1
|
Carvalhal G, Peralta-Jiménez GA, Roca Mora MM, Ayasa L, Barrera V, Advani K, Anzueto A, Aljazeeri J. Ensifentrine vs placebo for chronic obstructive pulmonary disease: a systematic review and meta-analysis of randomized clinical trials. Expert Rev Respir Med 2025:1-10. [PMID: 40252011 DOI: 10.1080/17476348.2025.2493367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION To evaluate the efficacy and safety of ensifentrine in chronic obstructive pulmonary disease (COPD). METHODS We searched electronic databases and registries until 25 January 2025, for randomized clinical trials (RCTs) comparing ensifentrine vs placebo in patients with COPD. Primary outcomes include forced expiratory volume in one second (FEV₁) area under the curve (AUC), peak FEV₁, and morning trough FEV₁. RESULTS Ten RCTs involving 2,589 patients were included. Compared with placebo, ensifentrine improved FEV₁ AUC by 104.24 ml (95% CI, 74.03 to 133.44; moderate certainty) on day 1 and by 90.37 ml (95% CI, 54.94 to 125.81; moderate certainty) at study end. Ensifentrine increased peak FEV₁ by 140.99 ml on day 1 (95% CI, 107.48 to 174.5; moderate certainty) and by 118.98 ml at the final assessment (95% CI, 86.49 to 151.47; moderate certainty). Ensifentrine improved morning trough FEV₁ by 42.15 ml (95% CI, 19.87 to 64.43; high certainty). Dose-response analysis showed a bell-shaped curve for all outcomes. Ensifentrine did not significantly differ from placebo in adverse events or improvements in COPD symptoms and quality of life. CONCLUSIONS Compared with placebo, ensifentrine improved lung function in COPD. Larger RCTs are needed to integrate this bronchodilator benefit with patient-centered outcomes. PROSPERO REGISTRATION CRD42024571928.
Collapse
Affiliation(s)
- Giulia Carvalhal
- Department of Medicine, Federal University of Campina Grande, Paraíba, Brazil
| | | | | | - Laith Ayasa
- Beth Israel Deaconess Medical Center, Department of Surgery, Division of Thoracic Surgery and Interventional Pulmonolgy, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Vivian Barrera
- Department of Geriatrics, Changi General Hospital, Simei, Singapore
| | - Kavita Advani
- Department of Medicine, University of Connecticut School of Medicine, Hartford, CT, USA
| | - Antonio Anzueto
- Department of Medicine, Division of Pulmonary Diseases & Critical Care Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jafar Aljazeeri
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pittsburgh Medical Center, Harrisburg, PA, USA
| |
Collapse
|
2
|
Barkat MQ, Manzoor M, Xu C, Hussain N, Salawi A, Yang H, Hussain M. Severe asthma beyond bronchodilators: Emerging therapeutic approaches. Int Immunopharmacol 2025; 152:114360. [PMID: 40049087 DOI: 10.1016/j.intimp.2025.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Asthma is characterized by reversible airway inflammation, obstruction, and structural remodeling, which lead to the eosinophils and lymphocytes accumulation at inflammation sites and the release of inflammatory cells, like mast cells and dendritic cells, from lungs' epithelial and smooth muscle cells that trigger the activation and release of cytokines and chemokines, attracting more cells and contributing to asthma development. Available pharmacological interventions, like bronchodilators and anti-inflammatory agents, are considered generally safe and effective to treat asthma, but many affected individuals with severe asthma still struggle with symptom control. This review highlights recent innovative therapies, such as chemoattractant receptor-homologous molecule expressed on Th2 cell (CRTH2) antagonists, S-nitrosoglutathione reductase (GSNOR) and phosphodiesterase (PDE) inhibitors, and other novel biological agents, which offer potential new strategies for managing severe asthma and may alter the disease's course. Kew words. Inflammation; CRTH2; GSNOR; PDE; Interleukins; Biological agents.
Collapse
Affiliation(s)
| | - Majid Manzoor
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310015, China
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates; AAU Health and Biomedical Research center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Raghavan S, Hatipoğlu U, Aboussouan LS. Goals of chronic obstructive pulmonary disease management: a focused review for clinicians. Curr Opin Pulm Med 2025; 31:156-164. [PMID: 39620703 DOI: 10.1097/mcp.0000000000001144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW The diagnosis of chronic obstructive pulmonary disease (COPD) encompasses heterogeneous pathophysiological mechanisms which can shape an individual patient's experience. This paper reviews available therapeutic options for the clinician intending to individualize care toward patient goals. RECENT FINDINGS The contemporary targeted interventions for COPD include the novel phosphodiesterase inhibitor ensifentrine, the interleukin-4 receptor (IL4R alpha subunit) antibody dupilumab, augmentation therapy for alpha-1 antitrypsin deficiency. Other interventions promoting physical and mental well being include re-envisioned pulmonary rehabilitation, self-management, targeting of comorbidities such as sarcopenia, and virtual health coaching interventions to expand patient access. Opioids did not relieve dyspnea and did not change total step count. SUMMARY Advances in precision therapy are complemented by the discovery of novel pathophysiology pathways and behavioral and rehabilitation interventions as a holistic view of COPD management emerges. The management of COPD continues to evolve with new tools including precision medicine and individualized care. Comorbidities remain important determinants of health, yet their prevalence and impact are underestimated.
Collapse
Affiliation(s)
- Sairam Raghavan
- Integrated Hospital-Care Institute, Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
4
|
Sciurba FC, Christenson SA, Rheault T, Bengtsson T, Rickard K, Barjaktarevic IZ. Effect of Dual Phosphodiesterase 3 and 4 Inhibitor Ensifentrine on Exacerbation Rate and Risk in Patients With Moderate to Severe COPD. Chest 2025; 167:425-435. [PMID: 39197510 DOI: 10.1016/j.chest.2024.07.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Exacerbations in COPD can be life-threatening and can lead to irreversible declines in lung function and quality of life. Medications that reduce exacerbation burden are an unmet need, because exacerbations put patients at risk of more exacerbations and decrease quality of life. Ensifentrine is a first-in-class selective dual inhibitor of phosphodiesterase 3 and 4 with demonstrated nonsteroidal antiinflammatory activity and bronchodilatory effects. RESEARCH QUESTION Does ensifentrine reduce the rate or risk of COPD exacerbations? STUDY DESIGN AND METHODS A prespecified, pooled analysis of the phase 3 clinical trials Ensifentrine as a Novel Inhaled Nebulized COPD Therapy (ENHANCE)-1 (ClinicalTrials.gov Identifier: NCT04535986) and ENHANCE-2 (ClinicalTrials.gov Identifier: NCT04542057) was conducted to assess the effect of ensifentrine on exacerbation rate and risk (time to first exacerbation). The trials included symptomatic patients aged 40 to 80 years with moderate to severe COPD who received 3 mg twice-daily ensifentrine over 24 weeks or placebo. Subgroup analyses and frequent exacerbator transition risk assessment were conducted post hoc. RESULTS In total, 975 patients treated with ensifentrine and 574 patients who received placebo were included in the pooled analysis, including 62% of patients receiving concomitant long-acting muscarinic antagonist or long-acting β2-agonist therapy and 18% receiving concomitant inhaled corticosteroid therapy. Ensifentrine was associated with significant reductions in the rate (rate ratio, 0.59; 95% CI, 0.43-0.80; P < .001) and risk (hazard ratio, 0.59; 95% CI, 0.44-0.81; P < .001) of moderate to severe exacerbations compared with placebo. Reductions in the rate and risk of exacerbations generally were consistent across patient subgroups, including age, sex, race, background maintenance medication use, chronic bronchitis, eosinophil count, COPD severity, and exacerbation history. Ensifentrine was associated with a numerical delay in transitioning from an infrequent exacerbator (Global Initiative for Chronic Obstructive Lung Disease group B) to a frequent exacerbator (Global Initiative for Chronic Obstructive Lung Disease group E) compared with placebo. INTERPRETATION Ensifentrine reduced the rate of exacerbations and increased the time to first exacerbation among patients with COPD across a broad range of clinically relevant subgroups.
Collapse
Affiliation(s)
- Frank C Sciurba
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco
| | | | | | | | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care, University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|
5
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Yan R, Zou C, Yang X, Zhuang W, Huang Y, Zheng X, Hu J, Liao L, Yao Y, Sun X, Hu WW. Nebulized inhalation drug delivery: clinical applications and advancements in research. J Mater Chem B 2025; 13:821-843. [PMID: 39652178 DOI: 10.1039/d4tb01938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nebulized inhalation administration refers to the dispersion of drugs into small droplets suspended in the gas through a nebulized device, which are deposited in the respiratory tract by inhalation, to achieve the local therapeutic effect of the respiratory tract. Compared with other drug delivery methods, nebulized inhalation has the advantages of fast effect, high local drug concentration, less dosage, convenient application and less systemic adverse reactions, and has become one of the main drug delivery methods for the treatment of respiratory diseases. In this review, we first discuss the characteristics of nebulized inhalation, including its principles and influencing factors. Next, we compare the advantages and disadvantages of different types of nebulizers. Finally, we explore the clinical applications and recent research developments of nebulized inhalation therapy. By delving into these aspects, we aim to gain a deeper understanding of its pivotal role in contemporary medical treatment.
Collapse
Affiliation(s)
- Ruyi Yan
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chang Zou
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiaohang Yang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yushi Huang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiuli Zheng
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lingni Liao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- High Altitude Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Dransfield M, Marchetti N, Kalhan R, Reyner D, Dixon AL, Rheault T, Rickard KA, Anzueto A. Ensifentrine in COPD patients taking long-acting bronchodilators: A pooled post-hoc analysis of the ENHANCE-1/2 studies. Chron Respir Dis 2025; 22:14799731251314874. [PMID: 39854278 PMCID: PMC11760128 DOI: 10.1177/14799731251314874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The efficacy and safety of ensifentrine, a novel PDE3/PDE4 inhibitor, were previously evaluated in the ENHANCE-1 (NCT04535986) and ENHANCE-2 (NCT04542057) trials. Here, we present a pooled post-hoc subgroup analysis of patients according to background chronic obstructive pulmonary disease (COPD) maintenance medication regimens. OBJECTIVE This analysis aimed to explore the efficacy and safety of ensifentrine in patients receiving long-acting muscarinic antagonists (LAMA) or long-acting beta-agonists with inhaled corticosteroids (LABA + ICS). METHODS Eligible patients had moderate to severe COPD, were aged 40-80 years, and were symptomatic at randomization. Patients were randomized 5:3, receiving twice-daily ensifentrine 3 mg or placebo via standard jet nebulizer over 24 weeks. RESULTS The pooled post-hoc analysis included 485 LAMA patients and 272 LABA + ICS patients. Ensifentrine showed lung function improvement over placebo at week 12, including average FEV1 AUC0-12 h in the LAMA (placebo-corrected least squares mean change from baseline [LSMC], 92 mL; 95% CI, 54, 131; p < 0.001) and LABA + ICS subgroups (LSMC, 74 mL; 95% CI, 27, 121; p = 0.002). Ensifentrine reduced the rate and risk of exacerbations in both LAMA (48% and 50%, respectively) and LABA + ICS (51% and 56%, respectively) subgroups. Ensifentrine-treated patients reported improvement in symptoms and quality of life over 24 weeks. The safety profile of ensifentrine in each subgroup was similar to the profile in the pooled modified intention-to-treat population. CONCLUSIONS Nebulized ensifentrine offers a novel non-steroidal anti-inflammatory and bronchodilator treatment added to existing LAMA or LABA + ICS treatment options in patients with moderate to severe, symptomatic COPD.
Collapse
Affiliation(s)
- Mark Dransfield
- Medicine/Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham and the Birmingham VA Medical Center, Birmingham, AL, USA
| | - Nathaniel Marchetti
- Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | - Antonio Anzueto
- South Texas Veterans Health Care System, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
8
|
Al-Jahdali H, Al-Lehebi R, Lababidi H, Alhejaili FF, Habis Y, Alsowayan WA, Idrees MM, Zeitouni MO, Alshimemeri A, Al Ghobain M, Alaraj A, Alhamad EH. The Saudi Thoracic Society Evidence-based guidelines for the diagnosis and management of chronic obstructive pulmonary disease. Ann Thorac Med 2025; 20:1-35. [PMID: 39926399 PMCID: PMC11804957 DOI: 10.4103/atm.atm_155_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 02/11/2025] Open
Abstract
The Saudi Thoracic Society (STS) developed an updated evidence-based guideline for diagnosing and managing chronic obstructive pulmonary disease (COPD) in Saudi Arabia. This guideline aims to provide a comprehensive and unbiased review of current evidence for assessing, diagnosing, and treating COPD. While epidemiological data on COPD in Saudi Arabia are limited, the STS panel believes that the prevalence is increasing due to rising rates of tobacco smoking. The key objectives of the guidelines are to facilitate accurate diagnosis of COPD, identify the risk for COPD exacerbations, and provide recommendations for relieving and reducing COPD symptoms in stable patients and during exacerbations. A unique aspect of this guideline is its simplified, practical approach to classifying patients into three classes based on symptom severity using the COPD Assessment Test and the risk of exacerbations and hospitalizations. The guideline provides the reader with an executive summary of recommended COPD treatments based on the best available evidence and also addresses other major aspects of COPD management and comorbidities. This guideline is primarily intended for use by internists and general practitioners in Saudi Arabia.
Collapse
Affiliation(s)
- Hamdan Al-Jahdali
- Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Riyad Al-Lehebi
- Department of Medicine, Pulmonary Division, King Fahad Medical City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hani Lababidi
- Department of Critical Care Medicine, King Fahad Medical City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Faris F. Alhejaili
- Department of Medicine, Pulmonary Division, King Abdulaziz University Hospital, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yahya Habis
- Department of Medicine, Pulmonary Division, King Abdulaziz University Hospital, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed A. Alsowayan
- Department of Medicine, Pulmonary Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Majdy M. Idrees
- Department of Medicine, Division of Pulmonary Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mohammed O. Zeitouni
- Department of Medicine, Section of Pulmonary Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah Alshimemeri
- Department of Adult Intensive Care, Adult ICU, Al-Mshari Hospital, Riyadh, Saudi Arabia
| | - Mohammed Al Ghobain
- Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ali Alaraj
- Department of Medicine, College of Medicine, Qassim University, Al Qassim, Saudi Arabia
- Department of Medicine, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia
| | - Esam H. Alhamad
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Calzetta L, Rogliani P. Ensifentrine approval: A milestone in the treatment of COPD. Pulm Pharmacol Ther 2024; 87:102318. [PMID: 39168236 DOI: 10.1016/j.pupt.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Paola Rogliani
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
10
|
Kumar R, Khan MI, Panwar A, Vashist B, Rai SK, Kumar A. PDE4 Inhibitors and their Potential Combinations for the Treatment of Chronic Obstructive Pulmonary Disease: A Narrative Review. Open Respir Med J 2024; 18:e18743064340418. [PMID: 39839967 PMCID: PMC11748061 DOI: 10.2174/0118743064340418241021095046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is associated with cough, sputum production, and a reduction in lung function, quality of life, and life expectancy. Currently, bronchodilator combinations (β2-agonists and muscarinic receptor antagonists, dual therapy) and bronchodilators combined with inhaled corticosteroids (ICS), triple therapy, are the mainstays for the management of COPD. However, the use of ICS in triple therapy has been shown to increase the risk of pneumonia in some patients. These findings have laid the foundation for developing new therapies that possess both anti-inflammatory and/or bronchodilation properties. Phosphodiesterase-4 (PDE4) inhibitors have been reported as an effective therapeutic strategy for inflammatory conditions, such as asthma and COPD, but their use is limited because of class-related side effects. Efforts have been made to mitigate these side effects by targeting the PDE4B subtype of PDE4, which plays a pivotal role in the anti-inflammatory effects. Unfortunately, no selective oral PDE4B inhibitors have progressed to clinical trials. This has led to the development of inhaled PDE4 inhibitors to minimize systemic exposure and maximize the therapeutic effect. Another approach, the bronchodilation property of PDE3 inhibitors, is combined with anti-inflammatory PDE4 inhibitors to develop dual inhaled PDE4/PDE3 inhibitors. A few of these dual inhibitors have shown positive effects and are in phase 3 studies. The current review provides an overview of various PDE4 inhibitors in the treatment of COPD. The possibility of studying different selective PDE4 inhibitors and dual PDE3/4 inhibitors in combination with currently available treatments as a way forward to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Rakesh Kumar
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Mohd Imran Khan
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Amit Panwar
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Bhavishya Vashist
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Santosh Kumar Rai
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Anil Kumar
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| |
Collapse
|
11
|
Hubert S, Kök-Carrière A, De Ceuninck F. Ensifentrine (Ohtuvayre™) for chronic obstructive pulmonary disease. Trends Pharmacol Sci 2024; 45:941-942. [PMID: 39261228 DOI: 10.1016/j.tips.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Sandra Hubert
- R&D Servier Institute Paris-Saclay, 22 route 128, 91190 Gif-sur-Yvette, France
| | - Ayrin Kök-Carrière
- R&D Servier Institute Paris-Saclay, 22 route 128, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
12
|
Keam SJ. Ensifentrine: First Approval. Drugs 2024; 84:1157-1163. [PMID: 39196510 DOI: 10.1007/s40265-024-02081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ensifentrine, an inhaled, selective phosphodiesterase (PDE) 3 and PDE4 inhibitor, is being developed by Verona Pharma plc for the treatment of respiratory diseases, including chronic obstructive pulmonary disease (COPD). In June 2024, ensifentrine (OHTUVAYRE™) inhalation suspension was approved for the maintenance treatment of COPD in adult patients in the USA. This article summarizes the milestones in the development of ensifentrine leading to this first approval for the maintenance treatment of COPD.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
13
|
Wechsler ME, Wells JM. What every clinician should know about inflammation in COPD. ERJ Open Res 2024; 10:00177-2024. [PMID: 39319045 PMCID: PMC11417604 DOI: 10.1183/23120541.00177-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation drives COPD pathogenesis and exacerbations. Although the conceptual framework and major players in the inflammatory milieu of COPD have been long established, the nuances of cellular interactions and the etiological differences that create heterogeneity in inflammatory profiles and treatment response continue to be revealed. This wealth of data and understanding is not only a boon to the researcher but also provides guidance to the clinician, moving the field closer to precision medicine. It is through this lens that this review seeks to describe the inflammatory processes at play in COPD, relating inflammation to pathological and functional changes, identifying patient-specific and disease-related factors that may influence clinical observations, and providing current insights on existing and emerging anti-inflammatory treatments and treatment targets, including biological therapies and phosphodiesterase (PDE) inhibitors.
Collapse
Affiliation(s)
- Michael E. Wechsler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Jo A, Lim HS, Eun KM, Park JA, Hong SN, Kim DW. Neutrophil Extracellular Traps as a Biomarker in Refractory Non-Type 2 CRSwNP. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:473-489. [PMID: 39363767 PMCID: PMC11450440 DOI: 10.4168/aair.2024.16.5.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) is classified into type 2 (T2) and non-T2 inflammation. T2 CRS presents as a severe form, CRS with nasal polyps (CRSwNP), which often occurs with asthma as a comorbidity worldwide. Some cases of non-T2 CRS show nasal polyposis and refractoriness, mainly in Asian countries. However, its mechanism remains elusive. To investigate a biomarker for the refractoriness of non-T2 CRSwNP via RNA sequencing. METHODS RNA sequencing by using nasal polyps (NPs) and ethmoidal mucosa (EM) from CRS subjects and uncinate tissues from controls was performed, and differentially expressed genes (DEGs) were analyzed (cutoffs: expression change > 2-fold, P < 0.01). Immunofluorescence staining and enzyme-linked immunosorbent assay were performed. RESULTS We identified DEGs among T2-NP, non-T2-NP, T2-EM, non-T2-EM, and controls (NP vs. controls: 1,877 genes, EM vs. controls: 1,124 genes, T2-NP vs. controls: 1,790 genes, non-T2-NP vs. controls: 2,012 genes, T2-EM vs. controls: 740 genes, non-T2-EM vs. controls: 1,553 genes). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that neutrophil extracellular trap (NET) formation, systemic lupus erythematosus, and the phagosome were enriched in non-T2-NP vs. controls and non-T2-EM vs. controls. Immunofluorescence staining confirmed that NETs were elevated in non-T2-NP. Cytokine analysis demonstrated that NETs were significantly related to the refractoriness in non-T2-NPs. CONCLUSIONS This study demonstrated DEGs between T2 and non-T2 inflammation. These results suggest that NETs may contribute to the refractoriness in non-T2-NPs and have a promise as a therapeutic strategy for patients with refractory non-T2-NP.
Collapse
Affiliation(s)
- Ara Jo
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Suk Lim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-A Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
15
|
Tashkin DP, Barjaktarevic I, Gomez-Seco J, Behbehani NH, Koltun A, Siddiqui UA. Prevalence and Management of Chronic Obstructive Pulmonary Disease in the Gulf Countries with a Focus on Inhaled Pharmacotherapy. J Aerosol Med Pulm Drug Deliv 2024; 37:189-201. [PMID: 38813999 DOI: 10.1089/jamp.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a preventable, progressive disease and the third leading cause of death worldwide. The epidemiological data of COPD from Gulf countries are very limited, as it remains underdiagnosed and underestimated. Risk factors for COPD include tobacco cigarette smoking, water pipe smoking (Shisha), exposure to air pollutants, occupational dusts, fumes, and chemicals. Inadequate treatment of COPD leads to worsening of disease. The 2024 GOLD guidelines recommend use of inhaled bronchodilators, corticosteroids, and adjunct therapies for treatment and management of COPD patients based on an individual assessment of the severity of symptoms and risk of exacerbations. This article reviews COPD pharmacotherapy in the Gulf countries and explores the role of nebulization in the management of COPD in this region. Methods: To review the COPD pharmacotherapy in the Gulf Countries, literature search was conducted using PubMed, Medline, Cochrane Systematic Reviews, and Google Scholar databases (before December 2022), using search terms such as COPD, nebulization, inhalers/inhalation, aerosols, and Gulf countries. Relevant articles from the reference list of identified studies were reviewed. Consensus statements, expert opinion, and other published review articles were included. Results: In the Gulf countries, pressurized metered-dose inhalers (pMDIs), dry powder inhalers (DPIs), soft mist inhalers, and nebulizers are used for drug delivery to COPD patients. pMDIs and DPIs are most prone to errors in technique and other common device handling errors. Nebulization is another mode of inhalation drug delivery, which is beneficial in certain patient populations such as the elderly and patients with cognitive impairment, motor or neuromuscular disorders, and other comorbidities. Conclusion: There is no major difference between Gulf countries and rest of the world in the approach to management of COPD. Nebulizers should be considered for patients who have difficulties in accessing or using MDIs and DPIs, irrespective of geographical location.
Collapse
Affiliation(s)
- Donald P Tashkin
- David Geffen School of Medicine at UCLA Health Sciences, Los Angeles, California, USA
| | | | - Julio Gomez-Seco
- Department of Pulmonology, Fakeeh University Hospital, Dubai, United Arab Emirates
| | | | | | | |
Collapse
|
16
|
Calzetta L, Cazzola M, Gholamalishahi S, Rogliani P. The novel inhaled dual PDE3 and PDE4 inhibitor ensifentrine for the treatment of COPD: A systematic review and meta-analysis protocol on trough FEV 1 and exacerbation according to PRISMA statement. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100195. [PMID: 39077681 PMCID: PMC11284681 DOI: 10.1016/j.crphar.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
The investigation of ensifentrine, an inhaled dual phosphodiesterase (PDE)3 and PDE4 inhibitor, for chronic obstructive pulmonary disease (COPD) maintenance therapy presents a significant clinical interest. Despite promising results from recent Phase III trials, a comprehensive synthesis of its therapeutic efficacy in COPD is lacking. This protocol outlines the first registered systematic review and meta-analysis in PROSPERO to assess the impact of ensifentrine on trough forced expiratory volume in the 1st second (FEV1) and acute exacerbations of COPD. By conducting a rigorous literature search and employing solid methodologies, this endeavour aims to provide robust evidence on the real efficacy of ensifentrine. Anticipated outcomes include a significant improvement in trough FEV1 and a reduction in AECOPD risk among ensifentrine-treated patients compared to controls, corroborating its bronchodilator and anti-inflammatory properties. The meta-analysis expects to reveal consistent results across different trials, enhancing confidence in the findings. Additionally, subgroup analyses may unveil factors influencing the efficacy of ensifentrine, guiding optimal therapeutic strategies. Overall, this protocol holds the potential to inform clinical practice and regulatory decisions, positioning ensifentrine as a valuable addition to COPD management.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Shima Gholamalishahi
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
17
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Anzueto A, Barjaktarevic IZ, Siler TM, Rheault T, Bengtsson T, Rickard K, Sciurba F. Reply to Gan et al., to Calzetta et al., and to Poor. Am J Respir Crit Care Med 2024; 209:226-228. [PMID: 37939377 PMCID: PMC10806414 DOI: 10.1164/rccm.202309-1657le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, Texas
- University of Texas Health, San Antonio, Texas
| | - Igor Z. Barjaktarevic
- Division of Pulmonary and Critical Care, University of California Los Angeles, Los Angeles, California
| | | | - Tara Rheault
- Verona Pharma Plc, London, United Kingdom and Raleigh, North Carolina
| | | | - Kathleen Rickard
- Verona Pharma Plc, London, United Kingdom and Raleigh, North Carolina
| | - Frank Sciurba
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Faruqi MA, Khan MMKS, Mannino DM. Perspectives on Ensifentrine and Its Therapeutic Potential in the Treatment of COPD: Evidence to Date. Int J Chron Obstruct Pulmon Dis 2024; 19:11-16. [PMID: 38188891 PMCID: PMC10771716 DOI: 10.2147/copd.s385811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Ensifentrine is a novel inhalational phosphodiesterase (PDE)3 and PDE4 inhibitor which improves bronchodilation and decreases inflammatory markers by acting locally on the bronchial tissue, with minimal systemic effects. Both preclinical and clinical trials have demonstrated benefits of this therapy, including improvement in lung function and reduction in exacerbations. This therapy is currently under review by the US Food and Drug Administration with a decision expected in 2024.
Collapse
Affiliation(s)
| | | | - David M Mannino
- University of Kentucky College of Medicine, Lexington, KY, USA
- COPD Foundation, Miami, FL, USA
| |
Collapse
|
20
|
Cazzola M, Page C, Calzetta L, Singh D, Rogliani P, Matera MG. What role will ensifentrine play in the future treatment of chronic obstructive pulmonary disease patients? Implications from recent clinical trials. Immunotherapy 2023; 15:1511-1519. [PMID: 37779474 DOI: 10.2217/imt-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Data from the phase III ENHANCE clinical trials provide compelling evidence that ensifentrine, an inhaled 'bifunctional' dual phosphodiesterase 3/4 inhibitor, can provide additional benefit to existing treatments in patients with chronic obstructive pulmonary disease and represents a 'first-in-class' drug having bifunctional bronchodilator and anti-inflammatory activity in a single molecule. Ensifentrine, generally well tolerated, can provide additional bronchodilation when added to muscarinic receptor antagonists or β2-agonists and reduce the exacerbation risk. This information allows us to consider better the possible inclusion of ensifentrine in the future treatment of chronic obstructive pulmonary disease. However, there is less information on whether it provides additional benefit when added to inhaled corticosteroid or 'triple therapy' and, therefore, when this drug is best utilized in clinical practice.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, UK
| | - Luigino Calzetta
- Unit of Respiratory Diseases & Lung Function, Department of Medicine & Surgery, University of Parma, 43126, Parma, Italy
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester & Manchester University NHS Foundation Trust, M23 9QZ, Manchester, UK
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| |
Collapse
|
21
|
Ma R, Song N, Wang L, Gu X, Xiong F, Zhang S, Zhang J, Yang W, Zuo Z. Discovery of 2-(Methylcarbonylamino) thiazole as PDE4 inhibitors via virtual screening and biological evaluation. J Mol Graph Model 2023; 124:108567. [PMID: 37481883 DOI: 10.1016/j.jmgm.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Phosphodiesterase-4, the primary enzyme responsible for cAMP degradation in the majority of immune and inflammatory cells, plays a critical role in the regulation of intracellular cAMP levels. Consequently, small molecular entities capable of inhibiting PDE4 have been employed in the treatment of inflammation-associated disorders, such as chronic obstructive pulmonary disease (COPD), psoriasis, atopic dermatitis (AD), inflammatory bowel diseases (IBD), rheumatic arthritis (RA). In the present investigation, a multi-faceted approach was employed to identify novel PDE4 inhibitors, utilizing the co-crystallization structure of PDE4B available in the Protein Data Bank (PDB) database, drug-like screening, false positive filtration, similarity and ADMET screen, as well as molecular docking via multiple software platforms, in conjunction with bioactivity assays. A thiazol-3-propanamides derivative, designated MR9, was discovered to inhibit PDE4B activity with IC50 values of 2.12 μM and suppress cellular inflammatory factor TNF-α release with an EC50 value of 3.587 μM. These findings suggest that the innovative active scaffold of MR9 offers a promising foundation for further structural refinement aimed at developing more potent PDE4 inhibitors.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Na Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
| | - Lveli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
| | - Xi Gu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Feng Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Jie Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China.
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
22
|
Anzueto A, Barjaktarevic IZ, Siler TM, Rheault T, Bengtsson T, Rickard K, Sciurba F. Ensifentrine, a Novel Phosphodiesterase 3 and 4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease: Randomized, Double-Blind, Placebo-controlled, Multicenter Phase III Trials (the ENHANCE Trials). Am J Respir Crit Care Med 2023; 208:406-416. [PMID: 37364283 PMCID: PMC10449067 DOI: 10.1164/rccm.202306-0944oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
Rationale: Ensifentrine is a novel, selective, dual phosphodiesterase (PDE)3 and PDE4 inhibitor with bronchodilator and antiinflammatory effects. Replicate phase III trials of nebulized ensifentrine were conducted (ENHANCE-1 and ENHANCE-2) to assess these effects in patients with chronic obstructive pulmonary disease (COPD). Objectives: To evaluate the efficacy of ensifentrine compared with placebo for lung function, symptoms, quality of life, and exacerbations in patients with COPD. Methods: These phase III, multicenter, randomized, double-blind, parallel-group, placebo-controlled trials were conducted between September 2020 and December 2022 at 250 research centers and pulmonology practices in 17 countries. Patients aged 40-80 years with moderate to severe symptomatic COPD were enrolled. Measurements and Main Results: Totals of 760 (ENHANCE-1) and 789 (ENHANCE-2) patients were randomized and treated, with 69% and 55% receiving concomitant long-acting muscarinic antagonists or long-acting β2-agonists, respectively. Post-bronchodilator FEV1 percentage predicted values were 52% and 51% of predicted normal. Ensifentrine treatment significantly improved average FEV1 area under the curve at 0-12 hours versus placebo (ENHANCE-1, 87 ml [95% confidence interval, 55, 119]; ENHANCE-2, 94 ml [65, 124]; both P < 0.001). Ensifentrine treatment significantly improved symptoms (Evaluating Respiratory Symptoms) and quality of life (St. George's Respiratory Questionnaire) versus placebo at Week 24 in ENHANCE-1 but not in ENHANCE-2. Ensifentrine treatment reduced the rate of moderate or severe exacerbations versus placebo over 24 weeks (ENHANCE-1, rate ratio, 0.64 [0.40, 1.00]; P = 0.050; ENHANCE-2, rate ratio, 0.57 [0.38, 0.87]; P = 0.009) and increased time to first exacerbation (ENHANCE-1, hazard ratio, 0.62 [0.39, 0.97]; P = 0.038; ENHANCE-2, hazard ratio, 0.58 [0.38, 0.87]; P = 0.009). Adverse event rates were similar to those for placebo. Conclusions: Ensifentrine significantly improved lung function in both trials, with results supporting exacerbation rate and risk reduction in a broad COPD population and in addition to other classes of maintenance therapies. Clinical trial registered with www. CLINICALTRIALS gov and EudraCT (ENHANCE-1, www. CLINICALTRIALS gov identifier NCT04535986, EudraCT identifier 2020-002086-34; ENHANCE-2, www. CLINICALTRIALS gov identifier NCT04542057, EudraCT identifier 2020-002069-32).
Collapse
Affiliation(s)
- Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, Texas
- University of Texas Health, San Antonio, Texas
| | - Igor Z. Barjaktarevic
- Division of Pulmonary and Critical Care, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | | - Frank Sciurba
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Singh D. A New Treatment for Chronic Obstructive Pulmonary Disease: Ensifentrine Moves Closer. Am J Respir Crit Care Med 2023; 208:344-346. [PMID: 37433204 PMCID: PMC10449076 DOI: 10.1164/rccm.202307-1164ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023] Open
Affiliation(s)
- Dave Singh
- Manchester University National Health Service Foundation Trust University of Manchester Manchester, United Kingdom
| |
Collapse
|
24
|
Donohue JF, Rheault T, MacDonald-Berko M, Bengtsson T, Rickard K. Ensifentrine as a Novel, Inhaled Treatment for Patients with COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1611-1622. [PMID: 37533771 PMCID: PMC10392818 DOI: 10.2147/copd.s413436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Ensifentrine is a novel, potent, and selective dual inhibitor of phosphodiesterase (PDE)3 and PDE4 designed for delivery by inhalation that combines effects on airway inflammation, bronchodilation and ciliary function in bronchial epithelia. In Phase 2 studies in subjects with COPD, ensifentrine demonstrated clinically meaningful bronchodilation and improvements in symptoms and health-related quality of life when administered alone or in combination with current standard of care therapies. Ensifentrine is currently in late-stage clinical development for the maintenance treatment of patients with COPD. This review summarizes non-clinical data as well as Phase 1 and Phase 2 efficacy and safety results of nebulized ensifentrine relevant to the maintenance treatment of patients with COPD.
Collapse
Affiliation(s)
- James F Donohue
- Division of Pulmonary and Critical Care Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
25
|
Calzetta L, Pistocchini E, Chetta A, Rogliani P, Cazzola M. Experimental drugs in clinical trials for COPD: Artificial Intelligence via Machine Learning approach to predict the successful advance from early-stage development to approval. Expert Opin Investig Drugs 2023. [PMID: 37364225 DOI: 10.1080/13543784.2023.2230138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Therapeutic advances in drug therapy of chronic obstructive pulmonary disease (COPD) really effective in suppressing the pathological processes underlying the disease deterioration are still needed. Artificial Intelligence (AI) via Machine Learning (ML) may represent an effective tool to predict clinical development of investigational agents. AREAL COVERED Experimental drugs in Phase I and II development for COPD from early 2014 to late 2022 were identified in the ClinicalTrials.gov database. Different ML models, trained from prior knowledge on clinical trial success, were used to predict the probability that experimental drugs will successfully advance toward approval in COPD, according to Bayesian inference as follows: ≤25% low probability, >25% and ≤ 50% moderate probability, >50% and ≤ 75% high probability, and > 75% very high probability. EXPERT OPINION The Artificial Neural Network and Random Forest ML models indicated that, among the current experimental drugs in clinical trials for COPD, only the bifunctional muscarinic antagonist - β2-adrenoceptor agonists (MABA) navafenterol and batefenterol, the inhaled corticosteroid (ICS)/MABA fluticasone furoate/batefenterol, and the bifunctional phosphodiesterase (PDE) 3/4 inhibitor ensifentrine resulted to have a moderate to very high probability of being approved in the next future, however not before 2025.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Pistocchini
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alfredo Chetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
26
|
Stolfa I, Page C. Phosphodiesterase inhibitors and lung diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:55-81. [PMID: 37524492 DOI: 10.1016/bs.apha.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Phosphodiesterase enzymes (PDE) have long been known as regulators of cAMP and cGMP, second messengers involved in various signaling pathways and expressed in a variety of cell types implicated in respiratory diseases such as airway smooth muscle and inflammatory cells making them a key target for the treatment of lung diseases as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, and pulmonary hypertension (PH). The first reported PDE inhibitor was the xanthine, theophylline, described as a non-specific PDE inhibitor and whilst this drug is effective, it also has a range of unwanted side effects. In an attempt to improve the therapeutic window of xanthines, a number of selective PDE inhibitors have been developed for the treatment of respiratory diseases with only the selective PDE 4 inhibitor, roflumilast, being approved for the treatment of severe COPD. However, roflumilast also has a very narrow therapeutic window due to a number of important doses limiting side effects, particularly in the gastrointestinal tract. However, there continues to be research carried out in this field to identify improved selective PDE inhibitors, both by targeting other PDE subtypes (e.g., PDE 7 found in a number of inflammatory and immune cells) and through development of selective PDE inhibitors for pulmonary administration to reduce systemic exposure and improve the side effect profile. This approach has been exemplified by the development of ensifentrine, a dual PDE 3-PDE 4 inhibitor, an inhaled drug that has recently completed two successful Phase III clinical trials in patients with COPD.
Collapse
Affiliation(s)
- Ivana Stolfa
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College, London, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College, London, United Kingdom.
| |
Collapse
|
27
|
Yang J, Hu X, Wang Y, Liu W, Zhang M, Zhang A, Ni B. Identification of the shared gene signatures and molecular mechanisms between multiple sclerosis and non-small cell lung cancer. Front Immunol 2023; 14:1180449. [PMID: 37251402 PMCID: PMC10213509 DOI: 10.3389/fimmu.2023.1180449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The association between multiple sclerosis (MS) and non-small cell lung cancer (NSCLC) has been the subject of investigation in clinical cohorts, yet the molecular mechanisms underpinning this relationship remain incompletely understood. To address this, our study aimed to identify shared genetic signatures, shared local immune microenvironment, and molecular mechanisms between MS and NSCLC. Methods We selected multiple Gene Expression Omnibus (GEO) datasets, including GSE19188, GSE214334, GSE199460, and GSE148071, to obtain gene expression levels and clinical information from patients or mice with MS and NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate co-expression networks linked to MS and NSCLC and used single-cell RNA sequencing (scRNA-seq) analysis to explore the local immune microenvironment of MS and NSCLC and identify possible shared components. Results Our analysis identified the most significant shared gene in MS and NSCLC, phosphodiesterase 4A (PDE4A), and we analyzed its expression in NSCLC patients and its impact on patient prognosis, as well as its molecular mechanism. Our results demonstrated that high expression of PDE4A was associated with poor prognoses in NSCLC patients, and Gene Set Enrichment Analysis (GSEA) revealed that PDE4A is involved in immune-related pathways and has a significant regulatory effect on human immune responses. We further observed that PDE4A was closely linked to the sensitivity of several chemotherapy drugs. Conclusion Given the limitation of studies investigating the molecular mechanisms underlying the correlation between MS and NSCLC, our findings suggest that there are shared pathogenic processes and molecular mechanisms between these two diseases and that PDE4A represents a potential therapeutic target and immune-related biomarker for patients with both MS and NSCLC.
Collapse
Affiliation(s)
- Jingyun Yang
- Department of Oncology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wang
- Medical Research Institute, Southwest University, Chongqing, China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Anmei Zhang
- Department of Oncology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
28
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
29
|
Rosenwasser Y, Berger I, Loewy ZG. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens 2022; 11:1513. [PMID: 36558847 PMCID: PMC9784349 DOI: 10.3390/pathogens11121513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive pulmonary disorder underpinned by poorly reversible airflow resulting from chronic bronchitis or emphysema. The prevalence and mortality of COPD continue to increase. Pharmacotherapy for patients with COPD has included antibiotics, bronchodilators, and anti-inflammatory corticosteroids (but with little success). Oral diseases have long been established as clinical risk factors for developing respiratory diseases. The establishment of a very similar microbiome in the mouth and the lung confirms the oral-lung connection. The aspiration of pathogenic microbes from the oral cavity has been implicated in several respiratory diseases, including pneumonia and chronic obstructive pulmonary disease (COPD). This review focuses on current and future pharmacotherapeutic approaches for COPD exacerbation including antimicrobials, mucoregulators, the use of bronchodilators and anti-inflammatory drugs, modifying epigenetic marks, and modulating dysbiosis of the microbiome.
Collapse
Affiliation(s)
- Yehudis Rosenwasser
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Irene Berger
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Zvi G. Loewy
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
30
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
31
|
Cazzola M, Ora J, Calzetta L, Rogliani P, Matera MG. The future of inhalation therapy in chronic obstructive pulmonary disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100092. [PMID: 35243334 PMCID: PMC8866667 DOI: 10.1016/j.crphar.2022.100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
The inhaled route is critical for the administration of drugs to treat patients suffering from COPD, but there is still an unmet need for new and innovative inhalers to address some limitations of existing products that do not make them suitable for many COPD patients. The treatment of COPD, currently limited to the use of bronchodilators, corticosteroids, and antibiotics, requires a significant expansion of the therapeutic armamentarium that is closely linked to the widening of knowledge on the pathogenesis and evolution of COPD. The great interest in the development of new drugs that may be able to interfere in the natural history of the disease is leading to the synthesis of numerous new molecules, of which however only a few have entered the stages of clinical development. On the other hand, further improvement of inhaled drug delivery could be an interesting possibility because it targets the organ of interest directly, requires significantly less drug to exert the pharmacological effect and, by lowering the amount of drug needed, reduces the cost of therapy. Unfortunately, however, the development of new inhaled drugs for use in COPD is currently too slow.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Maria Gabriella Matera
- Pharmacology Unit, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
32
|
Jain S, Durugkar S, Saha P, Gokhale SB, Naidu VGM, Sharma P. Effects of intranasal azithromycin on features of cigarette smoke-induced lung inflammation. Eur J Pharmacol 2022; 915:174467. [PMID: 34478690 DOI: 10.1016/j.ejphar.2021.174467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Airflow limitation in chronic obstructive pulmonary disease (COPD) is the result of exaggerated airway fibrosis and obliteration of the small airways due to persistent inflammation, and an impaired anti-oxidant response. EMT has been implicated as an active signalling process in cigarette smoke (CS)-induced lung pathology, and macrolide Azithromycin (AZT) use has gained interest in treating COPD. Here, we tested effectiveness of intra-nasal AZT alone and in combination with dexamethasone (DEX) on CS-induced acute lung inflammation. Human alveolar epithelial cells (A549) were treated with CS extract (CSE) for 48 h, and male Balb/c mice were exposed to CS (3 cigarettes-3 times/day) for 4 days. The effects of AZT alone (0.25 and 1.25 μM, in vitro; 0.5 and 5 mg/kg, in vivo) or in combination with DEX (1 μM, in vitro; 1 mg/kg, in vivo) on CS-induced cellular cytotoxicity, oxidative stress, inflammation, and lung function were assessed. AZT alone and in combination with DEX significantly inhibited the CS (E)-induced expression of mesenchymal protein markers and the regulatory protein β-catenin. Furthermore, AZT by itself or in combination with DEX significantly suppressed CS-induced expression of the proinflammtory cytokines TNFα, IL1β and IL6 and prevented pNFkB. Mechanistically, AZT restored the CS-induced reduction in anti-oxidant transcription factor NRF2 and upregulated HDAC2 levels, thereby repressing inflammatory gene expression. Beneficial effects of AZT functionally translated in improved lung mechanics in vivo. Further preclinical and clinical studies are warranted to fully establish and validate the therapeutic efficacy of AZT as a mono- or combination therapy for the treatment of COPD.
Collapse
Affiliation(s)
- Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Guwahati, Assam, 781101, India
| | - Sneha Durugkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Guwahati, Assam, 781101, India
| | - Pritam Saha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Guwahati, Assam, 781101, India
| | - Sharad B Gokhale
- Department of Civil Engineering, Indian Institute of Technology Guwahati, North Amingaon, Guwahati, Assam, 781039, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Guwahati, Assam, 781101, India.
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
33
|
Singh D, Lea S, Mathioudakis AG. Inhaled Phosphodiesterase Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2021; 81:1821-1830. [PMID: 34731461 DOI: 10.1007/s40265-021-01616-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Phosphodiesterase (PDE) 4 inhibitors prevent the metabolism of cyclic adenosine monophosphate, thereby reducing inflammation. Inhaled PDE4 inhibitors aim to restrict systemic drug exposure to enhance the potential for clinical benefits (in the lungs) versus adverse events (systemically). The orally administered PDE4 inhibitor roflumilast reduces exacerbation rates in the subgroup of chronic obstructive pulmonary disease patients with a history of exacerbations and the presence of chronic bronchitis, but can cause PDE4 related adverse effects due to systemic exposure. CHF6001 is an inhaled PDE4 inhibitor, while inhaled ensifentrine is an inhibitor of both PDE3 and PDE4; antagonism of PDE3 facilitates smooth muscle relaxation and hence bronchodilation. These inhaled PDE inhibitors have both reported positive findings from early phase clinical trials, and have been well tolerated. Longer term trials are needed to firmly establish the clinical benefits of these drugs.
Collapse
Affiliation(s)
- Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Hospital Trust, The Langley Building, Southmoor Road, Manchester, M23 9QZ, UK.
| | - Simon Lea
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
34
|
Beute J, Boermans P, KleinJan A. Evaluation of Real-Life Investigational Use of Enoximone in Asthma, the Third Step in Drug Repurposing: A Preliminary Report. Can Respir J 2021; 2021:7456208. [PMID: 34760031 PMCID: PMC8575614 DOI: 10.1155/2021/7456208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background The population of uncontrolled asthma patients represents a large therapeutic burden. The PDE3-inhibitor enoximone is a strong and quick bronchodilator and is known to successfully treat life-threatening bronchial asthma (status asthmaticus). Translational mice models showed anti-inflammatory effects when PDE3 was targeted. Methods Here, we investigated the effectiveness of PDE3-inhibitor enoximone as oral treatment for chronic asthma in a real-life off-label setting. Investigational use of PDE3-inhibitor enoximone: 51 outpatients (age 18-77) with chronic asthma were followed using off-label personalized low doses of the PDE3-inhibitor enoximone. Duration of treatment was 2-8 years. Results Four groups could be distinguished as follows: The first group includes patients who use enoximone as an add-on, because it helps them in maintaining a better general wellbeing; they still use their traditional medication (n = 5). The second group consists of patients who use enoximone and were able to phase down their traditional medication without deterioration of their asthma symptoms (n = 11). The third group comprises patients who were able to discontinue their traditional medication and use only enoximone without deterioration of their asthma symptoms (n = 24). The last one has patients who, after having used enoximone for some time, saw their symptoms disappear and now use no medication at all, not even enoximone (n = 11). All patients reported improvement or at least alleviation of their asthma symptoms. All patients reported a better quality of life and greater drug compliance. Conclusion The evaluation shows that PDE3-inhibitor enoximone is a viable alternative for or addition to current asthma therapeutics, as both add-on and stand-alone, considerably reducing the use of LABAs/SABAs/ICS, with no or negligible side effects. Additional studies are advisable.
Collapse
Affiliation(s)
| | | | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus University Medical Center (Erasmus MC), Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| |
Collapse
|
35
|
Xiao C, Cheng S, Lin H, Weng Z, Peng P, Zeng D, Du X, Zhang X, Yang Y, Liang Y, Huang R, Chen C, Wang L, Wu H, Li R, Wang X, Zhang R, Yang Z, Li X, Cao X, Yang W. Isoforskolin, an adenylyl cyclase activator, attenuates cigarette smoke-induced COPD in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153701. [PMID: 34438230 DOI: 10.1016/j.phymed.2021.153701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by limited airflow due to pulmonary and alveolar abnormalities from exposure to cigarette smoke (CS). Current therapeutic drugs are limited and the development of novel treatments to prevent disease progression is challenging. Isoforskolin (ISOF) from the plant Coleus forskohlii is an effective activator of adenylyl cyclase (AC) isoforms. Previously we found ISOF could attenuate acute lung injury in animal models, while the effect of ISOF on COPD has not been elucidated. PURPOSE In this study, we aimed to evaluate the efficacy of ISOF on COPD and reveal its potential mechanisms. METHODS A rat model of COPD was established by long-term exposure to CS, then the rats were orally administered with ISOF (0.5, 1 and 2 mg/kg). The pulmonary function, lung morphology, inflammatory cells and cytokines in serum or bronchoalveolar lavage fluid (BALF) were evaluated. Transcriptomics, proteomics and network pharmacology analysis were utilized to identify potential mechanisms of ISOF. Droplet digital PCR was used to detect the mRNA expression of AC1-10 in donor lung tissues. AC activation was determined in recombinant human embryonic kidney 293 (HEK293) cells stably expressing human AC isoforms. In addition, ISOF caused trachea relaxation ex vivo were assessed in isolated trachea rings from guinea pigs. RESULTS ISOF significantly ameliorated pathological damage of lung tissue and improved pulmonary function in COPD rats. ISOF treatment decreased the number of inflammatory cells in peripheral blood, and also the levels of pro-inflammatory cytokines in serum and BALF. Consistent with omics-based analyses, ISOF markedly downregulated the mTOR level in lung tissue. Flow cytometry analysis revealed that ISOF treatment reduced the ratio of Th17/Treg cells in peripheral blood. Furthermore, the expression levels of AC1 and AC2 are relatively higher than other AC isoforms in normal lung tissues, and ISOF could potently activate AC1 and AC2 in vitro and significantly relax isolated guinea pig trachea. CONCLUSION Collectively, our studies suggest that ISOF exerts its anti-COPD effect by improving lung function, anti-inflammation and trachea relaxation, which may be related to AC activation, mTOR signaling and Th17/Treg balance.
Collapse
Affiliation(s)
- Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Haochang Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Peihua Peng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Deyou Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xiaohua Du
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xiujuan Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yaqing Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yaping Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Rong Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Chen Chen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hongxiang Wu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Rongping Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming 650500, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
36
|
Martin C, Burgel PR, Roche N. Inhaled Dual Phosphodiesterase 3/4 Inhibitors for the Treatment of Patients with COPD: A Short Review. Int J Chron Obstruct Pulmon Dis 2021; 16:2363-2373. [PMID: 34429594 PMCID: PMC8378910 DOI: 10.2147/copd.s226688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current pharmacological treatments for chronic obstructive pulmonary disease (COPD) are mostly limited to inhaled bronchodilators and corticosteroids. Azithromycin can contribute to exacerbation prevention. Roflumilast, a phosphodiesterase (PDE) 4 inhibitor administered orally, also prevents exacerbations in selected patients with chronic bronchitis, recurrent exacerbations, severe airflow limitation and concomitant therapy with long-acting inhaled bronchodilators. This outcome likely results from anti-inflammatory effects since PDE4 is expressed by all inflammatory cell types involved in COPD. The use of this agent is, however, limited by side-effects, particularly nausea and diarrhea. To address remaining unmet needs and enrich therapeutic options for patients with COPD, inhaled dual PDE3/4 inhibitors have been developed, with the aim of enhancing bronchodilation through PDE3 inhibition and modulating inflammation and mucus production though PDE4 inhibition, thus producing a potentially synergistic effect on airway calibre. Experimental preclinical data confirmed these effects in vitro and in animal models. At present, RPL554/ensifentrine is the only agent of this family in clinical development. It decreases sputum markers of both neutrophilic and eosinophilic inflammation in patients with COPD. Clinical Phase II trials confirmed its bronchodilator effect and demonstrated clinically meaningful symptom relief and quality of life improvements in these patients. The safety profile appears satisfactory, with less effects on heart rate and blood pressure than salbutamol and no other side effect. Altogether, these data suggest that ensifentrine could have a role in COPD management, especially in addition to inhaled long-acting bronchodilators with or without corticosteroids since experimental studies suggest potentiation of ensifentrine effects by these agents. However, results from ongoing and future Phase III studies are needed to confirm both beneficial effects and favourable safety profile on a larger scale and assess other outcomes including exacerbations, lung function decline, comorbidities and mortality.
Collapse
Affiliation(s)
- Clémence Martin
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Pierre-Régis Burgel
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Nicolas Roche
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| |
Collapse
|
37
|
Amison RT, Page CP. Novel pharmacological therapies for the treatment of bronchial asthma. Minerva Med 2021; 113:31-50. [PMID: 34236157 DOI: 10.23736/s0026-4806.21.07559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma has long been recognised as a chronic inflammatory disease of the airways, often in response to inhaled allergens prompting inappropriate activation of the immune response. involving a range of cells including mast cells, Th2 lymphocytes and eosinophils and a wide range of inflammatory mediators. First-line therapy for treatment of persistent asthma involves the use of inhaled corticosteroids (ICS) in combination with inhaled β2-agonists enabling both the control of the underlying airways inflammation and a reduction of airway hyperresponsiveness. However, many patients remain symptomatic despite high-dose therapy. There is therefore a continued unmet clinical need to develop specifically new anti-inflammatory therapies for patients with asthma, either as an add-on therapy to ICS or as replacement monotherapies. The success of fixed dose combination inhalers containing both a bronchodilator and an anti-inflammatory drug has also led to the development of "bifunctional" drugs which are molecules specifically designed to have two distinct pharmacological actions based on distinct pharmacophores. In this review we will discuss these different pharmacological approaches under development for the treatment of bronchial asthma and the available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK -
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
38
|
Robaina Cabrera CL, Keir-Rudman S, Horniman N, Clarkson N, Page C. The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination. Pulm Pharmacol Ther 2021; 69:102047. [PMID: 34082108 DOI: 10.1016/j.pupt.2021.102047] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION/BACKGROUND AND PURPOSE Studies with Cannabis Sativa plant extracts and endogenous agonists of cannabinoid receptors have demonstrated anti-inflammatory, bronchodilator, and antitussive properties in the airways of allergic and non-allergic animals. However, the potential therapeutic use of cannabis and cannabinoids for the treatment of respiratory diseases has not been widely investigated, in part because of local irritation of airways by needing to smoke the cannabis, poor bioavailability when administered orally due to the lipophilic nature of cannabinoids, and the psychoactive effects of Δ9-Tetrahydrocannabinol (Δ9-THC) found in cannabis. The primary purpose of this study was to investigate the anti-inflammatory effects of two of the non-psychotropic cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) alone and in combination, in a model of pulmonary inflammation induced by bacterial lipopolysaccharide (LPS). The second purpose was to explore the effects of two different cannabinoid formulations administered orally (PO) and intraperitoneally (IP). Medium-chain triglyceride (MCT) oil was used as the sole solvent for one formulation, whereas the second formulation consisted of a Cremophor® EL (polyoxyl 35 castor oil, CrEL)-based micellar solution. RESULTS Exposure of guinea pigs to LPS induced a 97 ± 7% and 98 ± 3% increase in neutrophils found in bronchoalveolar lavage fluid (BAL) at 4 h and 24 h, respectively. Administration of CBD and CBG formulated with MCT oil did not show any significant effects on the LPS-induced neutrophilia measured in the BAL fluid when compared with the vehicle-treated groups. Conversely, the administration of either cannabinoid formulated with CrEL induced a significant attenuation of the LPS induced recruitment of neutrophils into the lung following both intraperitoneal (IP) and oral (PO) administration routes, with a 55-65% and 50-55% decrease in neutrophil cell recruitment with the highest doses of CBD and CBG respectively. A combination of CBD and CBG (CBD:CBG = 1:1) formulated in CrEL and administered orally was also tested to determine possible interactions between the cannabinoids. However, a mixture of CBD and CBG did not show a significant change in LPS-induced neutrophilia. Surfactants, such as CrEL, improves the dissolution of lipophilic drugs in an aqueous medium by forming micelles and entrapping the drug molecules within them, consequently increasing the drug dissolution rate. Additionally, surfactants increase permeability and absorption by disrupting the structural organisation of the cellular lipid bilayer. CONCLUSION In conclusion, this study has provided evidence that CBD and CBG formulated appropriately exhibit anti-inflammatory activity. Our observations suggest that these non-psychoactive cannabinoids may have beneficial effects in treating diseases characterised by airway inflammation.
Collapse
Affiliation(s)
- Carmen Lorena Robaina Cabrera
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, United Kingdom
| | - Sandra Keir-Rudman
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, United Kingdom
| | - Nick Horniman
- Sativa Wellness Group Inc., the Blue Building, Stubbs Lane, Beckington, BA11 6TE, Somerset, United Kingdom
| | - Nick Clarkson
- Sativa Wellness Group Inc., the Blue Building, Stubbs Lane, Beckington, BA11 6TE, Somerset, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, United Kingdom.
| |
Collapse
|
39
|
Schcolnik-Cabrera A, Juárez-López D, Duenas-Gonzalez A. Perspectives on Drug Repurposing. Curr Med Chem 2021; 28:2085-2099. [PMID: 32867630 DOI: 10.2174/0929867327666200831141337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
Complex common diseases are a significant burden for our societies and demand not only preventive measures but also more effective, safer, and more affordable treatments. The whole process of the current model of drug discovery and development implies a high investment by the pharmaceutical industry, which ultimately impact in high drug prices. In this sense, drug repurposing would help meet the needs of patients to access useful and novel treatments. Unlike the traditional approach, drug repurposing enters both the preclinical evaluation and clinical trials of the compound of interest faster, budgeting research and development costs, and limiting potential biosafety risks. The participation of government, society, and private investors is needed to secure the funds for experimental design and clinical development of repurposing candidates to have affordable, effective, and safe repurposed drugs. Moreover, extensive advertising of repurposing as a concept in the health community, could reduce prescribing bias when enough clinical evidence exists, which will support the employment of cheaper and more accessible repurposed compounds for common conditions.
Collapse
Affiliation(s)
- Alejandro Schcolnik-Cabrera
- Departement de Biochimie et Medecine Moleculaire, Universite de Montreal, C.P. 6128, Succursale Centre- Ville, Montreal, QC, Canada
| | - Daniel Juárez-López
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico; Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Ciudad de Mexico, Mexico
| | - Alfonso Duenas-Gonzalez
- Division de Investigacion Basica, Instituto Nacional de Cancerologia, Ciudad de Mexico 14080, Mexico
| |
Collapse
|
40
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
41
|
Ferguson GT, Kerwin EM, Rheault T, Bengtsson T, Rickard K. A Dose-Ranging Study of the Novel Inhaled Dual PDE 3 and 4 Inhibitor Ensifentrine in Patients with COPD Receiving Maintenance Tiotropium Therapy. Int J Chron Obstruct Pulmon Dis 2021; 16:1137-1148. [PMID: 33911859 PMCID: PMC8075181 DOI: 10.2147/copd.s307160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/08/2021] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Ensifentrine is an inhaled dual inhibitor of phosphodiesterase (PDE) 3 and 4 that has shown bronchodilatory effects and symptom improvement in clinical studies in patients with chronic obstructive pulmonary disease (COPD), and anti-inflammatory effects in healthy volunteers in a model of COPD-like inflammation. This manuscript reports on the results of the clinical study examining if ensifentrine provides meaningful improvements in lung function when added on to tiotropium over 4 weeks in patients with COPD who have impaired lung function and symptoms despite treatment with tiotropium. PATIENTS AND METHODS This randomized, double-blind, placebo-controlled, parallel-group, dose-ranging study recruited patients with moderate-to-severe COPD. Patients were randomized to open-label tiotropium once daily (QD) plus (+) blinded escalating doses of ensifentrine or placebo twice daily (BID). Effects on lung function, symptoms and quality of life (QoL) were assessed over 4 weeks. RESULTS A total of 416 COPD patients were randomized and 413 received at least one dose of blinded study medication + tiotropium. All ensifentrine doses produced a significant and dose-dependent increase in peak forced expiratory volume in 1 second (FEV1) from baseline to Week 4, with placebo-corrected differences of 77.5 mL when added to tiotropium (0.375 mg; 95% CI: 4.8, 150.1 mL; p=0.037) to 124.2 mL (3 mg; 95% CI: 51.0, 196.8 mL; p<0.001). A significant increase in average FEV1 (0-12h) was shown at Week 4 with the 3 mg dose (87.3 mL; 95% CI: 20.0, 154.5 mL; p=0.011). Clinically meaningful and statistically significant improvements in the St. George's Respiratory Questionnaire - COPD (SGRQ-C) additive to tiotropium were observed at Week 4, exceeding the minimally clinically important difference of 4 units with the 1.5 and 3 mg doses. Adverse events were similar in frequency between the ensifentrine and placebo arms. CONCLUSION This clinical study demonstrated that nebulized ensifentrine added on to tiotropium produced clinically important improvements in lung function and QoL over 4 weeks in COPD patients receiving tiotropium who demonstrated symptoms and lung function impairment, with a safety profile similar to placebo.
Collapse
Affiliation(s)
- Gary T Ferguson
- Pulmonary Research Institute of Southeast Michigan, Farmington Hills, MI, USA
| | | | | | | | | |
Collapse
|
42
|
Matera MG, Ora J, Cavalli F, Rogliani P, Cazzola M. New Avenues for Phosphodiesterase Inhibitors in Asthma. J Exp Pharmacol 2021; 13:291-302. [PMID: 33758554 PMCID: PMC7979323 DOI: 10.2147/jep.s242961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Phosphodiesterases (PDEs) are isoenzymes ubiquitously expressed in the lungs where they catalyse cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (GMP), which are fundamental second messengers in asthma, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signaling pathways and, consequently, myriad biological responses. The superfamily of PDEs is composed of 11 families with a distinct substrate specificity, molecular structure and subcellular localization. Experimental studies indicate a possible role in asthma mainly for PDE3, PDE4, PDE5 and PDE7. Consequently, drugs that inhibit PDEs may offer novel therapeutic options for the treatment of this disease. Areas Covered In this article, we describe the progress made in recent years regarding the possibility of using PDE inhibitors in the treatment of asthma. Expert Opinion Many data indicate the potential benefits of PDE inhibitors as an add-on treatment especially in severe asthma due to their bronchodilator and/or anti-inflammatory activity, but no compound has yet reached the market as asthma treatment mainly because of their limited tolerability. Therefore, there is a growing interest in developing new PDE inhibitors with an improved safety profile. In particular, the research is focused on the development of drugs capable of interacting simultaneously with different PDEs, or to be administered by inhalation. CHF 6001 and RPL554 are the only molecules that currently are under clinical development but there are several new agents with interesting pharmacological profiles. It will be stimulating to assess the impact of such agents on individual treatable traits in specially designed studies.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Francesco Cavalli
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Paola Rogliani
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
43
|
Turner MJ, Abbott-Banner K, Thomas DY, Hanrahan JW. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol Ther 2021; 224:107826. [PMID: 33662448 DOI: 10.1016/j.pharmthera.2021.107826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF) lung disease results from mutations in the CFTR anion channel that reduce anion and fluid secretion by airway epithelia. Impaired secretion compromises airway innate defence mechanisms and leads to bacterial colonization, excessive inflammation and tissue damage; thus, restoration of CFTR function is the goal of many CF therapies. CFTR channels are activated by cyclic nucleotide-dependent protein kinases. The second messengers 3'5'-cAMP and 3'5'-cGMP are hydrolysed by a large family of cyclic nucleotide phosphodiesterases that provide subcellular spatial and temporal control of cyclic nucleotide-dependent signalling. Selective inhibition of these enzymes elevates cyclic nucleotide levels, leading to activation of CFTR and other downstream effectors. Here we examine members of the PDE family that are likely to regulate CFTR-dependent ion and fluid secretion in the airways and discuss other actions of PDE inhibitors that can influence cyclic nucleotide-regulated mucociliary transport, inflammation and bronchodilation. Finally, we review PDE inhibitors and the potential benefits they could provide as CF therapeutics.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada.
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Beute J, Boermans P, Benraad B, Telman J, Diamant Z, KleinJan A. PDE3-inhibitor enoximone prevented mechanical ventilation in patients with SARS-CoV-2 pneumonia. Exp Lung Res 2021; 47:149-160. [PMID: 33544007 PMCID: PMC7876671 DOI: 10.1080/01902148.2021.1881189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Standard care in severe SARS-CoV-2 pneumonia complicated by severe dyspnea and respiratory failure, consists of symptom reduction, ultimately supported by mechanical ventilation. Patients with severe SARS-CoV-2, a prominent feature of COVID-19, show several similar symptoms to Critical Asthma Syndrome (CAS) patients, such as pulmonary edema, mucus plugging of distal airways, decreased tissue oxygenation, (emergent) exhaustion due to severe dyspnea and respiratory failure. Prior application of elective phosphodiesterase (PDE)3-inhibitors milrinone and enoximone in patients with CAS yielded rapid symptomatic relief and reverted the need for mechanical ventilation, due to their bronchodilator and anti-inflammatory properties. Based on these observations, we hypothesized that enoximone may be beneficial in the treatment of patients with severe SARS-CoV-2 pneumonia and prominent CAS-features. METHODS In this case report enoximone was administered to four consecutive patients (1 M; 3 F; 46-70 y) with emergent respiratory failure due to SARS-CoV-2 pneumonia. Clinical outcome was compared with three controls who received standard care only. RESULTS After an intravenous bolus of enoximone 20 mg followed by 10 mg/h via perfusor, a rapid symptomatic relief was observed: two out of four patients recovered within a few hours, the other two (with comorbid COPD GOLD II/III) responded within 24-36 h. Compared to the controls, in the enoximone-treated patients respiratory failure and further COVID-19-related deterioration was reverted and mechanical ventilation was prevented, leading to reduced hospital/ICU time. DISCUSSION Our preliminary observations suggest that early intervention with the selective PDE3-inhibitor enoximone may help to revert respiratory failure as well as avert mechanical ventilation, and reduces ICU/hospital time in patients with severe SARS-CoV-2 pneumonia. Our findings warrant further research on the therapeutic potential of PDE3-inhibition, alone or in combination with other anti-COVID-19 strategies.
Collapse
Affiliation(s)
| | | | | | - Jan Telman
- Consultants in Quantitative Methods, Eindhoven, Netherlands
| | - Zuzana Diamant
- Dept of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund, Sweden.,Dept of Clinical Pharmacy & Pharmacology, UMCG, Groningen, The Netherlands.,Dept of Respiratory Diseases, Thomayer Hospital, Charles University, Prague, Czech Republic
| | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Matera MG, Cazzola M, Page C. Prospects for COPD treatment. Curr Opin Pharmacol 2020; 56:74-84. [PMID: 33333428 DOI: 10.1016/j.coph.2020.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 02/09/2023]
Abstract
The management of chronic obstructive pulmonary disease (COPD) is fundamentally still heavily dependent on the use of bronchodilators and corticosteroids. Therefore, there is a need for alternative, more effective and safer therapeutic approaches. In particular, since inflammation in COPD lungs is often poorly responsive to corticosteroid treatment, novel pharmacological anti-inflammatory approaches are needed to optimally treat COPD patients. There have been multiple attempts to develop drugs that inhibit recruitment and activation of inflammatory cells, such as macrophages, neutrophils and T-lymphocytes, in the lungs of patients with COPD or target inflammatory mediators that are important in the recruitment or activation of these inflammatory cells or released by such cells. This review article focuses on novel classes of anti-inflammatory drugs that have already been tested in humans as possible treatments for patients with COPD.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
46
|
Turner MJ, Dauletbaev N, Lands LC, Hanrahan JW. The Phosphodiesterase Inhibitor Ensifentrine Reduces Production of Proinflammatory Mediators in Well Differentiated Bronchial Epithelial Cells by Inhibiting PDE4. J Pharmacol Exp Ther 2020; 375:414-429. [PMID: 33012706 DOI: 10.1124/jpet.120.000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel that impair airway salt and fluid secretion. Excessive release of proinflammatory cytokines and chemokines by CF bronchial epithelium during airway infection leads to chronic inflammation and a slow decline in lung function; thus, there is much interest in finding safe and effective treatments that reduce inflammation in CF. We showed previously that the cyclic nucleotide phosphodiesterase (PDE) inhibitor ensifentrine (RPL554; Verona Pharma) stimulates the channel function of CFTR mutants with abnormal gating and also those with defective trafficking that are partially rescued using a clinically approved corrector drug. PDE inhibitors also have known anti-inflammatory effects; therefore, we examined whether ensifentrine alters the production of proinflammatory cytokines in CF bronchial epithelial cells. Ensifentrine reduced the production of monocyte chemoattractant protein-1 and granulocyte monocyte colony-stimulating factor (GM-CSF) during challenge with interleukin-1β Comparing the effect of ensifentrine with milrinone and roflumilast, selective PDE3 and PDE4 inhibitors, respectively, demonstrated that the anti-inflammatory effect of ensifentrine was mainly due to inhibition of PDE4. Beneficial modulation of GM-CSF was further enhanced when ensifentrine was combined with low concentrations of the β 2-adrenergic agonist isoproterenol or the corticosteroid dexamethasone. The results indicate that ensifentrine may have beneficial anti-inflammatory effects in CF airways particularly when used in combination with β 2-adrenergic agonists or corticosteroids. SIGNIFICANCE STATEMENT: Airway inflammation that is disproportionate to the burden of chronic airway infection causes much of the pathology in the cystic fibrosis (CF) lung. We show here that ensifentrine beneficially modulates the release of proinflammatory factors in well differentiated CF bronchial epithelial cells that is further enhanced when combined with β2-adrenergic agonists or low-concentration corticosteroids. The results encourage further clinical testing of ensifentrine, alone and in combination with β2-adrenergic agonists or low-concentration corticosteroids, as a novel anti-inflammatory therapy for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Nurlan Dauletbaev
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Larry C Lands
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - John W Hanrahan
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| |
Collapse
|
47
|
He Y, Huang Y, Mai C, Pan H, Luo HB, Liu L, Xie Y. The immunomodulatory role of PDEs inhibitors in immune cells: therapeutic implication in rheumatoid arthritis. Pharmacol Res 2020; 161:105134. [DOI: 10.1016/j.phrs.2020.105134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023]
|
48
|
Back to the future: re-establishing guinea pig in vivo asthma models. Clin Sci (Lond) 2020; 134:1219-1242. [PMID: 32501497 DOI: 10.1042/cs20200394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma. It is therefore a great need for new animal models that more closely resemble human asthma. The guinea pig has for decades been used in asthma research and a comprehensive table of different protocols for asthma models is presented. The studies have primarily been focused on the pharmacological aspects of the disease, where the guinea pig undoubtedly is superior to mice. Further reasons are the anatomical and physiological similarities between human and guinea pig airways compared with that of the mouse, especially with respect to airway branching, neurophysiology, pulmonary circulation and smooth muscle distribution, as well as mast cell localization and mediator secretion. Lack of reagents and specific molecular tools to study inflammatory and immunological reactions in the guinea pig has however greatly diminished its use in asthma research. The aim in this position paper is to review and summarize what we know about different aspects of the use of guinea pig in vivo models for asthma research. The associated aim is to highlight the unmet needs that have to be addressed in the future.
Collapse
|
49
|
Araújo ADD, Correia-de-Sousa J. COPD: Will There Be Room for Nebulisers After the Current COVID-19 Pandemic? OPEN RESPIRATORY ARCHIVES 2020; 2:265-266. [PMID: 38620616 PMCID: PMC7492181 DOI: 10.1016/j.opresp.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
50
|
Watz H, Rickard K, Rheault T, Bengtsson T, Singh D. Symptom Improvement Following Treatment with the Inhaled Dual Phosphodiesterase 3 and 4 Inhibitor Ensifentrine in Patients with Moderate to Severe COPD - A Detailed Analysis. Int J Chron Obstruct Pulmon Dis 2020; 15:2199-2206. [PMID: 32982212 PMCID: PMC7502392 DOI: 10.2147/copd.s263025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction Ensifentrine is an inhaled first-in-class dual inhibitor of phosphodiesterase (PDE) 3 and 4. In a four-week randomized, double-blind, placebo-controlled, parallel-group study in patients with chronic obstructive pulmonary disease (COPD), nebulized ensifentrine 0.75 to 6mg twice daily significantly improved bronchodilation and symptoms, with all doses being well tolerated. Here, we report data for a number of prespecified exploratory and post hoc endpoints from this study that help to further profile the effect of ensifentrine on symptoms. Methods Eligible patients were males or females aged 40-75 years with COPD, post-bronchodilator forced expiratory volume in 1 second 40-80% predicted. Other than being clinically stable for at least four weeks prior to entry, there were no symptomatic inclusion or exclusion criteria. The outcome measures reported in this manuscript are the Evaluating Respiratory Symptoms [E-RS™:COPD] questionnaire total score and subscales (breathlessness, cough/sputum and chest symptoms) at Weeks 1-4, Transition Dyspnea Index (TDI) focal score at Weeks 2 and 4, and St George's Respiratory Questionnaire - COPD Specific (SGRQ-C) total score and domain data (symptoms, activity and impacts) at Week 4. Results There was a gradual improvement versus placebo with all ensifentrine doses for all three E-RS™:COPD subscales from Week 1 to Week 4, with the greatest ensifentrine effect on the breathlessness subscale, and all four doses superior to placebo from Week 2 onwards (p<0.05). For TDI focal score, all ensifentrine doses were superior to placebo at Weeks 2 and 4 (p<0.05). In the individual SGRQ-C domains at Week 4, ensifentrine had the greatest effect on the symptoms domain, with ensifentrine 6mg superior to placebo (p<0.05). Conclusion In these analyses, ensifentrine demonstrated a notable early and meaningful effect on dyspnea, with this effect observed across two different assessment tools.
Collapse
Affiliation(s)
- Henrik Watz
- Pulmonary Research Institute at Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | | | | | - Dave Singh
- Medicines Evaluation Unit, University of Manchester & Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|