1
|
Rolandsson Enes S, Dzneladze I, Hampton TH, Neff SL, Asarian L, Barua J, Tertel T, Giebel B, Pereyra N, McKenna DH, Hu P, Acton E, Ashare A, Liu KD, Krasnodembskaya AD, English K, Stanton BA, Rocco PRM, Matthay MA, Dos Santos CC, Weiss DJ. Acute respiratory distress vs healthy lung environments differently affect mesenchymal stromal cell extracellular vesicle miRNAs. Cytotherapy 2025; 27:581-596. [PMID: 39945694 DOI: 10.1016/j.jcyt.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 05/24/2025]
Abstract
The acute respiratory distress syndrome (ARDS) inflammatory environment alters mesenchymal stromal cell (MSC) gene and protein expression but effects on microRNA (miRNA) content of MSC-extracellular vesicle (EVs) remain unknown. To assess this, sequencing analysis of EV-miRNAs prepared from human bone marrow-derived MSCs (hMSCs) exposed ex vivo to bronchoalveolar lavage fluid (BALF) from ARDS patients or healthy volunteers (HV) identified a number of differentially expressed miRNAs. Discriminant, differential expression, and functional enrichment analyses identified 14 miRNAs significantly changed following ARDS versus HV BALF exposure. Network analysis showed 4 (miR-760, miR-3175, miR-885-3p, and miR-766-3p) of the 14 EV-miRNAs formed a regulatory "hub", suggesting co-targeting of specific gene pathways. In silico prediction identified a number of pathways important in lung injury. Two miRNAs involved in regulation of the cystic fibrosis transmembrane conductance regulator (CFTR), miRNA-145-5p and miRNA-138-5p, were also significantly increased in ARDS BALF-exposed hMSCs EVs. Functionally, EVs from hMSCs exposed to either ARDS or HV BALF had differential effects on CFTR Cl- secretion by cultured primary human bronchial epithelial cells, an effect predicted to reduce mucociliary clearance. The potential clinical impact of these finding highlights the need for further studies assessing the role of hMSC-EV miRNAs in regulating lung inflammation and mucociliary clearance.
Collapse
Affiliation(s)
- Sara Rolandsson Enes
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Irakli Dzneladze
- Interdepartmental Division of Critical Care, Department of Medicine and the Keenan Center for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Samuel L Neff
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lori Asarian
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jayita Barua
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tobias Tertel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen Germany
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen Germany
| | - Nicolas Pereyra
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Canada, The University of British Columbia Centre for Blood Research, Vancouver, Canada
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Erica Acton
- Interdepartmental Division of Critical Care, Department of Medicine and the Keenan Center for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Kathleen D Liu
- Departments of Medicine and Anesthesiology and the Cardiovascular Research Institute, University of California San Francisco
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queens University, Belfast, UK
| | - Karen English
- Cellular Immunology Laboratory, Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Michael A Matthay
- Departments of Medicine and Anesthesiology and the Cardiovascular Research Institute, University of California San Francisco
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, Department of Medicine and the Keenan Center for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Daniel J Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
2
|
Hoang VT, Nguyen QT, Phan TTK, Pham TH, Dinh NTH, Anh LPH, Dao LTM, Bui VD, Dao H, Le DS, Ngo ATL, Le Q, Nguyen Thanh L. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm (Beijing) 2025; 6:e70192. [PMID: 40290901 PMCID: PMC12022429 DOI: 10.1002/mco2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
From the pioneering days of cell therapy to the achievement of bioprinting organs, tissue engineering, and regenerative medicine have seen tremendous technological advancements, offering solutions for restoring damaged tissues and organs. However, only a few products and technologies have received United States Food and Drug Administration approval. This review highlights significant progress in cell therapy, extracellular vesicle-based therapy, and tissue engineering. Hematopoietic stem cell transplantation is a powerful tool for treating many diseases, especially hematological malignancies. Mesenchymal stem cells have been extensively studied. The discovery of induced pluripotent stem cells has revolutionized disease modeling and regenerative applications, paving the way for personalized medicine. Gene therapy represents an innovative approach to the treatment of genetic disorders. Additionally, extracellular vesicle-based therapies have emerged as rising stars, offering promising solutions in diagnostics, cell-free therapeutics, drug delivery, and targeted therapy. Advances in tissue engineering enable complex tissue constructs, further transforming the field. Despite these advancements, many technical, ethical, and regulatory challenges remain. This review addresses the current bottlenecks, emphasizing novel technologies and interdisciplinary research to overcome these hurdles. Standardizing practices and conducting clinical trials will balance innovation and regulation, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang H. Pham
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Nhung Thi Hong Dinh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Le Phuong Hoang Anh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Van Dat Bui
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Hong‐Nhung Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Anh Thi Lan Ngo
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quang‐Duong Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| |
Collapse
|
3
|
Kork F, Liang Y, Ginde AA, Yuan X, Rossaint R, Liu H, Evers AS, Eltzschig HK. Impact of perioperative organ injury on morbidity and mortality in 28 million surgical patients. Nat Commun 2025; 16:3366. [PMID: 40204694 PMCID: PMC11982547 DOI: 10.1038/s41467-025-58161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Perioperative organ injury contributes to morbidity and mortality of surgical patients. This cohort study included all elective and emergent surgeries in Germany over 4 years to address the impact of perioperative organ injuries on outcomes. We analyzed 28,350,953 cases. In-hospital mortality was 1.4% (n = 393,157), and 4.4% of cases (n = 1,245,898) experienced perioperative organ injury. Perioperative organ injury was associated with 9-fold higher odds of death and prolonged hospital stay by 11.2 days. Acute kidney injury had the highest incidence (2.0%) and was associated with 25.0% mortality. While delirium had the second highest incidence (1.5%), it was associated with the lowest mortality (10.8%). This was followed by acute myocardial infarction (incidence 0.6%, mortality 15.6%), stroke (incidence 0.6%, mortality 13.1%), pulmonary embolism (incidence 0.3%, mortality 20.0%), liver injury (incidence 0.1%, mortality 68.7%), and acute respiratory distress syndrome (incidence 0.1%, mortality 44.7%). These findings help prioritize interventions for preventing or treating individual types of perioperative organ injury.
Collapse
Affiliation(s)
- Felix Kork
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Yafen Liang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for OUTCOMES RESEARCH and Department of Anesthesiology, UTHealth, Houston, TX, USA.
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Hongfang Liu
- Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alex S Evers
- Department of Anesthesiology, Washington University, School of Medicine in St. Louis, St. Louis, MO, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for OUTCOMES RESEARCH and Department of Anesthesiology, UTHealth, Houston, TX, USA.
| |
Collapse
|
4
|
da Silva MMA, Rocco PRM, Cruz FF. Challenges and limitations of mesenchymal stem cell therapy for lung diseases in clinical trials. Expert Opin Emerg Drugs 2025:1-4. [PMID: 40186620 DOI: 10.1080/14728214.2025.2489700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Affiliation(s)
- Mayck Medeiros Amaral da Silva
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Fernández-Pérez AG, Herrera-González A, López-Naranjo EJ, Martínez-Álvarez IA, Uribe-Rodríguez D, Ramírez-Arreola DE, Sánchez-Peña MJ, Navarro-Partida J. Extracellular Vesicles from Different Mesenchymal Stem Cell Types Exhibit Distinctive Surface Protein Profiling and Molecular Characteristics: A Comparative Analysis. Int J Mol Sci 2025; 26:3393. [PMID: 40244251 PMCID: PMC11989379 DOI: 10.3390/ijms26073393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The current medical need to respond to different diseases has sparked great interest in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) due to their great regenerative potential and as drug carriers by playing a critical role in cell-cell communication. However, due to their heterogeneity, there is no standardized universal method for their identification and characterization, which limits their clinical application. This study, following the recommendations and methodologies proposed by MISEV2023 for the characterization of EVs, shows for the first time a detailed morphological, protein, and biochemical comparison between EVs derived from three different MSCs sources (placenta, endometrium, and dental pulp). The information obtained from the different applied assays suggests that there are substantial differences between one EVs source and another. It also offers valuable insights that provide the guidelines to ease their profiling and therefore improve their selection, in order to speed up their use and clinical application; additionally, the knowledge obtained from each characterization test could facilitate new researchers in the field to choose a specific cell source to obtain EVs and select the appropriate methods that provide the necessary information according to their requirements.
Collapse
Affiliation(s)
- Atziri G. Fernández-Pérez
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | - Azucena Herrera-González
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | - Edgar J. López-Naranjo
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | | | - David Uribe-Rodríguez
- Centro de Biotecnología Santer S.C., Guadalajara 45040, Jalisco, Mexico; (I.A.M.-Á.); (D.U.-R.)
| | - Daniel E. Ramírez-Arreola
- Centro Universitario de la Costa Sur (CUCSUR), University of Guadalajara, Autlan 48900, Jalisco, Mexico;
| | - María Judith Sánchez-Peña
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | - Jose Navarro-Partida
- School of Medicine and Health Sciences, Monterrey Institute of Technology, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
6
|
Hu B, Jiang J, Pan W, Chung CS, Gray C, Chen Y, Guo J, Ayala A. V-domain Ig Suppressor of T cell Activation Expression During Hemorrhage or Sepsis-Induced Acute Respiratory Distress Syndrome: Insights From a Mouse Model. J Surg Res 2025; 308:73-85. [PMID: 40086004 DOI: 10.1016/j.jss.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary condition with significant mortality, largely due to a lack of therapeutic interventions grounded in its molecular pathophysiology. Immune checkpoint regulators, such as the V-domain Ig Suppressor of T cell Activation (VISTA), may provide novel immunotherapeutic strategies for ARDS by modulating the immune response, a concept extensively explored in cancer and autoimmune diseases. Investigating VISTA in the context of ARDS could unveil new therapeutic avenues. METHODS We used a mouse model of indirect ARDS by subjecting C57BL/6J mice to hemorrhage followed by cecal ligation and puncture. Systemic and localized inflammatory conditions were assessed using samples from blood, lung, and peritoneal fluid. Lung pathology was quantified by scoring hematoxylin and eosin-stained sections. Flow cytometry, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction analyses concentrated on macrophages, neutrophils, endothelial cells, and epithelial cells to elucidate VISTA expression patterns. RESULTS Hemorrhage or cecal ligation and puncture-treated mice exhibited hallmark symptoms of indirect ARDS, including elevated levels of inflammatory cytokines and chemokines. Notably, VISTA expression was substantially upregulated on various cell types, including blood monocytes, lung macrophages, and both circulating and lung-infiltrating neutrophils, as well as on pulmonary epithelial cells and endothelial cells. CONCLUSIONS Our model replicates critical inflammatory and physiologic changes leading to ARDS, with the elevated expression of VISTA on immune and parenchymal cells suggesting its central involvement in lung injury. The findings propose VISTA as both a potential biomarker for lung damage and as a promising target for ARDS therapy.
Collapse
Affiliation(s)
- Baoji Hu
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China; Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China; Division of Surgical Research, Department of Surgery, Rhode Island Hospital/ The Warren Alpert School at Medicine at Brown University, Providence, Rhode Island
| | - Jihong Jiang
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/ The Warren Alpert School at Medicine at Brown University, Providence, Rhode Island; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Pan
- Division of Infectious Diseases, Rhode Island Hospital/ The Warren Alpert Medical School at Brown University, Providence, Rhode Island
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/ The Warren Alpert School at Medicine at Brown University, Providence, Rhode Island
| | - Chyna Gray
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/ The Warren Alpert School at Medicine at Brown University, Providence, Rhode Island
| | - Yaping Chen
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/ The Warren Alpert School at Medicine at Brown University, Providence, Rhode Island
| | - Jianrong Guo
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China; Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai, China.
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/ The Warren Alpert School at Medicine at Brown University, Providence, Rhode Island.
| |
Collapse
|
7
|
Taenaka H, Matthay MA. Mechanisms of impaired alveolar fluid clearance. Anat Rec (Hoboken) 2025; 308:1026-1039. [PMID: 36688689 PMCID: PMC10564110 DOI: 10.1002/ar.25166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Impaired alveolar fluid clearance (AFC) is an important cause of alveolar edema fluid accumulation in patients with acute respiratory distress syndrome (ARDS). Alveolar edema leads to insufficient gas exchange and worse clinical outcomes. Thus, it is important to understand the pathophysiology of impaired AFC in order to develop new therapies for ARDS. Over the last few decades, multiple experimental studies have been done to understand the molecular, cellular, and physiological mechanisms that regulate AFC in the normal and the injured lung. This review provides a review of AFC in the normal lung, focuses on the mechanisms of impaired AFC, and then outlines the regulation of AFC. Finally, we summarize ongoing challenges and possible future research that may offer promising therapies for ARDS.
Collapse
Affiliation(s)
- Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Li J, Wang Z, Wei Y, Li W, He M, Kang J, Xu J, Liu D. Advances in Tracing Techniques: Mapping the Trajectory of Mesenchymal Stem-Cell-Derived Extracellular Vesicles. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:137-168. [PMID: 40151822 PMCID: PMC11938168 DOI: 10.1021/cbmi.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 03/29/2025]
Abstract
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) are nanoscale lipid bilayer vesicles secreted by mesenchymal stem cells. They inherit the parent cell's attributes, facilitating tissue repair and regeneration, promoting angiogenesis, and modulating the immune response, while offering advantages like reduced immunogenicity, straightforward administration, and enhanced stability for long-term storage. These characteristics elevate MSC-EVs as highly promising in cell-free therapy with notable clinical potential. It is critical to delve into their pharmacokinetics and thoroughly elucidate their intracellular and in vivo trajectories. A detailed summary and evaluation of existing tracing strategies are needed to establish standardized protocols. Here, we have summarized and anticipated the research progress of MSC-EVs in various biomedical imaging techniques, including fluorescence imaging, bioluminescence imaging, nuclear imaging (PET, SPECT), tomographic imaging (CT, MRI), and photoacoustic imaging. The challenges and prospects of MSC-EV tracing strategies, with particular emphasis on clinical translation, have been analyzed, with promising solutions proposed.
Collapse
Affiliation(s)
- Jingqi Li
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoyu Wang
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongchun Wei
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenshuai Li
- State
Key Laboratory for Crop Stress Resistance and High-Efficiency Production,
Shaanxi Key Laboratory of Agricultural and Environmental Microbiology,
College of Life Sciences, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Mingzhu He
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Kang
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Xu
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Nabity TS, Ransom JT. Treatment of severe traumatic brain injury with human bone marrow mesenchymal stem cell extracellular vesicles: a case report. Brain Inj 2025; 39:330-335. [PMID: 39743543 DOI: 10.1080/02699052.2024.2432967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Extracellular vesicles (EVs) derived from regenerative mesenchymal stem cells might safely treat traumatic brain injury (TBI). We evaluated the safety and efficacy of a human bone marrow derived mesenchymal stem cell EVs (hBM-MSC EV) investigational product (IP) in a patient with severe TBI. DESIGN A single case study employing an IP with a strong safety profile in over 200 patients. METHOD The patient was dosed intravenously three times/week in the first week of six successive months. Functional Independence Measure (FIM) and Functional Assessment Measure (FAM) were performed to quantify effects. Safety monitoring was performed every week for nine months. RESULTS No adverse events occurred. Within eight weeks FIM and FAM scores improved by 48-55% and were sustained for the entire 36 weeks. All specific outcome items assessed by FIM and FAM that were initially low showed sustained improvements ranging from 41% to 233%, with the greatest improvements seen in locomotion, mobility and cognitive function. CONCLUSION After moderate improvement with conventional therapy, the substantial improvement observed following introduction of the IP suggests that hBM-MSC EVs may offer a novel and safe means to improve TBI patient outcomes. Appropriate randomized, controlled clinical trials to conclusively evaluate this therapeutic option are indicated.
Collapse
Affiliation(s)
- Thomas S Nabity
- Regenerative Medicine, Michigan Center for Regenerative Medicine, Rochester, Michigan, USA
| | | |
Collapse
|
10
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
11
|
Smallbone P, Kebriaei P, Mendt M, Shpall EJ, Olson AL, Fingrut WB. Mesenchymal stem cells in hematology: Therapeutic initiatives and future directions. Best Pract Res Clin Haematol 2025; 38:101613. [PMID: 40274341 DOI: 10.1016/j.beha.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
In recent years, the landscape of hematology has undergone rapid transformation, driven by innovative therapeutic strategies harnessing the properties of novel cellular therapies. Mesenchymal stem cells (MSCs) represent one of these promising therapies, with potential applications across a range of hematologic conditions. These cells are notable for their immunomodulatory properties, key role in supporting the hematopoietic micro-environment and capacity for multi-directional differentiation. This review will focus on the biologic mechanisms underlying MSC therapeutic use, current avenues of clinical investigation, and potential challenges and future directions for MSC derived therapies.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda L Olson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren B Fingrut
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Boregowda SV, Booker CN, Strivelli J, Phinney DG. Mesenchymal Stem/Stromal Cells (MSCs) from Mouse Pelvic vs. Long Bones Exhibit Disparate Critical Quality Attributes: Implications for Translational Studies. Cells 2025; 14:274. [PMID: 39996746 PMCID: PMC11853496 DOI: 10.3390/cells14040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been exploited as an experimental cell therapy in a broad array of clinical applications but have underperformed based on results from pre-clinical studies due to gaps in translating pre-clinical findings to human patients. Herein, we isolated mouse MSCs from pelvic bone marrow (BMP), a preferred source for human MSCs, and compared their growth, differentiation, and immuno-modulatory activity to those derived from long bone marrow (BML), the traditional source of mouse MSCs. We report that BMP-MSCs exhibit significantly enhanced growth kinetics in 5% and 21% oxygen saturation and superior bi-lineage differentiation and hematopoiesis-supporting activity as compared to BML-MSCs. Additionally, we show that TNF upregulates inducible nitric oxide synthase (NOS2) in BML- and BMP- MSCs and augments their immune suppressive activity in cell-based assays, while interferon-gamma (INFG) upregulates indoleamine, 2-3, dioxygenase (IDO1) and enhances the immune suppressive activity of only BMP-MSCs. These results indicate that mouse MSCs sourced from different bone compartments exhibit measurable differences in critical quality attributes, and these differences are comparable to those observed across species. Based on these differences, BMP- MSCs represent a useful resource to model the behavior of human BM-derived MSCs.
Collapse
Affiliation(s)
| | | | | | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (S.V.B.); (C.N.B.); (J.S.)
| |
Collapse
|
13
|
Wu C, Huang Z, Chen J, Li N, Cai Y, Chen J, Ruan G, Han W, Ding C, Lu Y. Efficiently directing differentiation and homing of mesenchymal stem cells to boost cartilage repair in osteoarthritis via a nanoparticle and peptide dual-engineering strategy. Biomaterials 2025; 312:122720. [PMID: 39084098 DOI: 10.1016/j.biomaterials.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.
Collapse
Affiliation(s)
- Cuixi Wu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenwen Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianmao Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Cai
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jieli Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weiyu Han
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Yao Lu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Fatykhova D, Fritsch VN, Siebert K, Methling K, Lalk M, Busche T, Kalinowski J, Weiner J, Beule D, Bertrams W, Kohler TP, Hammerschmidt S, Löwa A, Fischer M, Mieth M, Hellwig K, Frey D, Neudecker J, Rueckert JC, Toennies M, Bauer TT, Graff M, Tran HL, Eggeling S, Gruber AD, Antelmann H, Hippenstiel S, Hocke AC. Microenvironmental acidification by pneumococcal sugar consumption fosters barrier disruption and immune suppression in the human alveolus. Eur Respir J 2024; 64:2301983. [PMID: 39231629 PMCID: PMC11635383 DOI: 10.1183/13993003.01983-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Streptococcus pneumoniae is the most common causative agent of community-acquired pneumonia worldwide. A key pathogenic mechanism that exacerbates severity of disease is the disruption of the alveolar-capillary barrier. However, the specific virulence mechanisms responsible for this in the human lung are not yet fully understood. In this study, we infected living human lung tissue with Strep. pneumoniae and observed a significant degradation of the central junctional proteins occludin and vascular endothelial cadherin, indicating barrier disruption. Surprisingly, neither pneumolysin, bacterial hydrogen peroxide nor pro-inflammatory activation were sufficient to cause this junctional degradation. Instead, pneumococcal infection led to a significant decrease of pH (∼6), resulting in the acidification of the alveolar microenvironment, which was linked to junctional degradation. Stabilising the pH at physiological levels during infection reversed this effect, even in a therapeutic-like approach. Further analysis of bacterial metabolites and RNA sequencing revealed that sugar consumption and subsequent lactate production were the major factors contributing to bacterially induced alveolar acidification, which also hindered the release of critical immune factors. Our findings highlight bacterial metabolite-induced acidification as an independent virulence mechanism for barrier disruption and inflammatory dysregulation in pneumonia. Thus, our data suggest that strictly monitoring and buffering alveolar pH during infections caused by fermentative bacteria could serve as an adjunctive therapeutic strategy for sustaining barrier integrity and immune response.
Collapse
Affiliation(s)
- Diana Fatykhova
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Verena N Fritsch
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Keerthana Siebert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Metabolomics, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Metabolomics, Greifswald, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
- NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - January Weiner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Anna Löwa
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Mara Fischer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Maren Mieth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Katharina Hellwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Doris Frey
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Jens Neudecker
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jens C Rueckert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Toennies
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Torsten T Bauer
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Mareike Graff
- Department of Thoracic Surgery, DRK Clinics, Berlin, Germany
| | - Hong-Linh Tran
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Stephan Eggeling
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
- Contributed equally
| | - Andreas C Hocke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
- Contributed equally
| |
Collapse
|
15
|
Ma XN, Ho YK, Goie JYG, Ma CX, Sun ZB, Yao LQ, Zhu XL, Woo JY, Too HP, Li X. Evaluating the potential of off-the-shelf engineered mesenchymal stem cells for targeted Hepatocellular Carcinoma treatment: A multisite proof-of-concept study. Biomed Pharmacother 2024; 181:117676. [PMID: 39522266 DOI: 10.1016/j.biopha.2024.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Although combining 5-fluorouracil (5-FU) and Interferon-beta (IFNb) improves response rates in Hepatocellular Carcinoma (HCC), the outcomes remain suboptimal. This study investigates the feasibility of using highly transfected Mesenchymal Stem Cells (MSCs) to deliver a chemotherapeutic (5-FU) and an immunomodulator (IFNb) for localized HCC treatment. Considering the crucial role of cold-chain transportation in off-the-shelf allogeneic therapy, the study also assesses the quality and efficacy of frozen-thawed engineered MSCs, simulating a multisite study process. The engineered MSCs maintained their phenotypes and tumour tropism. With just 10 % engineered MSCs, a killing efficiency of over 70 % was achieved in Huh-7 and HepG2 cell lines in vitro. Coculture studies, soft agar assays, and in vivo experiments confirmed that MSCs are neither tumorigenic nor tumour-promoting. Tumour mass growth was inhibited by >80 % in the treated mice group. TUNEL, Annexin-V, and Ki67 staining confirmed DNA damage, cell death, and proliferation inhibition post-treatment. Blood chemistry and the weight of the mice were comparable to the control group, indicating a good safety profile. This proof-of-concept study demonstrates the efficacy and safety of off-the-shelf CDUPRT-IFNβ_MSCs in targeting hepatocellular carcinoma (HCC) growth. Evaluating the complete value chain of MSC therapy in early-stage preclinical studies is essential for justifying further investigation and clinical translation of this cell product.
Collapse
Affiliation(s)
- Xiao Ni Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Medicine Laboratory Centre, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yoon Khei Ho
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; AGeM Bio, Singapore 119276, Singapore; Singapore Innovate, Singapore 059911, Singapore
| | - Jian Yi Gerald Goie
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng-Xu Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zong-Bin Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Li-Qiong Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Medicine Laboratory Centre, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao Liang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jun Yung Woo
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
16
|
Mamo T, Cox CA, Demorest C, Fontaine MJ, Hubel A, Kelley L, Khan A, Marks DC, Pati S, Reems JA, Spohn G, Schäfer R, Shi R, Shao L, Stroncek D, McKenna DH. Cryopreservation of mesenchymal stem/stromal cells using a DMSO-free solution is comparable to DMSO-containing cryoprotectants: results of an international multicenter PACT/BEST collaborative study. Cytotherapy 2024; 26:1522-1531. [PMID: 39066775 PMCID: PMC11841823 DOI: 10.1016/j.jcyt.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIM An essential aspect of ensuring availability and stability of mesenchymal stem/stromal cells (MSCs) products for clinical use is that these cells are cryopreserved before individual infusion into patients. Currently, cryopreservation of MSCs involves use of a cryoprotectant solution containing dimethyl sulfoxide (DMSO). However, it is recognized that DMSO may be toxic for both the patient and the MSC product. In this Production Assistance for Cellular Therapies (PACT) and Biomedical Excellence for Safer Transfusion (BEST) Collaborative study, we compared a novel DMSO-free solution with DMSO containing cryoprotectant solutions for freezing MSCs. METHODS A DMSO-free cryoprotectant solution containing sucrose, glycerol, and isoleucine (SGI) in a base of Plasmalyte A was prepared at the University of Minnesota. Cryoprotectant solutions containing 5-10% DMSO (in-house) were prepared at seven participating centers (five from USA, one each from Australia and Germany). The MSCs were isolated from bone marrow or adipose tissue and cultured ex vivo per local protocols at each center. The cells in suspension were frozen by aliquoting into vials/bags. For six out of the seven centers, the vials/bags were placed in a controlled rate freezer (one center placed them at -80°C freezer overnight) before transferring to liquid nitrogen. The cells were kept frozen for at least one week before thawing and testing. Pre- and post-thaw assessment included cell viability and recovery, immunophenotype as well as transcriptional and gene expression profiles. Linear regression, mixed effects models and two-sided t-tests were applied for statistical analysis. RESULTS MSCs had an average viability of 94.3% (95% CI: 87.2-100%) before cryopreservation, decreasing by 4.5% (95% CI: 0.03-9.0%; P: 0.049) and 11.4% (95% CI: 6.9-15.8%; P< 0.001), for MSCs cryopreserved in the in-house and SGI solutions, respectively. The average recovery of viable MSCs cryopreserved in the SGI was 92.9% (95% CI: 85.7-100.0%), and it was lower by 5.6% (95% CI: 1.3-9.8%, P < 0.013) for the in-house solution. Additionally, MSCs cryopreserved in the two solutions had expected level of expressions for CD45, CD73, CD90, and CD105 with no significant difference in global gene expression profiles. CONCLUSION MSCs cryopreserved in a DMSO-free solution containing sucrose, glycerol, and isoleucine in a base of Plasmalyte A had slightly lower cell viability, better recovery, and comparable immunophenotype and global gene expression profiles compared to MSCs cryopreserved in DMSO containing solutions. The average viability of MSCs in the novel solution was above 80% and, thus, likely clinically acceptable. Future studies are suggested to test the post-thaw functions of MSCs cryopreserved in the novel DMSO-free solution.
Collapse
Affiliation(s)
- Theodros Mamo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | - Connor Demorest
- Masonic Cancer Center Biostatistics Core, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Evia Bio, Minneapolis, Minnesota, USA
| | | | - Aisha Khan
- University of Miami, Coral Gables, Florida, USA
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Shibani Pati
- University of California San Francisco, San Francisco, California, USA
| | | | - Gabriele Spohn
- German Red Cross Blood Donor Service and Goethe University Hospital, Frankfurt am Main, Germany
| | - Richard Schäfer
- German Red Cross Blood Donor Service and Goethe University Hospital, Frankfurt am Main, Germany; Medical Center, Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Rongye Shi
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lipei Shao
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David Stroncek
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA; Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
17
|
Edström D, Niroomand A, Stenlo M, Broberg E, Hirdman G, Ghaidan H, Hyllén S, Pierre L, Olm F, Lindstedt S. Amniotic fluid-derived mesenchymal stem cells reduce inflammation and improve lung function following transplantation in a porcine model. J Heart Lung Transplant 2024; 43:2018-2030. [PMID: 39182800 DOI: 10.1016/j.healun.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Lung transplantation is hindered by low donor lung utilization rates. Infectious complications are reasons to decline donor grafts due to fear of post-transplant primary graft dysfunction. Mesenchymal stem cells are a promising therapy currently investigated in treating lung injury. Full-term amniotic fluid-derived lung-specific mesenchymal stem cell treatment may regenerate damaged lungs. These cells have previously demonstrated inflammatory mediation in other respiratory diseases, and we hypothesized that treatment would improve donor lung quality and postoperative outcomes. METHODS In a transplantation model, donor pigs were stratified to either the treated or the nontreated group. Acute respiratory distress syndrome was induced in donor pigs and harvested lungs were placed on ex vivo lung perfusion (EVLP) before transplantation. Treatment consisted of 3 doses of 2 × 106 cells/kg: one during EVLP and 2 after transplantation. Donors and recipients were assessed on clinically relevant parameters and recipients were followed for 3 days before evaluation for primary graft dysfunction (PGD). RESULTS Repeated injection of the cell treatment showed reductions in inflammation seen through lowered immune cell counts, reduced histology signs of inflammation, and decreased cytokines in the plasma and bronchoalveolar lavage fluid. Treated recipients showed improved pulmonary function, including increased PaO2/FiO2 ratios and reduced incidence of PGD. CONCLUSIONS Repeated injection of lung-specific cell treatment during EVLP and post transplant was associated with improved function of previously damaged lungs. Cell treatment may be considered as a potential therapy to increase the number of lungs available for transplantation and the improvement of postoperative outcomes.
Collapse
Affiliation(s)
- Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, New York
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
18
|
Liu QK, Xiang GH, Liu WL, Dong JY, Wen YQ, Hao H. Efficacy and safety of several common drugs in the treatment of acute respiratory distress syndrome: A systematic review and network meta-analysis. Medicine (Baltimore) 2024; 103:e40472. [PMID: 39809198 PMCID: PMC11596352 DOI: 10.1097/md.0000000000040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND This study aimed to compare the effectiveness and safety of neuromuscular blockers, mesenchymal stem cells (MSC), and inhaled pulmonary vasodilators (IV) for acute respiratory distress syndrome through a network meta-analysis of randomized controlled trials (RCTs). METHODS We searched Chinese and English databases, including China National Knowledge Infrastructure, The Cochrane Library, PubMed, and EMbase, with no time restrictions. We conducted a network meta-analysis and reported the results according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We included 27 clinical RCTs, all of which were two-arm trials, totaling 3492 patients. We selected 28-day mortality as the primary outcome measure, whereas 90-day mortality, ventilator-free days, and oxygenation served as secondary outcome measures for analysis and comparison. RESULTS We selected 3 treatment modalities and evaluated their clinical trials in comparison with the standard control group. For the 28-day in-hospital mortality, we included 21 RCTs, involving 2789 patients. Compared to standard treatment, neuromuscular blockers were associated with reduced 28-day hospital mortality (odds ratios [OR] 0.52, 95% confidence intervals [CI] (0.31, 0.88)), while IV and MSC were not associated with reduced hospital mortality (OR 0.89, 95% CI (0.50, 1.55); OR 0.90, 95% CI (0.49, 1.66)). In terms of 90-day mortality, days free of mechanical ventilation, and improvement in oxygenation, there were no significant differences compared to standard treatment with neuromuscular blockers, MSC, and IV. CONCLUSION Neuromuscular blockers significantly reduced the 28-day mortality rate in acute respiratory distress syndrome patients. However, in terms of 90-day mortality, ventilator-free days, oxygenation improvement, IV, MSC, and neuromuscular blockers did not significantly improve.
Collapse
Affiliation(s)
- Qing-Kuo Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guo-Han Xiang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wen-Li Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jin-Yan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Qi Wen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hao Hao
- Intensive Care Unit, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
19
|
Jiang Y, Song Y, Zeng Q, Jiang B. Mesenchymal Stem Cells and Their Extracellular Vesicles Are a Promising Alternative to Antibiotics for Treating Sepsis. Bioengineering (Basel) 2024; 11:1160. [PMID: 39593820 PMCID: PMC11591657 DOI: 10.3390/bioengineering11111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sepsis is a life-threatening disease caused by the overwhelming response to pathogen infections. Currently, treatment options for sepsis are limited to broad-spectrum antibiotics and supportive care. However, the growing resistance of pathogens to common antibiotics complicates treatment efforts. Excessive immune response (i.e., cytokine storm) can persist even after the infection is cleared. This overactive inflammatory response can severely damage multiple organ systems. Given these challenges, managing the excessive immune response is critical in controlling sepsis progression. Therefore, Mesenchymal stem cells (MSCs), with their immunomodulatory and antibacterial properties, have emerged as a promising option for adjunctive therapy in treating sepsis. Moreover, MSCs exhibit a favorable safety profile, as they are eventually eliminated by the host's immune system within several months post-administration, resulting in minimal side effects and have not been linked to common antibiotic therapy drawbacks (i.e., antibiotic resistance). This review explores the potential of MSCs as a personalized therapy for sepsis treatment, clarifying their mechanisms of action and providing up-to-date technological advancements to enhance their protective efficacy for patients suffering from sepsis and its consequences.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Yunjuan Song
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Bin Jiang
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Li Y, Jin M, Guo D, Shen S, Lu K, Pan R, Sun L, Zhang H, Shao J, Pan G. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: Challenges and strategies for enhanced therapeutic efficacy. Biomed Pharmacother 2024; 180:117537. [PMID: 39405918 DOI: 10.1016/j.biopha.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) exhibit significant potential in the context of cell therapy because of their capacity to perform a range of interconnected functions in damaged tissues, including immune modulation, hematopoietic support, and tissue regeneration. MSCs are hypoimmunogenic because of their diminished expression of major histocompatibility molecules, absence of costimulatory molecules, and presence of coinhibitory molecules. While autologous MSCs reduce the risk of rejection and infection, variability in cell numbers and proliferation limits their potential applications. Conversely, allogeneic MSCs (allo-MSCs) possess broad clinical applications unconstrained by donor physiology. Nonetheless, preclinical and clinical investigations highlight that transplanted allo-MSCs are subject to immune attack from recipients. These cells exhibit anti-inflammatory and proinflammatory phenotypes contingent on the microenvironment. Notably, the proinflammatory phenotype features enhanced immunogenicity and diminished immunosuppression, potentially triggering allogeneic immune reactions that impede long-term clinical efficacy. Consequently, preserving the low immunogenicity of allo-MSCs in vivo and mitigating immune rejection in diverse microenvironments represent crucial challenges for the widespread clinical application of MSCs. In this review, we elucidate the immune regulation of allo-MSCs, specifically focusing on two distinct subgroups, MSC1 and MSC2, that exhibit varying polarization states and immunogenicity. We discuss the factors and underlying mechanisms that induce MSC immunogenicity and polarization, highlighting the crucial role of major histocompatibility complex class I/II molecules in rejection post-transplantation. Additionally, we summarize the immunogenic regulatory targets and applications of allo-MSCs and outline strategies to address challenges in this promising field, aiming to enhance allo-MSC therapeutic efficacy for patients.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Mengting Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dongyang Guo
- Hangzhou City University, School of Medicine, 50 Huzhou Street, Hangzhou, China
| | - Shuang Shen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Kaining Lu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Li Sun
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hongchen Zhang
- Department of Gatroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Hangzhou, China.
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
21
|
Regmi S, Ganguly A, Pathak S, Primavera R, Chetty S, Wang J, Patel S, Thakor AS. Evaluating the therapeutic potential of different sources of mesenchymal stem cells in acute respiratory distress syndrome. Stem Cell Res Ther 2024; 15:385. [PMID: 39468662 PMCID: PMC11520775 DOI: 10.1186/s13287-024-03977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) have attracted interest as a potential therapy given their anti-inflammatory and immunomodulatory properties. However, clinical trials using MSCs for acute respiratory distress syndrome (ARDS) have produced mixed and inconclusive data. In previous work, we performed a "head-to-head" comparison between different sources of MSCs and showed that each source had a unique genomic and proteomic "signature". METHOD This study investigated which sources of MSC: bone marrow derived-MSCs (BM-MSCs), adipose tissue derived-MSCs (AD-MSCs) and umbilical cord derived-MSCs (UC-MSCs) would be the optimal candidate to be used as a therapy in an LPS-induced mouse model of ARDS. Immune cells assessment, tissue transcriptomics, animal survival, and endothelial-epithelial barrier assessment were used to evaluate their effects. RESULTS When comparing the three most commonly used MSC sources, we found that UC-MSCs exhibited greater efficacy compared to other MSCs in improving animal survival, mitigating epithelial/endothelial damage, decreasing lung inflammation via reducing neutrophil infiltration, T cell proliferation, and M1 polarization. Bulk RNA sequencing of lung tissue also showed that UC-MSCs have the capability to downregulate extracellular trap formation, by the downregulation of key genes like Elane and Padi4. Notably, treatment with UC-MSCs demonstrated a significant reduction in Fc-γ R mediated phagocytosis, which has been associated with monocyte pyroptosis and intense inflammation in the context of COVID-19. CONCLUSION Our findings suggest that UC-MSCs are an optimal source of MSC to treat acute inflammatory conditions in the lungs, such as ARDS.
Collapse
Affiliation(s)
- S Regmi
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - A Ganguly
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S Pathak
- Division of Blood and Marrow Transplantation and Cellular Therapy, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - R Primavera
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S Chetty
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - J Wang
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Shaini Patel
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - A S Thakor
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
22
|
Reijnders TDY, Laterre PF, François B, Sánchez García M, van Engelen TSR, Sie D, Scicluna BP, Ostanin DV, Galinsky KJ, Butler JM, Lombardo E, van der Poll T. Effect of mesenchymal stem cells on the host response in severe community-acquired pneumonia. Thorax 2024; 79:1086-1090. [PMID: 39322407 PMCID: PMC11503173 DOI: 10.1136/thorax-2024-222026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Mesenchymal stem cells (MSC) have immune regulatory properties that may ameliorate pathophysiological processes in sepsis. We determined the effect of allogeneic adipose-derived MSCs (Cx611) on the host response during sepsis due to community-acquired bacterial pneumonia (CABP) by measuring 29 plasma biomarkers and blood transcriptomes at six time points in 82 patients randomised to two intravenous infusions of Cx611 or placebo. Cx611 treatment enhanced several endothelial cell and procoagulant response plasma biomarkers, and led to increased expression of pathways related to innate immunity, haemostasis and apoptosis. Cx611 infusion in sepsis due to CABP is associated with broad host response alterations.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-François Laterre
- Department of Intensive Care Medicine, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno François
- Intensive care unit and Inserm CIC 1435 & UMR 1092, University Hospital Centre of Limoges, Limoges, France
| | | | - Tjitske S R van Engelen
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Daoud Sie
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, University of Malta, Msida, Malta
| | - Dmitry V Ostanin
- Translational Biomarker Research, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Kevin J Galinsky
- Translational Biomarker Research, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Fang L, Hu F, Li H, Chang W, Liu L. Efficacy and safety of mesenchymal stem cell therapy for acute respiratory distress syndrome-a systematic review and meta-analysis. J Thorac Dis 2024; 16:5802-5814. [PMID: 39444918 PMCID: PMC11494583 DOI: 10.21037/jtd-24-281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 10/25/2024]
Abstract
Background Mesenchymal stem cells (MSC) therapy for acute respiratory distress syndrome (ARDS) represents a burgeoning treatment approach, supported by numerous preclinical studies confirming its efficacy. Our study aims to provide a comprehensive evaluation of both the safety and effectiveness of MSC. Methods We conducted searches across three databases (PubMed, Embase, Cochrane) for randomized controlled studies up to June 23, 2024. A meta-analysis was performed on variables including adverse events, mortality, changes in the PaO2/FiO2 ratio, intensive care unit (ICU), length of stay, ventilation-free days, and changes in pro-inflammatory and anti-inflammatory cytokines. Relative risk (RR) values were employed for dichotomous variables, while mean difference (MD) and standard mean difference (SMD) were used for continuous variables. Risk bias was assessed using risk of bias 2 (ROB2). Results The meta-analysis encompassed 17 experiments involving 796 patients, with 410 undergoing MSC treatment and 386 in the control group. Primary outcomes indicated that MSC treatment did not escalate adverse events [RR =1.04; 95% confidence interval (CI): 0.90, 1.19; P=0.59; I2=0%]. On the contrary, it significantly diminishes the mortality (RR =0.79; 95% CI: 0.64, 0.97; P=0.02; I2=0%). Regarding secondary outcomes, MSCs led to a significant improvement in the PaO2/FiO2 ratio for ARDS patients (SMD =0.53; 95% CI: 0.15, 0.92; P=0.007; I2=0%). However, there were no significant differences in ICU length of stay (MD =-1.77; 95% CI: -6.97, 3.43; P=0.50; I2=63%) and ventilation-free days (MD =-1.29; 95% CI: -4.09, 1.51; P=0.37; I2=0%). MSCs significantly lowered C-reactive protein (CRP) (SMD =-0.65; 95% CI: -1.18, -0.13; P=0.01; I2=56%) and interleukin-6 (IL-6) levels compared to the control group (SMD =-0.76; 95% CI: -1.34, -0.17; P=0.01; I2=74%). However, changes in interleukin-10 (AIL-10) (SMD =-0.46; 95% CI: -1.51, 0.58; P=0.38; I2=77%), and changes in tumor necrosis factor-alpha (ATNF-α) (SMD =-1.5; 95% CI: -3.39, 0.40; P=0.12; I2=92%) levels showed no significant changes. Conclusions MSC therapy demonstrates reliable safety, with a significant impact on reducing mortality and improving certain clinical symptoms. Moreover, in certain aspects, it may alleviate the inflammatory response in ARDS. Nonetheless, these findings necessitate validation through additional high-quality randomized controlled trials.
Collapse
Affiliation(s)
- Lingyan Fang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fangyuan Hu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Han Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Wu M, Liu J, Zhang S, Jian Y, Guo L, Zhang H, Mi J, Qu G, Liu Y, Gao C, Cai Q, Wen D, Liu D, Sun J, Jiang J, Huang H. Shh Signaling from the Injured Lung Microenvironment Drives BMSCs Differentiation into Alveolar Type II Cells for Acute Lung Injury Treatment in Mice. Stem Cells Int 2024; 2024:1823163. [PMID: 39372681 PMCID: PMC11455595 DOI: 10.1155/2024/1823163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 08/01/2024] [Indexed: 10/08/2024] Open
Abstract
Alveolar type II (AT2) cells are key effector cells for repairing damaged lungs. Direct differentiation into AT2 cells from bone marrow mesenchymal stem cells (BMSCs) is a promising approach to treating acute lung injury (ALI). The mechanisms of BMSC differentiation into AT2 cells have not been determined. The Sonic Hedgehog (Shh) pathway is involved in regulating multiple differentiation of MSCs. However, the role of the Shh pathway in mediating the differentiation of BMSCs into AT2 cells remains to be explored. The results showed that BMSCs significantly ameliorated lung injury and improved pulmonary function in mice with ALI. These improvements were accompanied by a relatively high proportion of BMSCs differentiate into AT2 cells and an increase in the total number of AT2 cells in the lungs. Lung tissue extracts from mice with ALI (ALITEs) were used to mimic the injured lung microenvironment. The addition of ALITEs significantly improved the differentiation efficiency of BMSCs into AT2 cells along with activation of the Shh pathway. The inhibition of the Shh pathway not only reduced the differentiation rate of BMSCs but also failed to mitigate lung injury and regenerate AT2 cells. The results confirmed that promoting AT2 cell regeneration through the differentiation of BMSCs into AT2 cells is one of the important therapeutic mechanisms for the treatment of ALI with BMSCs. This differentiation process is highly dependent on Shh pathway activation in BMSCs in the injured lung microenvironment.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Jing Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Shu Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Yi Jian
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Ling Guo
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Huacai Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Junwei Mi
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Guoxin Qu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Yaojun Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Chu Gao
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Qingli Cai
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Dalin Wen
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Di Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianhui Sun
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Hong Huang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| |
Collapse
|
25
|
Liu L, Fandiño J, McCarthy SD, Masterson CH, Sallent I, Du S, Warren A, Laffey JG, O’Toole D. The Effects of the Pneumonia Lung Microenvironment on MSC Function. Cells 2024; 13:1581. [PMID: 39329762 PMCID: PMC11430541 DOI: 10.3390/cells13181581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Despite promise in preclinical models of acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC) have failed to translate to therapeutic benefit in clinical trials. The MSC is a live cell medicine and interacts with the patient's disease state. Here, we explored this interaction, seeking to devise strategies to enhance MSC therapeutic function. METHODS Human bone-marrow-derived MSCs were exposed to lung homogenate from healthy and E. coli-induced ARDS rat models. Apoptosis and functional assays of the MSCs were performed. RESULTS The ARDS model showed reduced arterial oxygenation, decreased lung compliance and an inflammatory microenvironment compared to controls. MSCs underwent more apoptosis after stimulation by lung homogenate from controls compared to E. coli, which may explain why MSCs persist longer in ARDS subjects after administration. Changes in expression of cell surface markers and cytokines were associated with lung homogenate from different groups. The anti-microbial effects of MSCs did not change with the stimulation. Moreover, the conditioned media from lung-homogenate-stimulated MSCs inhibited T-cell proliferation. CONCLUSIONS These findings suggest that the ARDS microenvironment plays an important role in the MSC's therapeutic mechanism of action, and changes can inform strategies to modulate MSC-based cell therapy for ARDS.
Collapse
Affiliation(s)
- Lanzhi Liu
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Physiology, University of Galway, H91 W5P7 Galway, Ireland
| | - Juan Fandiño
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Sean D. McCarthy
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Claire H. Masterson
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Ignacio Sallent
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Shanshan Du
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Abigail Warren
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Anaesthesia, University of Galway, H91 V4AY Galway, Ireland
| | - John G. Laffey
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Anaesthesia, University of Galway, H91 V4AY Galway, Ireland
- Anaesthesia and Critical Care, Galway University Hospital, H91 V4AY Galway, Ireland
| | - Daniel O’Toole
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Physiology, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
26
|
Cyr-Depauw C, Cook DP, Mižik I, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing Reveals Repair Features of Human Umbilical Cord Mesenchymal Stromal Cells. Am J Respir Crit Care Med 2024; 210:814-827. [PMID: 38564376 DOI: 10.1164/rccm.202310-1975oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Daniel Freund
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Lin S, Luo Y, Mao X, He W, Xu C, Zeng M. Homeobox B4 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on endotoxin-associated acute lung injury in rats. Am J Med Sci 2024; 368:242-252. [PMID: 38795966 DOI: 10.1016/j.amjms.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Alveolar capillary endothelial cell (EC) injury has a pivotal role in driving acute respiratory distress syndrome (ARDS) progression and maintaining endothelial homeostasis. A previous ex vivo study revealed that overexpression of homeobox B4 (HOXB4) in bone marrow mesenchymal stem cells (BMSCs) enhanced protection against lipopolysaccharide (LPS)-induced EC injury by activating the Wnt/β-catenin pathway. This in vivo study was performed to verify whether BMSCs overexpressing HOXB4 exert similar protective effects on LPS-induced acute lung injury (ALI) in an animal model. METHODS The ALI rat model was established by intraperitoneal injection of LPS. Wildtype BMSCs or BMSCs overexpressing HOXB4 were then injected via the tail vein. The lung characteristics of rats were visualized by computed tomography. Lung histopathological characteristics and collagen deposition were assessed by hematoxylin-eosin and Masson's staining, respectively, which were combined with the lung wet/dry ratio and proinflammatory factor levels in bronchoalveolar lavage fluid to further evaluate therapeutic effects. Expression of β-catenin and VE-cadherin was assessed by western blotting and immunofluorescence. RESULTS Compared with wildtype BMSCs, overexpression of HOXB4 optimized the therapeutic effects of BMSCs, which manifested as improvements in lung exudation and histopathological features, reduced lung collagen deposition, amelioration of lung permeability, attenuation of lung inflammation, and enhanced expression of β-catenin and VE-cadherin proteins. CONCLUSIONS HOXB4-overexpressing BMSCs optimized the protective effect against LPS-induced ALI by partially activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| |
Collapse
|
28
|
Lee JH, Jeon H, Lötvall J, Cho BS. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in SARS-CoV-2 and H1N1 influenza-induced acute lung injury. J Extracell Vesicles 2024; 13:e12495. [PMID: 39254228 PMCID: PMC11386330 DOI: 10.1002/jev2.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have shown anti-inflammatory potential in multiple inflammatory diseases. In the March 2022 issue of the Journal of Extracellular Vesicles, it was shown that EVs from human MSCs can suppress severe acute respiratory distress syndrome, coronavirus 2 (SARS-CoV-2) replication and can mitigate the production and release of infectious virions. We therefore hypothesized that MSC-EVs have an anti-viral effect in SARS-CoV-2 infection in vivo. We extended this question to ask whether also other respiratory viral infections could be treated by MSC-EVs. Adipose stem cell-derived EVs (ASC-EVs) were isolated using tangential flow filtration from conditioned media obtained from a multi-flask cell culture system. The effects of the ASC-EVs were tested in Vero E6 cells in vitro. ASC-EVs were also given i.v. to SARS-CoV-2 infected Syrian Hamsters, and H1N1 influenza virus infected mice. The ASC-EVs attenuated SARS-CoV-2 virus replication in Vero E6 cells and reduced body weight and signs of lung injury in infected Syrian hamsters. Furthermore, ASC-EVs increased the survival rate of influenza A-infected mice and attenuated signs of lung injury. In summary, this study suggests that ASC-EVs can have beneficial therapeutic effects in models of virus-infection-associated acute lung injury and may potentially be developed to treat lung injury in humans.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| | - Hyungtaek Jeon
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| | - Jan Lötvall
- Krefting Research Centre, The Sahlgrenska AcademyBOX 424GothenburgSweden
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| |
Collapse
|
29
|
Trivedi A, Lin M, Miyazawa B, Nair A, Vivona L, Fang X, Bieback K, Schäfer R, Spohn G, McKenna D, Zhuo H, Matthay MA, Pati S. Inter- and Intra-donor variability in bone marrow-derived mesenchymal stromal cells: implications for clinical applications. Cytotherapy 2024; 26:1062-1075. [PMID: 38852094 DOI: 10.1016/j.jcyt.2024.03.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are attractive as a therapeutic modality in multiple disease conditions characterized by inflammation and vascular compromise. Logistically they are advantageous because they can be isolated from adult tissue sources, such as bone marrow (BM). The phase 2a START clinical trial determined BM-MSCs to be safe in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Herein, we examine a subset of the clinical doses of MSCs generated for the phase 2a START trial from three unique donors (1-3), where one of the donors' donated BM on two separate occasions (donor 3 and 3W). METHODS The main objective of this study was to correlate properties of the cells from the four lots with plasma biomarkers from treated patients and relevant to ARDS outcomes. To do this we evaluated MSC donor lots for (i) post-thaw viability, (ii) growth kinetics, (iii) metabolism, (iv) surface marker expression, (v) protein expression, (vi) immunomodulatory ability and (vii) their functional effects on regulating endothelial cell permeability. RESULTS MSC-specific marker expression and protection of thrombin-challenged endothelial barrier permeability was similar among all four donor lots. Inter and intra-donor variability was observed in all the other in vitro assays. Furthermore, patient plasma ANG-2 and protein C levels at 6 hours post-transfusion were correlated to cell viability in an inter- and intra-donor dependent manner. CONCLUSIONS These findings highlight the potential of donor dependent (inter-) and collection dependent (intra-) effects in patient biomarker expression.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Maximillian Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alison Nair
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Lindsay Vivona
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Schäfer
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany; Institute for Transfusion Medicine and Gene Therapy, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Germany
| | - Gabriele Spohn
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - David McKenna
- University of Minnesota, Molecular and Cellular Therapeutics, Saint Paul, Minnesota, USA
| | - Hanjing Zhuo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA; Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California, USA
| | - Shibani Pati
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
30
|
Tan Y, Salkhordeh M, Murray ABP, Souza-Moreira L, Stewart DJ, Mei SHJ. Key quality parameter comparison of mesenchymal stem cell product cryopreserved in different cryopreservation solutions for clinical applications. Front Bioeng Biotechnol 2024; 12:1412811. [PMID: 39148941 PMCID: PMC11324487 DOI: 10.3389/fbioe.2024.1412811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Cryopreservation is a critical process of cell products for achieving a commercial viability through wide scale adoption. By preserving cells in a lower temperature, cryopreservation enables a product to be off-the-shelf and ready for infusion. An optimized cryopreservation strategy can maintain the viability, phenotype, and potency of thawed mesenchymal stromal/stem cells (MSCs) while being regulatory compliant. We compared three clinical-ready formulations with one research cryopreservation solutions and evaluated key quality parameters of post thawed MSCs. Method and result MSCs were cryopreserved at 3, 6, and 9 million cells/mL (M/mL) in four different cryopreservation solutions: NutriFreez (10% dimethyl sulfoxide [DMSO]), Plasmalyte A (PLA)/5% human albumin (HA)/10% DMSO (PHD10), CryoStor CS5 (5% DMSO), and CryoStor CS10 (10% DMSO). To establish post thaw viability, cells were evaluated with no dilution of DMSO (from 3 M/mL), 1:1 dilution (from 6 M/mL), or 1:2 dilution (from 9 M/mL) with PLA/5% HA, to achieve uniform concentration at 3 M/mL. Cell viability was measured at 0-, 2-, 4-, and 6-h post thaw with Trypan blue exclusion and Annexin V/PI staining. Dilution (1:2) of final cell products from 9M/mL resulted in an improvement of cell viability over 6 h but showed a trend of decreased recovery. MSCs cryopreserved in solutions with 10% DMSO displayed comparable viabilities and recoveries up to 6 h after thawing, whereas a decreasing trend was noted in cell viability and recovery with CS5. Cells from all groups exhibited surface marker characteristics of MSCs. We further evaluated cell proliferation after 6-day recovery in culture. While cells cryopreserved in NutriFreez and PHD10 presented similar cell growth post thaw, MSCs cryopreserved in CS5 and CS10 at 3 M/mL and 6M/mL showed 10-fold less proliferative capacity. No significant differences were observed between MSCs cryopreserved in NutriFreez and PHD10 in their potency to inhibit T cell proliferation and improve monocytic phagocytosis. Conclusion MSCs can be cryopreserved up to 9 M/mL without losing notable viability and recovery, while exhibiting comparable post thaw potency with NutriFreez and PHD10. These results highlight the importance of key parameter testing for selecting the optimal cryopreservation solution for MSC-based therapy.
Collapse
Affiliation(s)
- Yuan Tan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mahmoud Salkhordeh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Aidan B P Murray
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Luciana Souza-Moreira
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
31
|
Ye H, Zou X, Fang X. Advancing cell-based therapy in sepsis: An anesthesia outlook. Chin Med J (Engl) 2024; 137:1522-1534. [PMID: 38708689 PMCID: PMC11230747 DOI: 10.1097/cm9.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Zou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
32
|
Osborn E, Ransom JT, Shulman A, Sengupta V, Choudhry M, Hafiz A, Gooden J, Lightner AL. A novel extracellular vesicle paradigm for the treatment of COVID-19 induced acute respiratory distress syndrome (ARDS). Respir Med Case Rep 2024; 51:102087. [PMID: 39099663 PMCID: PMC11295994 DOI: 10.1016/j.rmcr.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Efficacy of mesenchymal stem cells (MSCs) for treatment of acute respiratory distress syndrome (ARDS) suggests bioactive bone marrow MSC extracellular vesicles (BM-MSC EVs) may be effective. A patient with severe COVID-19 associated ARDS who was presumed to expire was treated with a BM-MSC EV preparation (14 doses over two months) as a rescue treatment for refractory COVID ARDS. Near complete reversal of lung inflammation and fibrosis (per computed tomography), near complete restoration of mobility, hospital discharge (3 months) with resumption of normal activities of daily living (one year) and return to work occurred. No adverse events occurred despite repeated dosing of investigational product, highlighting safety of this potential therapy for ARDS.
Collapse
Affiliation(s)
- Erik Osborn
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | | | | | | | | | - Ali Hafiz
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | - Jacob Gooden
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | | |
Collapse
|
33
|
Mahida RY, Yuan Z, Kolluri KK, Scott A, Parekh D, Hardy RS, Matthay MA, Perkins GD, Janes SM, Thickett DR. 11β hydroxysteroid dehydrogenase type 1 transgenic mesenchymal stem cells attenuate inflammation in models of sepsis. Front Bioeng Biotechnol 2024; 12:1422761. [PMID: 39036559 PMCID: PMC11257926 DOI: 10.3389/fbioe.2024.1422761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background Human bone marrow mesenchymal stem cell (MSC) administration reduces inflammation in pre-clinical models of sepsis and sepsis-related lung injury, however clinical efficacy in patients has not yet been demonstrated. We previously showed that Alveolar Macrophage (AM) 11β-hydroxysteroid dehydrogenase type-1 (HSD-1) autocrine signalling is impaired in critically ill sepsis patients, which promotes inflammatory injury. Administration of transgenic MSCs (tMSCs) which overexpress HSD-1 may enhance the anti-inflammatory effects of local glucocorticoids and be more effective at reducing inflammation in sepsis than cellular therapy alone. Methods MSCs were transfected using a recombinant lentiviral vector containing the HSD-1 and GPF transgenes under the control of a tetracycline promoter. Thin layer chromatography assessed HSD-1 reductase activity in tMSCs. Mesenchymal stem cell phenotype was assessed by flow cytometry and bi-lineage differentiation. HSD-1 tMSCs were co-cultured with LPS-stimulated monocyte-derived macrophages (MDMs) from healthy volunteers prior to assessment of pro-inflammatory cytokine release. HSD-1 tMSCs were administered intravenously to mice undergoing caecal ligation and puncture (CLP). Results MSCs were transfected with an efficiency of 91.1%, and maintained an MSC phenotype. Functional HSD-1 activity was demonstrated in tMSCs, with predominant reductase cortisol activation (peak 8.23 pM/hour/100,000 cells). HSD-1 tMSC co-culture with LPS-stimulated MDMs suppressed TNFα and IL-6 release. Administration of transgene activated HSD-1 tMSCs in a murine model of CLP attenuated neutrophilic inflammation more effectively than transgene inactive tMSCs (medians 0.403 v 1.36 × 106/ml, p = 0.033). Conclusion The synergistic impact of HSD-1 transgene expression and MSC therapy attenuated neutrophilic inflammation in a mouse model of peritoneal sepsis more effectively than MSC therapy alone. Future studies investigating the anti-inflammatory capacity of HSD-1 tMSCs in models of sepsis-related direct lung injury and inflammatory diseases are required.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Krishna K. Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research Institute, Department of Medicine and Department of Anaesthesia, University of California San Francisco, San Francisco, CA, United States
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
Tan X, Jing L, Neal SM, Gupta MC, Buchowski JM, Setton LA, Huebsch N. IGF-1 Peptide Mimetic-functionalized Hydrogels Enhance MSC Survival and Immunomodulatory Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600680. [PMID: 39005297 PMCID: PMC11244900 DOI: 10.1101/2024.06.27.600680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Human mesenchymal stem cells (MSCs) have demonstrated promise when delivered to damaged tissue or tissue defects for their cytokine secretion and inflammation modulation behaviors that can promote repair. Insulin-like growth factor 1 (IGF-1) has been shown to augment MSCs' viability and survival and promote their secretion of cytokines that signal to endogenous cells, in the treatment of myocardial infarction, wound healing, and age-related diseases. Biomaterial cell carriers can be functionalized with growth factor-mimetic peptides to enhance MSC function while promoting cell retention and minimizing off-target effects seen with direct administration of soluble growth factors. Here, we functionalized alginate hydrogels with three distinct IGF-1 peptide mimetics and the integrin-binding peptide, cyclic RGD. One IGF-1 peptide mimetic (IGM-3) was found to activate Akt signaling and support survival of serum-deprived MSCs. MSCs encapsulated in alginate hydrogels that presented both IGM-3 and cRGD showed a significant reduction in pro-inflammatory cytokine secretion when challenged with interleukin-1β. Finally, MSCs cultured within the cRGD/IGM-3 hydrogels were able to blunt pro-inflammatory gene expression of human primary cells from degenerated intervertebral discs. These studies indicate the potential to leverage cell adhesive and IGF-1 growth factor peptide mimetics together to control therapeutic secretory behavior of MSCs. Significance Statement Insulin-like growth factor 1 (IGF-1) plays a multifaceted role in stem cell biology and may promote proliferation, survival, migration, and immunomodulation for MSCs. In this study, we functionalized alginate hydrogels with integrin-binding and IGF-1 peptide mimetics to investigate their impact on MSC function. Embedding MSCs in these hydrogels enhanced their ability to reduce inflammatory cytokine production and promote anti-inflammatory gene expression in cells from degenerative human intervertebral discs exposed to proteins secreted by the MSC. This approach suggests a new way to retain and augment MSC functionality using IGF-1 peptide mimetics, offering an alternative to co-delivery of cells and high dose soluble growth factors for tissue repair and immune- system modulation.
Collapse
|
35
|
Lin S, Yang M, Liu C, Wang Z, Long X. A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients. Int J Med Inform 2024; 186:105397. [PMID: 38507979 DOI: 10.1016/j.ijmedinf.2024.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Early prediction of acute respiratory distress syndrome (ARDS) of critically ill patients in intensive care units (ICUs) has been intensively studied in the past years. Yet a prediction model trained on data from one hospital might not be well generalized to other hospitals. It is therefore essential to develop an accurate and generalizable ARDS prediction model adaptive to different hospital or medical centers. METHODS We analyzed electronic medical records of 200,859 and 50,920 hospitalized patients within 24 h after being diagnosed with ARDS from the Philips eICU Institute (eICU-CRD) and the Medical Information Mart for Intensive Care (MIMIC-IV) dataset, respectively. Patients were sorted into three groups, including rapid death, long stay, and recovery, based on their condition or outcome between 24 and 72 h after ARDS diagnosis. To improve prediction performance and generalizability, a "pretrain-finetune" approach was applied, where we pretrained models on the eICU-CRD dataset and performed model finetuning using only a part (35%) of the MIMIC-IV dataset, and then tested the finetuned models on the remaining data from the MIMIC-IV dataset. Well-known machine-learning algorithms, including logistic regression, random forest, extreme gradient boosting, and multilayer perceptron neural networks, were employed to predict ARDS outcomes. Prediction performance was evaluated using the area under the receiver-operating characteristic curve (AUC). RESULTS Results show that, in general, multilayer perceptron neural networks outperformed the other models. The use of pretrain-finetune yielded improved performance in predicting ARDS outcomes achieving a micro-AUC of 0.870 for the MIMIC-IV dataset, an improvement of 0.046 over the pretrain model. CONCLUSIONS The proposed pretrain-finetune approach can effectively improve model generalizability from one to another dataset in ARDS prediction.
Collapse
Affiliation(s)
- Songlu Lin
- Instrument Science and Electrical Engineering, Jilin University, Changchun, China; Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| | - Meicheng Yang
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands; State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Chengyu Liu
- State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Zhihong Wang
- Instrument Science and Electrical Engineering, Jilin University, Changchun, China
| | - Xi Long
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
36
|
Martínez-Muñoz ME, Payares-Herrera C, Lipperheide I, Malo de Molina R, Salcedo I, Alonso R, Martín-Donaire T, Sánchez R, Zafra R, García-Berciano M, Trisán-Alonso A, Pérez-Torres M, Ramos-Martínez A, Ussetti P, Rubio JJ, Avendaño-Solà C, Duarte RF. Mesenchymal stromal cell therapy for COVID-19 acute respiratory distress syndrome: a double-blind randomised controlled trial. Bone Marrow Transplant 2024; 59:777-784. [PMID: 38409332 DOI: 10.1038/s41409-024-02230-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
Mesenchymal stromal cells (MSC) have immunomodulatory and tissue-regenerative properties and have shown promising results in acute respiratory distress syndrome (ARDS) of multiple causes, including COVID-19. We conducted a randomised (1:1), placebo-controlled, double-blind clinical trial to assess the efficacy and safety of one bone marrow-derived MSC infusion in twenty patients with moderate to severe ARDS caused by COVID-19. The primary endpoint (increase in PaO2/FiO2 ratio from baseline to day 7, MSC 83.3 versus placebo 57.6) was not statistically significant, although a clinical improvement at day 7 in the WHO scale was observed in MSC patients (5, 50% vs 0, 0%, p = 0.033). Median time to discontinuation of supplemental oxygen was also shorter in the experimental arm (14 versus 23 days, p = 0.007), resulting in a shorter hospital stay (17.5 versus 28 days, p = 0.042). No significant differences were observed for other efficacy or safety secondary endpoints. No infusion or treatment-related serious adverse events occurred during the one-year follow-up. This study did not meet the primary endpoint of PaO2/FiO2 increase by day 7, although it suggests that MSC are safe in COVID-19 ARDS and may accelerate patients' clinical recovery and hospital discharge. Larger studies are warranted to elucidate their role in ARDS and other inflammatory lung disorders.Trial Registration: EudraCT Number: 2020-002193-27, registered on July 14th, 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002193-27/ES . NCT number: NCT04615429, registered on November 4th, 2020, https://clinicaltrials.gov/ct2/show/NCT04615429 .
Collapse
Affiliation(s)
- María E Martínez-Muñoz
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Concepción Payares-Herrera
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Inés Lipperheide
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Rosa Malo de Molina
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Isabel Salcedo
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rosalía Alonso
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Trinidad Martín-Donaire
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rocío Sánchez
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rocío Zafra
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Miguel García-Berciano
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Andrea Trisán-Alonso
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Manuel Pérez-Torres
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Antonio Ramos-Martínez
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Internal Medicine and Infectious Diseases, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Piedad Ussetti
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Juan J Rubio
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Cristina Avendaño-Solà
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Rafael F Duarte
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain.
| |
Collapse
|
37
|
Battaglini D, Iavarone IG, Rocco PRM. An update on the pharmacological management of acute respiratory distress syndrome. Expert Opin Pharmacother 2024; 25:1229-1247. [PMID: 38940703 DOI: 10.1080/14656566.2024.2374461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by acute inflammatory injury to the lungs, alterations in vascular permeability, loss of aerated tissue, bilateral infiltrates, and refractory hypoxemia. ARDS is considered a heterogeneous syndrome, which complicates the search for effective therapies. The goal of this review is to provide an update on the pharmacological management of ARDS. AREAS COVERED The difficulties in finding effective pharmacological therapies are mainly due to the challenges in designing clinical trials for this unique, varied population of critically ill patients. Recently, some trials have been retrospectively analyzed by dividing patients into hyper-inflammatory and hypo-inflammatory sub-phenotypes. This approach has led to significant outcome improvements with some pharmacological treatments that previously failed to demonstrate efficacy, which suggests that a more precise selection of ARDS patients for clinical trials could be the key to identifying effective pharmacotherapies. This review is provided after searching the main studies on this topics on the PubMed and clinicaltrials.gov databases. EXPERT OPINION The future of ARDS therapy lies in precision medicine, innovative approaches to drug delivery, immunomodulation, cell-based therapies, and robust clinical trial designs. These should lead to more effective and personalized treatments for patients with ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Strecanska M, Sekelova T, Csobonyeiova M, Danisovic L, Cehakova M. Therapeutic applications of mesenchymal/medicinal stem/signaling cells preconditioned with external factors: Are there more efficient approaches to utilize their regenerative potential? Life Sci 2024; 346:122647. [PMID: 38614298 DOI: 10.1016/j.lfs.2024.122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Mesenchymal/medicinal stem/signaling cells (MSCs) have emerged as a promising treatment option for various disorders. However, the donor's age, advanced stage of disease, and prolonged in vitro expansion often diminish the innate regenerative potential of MSCs. Besides that, the absence of MSCs' comprehensive "pre-admission testing" can result in the injection of cells with reduced viability and function, which may negatively affect the overall outcome of MSC-based therapies. It is, therefore, essential to develop effective strategies to improve the impaired biological performance of MSCs. This review focuses on the comprehensive characterization of various methods of external MSCs stimulation (hypoxia, heat shock, caloric restriction, acidosis, 3D culture, and application of extracellular matrix) that augment their medicinal potential. To emphasize the significance of MSCs priming, we summarize the effects of individual and combined preconditioning approaches, highlighting their impact on MSCs' response to either physiological or pathological conditions. We further investigate the synergic action of exogenous factors to maximize MSCs' therapeutic potential. Not to omit the field of tissue engineering, the application of pretreated MSCs seeded on scaffolds is discussed as well.
Collapse
Affiliation(s)
- Magdalena Strecanska
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Tatiana Sekelova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Michaela Cehakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| |
Collapse
|
39
|
Li J, He S, Yang H, Zhang L, Xiao J, Liang C, Liu S. The Main Mechanisms of Mesenchymal Stem Cell-Based Treatments against COVID-19. Tissue Eng Regen Med 2024; 21:545-556. [PMID: 38573476 PMCID: PMC11087407 DOI: 10.1007/s13770-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.
Collapse
Affiliation(s)
- Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lizeai Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jie Xiao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chaoyi Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
40
|
Crose JJ, Crose A, Ransom JT, Lightner AL. Bone marrow mesenchymal stem cell-derived extracellular vesicle infusion for amyotrophic lateral sclerosis. Neurodegener Dis Manag 2024; 14:111-117. [PMID: 39352708 PMCID: PMC11457643 DOI: 10.1080/17582024.2024.2344396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/15/2024] [Indexed: 10/09/2024] Open
Abstract
Background: In this pilot safety study, we hypothesized that a human bone marrow stem cell-derived extracellular vesicle (hBM-MSC EV) investigational product (IP) would be safe and exhibit potential efficacy in amyotrophic lateral sclerosis (ALS) patients.Methods: Ten ALS patients received two 10-ml intravenous infusions of the IP given 1 month apart and evaluated over 3 months.Results: There were no serious adverse events or adverse events related to the IP and 30% of subjects' ALS functional rating scale-revised (ALSFRS-R) scores did not decline.Conclusion: HBM-MSC EVs appear safe in ALS patients. This early investigation suggests a controlled study of EVs for the treatment of ALS is warranted.
Collapse
Affiliation(s)
- Joshua J Crose
- Capitis Research Institute, 11189 Sorrento Valley Road, Suite 105, San Diego, CA 92121, USA
| | - Arezou Crose
- Capitis Research Institute, 11189 Sorrento Valley Road, Suite 105, San Diego, CA 92121, USA
| | - John T Ransom
- Direct Biologics, LLC, 5301 Southwest Parkway, Building 1 Suite 415, Austin, TX 78735, USA
| | - Amy L Lightner
- Direct Biologics, LLC, 5301 Southwest Parkway, Building 1 Suite 415, Austin, TX 78735, USA
| |
Collapse
|
41
|
Wu X, Tang Y, Lu X, Liu Y, Liu X, Sun Q, Wang L, Huang W, Liu A, Liu L, Chao J, Zhang X, Qiu H. Endothelial cell-derived extracellular vesicles modulate the therapeutic efficacy of mesenchymal stem cells through IDH2/TET pathway in ARDS. Cell Commun Signal 2024; 22:293. [PMID: 38802896 PMCID: PMC11129421 DOI: 10.1186/s12964-024-01672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.
Collapse
Affiliation(s)
- Xiao Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xinxing Lu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yigao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Department of Physiology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiwen Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
42
|
Aouabdi S, Aboalola D, Zakari S, Alwafi S, Nedjadi T, Alsiary R. Protective potential of mesenchymal stem cells against COVID-19 during pregnancy. Future Sci OA 2024; 10:FSO924. [PMID: 38836262 PMCID: PMC11149780 DOI: 10.2144/fsoa-2023-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 06/06/2024] Open
Abstract
SARS-CoV-2 causes COVID-19. COVID-19 has led to severe clinical illnesses and an unprecedented death toll. The virus induces immune inflammatory responses specifically cytokine storm in lungs. Several published reports indicated that pregnant females are less likely to develop severe symptoms compared with non-pregnant. Putative protective role of maternal blood circulating fetal mesenchymal stem cells (MSCs) has emerged and have been put forward as an explanation to alleviated symptoms. MSCs with immune-modulatory, anti-inflammatory and anti-viral roles, hold great potential for the treatment of COVID-19. MSCs could be an alternative to treat infections resulting from the SARS-CoV-2 and potential future outbreaks. This review focuses on the MSCs putative protective roles against COVID-19 in pregnant females.
Collapse
Affiliation(s)
- Sihem Aouabdi
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Samer Zakari
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Suliman Alwafi
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| |
Collapse
|
43
|
Zhu F. Mesenchymal Stromal Cells in Acute Respiratory Distress Syndrome: Shoulder Heavy Responsibilities, and a Long Way to Go. Am J Respir Crit Care Med 2024; 209:1276. [PMID: 38382075 PMCID: PMC11146552 DOI: 10.1164/rccm.202312-2296le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai, China
| |
Collapse
|
44
|
Batchinsky AI, Roberts TR, Antebi B, Cancio LC. Reply to Zhu: Mesenchymal Stromal Cells in Acute Respiratory Distress Syndrome: Shoulder Heavy Responsibilities, and a Long Way to Go. Am J Respir Crit Care Med 2024; 209:1276-1278. [PMID: 38382067 PMCID: PMC11146529 DOI: 10.1164/rccm.202312-2364le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Ben Antebi
- Maryland Stem Cell Research Fund, Columbia, Maryland; and
| | - Leopoldo C. Cancio
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Texas
| |
Collapse
|
45
|
Ahmed SH, AlMoslemany MA, Witwer KW, Tehamy AG, El-Badri N. Stem Cell Extracellular Vesicles as Anti-SARS-CoV-2 Immunomodulatory Therapeutics: A Systematic Review of Clinical and Preclinical Studies. Stem Cell Rev Rep 2024; 20:900-930. [PMID: 38393666 PMCID: PMC11087360 DOI: 10.1007/s12015-023-10675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND COVID-19 rapidly escalated into a worldwide pandemic with elevated infectivity even from asymptomatic patients. Complications can lead to severe pneumonia and acute respiratory distress syndrome (ARDS), which are the main contributors to death. Because of their regenerative and immunomodulatory capacities, stem cells and their derived extracellular vesicles (EVs) are perceived as promising therapies against severe pulmonary conditions, including those associated with COVID-19. Herein, we evaluate the safety and efficacy of stem cell EVs in treating COVID-19 and complicating pneumonia, acute lung injury, and ARDS. We also cover relevant preclinical studies to recapitulate the current progress in stem cell EV-based therapy. METHODS Using PubMed, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science, we searched for all English-language published studies (2000-2023) that used stem cell EVs as a therapy for COVID-19, ARDS, or pneumonia. The risk of bias (ROB) was assessed for all studies. RESULTS Forty-eight studies met our inclusion criteria. Various-sized EVs derived from different types of stem cells were reported as a potentially safe and effective therapy to attenuate the cytokine storm induced by COVID-19. EVs alleviated inflammation and regenerated the alveolar epithelium by decreasing apoptosis, proinflammatory cytokines, neutrophil infiltration, and M2 macrophage polarization. They also prevented fibrin production and promoted the production of anti-inflammatory cytokines and endothelial cell junction proteins. CONCLUSION Similar to their parental cells, stem cell EVs mediate lung tissue regeneration by targeting multiple pathways and thus hold promise in promoting the recovery of COVID-19 patients and improving the survival rate of severely affected patients.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Atef AlMoslemany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmed Gamal Tehamy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt.
| |
Collapse
|
46
|
Hou XY, Danzeng LM, Wu YL, Ma QH, Yu Z, Li MY, Li LS. Mesenchymal stem cells and their derived exosomes for the treatment of COVID-19. World J Stem Cells 2024; 16:353-374. [PMID: 38690515 PMCID: PMC11056634 DOI: 10.4252/wjsc.v16.i4.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang-Yi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - La-Mu Danzeng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qian-Hui Ma
- Department of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng Yu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Mei-Ying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
47
|
Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from research to clinic. AMERICAN JOURNAL OF STEM CELLS 2024; 13:37-58. [PMID: 38765802 PMCID: PMC11101986 DOI: 10.62347/jawm2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 05/22/2024]
Abstract
Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Dailin Yuan
- Zhejiang UniversityHangzhou 310058, Zhejiang, PR China
| | - Yufei Bao
- School of Biomedical Engineering, University of SydneyDarlington, NSW 2008, Australia
| | - Ahmed El-Hashash
- Texas A&M University, 3258 TAMU, College StationTX 77843-3258, USA
| |
Collapse
|
48
|
Gazzaniga G, Voltini M, Carletti A, Lenta E, Meloni F, Briganti DF, Avanzini MA, Comoli P, Belliato M. Potential application of mesenchymal stromal cells as a new therapeutic approach in acute respiratory distress syndrome and pulmonary fibrosis. Respir Res 2024; 25:170. [PMID: 38637860 PMCID: PMC11027419 DOI: 10.1186/s12931-024-02795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
While the COVID-19 outbreak and its complications are still under investigation, post-inflammatory pulmonary fibrosis (PF) has already been described as a long-term sequela of acute respiratory distress syndrome (ARDS) secondary to SARS-CoV2 infection. However, therapeutical strategies for patients with ARDS and PF are still limited and do not significantly extend lifespan. So far, lung transplantation remains the only definitive treatment for end-stage PF. Over the last years, numerous preclinical and clinical studies have shown that allogeneic mesenchymal stromal cells (MSCs) might represent a promising therapeutical approach in several lung disorders, and their potential for ARDS treatment and PF prevention has been investigated during the COVID-19 pandemic. From April 2020 to April 2022, we treated six adult patients with moderate COVID-19-related ARDS in a late proliferative stage with up to two same-dose infusions of third-party allogeneic bone marrow-derived MSCs (BM-MSCs), administered intravenously 15 days apart. No major adverse events were registered. Four patients completed the treatment and reached ICU discharge, while two received only one dose of MSCs due to multiorgan dysfunction syndrome (MODS) and subsequent death. All four survivors showed improved gas exchanges (PaO2/FiO2 ratio > 200), contrary to the others. Furthermore, LDH trends after MSCs significantly differed between survivors and the deceased. Although further investigations and shared protocols are still needed, the safety of MSC therapy has been recurrently shown, and its potential in treating ARDS and preventing PF might represent a new therapeutic strategy.
Collapse
Affiliation(s)
- Giulia Gazzaniga
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy.
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands.
| | - Marta Voltini
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Carletti
- SC Anestesia e Rianimazione 3 - TIPO, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Lenta
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Meloni
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Domenica Federica Briganti
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Pediatric Hematology/Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Pediatric Hematology/Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mirko Belliato
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy
| |
Collapse
|
49
|
Curley GF, O’Kane CM, McAuley DF, Matthay MA, Laffey JG. Cell-based Therapies for Acute Respiratory Distress Syndrome: Where Are We Now? Am J Respir Crit Care Med 2024; 209:789-797. [PMID: 38324017 PMCID: PMC10995569 DOI: 10.1164/rccm.202311-2046cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.
Collapse
Affiliation(s)
- Gerard F. Curley
- Department of Anaesthesia, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Michael A. Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - John G. Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland; and
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
50
|
Levy E, Reilly JP. Pharmacologic Treatments in Acute Respiratory Failure. Crit Care Clin 2024; 40:275-289. [PMID: 38432696 DOI: 10.1016/j.ccc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute respiratory failure relies on supportive care using non-invasive and invasive oxygen and ventilatory support. Pharmacologic therapies for the most severe form of respiratory failure, acute respiratory distress syndrome (ARDS), are limited. This review focuses on the most promising therapies for ARDS, targeting different mechanisms that contribute to dysregulated inflammation and resultant hypoxemia. Significant heterogeneity exists within the ARDS population. Treatment requires prompt recognition of ARDS and an understanding of which patients may benefit most from specific pharmacologic interventions. The key to finding effective pharmacotherapies for ARDS may rely on deeper understanding of pathophysiology and bedside identification of ARDS subphenotypes.
Collapse
Affiliation(s)
- Elizabeth Levy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA
| | - John P Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA.
| |
Collapse
|