netrin-4 in in vitro angiogenesis assays demonstrated that netrin-4 markedly inhibits HMVEC migration and tube formation. Moreover, netrin-4 inhibits proliferation of a variety of human tumor cells in vitro. Netrin-4 has only modest effects on proliferation of endothelial and other non-transformed cells. Netrin-4 treatment results in phosphorylation changes of proteins that are known to control cell growth. Specifically, Phospho-Akt-1, Phospho-Jnk-2, and Phospho-c-Jun are reduced in tumor cells that have been treated with netrin-4. Together, these data suggest a potential role for netrin-4 in regulating tumor growth.
Collapse
Affiliation(s)
- Mariana Nacht
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Bernet A, Fitamant J. Netrin-1 and its receptors in tumour growth promotion. Expert Opin Ther Targets 2008; 12:995-1007. [PMID: 18620521 DOI: 10.1517/14728222.12.8.995] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Netrin-1 belongs to a family of secreted proteins that act as migration and adhesion cues in the developing CNS and in a number of non-neural tissues. Netrin-1 is the ligand of deleted in colorectal cancer (DCC) and the uncoordinated family member 5 (UNC5) orthologues of the dependence receptor family. Over the past ten years, a novel mechanism has emerged, that a receptor unoccupied by its ligand is not necessarily inactive. Rather, such a receptor can mediate two signalling pathways, depending on whether it is bound to its ligand or not. In the absence of ligand, an active signalling pathway results in cell death through apoptosis. OBJECTIVE Coupled netrin-1 receptors have been shown to regulate diverse processes such as maintenance, integrity, migration and renewal of many tissues. We propose that netrin-1 receptors can regulate tumour development. METHODS We review the properties of netrin-1 and present netrin-1 receptors as regulators of tumourigenesis. RESULTS/CONCLUSION Netrin-1 and its receptors are unexplored critical targets in cancer.
Collapse
Affiliation(s)
- Agnès Bernet
- Université de Lyon, Apoptosis, Cancer and Development Laboratory, Equipe labellisée La Ligue, CNRS UMR5238, Centre Léon Bérard, 69008 Lyon, France.
| | | |
Collapse
|
22
|
Wang W, Reeves WB, Ramesh G. Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney. Am J Physiol Renal Physiol 2008; 294:F739-47. [PMID: 18216145 DOI: 10.1152/ajprenal.00508.2007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenous mechanisms exist to limit inflammation. One such molecule is netrin. This study examined the impact of ischemia-reperfusion (I/R) on netrin expression and the role of netrin in preventing renal inflammation and injury. All three isoforms of netrin (1, 3, and 4) are expressed in normal kidney. I/R significantly downregulated netrin-1 and -4 mRNA expression, whereas expression of netrin-3 was moderately upregulated at 24 h of reperfusion. The netrin receptor UNC5B mRNA increased at 3 h and but decreased at later time points. Expression of a second netrin receptor, DCC, was not altered significantly. I/R was associated with dramatic changes in netrin-1 protein abundance and localization. Netrin-1 protein levels increased between 3 and 24 h after reperfusion. Immunolocalization showed an interstitial distribution of netrin-1 in sham-operated kidneys which colocalized with Von Willebrand Factor suggesting the presence of netrin-1 in peritubular capillaries. After I/R, interstitial netrin-1 expression decreased and netrin-1 appeared in tubular epithelial cells. By 72 h after reperfusion, netrin-1 reappeared in the interstitium while tubular epithelial staining decreased significantly. Downregulation of netrin-1 in the interstitium corresponded with increased MCP-1 and IL-6 expression and infiltration of leukocytes into the reperfused kidney. Administration of recombinant netrin-1 significantly improved kidney function (blood urea nitrogen: 161 +/- 7 vs. 104 +/- 24 mg/dl, creatinine: 1.3 +/- 0.07 vs. 0.75 +/- 0.16 mg/dl, P < 0.05 at 24 h) and reduced tubular damage and leukocyte infiltration in the outer medulla. These results suggest that downregulation of netrin-1 in vascular endothelial cells may promote endothelial cell activation and infiltration of leukocytes into the kidney thereby enhancing tubular injury.
Collapse
Affiliation(s)
- Weiwei Wang
- Division of Nephrology, H040, Pennsylvania State Univ. College of Medicine, 500 Univ. Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
23
|
Howell DM, Morgan WJ, Jarjour AA, Spirou GA, Berrebi AS, Kennedy TE, Mathers PH. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus. J Comp Neurol 2007; 504:533-49. [PMID: 17701984 DOI: 10.1002/cne.21443] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development, multiple guidance cues direct the formation of appropriate synaptic connections. Factors that guide developing axons are known for various pathways throughout the mammalian brain; however, signals necessary to establish auditory connections are largely unknown. In the auditory brainstem the neurons whose axons traverse the midline in the ventral acoustic stria (VAS) are primarily located in the ventral cochlear nucleus (VCN) and project bilaterally to the superior olivary complex (SOC). The circumferential trajectory taken by developing VCN axons is similar to that of growing axons of spinal commissural neurons. Therefore, we reasoned that netrin-DCC and slit-robo signaling systems function in the guidance of VCN axons. VCN neurons express the transcription factor, mafB, as early as embryonic day (E) 13.5, thereby identifying the embryonic VCN for these studies. VCN axons extend toward the midline as early as E13, with many axons crossing by E14.5. During this time, netrin-1 and slit-1 RNAs are expressed at the brainstem midline. Additionally, neurons within the VCN express RNA for DCC, robo-1, and robo-2, and axons in the VAS are immunoreactive for DCC. VCN axons do not reach the midline of the brainstem in mice mutant for either the netrin-1 or DCC gene. VCN axons extend in pups lacking netrin-1, but most DCC-mutant samples lack VCN axonal outgrowth. Stereological cell estimates indicate only a modest reduction of VCN neurons in DCC-mutant mice. Taken together, these data show that a functional netrin-DCC signaling system is required for establishing proper VCN axonal projections in the auditory brainstem.
Collapse
Affiliation(s)
- David M Howell
- Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kinane TB. Lung development and implications for hypoplasia found in congenital diaphragmatic hernia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:117-24. [PMID: 17436303 DOI: 10.1002/ajmg.c.30124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is associated with various degrees of pulmonary hypoplasia and severe persistent pulmonary hypertension in the newborn. These conditions have significant implications for the outcome for the patient. Defects in early lung development are likely to be central to the generation of hypoplasia. A number of mouse models with defects in pathways that are central to lung development were found to have CDH. Understanding all aspects of early lung development will provide fresh insight into the pathogenesis of CDH and its associated conditions.
Collapse
Affiliation(s)
- T Bernard Kinane
- Pediatric Pulmonary, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Schneiders FI, Maertens B, Böse K, Li Y, Brunken WJ, Paulsson M, Smyth N, Koch M. Binding of netrin-4 to laminin short arms regulates basement membrane assembly. J Biol Chem 2007; 282:23750-8. [PMID: 17588941 DOI: 10.1074/jbc.m703137200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Netrins were first identified as neural guidance molecules, acting through receptors that are members of the DCC and UNC-5 family. All netrins share structural homology to the laminin N-terminal domains and the laminin epidermal growth factor-like domains of laminin short arms. Laminins use these domains to self-assemble into complex networks. Here we demonstrate that netrin-4 is a component of basement membranes and is integrated into the laminin polymer via interactions with the laminin gamma1 andgamma3 short arms. The binding is mediated through the laminin N-terminal domain of netrin-4. In contrast to netrin-4, other members of the netrin family do not bind to these laminin short arms. Moreover, a truncated form of netrin-4 completely inhibits laminin-111 self-assembly in vitro, and full-length netrin-4 can partially disrupt laminin self-interactions. When added to explant cultures, netrin-4 retards salivary gland branching morphogenesis.
Collapse
Affiliation(s)
- Fiona I Schneiders
- Center for Biochemistry, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Named after the Sanskrit word netr, which means 'one who guides', the netrin family of secreted proteins provides migrational cues in the developing central nervous system. Recently, netrins have also been shown to regulate diverse processes (such as cell adhesion, motility, proliferation, differentiation and, ultimately, cell survival) in a number of non-neuronal tissues. In some cases, netrins affect these functions through non-classic netrin receptors, prompting a renewed interest in these factors in and beyond the nervous system.
Collapse
Affiliation(s)
- Vincenzo Cirulli
- University of California San Diego, Department of Pediatrics, National Center for Microscopy and Imaging Research, Whittier Institute for Diabetes, La Jolla, California 92037, USA.
| | | |
Collapse
|
27
|
Ratcliffe EM, Setru SU, Chen JJ, Li ZS, D'Autréaux F, Gershon MD. Netrin/DCC-mediated attraction of vagal sensory axons to the fetal mouse gut. J Comp Neurol 2006; 498:567-80. [PMID: 16917820 DOI: 10.1002/cne.21027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vagal sensory axons and migrating neural crest-derived precursor cells follow similar pathways to reach the gut. The crest-derived cells express the netrin receptor deleted in colorectal cancer (DCC) and migrate toward netrins expressed by the intestinal mucosa and pancreas; this attraction is required for the formation of submucosal and pancreatic ganglia. We tested the hypothesis that enteric netrins also attract vagal sensory fibers. These axons were located as a function of age in fetal mice by applying the lipophilic tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) bilaterally to nodose ganglia. DiI-labeled axons were found in the esophagus and proximal stomach by E12 and, more distally, in the small bowel at E14-E16. Transcripts encoding DCC were expressed in the nodose ganglia of mice from E12 to adulthood but were developmentally regulated. Paraesophageal anterior and posterior vagal trunks were DCC immunoreactive from E12 to E16. Transcripts encoding netrin-1 were expressed in the developing foregut and midgut; netrin-1 immunoreactivity was detected in the outer gut mesenchyme and mucosal epithelium. Neurites from explanted E14 nodose ganglia grew selectively toward cocultured E14 distal foregut explants (P < 0.01). Antibodies to DCC specifically abolished this preferential outgrowth (P < 0.05). Nodose axons also grew selectively toward cocultured netrin-secreting 293-EBNA cells (P < 0.005); antibodies to DCC again blocked this preferential outgrowth (P < 0.05). These data suggest that netrins, which are expressed in the bowel, attract DCC-expressing vagal sensory axons.
Collapse
Affiliation(s)
- Elyanne M Ratcliffe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ, Kinane TB. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci U S A 2005; 102:14729-34. [PMID: 16203981 PMCID: PMC1253572 DOI: 10.1073/pnas.0506233102] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell migration plays important roles in embryonic development and inflammation, and this process is highly regulated to ensure tissue homeostasis. A number of barriers exist to prevent the inappropriate migration of leukocytes into healthy peripheral tissues, including retention of these cells in the inactive state and maintenance of the integrity and charge of the vascular endothelium. However, active signals also are likely to exist that can repulse cells or abolish existing cell migration. One such paradigm exists in the developing nervous system, where neuronal migration is mediated by a balance between chemoattractive and chemorepulsive signals. The ability of the guidance molecule netrin-1 to repulse or abolish attraction of neuronal cells expressing the UNC5b receptor makes it an attractive candidate for the regulation of inflammatory cell migration. Here, we show that netrin-1 is expressed on vascular endothelium, where it is regulated by infection and inflammatory cytokines. The netrin-1 receptor UNC5b is strongly expressed by leukocytes, upon which netrin-1 acts as a potent inhibitor of migration to different chemotactic stimuli both in vivo and in vitro. These data suggest that endothelial expression of netrin-1 may inhibit basal cell migration into tissues and that its down-regulation with the onset of sepsis/inflammation may facilitate leukocyte recruitment.
Collapse
Affiliation(s)
- Ngoc P Ly
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRJ 1414, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kato H, Kondoh H, Inoue T, Asanoma K, Matsuda T, Arima T, Kato K, Yoshikawa T, Wake N. Expression of DCC and netrin-1 in normal human endometrium and its implication in endometrial carcinogenesis. Gynecol Oncol 2004; 95:281-9. [DOI: 10.1016/j.ygyno.2004.07.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Indexed: 01/01/2023]
|
30
|
Yurchenco PD, Wadsworth WG. Assembly and tissue functions of early embryonic laminins and netrins. Curr Opin Cell Biol 2004; 16:572-9. [PMID: 15363809 DOI: 10.1016/j.ceb.2004.07.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vertebrate laminins and netrins share N-terminal domain structure, but appear to be only distantly related. Both families can be divided into different subfamilies on the basis of structural considerations. Recent observations suggest that specific laminin and netrin members have developmental functions that are highly conserved across species. Vertebrate laminin-1 (alpha1beta1gamma1) and laminin-10 (alpha5beta1gamma1), like the two Caenorhabditis elegans laminins, are embryonically expressed and are essential for basement membrane assembly. Basement membrane assembly is a cooperative process in which laminins polymerize through their LN domains and anchor to the cell surface through their G domains; this leads to cell signaling through integrins and dystroglycan (and possibly other receptors) recruited to the adherent laminin. Netrins may associate with this network through heterotypic LN domain interactions. Vertebrate netrin-1, like invertebrate UNC-6/netrins, is well known as an extracellular guidance cue that directs axon migration towards or away from the ventral midline. It also regulates cell adhesions and migrations, probably as a basement membrane component. Although sharing structural features, these two vertebrate protein families are quite distinct, having both retained members that mediate the ancestral developmental functions.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
31
|
Liu Y, Stein E, Oliver T, Li Y, Brunken WJ, Koch M, Tessier-Lavigne M, Hogan BL. Novel role for Netrins in regulating epithelial behavior during lung branching morphogenesis. Curr Biol 2004; 14:897-905. [PMID: 15186747 PMCID: PMC2925841 DOI: 10.1016/j.cub.2004.05.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/23/2004] [Accepted: 03/24/2004] [Indexed: 01/18/2023]
Abstract
The development of many organs, including the lung, depends upon a process known as branching morphogenesis, in which a simple epithelial bud gives rise to a complex tree-like system of tubes specialized for the transport of gas or fluids. Previous studies on lung development have highlighted a role for fibroblast growth factors (FGFs), made by the mesodermal cells, in promoting the proliferation, budding, and chemotaxis of the epithelial endoderm. Here, by using a three-dimensional culture system, we provide evidence for a novel role for Netrins, best known as axonal guidance molecules, in modulating the morphogenetic response of lung endoderm to exogenous FGFs. This effect involves inhibition of localized changes in cell shape and phosphorylation of the intracellular mitogen-activated protein kinase(s) (ERK1/2, for extracellular signal-regulated kinase-1 and -2), elicited by exogenous FGFs. The temporal and spatial expression of netrin 1, netrin 4, and Unc5b genes and the localization of Netrin-4 protein in vivo suggest a model in which Netrins in the basal lamina locally modulate and fine-tune the outgrowth and shape of emergent epithelial buds.
Collapse
Affiliation(s)
- Yuru Liu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Elke Stein
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06510
| | - Timothy Oliver
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong Li
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - William J. Brunken
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Manuel Koch
- Institute for Biochemistry II, University of Köln, 50931 Köln, Germany
| | | | - Brigid L.M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
- Correspondence:
| |
Collapse
|
32
|
Yebra M, Montgomery AMP, Diaferia GR, Kaido T, Silletti S, Perez B, Just ML, Hildbrand S, Hurford R, Florkiewicz E, Tessier-Lavigne M, Cirulli V. Recognition of the Neural Chemoattractant Netrin-1 by Integrins α6β4 and α3β1 Regulates Epithelial Cell Adhesion and Migration. Dev Cell 2003; 5:695-707. [PMID: 14602071 DOI: 10.1016/s1534-5807(03)00330-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Netrins, axon guidance cues in the CNS, have also been detected in epithelial tissues. In this study, using the embryonic pancreas as a model system, we show that Netrin-1 is expressed in a discrete population of epithelial cells, localizes to basal membranes, and specifically associates with elements of the extracellular matrix. We demonstrate that alpha6beta4 integrin mediates pancreatic epithelial cell adhesion to Netrin-1, whereas recruitment of alpha6beta4 and alpha3beta1 regulate the migration of CK19+/PDX1+ putative pancreatic progenitors on Netrin-1. These results provide evidence for the activation of epithelial cell adhesion and migration by a neural chemoattractant, and identify Netrin-1/integrin interactions as adhesive/guidance cues for epithelial cells.
Collapse
Affiliation(s)
- Mayra Yebra
- Department of Pediatrics, The Whittier Institute for Diabetes, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|