1
|
Mantoan Ritter L, Annear NMP, Baple EL, Ben-Chaabane LY, Bodi I, Brosson L, Cadwgan JE, Coslett B, Crosby AH, Davies DM, Daykin N, Dedeurwaerdere S, Dühring Fenger C, Dunlop EA, Elmslie FV, Girodengo M, Hambleton S, Jansen AC, Johnson SR, Kearley KC, Kingswood JC, Laaniste L, Lachlan K, Latchford A, Madsen RR, Mansour S, Mihaylov SR, Muhammed L, Oliver C, Pepper T, Rawlins LE, Schim van der Loeff I, Siddiqui A, Takhar P, Tatton-Brown K, Tee AR, Tibarewal P, Tye C, Ultanir SK, Vanhaesebroeck B, Zare B, Pal DK, Bateman JM. mTOR pathway diseases: challenges and opportunities from bench to bedside and the mTOR node. Orphanet J Rare Dis 2025; 20:256. [PMID: 40426219 DOI: 10.1186/s13023-025-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates key cellular processes including cell growth, autophagy and metabolism. Hyperactivation of the mTOR pathway causes a group of rare and ultrarare genetic diseases. mTOR pathway diseases have diverse clinical manifestations that are managed by distinct medical disciplines but share a common underlying molecular basis. There is a now a deep understanding of the molecular underpinning that regulates the mTOR pathway but effective treatments for most mTOR pathway diseases are lacking. Translating scientific knowledge into clinical applications to benefit the unmet clinical needs of patients is a major challenge common to many rare diseases. In this article we expound how mTOR pathway diseases provide an opportunity to coordinate basic and translational disease research across the group, together with industry, medical research foundations, charities and patient groups, by pooling expertise and driving progress to benefit patients. We outline the germline and somatic mutations in the mTOR pathway that cause rare diseases and summarise the prevalence, genetic basis, clinical manifestations, pathophysiology and current treatments for each disease in this group. We describe the challenges and opportunities for progress in elucidating the underlying mechanisms, improving diagnosis and prognosis, as well as the development and approval of new therapies for mTOR pathway diseases. We illustrate the crucial role of patient public involvement and engagement in rare disease and mTOR pathway disease research. Finally, we explain how the mTOR Pathway Diseases node, part of the Research Disease Research UK Platform, will address these challenges to improve the understanding, diagnosis and treatment of mTOR pathway diseases.
Collapse
Affiliation(s)
- Laura Mantoan Ritter
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Nicholas M P Annear
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | - Leila Y Ben-Chaabane
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Istvan Bodi
- King's College Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | | - Frances V Elmslie
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | - Marie Girodengo
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- The Francis Crick Institute, London, UK
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon R Johnson
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre and Biodiscovery Institute, Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Kelly C Kearley
- mTOR Node Advisory Panel (MAP), London, UK
- PTEN UK and Ireland Patient Group, London, UK
| | - John C Kingswood
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Katherine Lachlan
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Latchford
- Polyposis Registry, St Mark's Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | | | - Tom Pepper
- PTEN Research, Cheltenham, Gloucestershire, UK
| | | | - Ina Schim van der Loeff
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ata Siddiqui
- King's College Hospital NHS Foundation Trust, London, UK
| | | | - Katrina Tatton-Brown
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | - Charlotte Tye
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | | | | | | | - Deb K Pal
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Joseph M Bateman
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK.
| |
Collapse
|
2
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
3
|
Chou SP, Chuang YJ, Chen BS. Systems Biology Methods via Genome-Wide RNA Sequences to Investigate Pathogenic Mechanisms for Identifying Biomarkers and Constructing a DNN-Based Drug-Target Interaction Model to Predict Potential Molecular Drugs for Treating Atopic Dermatitis. Int J Mol Sci 2024; 25:10691. [PMID: 39409019 PMCID: PMC11477013 DOI: 10.3390/ijms251910691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to construct genome-wide genetic and epigenetic networks (GWGENs) of atopic dermatitis (AD) and healthy controls through systems biology methods based on genome-wide microarray data. Subsequently, the core GWGENs of AD and healthy controls were extracted from their real GWGENs by the principal network projection (PNP) method for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Then, we identified the abnormal signaling pathways by comparing the core signaling pathways of AD and healthy controls to investigate the pathogenesis of AD. Then, IL-1β, GATA3, Akt, and NF-κB were selected as biomarkers for their important roles in the abnormal regulation of downstream genes, leading to cellular dysfunctions in AD patients. Next, a deep neural network (DNN)-based drug-target interaction (DTI) model was pre-trained on DTI databases to predict molecular drugs that interact with these biomarkers. Finally, we screened the candidate molecular drugs based on drug toxicity, sensitivity, and regulatory ability as drug design specifications to select potential molecular drugs for these biomarkers to treat AD, including metformin, allantoin, and U-0126, which have shown potential for therapeutic treatment by regulating abnormal immune responses and restoring the pathogenic signaling pathways of AD.
Collapse
Affiliation(s)
- Sheng-Ping Chou
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| |
Collapse
|
4
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
5
|
Man A, Di Scipio M, Grewal S, Suk Y, Trinari E, Ejaz R, Whitney R. The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes (Basel) 2024; 15:332. [PMID: 38540392 PMCID: PMC10970281 DOI: 10.3390/genes15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 06/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway serves as a master regulator of cell growth, proliferation, and survival. Upregulation of the mTOR pathway has been shown to cause malformations of cortical development, medically refractory epilepsies, and neurodevelopmental disorders, collectively described as mTORopathies. Tuberous sclerosis complex (TSC) serves as the prototypical mTORopathy. Characterized by the development of benign tumors in multiple organs, pathogenic variants in TSC1 or TSC2 disrupt the TSC protein complex, a negative regulator of the mTOR pathway. Variants in critical domains of the TSC complex, especially in the catalytic TSC2 subunit, correlate with increased disease severity. Variants in less crucial exons and non-coding regions, as well as those undetectable with conventional testing, may lead to milder phenotypes. Despite the assumption of complete penetrance, expressivity varies within families, and certain variants delay disease onset with milder neurological effects. Understanding these genotype-phenotype correlations is crucial for effective clinical management. Notably, 15% of patients have no mutation identified by conventional genetic testing, with the majority of cases postulated to be caused by somatic TSC1/TSC2 variants which present complex diagnostic challenges. Advancements in genetic testing, prenatal screening, and precision medicine hold promise for changing the diagnostic and treatment paradigm for TSC and related mTORopathies. Herein, we explore the genetic and molecular mechanisms of TSC and other mTORopathies, emphasizing contemporary genetic methods in understanding and diagnosing the condition.
Collapse
Affiliation(s)
- Alice Man
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matteo Di Scipio
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shan Grewal
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yujin Suk
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elisabetta Trinari
- Division of Developmental Pediatrics, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
6
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
7
|
Khan MR, Yin X, Kang SU, Mitra J, Wang H, Ryu T, Brahmachari S, Karuppagounder SS, Kimura Y, Jhaldiyal A, Kim HH, Gu H, Chen R, Redding-Ochoa J, Troncoso J, Na CH, Ha T, Dawson VL, Dawson TM. Enhanced mTORC1 signaling and protein synthesis in pathologic α-synuclein cellular and animal models of Parkinson's disease. Sci Transl Med 2023; 15:eadd0499. [PMID: 38019930 DOI: 10.1126/scitranslmed.add0499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Pathologic α-synuclein plays an important role in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD). Disruption of proteostasis is thought to be central to pathologic α-synuclein toxicity; however, the molecular mechanism of this deregulation is poorly understood. Complementary proteomic approaches in cellular and animal models of PD were used to identify and characterize the pathologic α-synuclein interactome. We report that the highest biological processes that interacted with pathologic α-synuclein in mice included RNA processing and translation initiation. Regulation of catabolic processes that include autophagy were also identified. Pathologic α-synuclein was found to bind with the tuberous sclerosis protein 2 (TSC2) and to trigger the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which augmented mRNA translation and protein synthesis, leading to neurodegeneration. Genetic and pharmacologic inhibition of mTOR and protein synthesis rescued the dopamine neuron loss, behavioral deficits, and aberrant biochemical signaling in the α-synuclein preformed fibril mouse model and Drosophila transgenic models of pathologic α-synuclein-induced degeneration. Pathologic α-synuclein furthermore led to a destabilization of the TSC1-TSC2 complex, which plays an important role in mTORC1 activity. Constitutive overexpression of TSC2 rescued motor deficits and neuropathology in α-synuclein flies. Biochemical examination of PD postmortem brain tissues also suggested deregulated mTORC1 signaling. These findings establish a connection between mRNA translation deregulation and mTORC1 pathway activation that is induced by pathologic α-synuclein in cellular and animal models of PD.
Collapse
Affiliation(s)
- Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jaba Mitra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Taekyung Ryu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aanishaa Jhaldiyal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Hee Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Gu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Devanand M, V N S, Madhu K. Signaling mechanisms involved in the regulation of remyelination in multiple sclerosis: a mini review. J Mol Med (Berl) 2023:10.1007/s00109-023-02312-9. [PMID: 37084092 DOI: 10.1007/s00109-023-02312-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disease of the CNS that causes progressive disabilities, owing to CNS axon degeneration as a late result of demyelination. In the search for the prevention of axonal loss, mitigating inflammatory attacks in the CNS and myelin restoration are two possible approaches. As a result, therapies that target diverse signaling pathways involved in neuroprotection and remyelination have the potential to overcome the challenges in the development of multiple sclerosis treatments. LINGO1 (Leucine rich repeat and Immunoglobulin domain containing, Nogo receptor- interaction protein), AKT/PIP3/mTOR, Notch, Wnt, RXR (Retinoid X receptor gamma), and Nrf2 (nuclear factor erythroid 2-related factor 2) signaling pathways are highlighted in this section. This article reviews the present knowledge regarding numerous signaling pathways and their functions in regulating remyelination in multiple sclerosis pathogenesis. These pathways are potential biomarkers and therapeutic targets in MS.
Collapse
Affiliation(s)
- Midhuna Devanand
- Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha V N
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Krishnadas Madhu
- Department of Pharmacology, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
9
|
Poddar NK, Agarwal D, Agrawal Y, Wijayasinghe YS, Mukherjee A, Khan S. Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166524. [PMID: 35985445 DOI: 10.1016/j.bbadis.2022.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Yamini Agrawal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Arunima Mukherjee
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation, NSW, Australia; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medical Lab Technology, Indian Institute of health and Technology (IIHT), Deoband, 247554 Saharanpur, UP, India.
| |
Collapse
|
10
|
Gupta S, Kumar M, Chaudhuri S, Kumar A. The non-canonical nuclear functions of key players of the PI3K-AKT-MTOR pathway. J Cell Physiol 2022; 237:3181-3204. [PMID: 35616326 DOI: 10.1002/jcp.30782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022]
Abstract
The PI3K-AKT-MTOR signal transduction pathway is one of the essential signalling cascades within the cell due to its involvement in many vital functions. The pathway initiates with the recruitment of phosphatidylinositol-3 kinases (PI3Ks) onto the plasma membrane, generating phosphatidylinositol-3,4,5-triphosphate [PtdIns(3,4,5)P3 ] and subsequently activating AKT. Being the central node of the PI3K network, AKT activates the mechanistic target of rapamycin kinase complex 1 (MTORC1) via Tuberous sclerosis complex 2 inhibition in the cytoplasm. Although the cytoplasmic role of the pathway has been widely explored for decades, we now know that most of the effector molecules of the PI3K axis diverge from the canonical route and translocate to other cell organelles including the nucleus. The presence of phosphoinositides (PtdIns) inside the nucleus itself indicates the existence of a nuclear PI3K signalling. The nuclear localization of these signaling components is evident in regulating many nuclear processes like DNA replication, transcription, DNA repair, maintenance of genomic integrity, chromatin architecture, and cell cycle control. Here, our review intends to present a comprehensive overview of the nuclear functions of the PI3K-AKT-MTOR signaling biomolecules.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mukund Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Soumi Chaudhuri
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Patel A, Perl A. Redox Control of Integrin-Mediated Hepatic Inflammation in Systemic Autoimmunity. Antioxid Redox Signal 2022; 36:367-388. [PMID: 34036799 PMCID: PMC8982133 DOI: 10.1089/ars.2021.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Significance: Systemic autoimmunity affects 3%-5% of the population worldwide. Systemic lupus erythematosus (SLE) is a prototypical form of such condition, which affects 20-150 of 100,000 people globally. Liver dysfunction, defined by increased immune cell infiltration into the hepatic parenchyma, is an understudied manifestation that affects up to 20% of SLE patients. Autoimmunity in SLE involves proinflammatory lineage specification in the immune system that occurs with oxidative stress and profound changes in cellular metabolism. As the primary metabolic organ of the body, the liver is uniquely capable to encounter oxidative stress through first-pass derivatization and filtering of waste products. Recent Advances: The traffic of immune cells from their development through recirculation in the liver is guided by cell adhesion molecules (CAMs) and integrins, cell surface proteins that tightly anchor cells together. The surface expression of CAMs and integrins is regulated via endocytic traffic that is sensitive to oxidative stress. Reactive oxygen species (ROS) that elicit oxidative stress in the liver may originate from the mitochondria, the cytosol, or the cell membrane. Critical Issues: While hepatic ROS production is a source of vulnerability, it also modulates the development and function of the immune system. In turn, the liver employs antioxidant defense mechanisms to protect itself from damage that can be harnessed to serve as therapeutic mechanisms against autoimmunity, inflammation, and development of hepatocellular carcinoma. Future Directions: This review is aimed at delineating redox control of integrin signaling in the liver and checkpoints of regulatory impact that can be targeted for treatment of inflammation in systemic autoimmunity. Antioxid. Redox Signal. 36, 367-388.
Collapse
Affiliation(s)
- Akshay Patel
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
12
|
Heikkinen T, Bragge T, Kuosmanen J, Parkkari T, Gustafsson S, Kwan M, Beltran J, Ghavami A, Subramaniam S, Shahani N, Ramírez-Jarquín UN, Park L, Muñoz-Sanjuán I, Marchionini DM. Global Rhes knockout in the Q175 Huntington's disease mouse model. PLoS One 2021; 16:e0258486. [PMID: 34648564 PMCID: PMC8516231 DOI: 10.1371/journal.pone.0258486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington's disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis. Reports have varied on whether Rhes reduction is desirable for HD. Here we characterize multiple behavioral and molecular endpoints in the Q175 HD mouse model with genetic Rhes knockout (KO). Genetic RhesKO in the Q175 female mouse resulted in both subtle attenuation of Q175 phenotypic features, and detrimental effects on other kinematic features. The Q175 females exhibited measurable pathogenic deficits, as measured by MRI, MRS and DARPP32, however, RhesKO had no effect on these readouts. Additionally, RhesKO in Q175 mixed gender mice deficits did not affect mTOR signaling, autophagy or mutant huntingtin levels. We conclude that global RhesKO does not substantially ameliorate or exacerbate HD mouse phenotypes in Q175 mice.
Collapse
Affiliation(s)
| | - Timo Bragge
- Charles River Discovery Services, Kuopio, Finland
| | | | | | | | - Mei Kwan
- Psychogenics, Paramus, New Jersey, United States of America
| | - Jose Beltran
- Psychogenics, Paramus, New Jersey, United States of America
| | - Afshin Ghavami
- Psychogenics, Paramus, New Jersey, United States of America
| | - Srinivasa Subramaniam
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | - Neelam Shahani
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | | | - Larry Park
- CHDI Management/CHDI Foundation, New York, New York, United States of America
| | | | | |
Collapse
|
13
|
Jeong A, Cheng S, Zhong R, Bennett DA, Bergö MO, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun 2021; 9:129. [PMID: 34315531 PMCID: PMC8314463 DOI: 10.1186/s40478-021-01231-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pathogenic mechanisms underlying the development of Alzheimer's disease (AD) remain elusive and to date there are no effective prevention or treatment for AD. Farnesyltransferase (FT) catalyzes a key posttranslational modification process called farnesylation, in which the isoprenoid farnesyl pyrophosphate is attached to target proteins, facilitating their membrane localization and their interactions with downstream effectors. Farnesylated proteins, including the Ras superfamily of small GTPases, are involved in regulating diverse physiological and pathological processes. Emerging evidence suggests that isoprenoids and farnesylated proteins may play an important role in the pathogenesis of AD. However, the dynamics of FT and protein farnesylation in human brains and the specific role of neuronal FT in the pathogenic progression of AD are not known. Here, using postmortem brain tissue from individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), or Alzheimer's dementia, we found that the levels of FT and membrane-associated H-Ras, an exclusively farnesylated protein, and its downstream effector ERK were markedly increased in AD and MCI compared with NCI. To elucidate the specific role of neuronal FT in AD pathogenesis, we generated the transgenic AD model APP/PS1 mice with forebrain neuron-specific FT knockout, followed by a battery of behavioral assessments, biochemical assays, and unbiased transcriptomic analysis. Our results showed that the neuronal FT deletion mitigates memory impairment and amyloid neuropathology in APP/PS1 mice through suppressing amyloid generation and reversing the pathogenic hyperactivation of mTORC1 signaling. These findings suggest that aberrant upregulation of protein farnesylation is an early driving force in the pathogenic cascade of AD and that targeting FT or its downstream signaling pathways presents a viable therapeutic strategy against AD.
Collapse
|
14
|
Sethna S, Scott PA, Giese APJ, Duncan T, Jian X, Riazuddin S, Randazzo PA, Redmond TM, Bernstein SL, Riazuddin S, Ahmed ZM. CIB2 regulates mTORC1 signaling and is essential for autophagy and visual function. Nat Commun 2021; 12:3906. [PMID: 34162842 PMCID: PMC8222345 DOI: 10.1038/s41467-021-24056-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial neurodegenerative disorder. Although molecular mechanisms remain elusive, deficits in autophagy have been associated with AMD. Here we show that deficiency of calcium and integrin binding protein 2 (CIB2) in mice, leads to age-related pathologies, including sub-retinal pigment epithelium (RPE) deposits, marked accumulation of drusen markers APOE, C3, Aβ, and esterified cholesterol, and impaired visual function, which can be rescued using exogenous retinoids. Cib2 mutant mice exhibit reduced lysosomal capacity and autophagic clearance, and increased mTORC1 signaling-a negative regulator of autophagy. We observe concordant molecular deficits in dry-AMD RPE/choroid post-mortem human tissues. Mechanistically, CIB2 negatively regulates mTORC1 by preferentially binding to 'nucleotide empty' or inactive GDP-loaded Rheb. Upregulated mTORC1 signaling has been implicated in lymphangioleiomyomatosis (LAM) cancer. Over-expressing CIB2 in LAM patient-derived fibroblasts downregulates hyperactive mTORC1 signaling. Thus, our findings have significant implications for treatment of AMD and other mTORC1 hyperactivity-associated disorders.
Collapse
Affiliation(s)
- Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick A Scott
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheikh Riazuddin
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven L Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Proietti Onori M, Koene LMC, Schäfer CB, Nellist M, de Brito van Velze M, Gao Z, Elgersma Y, van Woerden GM. RHEB/mTOR hyperactivity causes cortical malformations and epileptic seizures through increased axonal connectivity. PLoS Biol 2021; 19:e3001279. [PMID: 34038402 PMCID: PMC8186814 DOI: 10.1371/journal.pbio.3001279] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/08/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Hyperactivation of the mammalian target of rapamycin (mTOR) pathway can cause malformation of cortical development (MCD) with associated epilepsy and intellectual disability (ID) through a yet unknown mechanism. Here, we made use of the recently identified dominant-active mutation in Ras Homolog Enriched in Brain 1 (RHEB), RHEBp.P37L, to gain insight in the mechanism underlying the epilepsy caused by hyperactivation of the mTOR pathway. Focal expression of RHEBp.P37L in mouse somatosensory cortex (SScx) results in an MCD-like phenotype, with increased mTOR signaling, ectopic localization of neurons, and reliable generalized seizures. We show that in this model, the mTOR-dependent seizures are caused by enhanced axonal connectivity, causing hyperexcitability of distally connected neurons. Indeed, blocking axonal vesicle release from the RHEBp.P37L neurons alone completely stopped the seizures and normalized the hyperexcitability of the distally connected neurons. These results provide new evidence of the extent of anatomical and physiological abnormalities caused by mTOR hyperactivity, beyond local malformations, which can lead to generalized epilepsy. Hyperactivation of the mTOR pathway can cause cortical malformations and epilepsy. This study reveals that these effects can be uncoupled and that mTOR hyperactivity in a limited set of neurons induces hyperexcitability in non-targeted, healthy neurons, suggesting that it is actually these changes that may underlie mTOR-driven epileptogenesis.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Linda M. C. Koene
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Carmen B. Schäfer
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid Holland, the Netherlands
| | | | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid Holland, the Netherlands
- * E-mail: (YE); (GMvW)
| | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid Holland, the Netherlands
- * E-mail: (YE); (GMvW)
| |
Collapse
|
16
|
Xiao B, Zuo D, Hirukawa A, Cardiff RD, Lamb R, Sonenberg N, Muller WJ. Rheb1-Independent Activation of mTORC1 in Mammary Tumors Occurs through Activating Mutations in mTOR. Cell Rep 2021; 31:107571. [PMID: 32348753 DOI: 10.1016/j.celrep.2020.107571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 11/25/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a master modulator of cellular growth, and its aberrant regulation is recurrently documented within breast cancer. While the small GTPase Rheb1 is the canonical activator of mTORC1, Rheb1-independent mechanisms of mTORC1 activation have also been reported but have not been fully understood. Employing multiple transgenic mouse models of breast cancer, we report that ablation of Rheb1 significantly impedes mammary tumorigenesis. In the absence of Rheb1, a block in tumor initiation can be overcome by multiple independent mutations in Mtor to allow Rheb1-independent reactivation of mTORC1. We further demonstrate that the mTOR kinase is indispensable for tumor initiation as the genetic ablation of mTOR abolishes mammary tumorigenesis. Collectively, our findings demonstrate that mTORC1 activation is indispensable for mammary tumor initiation and that tumors acquire alternative mechanisms of mTORC1 activation.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Dongmei Zuo
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alison Hirukawa
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - William J Muller
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
17
|
Torres W, Nava M, Galbán N, Gómez Y, Morillo V, Rojas M, Cano C, Chacín M, D Marco L, Herazo Y, Velasco M, Bermúdez V, Rojas-Quintero J. Anti-Aging Effect of Metformin: A Molecular and Therapeutical Perspective. Curr Pharm Des 2021; 26:4496-4508. [PMID: 32674728 DOI: 10.2174/1381612826666200716161610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Aging is a time-dependent inevitable process, in which cellular homeostasis is affected, which has an impact on tissue function. This represents a risk factor for the development of numerous non-transmissible diseases. In consequence, the scientific community continues to search for therapeutic measures capable of improving quality of life and delaying cellular aging. At the center of this research is metformin, a widely used drug in Type 2 Diabetes Mellitus treatment that has a reduced adverse effects profile. Furthermore, there is evidence that this drug has beneficial health effects that go beyond its anti-hyperglycemic properties. Among these effects, its geronto-protection capability stands out. There is growing evidence that points out to an increased life expectancy as well as the quality of life in model organisms treated with metformin. Therefore, there is an abundance of research centered on elucidating the mechanism through which metformin has its anti-aging effects. Among these, the AMPK, mTORC1, SIRT1, FOXO, NF.kB, and DICER1 pathways can be mentioned. Furthermore, studies have highlighted the possibility of a role for the gut microbiome in these processes. The next step is the design of clinical essays that have as a goal evaluating the efficacy and safety of metformin as an anti-aging drug in humans to create a paradigm in the medical horizon. The question being if metformin is, in fact, the new antiaging therapy in humans?
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nestor Galbán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology Department, Valencia, España
| | - Yaneth Herazo
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacologic Unit, Vargas School of Medicine, Universidad Central de Venezuela, Caracas,
Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| |
Collapse
|
18
|
CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. Br J Cancer 2020; 123:1749-1756. [PMID: 32968206 PMCID: PMC7723036 DOI: 10.1038/s41416-020-01087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multi-targeted tyrosine kinase inhibitors (TKIs) are the standard of care for patients with advanced clear cell renal cell carcinoma (ccRCC). However, a significant number of ccRCC patients are primarily refractory to targeted therapeutics, showing neither disease stabilisation nor clinical benefits. METHODS We used CRISPR/Cas9-based high-throughput loss of function (LOF) screening to identify cellular factors involved in the resistance to sunitinib. Next, we validated druggable molecular factors that are synthetically lethal with sunitinib treatment using cell and animal models of ccRCC. RESULTS Our screening identified farnesyltransferase among the top hits contributing to sunitinib resistance in ccRCC. Combined treatment with farnesyltransferase inhibitor lonafarnib potently augmented the anti-tumour efficacy of sunitinib both in vitro and in vivo. CONCLUSION CRISPR/Cas9 LOF screening presents a promising approach to identify and target cellular factors involved in the resistance to anti-cancer therapeutics.
Collapse
|
19
|
Cespedes A, Villa M, Benito-Cuesta I, Perez-Alvarez MJ, Ordoñez L, Wandosell F. Energy-Sensing Pathways in Ischemia: The Counterbalance Between AMPK and mTORC. Curr Pharm Des 2020; 25:4763-4770. [PMID: 31820693 DOI: 10.2174/1381612825666191210152156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/06/2019] [Indexed: 01/02/2023]
Abstract
Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow. The present review aims to analyze to what extent the lack of each of the elements of the system leads to damage and which mechanisms are unaffected by this deficiency. We believe that the specific analysis of the effect of lack of each component could lead to the emergence of new therapeutic targets for this important brain pathology.
Collapse
Affiliation(s)
- Angel Cespedes
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Research Group of Neurodegenerative Diseases, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics - Tolima University, Santa Helena - 730006299, Ibagué, Colombia
| | - Mario Villa
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Departamento de Biología (Fisiología Animal). Facultad de Ciencias. Universidad Autónoma de Madrid. C/Darwin 2. 28049 Madrid, Spain
| | - Irene Benito-Cuesta
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Maria J Perez-Alvarez
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Departamento de Biología (Fisiología Animal). Facultad de Ciencias. Universidad Autónoma de Madrid. C/Darwin 2. 28049 Madrid, Spain
| | - Lara Ordoñez
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
20
|
The PI3K-Akt-mTOR Signaling Pathway in Human Acute Myeloid Leukemia (AML) Cells. Int J Mol Sci 2020; 21:ijms21082907. [PMID: 32326335 PMCID: PMC7215987 DOI: 10.3390/ijms21082907] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Malignant cell growth is characterized by disruption of normal intracellular signaling, caused by mutations or aberrant external signaling. The phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway (PI3K-Akt-mTOR pathway) is among one of the intracellular pathways aberrantly upregulated in cancers including AML. Activation of this pathway seems important in leukemogenesis, and given the central role of this pathway in metabolism, the bioenergetics of AML cells may depend on downstream signaling within this pathway. Furthermore, observations suggest that constitutive activation of the PI3K-Akt-mTOR pathway differs between patients, and that increased activity within this pathway is an adverse prognostic parameter in AML. Pharmacological targeting of the PI3K-Akt-mTOR pathway with specific inhibitors results in suppression of leukemic cell growth. However, AML patients seem to differ regarding their susceptibility to various small-molecule inhibitors, reflecting biological heterogeneity in the intracellular signaling status. These findings should be further investigated in both preclinical and clinical settings, along with the potential use of this pathway as a prognostic biomarker, both in patients receiving intensive curative AML treatment and in elderly/unfit receiving AML-stabilizing treatment.
Collapse
|
21
|
Ammanathan V, Mishra P, Chavalmane AK, Muthusamy S, Jadhav V, Siddamadappa C, Manjithaya R. Restriction of intracellular Salmonella replication by restoring TFEB-mediated xenophagy. Autophagy 2019; 16:1584-1597. [PMID: 31744366 DOI: 10.1080/15548627.2019.1689770] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macroautophagy/autophagy functions as a part of the innate immune system in clearing intracellular pathogens. Although this process is well known, the mechanisms that control antibacterial autophagy are not clear. In this study we show that during intracellular Salmonella typhimurium infection, the activity of TFEB (transcription factor EB), a master regulator of autophagy and lysosome biogenesis, is suppressed by maintaining it in a phosphorylated state on the lysosomes. Furthermore, we have identified a novel, antibacterial small molecule autophagy (xenophagy) modulator, acacetin. The xenophagy effect exerted by acacetin occurs in an MTOR (mechanistic target of rapamycin kinase)-independent, TFEB-dependent manner. Acacetin treatment results in persistently maintaining active TFEB in the nucleus and also in TFEB mediated induction of functional lysosomes that target Salmonella-containing vacuoles (SCVs). The enhanced proteolytic activity due to deployment of lysosomes results in clamping down Salmonella replication in SCVs. Acacetin is effective as a xenophagy compound in an in vivo mouse model of infection and reduces intracellular Salmonella burden. ABBREVIATIONS 3-MA: 3-methyladenine; BafA1: bafilomycin A1; CFU: colony-forming units; DQ-BSA: dye quenched-bovine serum albumin; EEA1: early endosome antigen 1; FITC: fluorescein isothiocyanate; FM 4-64: pyridinium,4-(6-[4-{diethylamino}phenyl]-1,3,5-hexatrienyl)-1-(3[triethylammonio] propyl)-dibromide; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; MAPILC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; RFP: red fluorescent protein; SCVs: Salmonella-containing vacuoles; SD: standard deviation; SDS: sodium dodecyl sulfate; SEM: standard mean error; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Veena Ammanathan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| | - Piyush Mishra
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India.,Mitocare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University , Philadelphia, PA, USA
| | - Aravinda K Chavalmane
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India.,School of Biological Sciences, Nanyang Technological University , Singapore, Singapore
| | | | - Vidya Jadhav
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India.,Department of Neurosciences, University of Montreal , Quebec, Canada
| | | | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| |
Collapse
|
22
|
Jahng JWS, Alsaadi RM, Palanivel R, Song E, Hipolito VEB, Sung HK, Botelho RJ, Russell RC, Sweeney G. Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Rep 2019; 20:e47911. [PMID: 31441223 PMCID: PMC6776927 DOI: 10.15252/embr.201947911] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Erfei Song
- Department of BiologyYork UniversityTorontoONCanada
| | | | | | - Roberto Jorge Botelho
- Department of Chemistry and Biology and the Molecular Science Graduate ProgramRyerson UniversityTorontoONCanada
| | | | - Gary Sweeney
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
23
|
Tian Y, Shen L, Li F, Yang J, Wan X, Ouyang M. Silencing of RHEB inhibits cell proliferation and promotes apoptosis in colorectal cancer cells via inhibition of the mTOR signaling pathway. J Cell Physiol 2019; 235:442-453. [PMID: 31332784 DOI: 10.1002/jcp.28984] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/28/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
Colorectal cancer (CRC) is commonly known as one of the most prominent reasons for cancer-related death in China. Ras homolog enriched in brain (RHEB) and the mammalian target activity of rapamycin (mTOR) signaling pathway were found correlated with CRC, but their specific interaction in CRC was still to be investigated. Therefore, we explored whether RHEB gene silencing affected the cell proliferation, differentiation, and apoptosis by directly targeting the mTOR signaling pathway in cells previously harvested from CRC patients. A microarray analysis was subsequently conducted to investigate the relationship between RHEB and mTOR. Eighty-three adjacent normal tissues and CRC tissues were selected. Immunohistochemistry was carried out to detect the positive expression rates of RHEB and Ki-67 in the CRC tissues. Cells were then transfected with different siRNAs to investigate the potential effects RHEB would have on CRC progression. The expressions of RHEB, 4EBP1, ribosomal protein S6 kinase (p70S6K), proliferating cell nuclear antigen (PCNA), B cell lymphoma 2 (bcl-2), and bcl-2-associated X protein (bax) were determined and then the cell cycle, cell proliferation, and apoptotic rate were also measured. We identified RHEB and mTOR as upregulated genes in CRC. Cells treated with RHEB silencing showed a decreased extent of mTOR, p70S6K, 4EBP1 phosphorylation and expression of RHEB, Ki-67, mTOR, p70S6K, 4EBP1, bcl-2, and PCNA as well as decreased activity of cell proliferation and differentiation; although, the expression of bax was evidently higher. Collectively, our data propose the idea that RHEB gene silencing might repress cell proliferation and differentiation while accelerating apoptosis via inactivating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuxi Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoping Wan
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Zhang F, Lv HZ, Liu JM, Ye XY, Wang CC. UNBS5162 inhibits colon cancer growth via suppression of PI3K/Akt signaling pathway. Med Sci (Paris) 2018; 34 Focus issue F1:99-104. [PMID: 30403183 DOI: 10.1051/medsci/201834f117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colon cancer is a common cause of cancer-related death worldwide. However, the underlying mechanism of tumor progression of colon cancer remains far from being elucidated. In the present study, we report the role of UNBS5162 in colon cancer. UNBS5162 is a naphthalimide that can intercalate into DNA and suppress the expression level of CXCL chemokines. Here, we investigated its effect on cell proliferation, mobility and apoptosis in HCT116 cells, and explored the underlying mechanism. A CCK8 assay revealed that UNBS5162 can block the proliferation of colon cancer cells. Base on a Transwell assay, we showed that cell migration and invasion ability of HCT116 cells are inhibited by UNBS5162. In addition, Annexin V-FITC/PI assay and Western blot analysis were performed to detect whether UNBS5162 could induce cell apoptosis. The results indicated that UNBS5162 increases the number of apoptotic cells remarkably. Furthermore, Western blot analysis demonstrated that UNBS5162 down-regulates the expression level of Bcl2, and up-regulates that of Bax as well as the level of activated Caspase-3. Moreover, we examined the impact of UNBS5162 on PI3K/Akt signaling pathway. UNBS5162 substantially inhibited the phosphorylation of Akt and its downstream effector mTOR, and reduced the expression of p-70. Taken together, these results suggest that UNBS5162 should be considered as a potent therapeutic anticancer agent that targets the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Fan Zhang
- Gastrointestinal Surgery Department, the First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630 PR China
| | - Hui-Zeng Lv
- Department 1 of General Surgery, the 5th Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Ji-Ming Liu
- Department 1 of General Surgery, the 5th Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Xiao-Yong Ye
- Department 1 of General Surgery, the 5th Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Cun-Chuan Wang
- Gastrointestinal Surgery Department, the First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630 PR China
| |
Collapse
|
25
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
26
|
Gebregiworgis T, Marshall CB, Nishikawa T, Radulovich N, Sandí MJ, Fang Z, Rottapel R, Tsao MS, Ikura M. Multiplexed Real-Time NMR GTPase Assay for Simultaneous Monitoring of Multiple Guanine Nucleotide Exchange Factor Activities from Human Cancer Cells and Organoids. J Am Chem Soc 2018. [PMID: 29543440 DOI: 10.1021/jacs.7b13703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Small GTPases (sGTPases) are critical switch-like regulators that mediate several important cellular functions and are often mutated in human cancers. They are activated by guanine nucleotide exchange factors (GEFs), which specifically catalyze the exchange of GTP for GDP. GEFs coordinate signaling networks in normal cells, and are frequently deregulated in cancers. sGTPase signaling pathways are complex and interconnected; however, most GEF assays do not reveal such complexity. In this Communication, we describe the development of a unique real-time NMR-based multiplexed GEF assay that employs distinct isotopic labeling schemes for each sGTPase protein to enable simultaneous observation of six proteins of interest. We monitor nucleotide exchange of KRas, Rheb, RalB, RhoA, Cdc42 and Rac1 in a single system, and assayed the activities of GEFs in lysates of cultured human cells and 3D organoids derived from pancreatic cancer patients. We observed potent activation of RhoA by lysates of HEK293a cells transfected with GEF-H1, along with weak stimulation of Rac1, which we showed is indirect. Our functional analyses of pancreatic cancer-derived organoids revealed higher GEF activity for RhoA than other sGTPases, in line with RNA-seq data indicating high expression of RhoA-specific GEFs.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Tadateru Nishikawa
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - María-José Sandí
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada.,Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A1 , Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| |
Collapse
|
27
|
Perez-Alvarez MJ, Villa Gonzalez M, Benito-Cuesta I, Wandosell FG. Role of mTORC1 Controlling Proteostasis after Brain Ischemia. Front Neurosci 2018; 12:60. [PMID: 29497356 PMCID: PMC5818460 DOI: 10.3389/fnins.2018.00060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/24/2018] [Indexed: 01/24/2023] Open
Abstract
Intense efforts are being undertaken to understand the pathophysiological mechanisms triggered after brain ischemia and to develop effective pharmacological treatments. However, the underlying molecular mechanisms are complex and not completely understood. One of the main problems is the fact that the ischemic damage is time-dependent and ranges from negligible to massive, involving different cell types such as neurons, astrocytes, microglia, endothelial cells, and some blood-derived cells (neutrophils, lymphocytes, etc.). Thus, approaching such a complicated cellular response generates a more complex combination of molecular mechanisms, in which cell death, cellular damage, stress and repair are intermixed. For this reason, animal and cellular model systems are needed in order to dissect and clarify which molecular mechanisms have to be promoted and/or blocked. Brain ischemia may be analyzed from two different perspectives: that of oxygen deprivation (hypoxic damage per se) and that of deprivation of glucose/serum factors. For investigations of ischemic stroke, middle cerebral artery occlusion (MCAO) is the preferred in vivo model, and uses two different approaches: transient (tMCAO), where reperfusion is permitted; or permanent (pMCAO). As a complement to this model, many laboratories expose different primary cortical neuron or neuronal cell lines to oxygen-glucose deprivation (OGD). This ex vivo model permits the analysis of the impact of hypoxic damage and the specific response of different cell types implicated in vivo, such as neurons, glia or endothelial cells. Using in vivo and neuronal OGD models, it was recently established that mTORC1 (mammalian Target of Rapamycin Complex-1), a protein complex downstream of PI3K-Akt pathway, is one of the players deregulated after ischemia and OGD. In addition, neuroprotective intervention either by estradiol or by specific AT2R agonists shows an important regulatory role for the mTORC1 activity, for instance regulating vascular endothelial growth factor (VEGF) levels. This evidence highlights the importance of understanding the role of mTORC1 in neuronal death/survival processes, as it could be a potential therapeutic target. This review summarizes the state-of-the-art of the complex kinase mTORC1 focusing in upstream and downstream pathways, their role in central nervous system and their relationship with autophagy, apoptosis and neuroprotection/neurodegeneration after ischemia/hypoxia.
Collapse
Affiliation(s)
- Maria J Perez-Alvarez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mario Villa Gonzalez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Benito-Cuesta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
28
|
Li F, Zeng J, Gao Y, Guan Z, Ma Z, Shi Q, Du C, Jia J, Xu S, Wang X, Chang L, He D, Guo P. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma. PLoS One 2015; 10:e0138390. [PMID: 26397365 PMCID: PMC4580411 DOI: 10.1371/journal.pone.0138390] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022] Open
Abstract
G9a has been reported to highly express in bladder transitional cell carcinoma (TCC) and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incorporation assay and colony formation assay. G9a inhibition induced autophagy like morphology as determined by transmission electron microscope and LC-3 fluorescence assay. In addition, autophagy flux was induced by G9a inhibition in TCC cells, as determined by p62 turnover assay and LC-3 turnover assay. The autophagy induced positively contributed to the inhibition of cell proliferation because the growth attenuation capacity of G9a inhibition was reversed by autophagy inhibitors 3-MA. Mechanically, AMPK/mTOR pathway was identified to be involved in the regulation of G9a inhibition induced autophagy. Intensively activating mTOR by Rheb overexpression attenuated autophagy and autophagic cell death induced by G9a inhibition. In addition, pre-inhibiting AMPK by Compound C attenuated autophagy together with the anti-proliferation effect induced by G9a inhibition while pre-activating AMPK by AICAR enhanced them. In conclusion, our results indicate that G9a inhibition induces autophagy through activating AMPK/mTOR pathway and the autophagy induced positively contributes to the inhibition of cell proliferation in TCC cells. These findings shed some light on the functional role of G9a in cell metabolism and suggest that G9a might be a therapeutic target in bladder TCC in the future.
Collapse
Affiliation(s)
- Feng Li
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jin Zeng
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yang Gao
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhenfeng Guan
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhenkun Ma
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi Shi
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chong Du
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing Jia
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shan Xu
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Luke Chang
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dalin He
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- * E-mail: (PG); (DH)
| | - Peng Guo
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- * E-mail: (PG); (DH)
| |
Collapse
|