1
|
Li Y, Liu L, Mei Y, Zhao J, Zhou Q, Li K, Yang M, Sun L, Li A, Xu Q. Variability of urinary metal in short-, mid-, long-term periods and its optimal sampling strategy: A novel epidemiological insight to exposure classification. ENVIRONMENTAL RESEARCH 2025; 279:121792. [PMID: 40340004 DOI: 10.1016/j.envres.2025.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
The health effects of metals are well-documented, but relying on single urine samples may inadequately reflect short-, mid-, or long-term exposure, leading to potential misclassification. Variability in urinary metal concentrations and its implications for exposure assessment across different timeframes and epidemiological study designs remain underexplored. Identifying optimal sampling strategies and minimum sample sizes is crucial for exposure assessment of enhancing environmental health research. In a two-year repeated-measures study of healthy adults across 4 visits (2019-2021), first morning void (FMV) urine samples were collected to measure 22 metals. Variance apportionments and intraclass correlation coefficients (ICCs) evaluated metal reproducibility over short-, mid-, and long-term intervals. Surrogate category analyses were conducted to determine the minimum sample size needed for accurate exposure classification. For the long-term variability, four epidemiological scenarios were considered and compared to assess their ability in improving exposure classification. In total, 3,541 FMV samples were collected from 60 participants during all visits. We observed daily variations in metal levels at both the group and individual levels, with fluctuations ranging from several-fold to several tens of times. Co and Zn showed the highest reproducibility, requiring only 2-3 samples to accurately classify exposure across short-, mid-, and long-term periods. Other metals, such as As, Cu, Rb, Sr, Cs, and V, demonstrated good predictive ability, requiring approximately 5 and 10 samples to characterize exposure levels over one month and two years. Conversely, Al, Cr, Sb, and Se consistently failed to meet specificity thresholds of 0.7. Study designs that account for "visits apart" and involve subjects sampling on the same day performed better in exposure classification. Future studies examining the health effects of urinary metals with high temporal variability should carefully consider sampling dates, intervals, and sample size when designing their study to ensure accurate exposure classification across the population.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Liu Liu
- Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lingli Sun
- Chaoyang District Center for Disease Control and Prevention, Beijing, China.
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Moses JC, Sapkota A, Wu Y, Martinez I, Handa H, Brisbois EJ. In Situ Nitric Oxide Generating Nano-Bioactive Glass-Based Coatings and Its Therapeutic Ion Release toward Attenuating Implant-Associated Fibrosis and Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411984. [PMID: 39989185 PMCID: PMC11962685 DOI: 10.1002/smll.202411984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Nitric oxide (NO) is a potent gasotransmitter that exhibits a pleiotropic effect in regulating homeostasis and pathophysiology. Though it is a versatile biomaterial, silicone-based devices are still challenged by implant-associated infections and fibrous capsule formation complications. Here, a NO-generating (NOgen) interface is developed from copper or strontium-doped mesoporous bioactive glass-based coating on silicone substrates to facilitate metal-ion catalysis of endogenous S-nitrosothiols. The copper or strontium-based interfaces can generate physiologically relevant NO levels, which have bactericidal and antithrombotic effects to combat implant-associated early onsite infection and thrombosis. The NO generated in tandem with the low therapeutic release of strontium ions from the NOgen interface regulates cellular fate pertaining to fibroblasts, macrophages, and endothelial cells. Strontium suppresses the collagen expression and migration of activated fibroblasts while favoring M2 phenotype bias in macrophages. Differential NO flux observed over time from NOgen interfaces helps switch macrophages from proinflammatory M1 phenotype to M2 anti-inflammatory phenotype. Moreover, the synergistic effect of leachate and NO generated by the silicone substrate demonstrates a proangiogenic effect by aiding endothelial network maturation in vitro. Thus, the multifunctional features of the developed strontium-doped bioactive glass-based coating hold promise in regulating local immune-micromilieu and attenuating implant-associated fibrosis of silicone-based implantable devices.
Collapse
Affiliation(s)
- Joseph Christakiran Moses
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Aasma Sapkota
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yi Wu
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Isabel Martinez
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Hitesh Handa
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
- Pharmaceutical and Biomedical Sciences DepartmentCollege of PharmacyUniversity of GeorgiaAthensGA30602USA
| | - Elizabeth J. Brisbois
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
3
|
Golovchak R, Mahlovanyi B, Shpotyuk Y, Kus-Liskiewicz M, Kozianska J, Zadrag-Tecza R, Zagula G, Trzyna-Sowa M, Kovalskiy A, Gala-Bladzinska A, Cebulski J. Copper strontium phosphate glasses with high antimicrobial efficacy. Sci Rep 2025; 15:4677. [PMID: 39920203 PMCID: PMC11806054 DOI: 10.1038/s41598-025-88781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
The emergence of antibiotic-resistant strains caused by the extensive use of antibiotics in the world requires a preventive approach to stop the infection spread, especially in a hospital setting. So, there is a growing demand for materials that can inhibit bacteria growth or have bactericidal effects. In this paper, an inexpensive and durable Cu-containing strontium-modified phosphate glass with a considerable antimicrobial effect is proposed. The basic physical properties of the material are studied, and its antimicrobial effect is evaluated on Staphylococcus aureus bacteria, known to be the most common problem in hospital environments because of healthcare-associated infections. The glass powders demonstrate strong antibacterial efficacy with a concentration of only a few mg/mL, sufficient to eradicate the entire bacterial colonies within 24 h. Bulk surfaces of these glasses inhibit bacterial growth and release low, non-toxic levels of their constituent elements into simulated body fluid. On the basis of the obtained results, it is shown that the proposed glass can be used as a structural material for various medical equipment and/or components of antimicrobial coating/paint not only in medicine but also for high touch point articles in public places like schools, gyms, public offices and similar.
Collapse
Affiliation(s)
- Roman Golovchak
- Department of Physics, Engineering and Astronomy, Austin Peay State University, Clarksville, TN, 37044, USA.
| | | | - Yaroslav Shpotyuk
- Institute of Physics, Rzeszow University, 35-959, Rzeszów, Poland.
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, Lviv, 790017, Ukraine.
| | - Malgorzata Kus-Liskiewicz
- Institute of Biotechnology, College of Natural Sciences, Rzeszow University, 35-959, Rzeszów, Poland
| | - Julia Kozianska
- Institute of Biotechnology, College of Natural Sciences, Rzeszow University, 35-959, Rzeszów, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, Rzeszow University, 35-959, Rzeszów, Poland
| | - Grzegorz Zagula
- Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 35-959, Rzeszów, Poland
| | - Malgorzata Trzyna-Sowa
- Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, Rzeszow University, 35-959, Rzeszow, Poland
| | - Andriy Kovalskiy
- Department of Physics, Engineering and Astronomy, Austin Peay State University, Clarksville, TN, 37044, USA
| | - Agnieszka Gala-Bladzinska
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959, Rzeszów, Poland
- Internal Medicine, Nephrology and Endocrinology Clinic, St. Queen Jadwiga Clinical District Hospital No. 2 in Rzeszow, 35-301, Rzeszów, Poland
| | - Jozef Cebulski
- Institute of Physics, Rzeszow University, 35-959, Rzeszów, Poland
| |
Collapse
|
4
|
Ran X, Yan X, Zhuang H, Liang Z, Ma G, Chen X, Huang Y, Liu X, Luo P, Hu T, Zhang J, Shen L. Effects of arsenic exposure on blood trace element levels in rats and sex differences. Biometals 2024; 37:1099-1111. [PMID: 38568319 DOI: 10.1007/s10534-024-00594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 10/15/2024]
Abstract
Arsenic (As) is a widespread environmental metalloid and human carcinogen, and its exposure is associated with a wide range of toxic effects, leading to serious health hazards. As poisoning is a complex systemic multi-organ and multi-system damage disease. In this study, a rat model of As poisoning was established to investigate the levels of trace elements in the blood of rats and sex differences in the effect of As on every trace elements in rat blood. Twenty 6-week-old SD (Sprague Dawley) rats were randomly divided into the control group and the As-exposed group. After 3 months, the contents of 19 elements including As in the blood were detected in these two groups by inductively coupled plasma mass spectrometry (ICP-MS). As levels in the blood of As-exposed rats were significantly higher than those in the control group, with increased levels of Rb, Sr, Cs and Ce, and decreased levels of Pd. As showed a significant positive correlation with Rb. There were significant sex differences in blood Se, Pd, Eu, Dy, Ho, and Au levels in the As-exposed group. The results showed that As exposure can lead to an increase of As content in blood and an imbalance of some elements. There were sex differences in the concentration and the correlation between elements of some elements. Elemental imbalances may affect the toxic effects of As and play a synergistic or antagonistic role in As toxicity.
Collapse
Affiliation(s)
- Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xiaolu Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Ting Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
5
|
Alves Côrtes J, Dornelas J, Duarte F, Messora MR, Mourão CF, Alves G. The Effects of the Addition of Strontium on the Biological Response to Calcium Phosphate Biomaterials: A Systematic Review. APPLIED SCIENCES 2024; 14:7566. [DOI: 10.3390/app14177566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Strontium is known for enhancing bone metabolism, osteoblast proliferation, and tissue regeneration. This systematic review aimed to investigate the biological effects of strontium-doped calcium phosphate biomaterials for bone therapy. A literature search up to May 2024 across Web of Science, PubMed, and Scopus retrieved 759 entries, with 42 articles meeting the selection criteria. The studies provided data on material types, strontium incorporation and release, and in vivo and in vitro evidence. Strontium-doped calcium phosphate biomaterials were produced via chemical synthesis and deposited on various substrates, with characterization techniques confirming successful strontium incorporation. Appropriate concentrations of strontium were non-cytotoxic, stimulating cell proliferation, adhesion, and osteogenic factor production through key signaling pathways like Wnt/β-catenin, BMP-2, Runx2, and ERK. In vivo studies identified novel bone formation, angiogenesis, and inhibition of bone resorption. These findings support the safety and efficacy of strontium-doped calcium phosphates, although the optimal strontium concentration for desired effects is still undetermined. Future research should focus on optimizing strontium release kinetics and elucidating molecular mechanisms to enhance clinical applications of these biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Juliana Alves Côrtes
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Jessica Dornelas
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Fabiola Duarte
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
| | - Carlos Fernando Mourão
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
- Department of Clinical and Translational Research, Tufts University Scholl of Dental Medicine, Boston, MA 02111, USA
- Clinical Research Unit, Antônio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Gutemberg Alves
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
- Clinical Research Unit, Antônio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| |
Collapse
|
6
|
García-Lamas L, Lozano D, Jiménez-Díaz V, Bravo-Giménez B, Sánchez-Salcedo S, Jiménez-Holguín J, Abella M, Desco M, Vallet-Regi M, Cecilia-López D, Salinas AJ. Enriched mesoporous bioactive glass scaffolds as bone substitutes in critical diaphyseal bone defects in rabbits. Acta Biomater 2024; 180:104-114. [PMID: 38583750 DOI: 10.1016/j.actbio.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
In the field of orthopedic surgery, there is an increasing need for the development of bone replacement materials for the treatment of bone defects. One of the main focuses of biomaterials engineering are advanced bioceramics like mesoporous bioactive glasses (MBG´s). The present study compared the new bone formation after 12 weeks of implantation of MBG scaffolds with composition 82,5SiO2-10CaO-5P2O5-x 2.5SrO alone (MBGA), enriched with osteostatin, an osteoinductive peptide, (MBGO) or enriched with bone marrow aspirate (MBGB) in a long bone critical defect in radius bone of adult New Zealand rabbits. New bone formation from the MBG scaffold groups was compared to the gold standard defect filled with iliac crest autograft and to the unfilled defect. Radiographic follow-up was performed at 2, 6, and 12 weeks, and microCT and histologic examination were performed at 12 weeks. X-Ray study showed the highest bone formation scores in the group with the defect filled with autograft, followed by the MBGB group, in addition, the microCT study showed that bone within defect scores (BV/TV) were higher in the MBGO group. This difference could be explained by the higher density of newly formed bone in the osteostatin enriched MBG scaffold group. Therefore, MBG scaffold alone and enriched with osteostatin or bone marrow aspirate increase bone formation compared to defect unfilled, being higher in the osteostatin group. The present results showed the potential to treat critical bone defects by combining MBGs with osteogenic peptides such as osteostatin, with good prospects for translation into clinical practice. STATEMENT OF SIGNIFICANCE: Treatment of bone defects without the capacity for self-repair is a global problem in the field of Orthopedic Surgery, as evidenced by the fact that in the U.S alone it affects approximately 100,000 patients per year. The gold standard of treatment in these cases is the autograft, but its use has limitations both in the amount of graft to be obtained and in the morbidity produced in the donor site. In the field of materials engineering, there is a growing interest in the development of a bone substitute equivalent. Mesoporous bioactive glass (MBG´s) scaffolds with three-dimensional architecture have shown great potential for use as a bone substitutes. The osteostatin-enriched Sr-MBG used in this long bone defect in rabbit radius bone in vivo study showed an increase in bone formation close to autograft, which makes us think that it may be an option to consider as bone substitute.
Collapse
Affiliation(s)
- Lorena García-Lamas
- Servicio de Cirugía Ortopédica y Traumatología. Hospital Universitario 12 de Octubre, Madrid, España; Instituto de Investigación I+12, Madrid, España.
| | - Daniel Lozano
- Instituto de Investigación I+12, Madrid, España; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, España
| | - Verónica Jiménez-Díaz
- Servicio de Cirugía Ortopédica y Traumatología. Hospital Universitario 12 de Octubre, Madrid, España; Instituto de Investigación I+12, Madrid, España
| | - Beatriz Bravo-Giménez
- Servicio de Cirugía Ortopédica y Traumatología. Hospital Universitario 12 de Octubre, Madrid, España; Instituto de Investigación I+12, Madrid, España
| | - Sandra Sánchez-Salcedo
- Instituto de Investigación I+12, Madrid, España; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, España
| | - Javier Jiménez-Holguín
- Instituto de Investigación I+12, Madrid, España; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, España
| | - Mónica Abella
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, España; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, España
| | - Manuel Desco
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, España; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, España
| | - María Vallet-Regi
- Instituto de Investigación I+12, Madrid, España; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, España
| | - David Cecilia-López
- Servicio de Cirugía Ortopédica y Traumatología. Hospital Universitario 12 de Octubre, Madrid, España; Instituto de Investigación I+12, Madrid, España
| | - Antonio Jesús Salinas
- Instituto de Investigación I+12, Madrid, España; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, España.
| |
Collapse
|
7
|
Tomczyk-Warunek A, Turżańska K, Posturzyńska A, Kowal F, Blicharski T, Pano IT, Winiarska-Mieczan A, Nikodem A, Dresler S, Sowa I, Wójciak M, Dobrowolski P. Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis. Int J Mol Sci 2024; 25:4075. [PMID: 38612883 PMCID: PMC11012416 DOI: 10.3390/ijms25074075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoporosis stands out as a prevalent skeletal ailment, prompting exploration into potential treatments, including dietary strontium ion supplements. This study assessed the efficacy of supplementation of three strontium forms-strontium citrate (SrC), strontium ranelate (SrR), and strontium chloride (SrCl)-for enhancing bone structure in 50 female SWISS mice, aged seven weeks. In total, 40 mice underwent ovariectomy, while 10 underwent sham ovariectomy. Ovariectomized (OVX) mice were randomly assigned to the following groups: OVX (no supplementation), OVX + SrR, OVX + SrC, and OVX + SrCl, at concentrations equivalent to the molar amount of strontium. After 16 weeks, micro-CT examined trabeculae and cortical bones, and whole-bone strontium content was determined. Results confirm strontium administration increased bone tissue mineral density (TMD) and Sr content, with SrC exhibiting the weakest effect. Femur morphometry showed limited Sr impact, especially in the OVX + SrC group. This research highlights strontium's potential in bone health, emphasizing variations in efficacy among its forms.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Karolina Turżańska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Agnieszka Posturzyńska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Filip Kowal
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Inés Torné Pano
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| |
Collapse
|
8
|
Zhang D, Liu H, Xue X, Liu F, Wu J, Peng F, Wang D, Pan H, Li M. Enhancing immune modulation and bone regeneration on titanium implants by alleviating the hypoxic microenvironment and releasing bioactive ions. Colloids Surf B Biointerfaces 2024; 236:113805. [PMID: 38422666 DOI: 10.1016/j.colsurfb.2024.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Bone implantation inevitably causes damage to surrounding vasculature, resulting in a hypoxic microenvironment that hinders bone regeneration. Although titanium (Ti)-based devices are widely used as bone implants, their inherent bioinert surface leads to poor osteointegration. Herein, a strontium peroxide (SrO2)-decorated Ti implant, Ti_P@SrO2, was constructed through coating with poly-L-lactic acid (PLLA) to alleviate the hypoxic microenvironment and transform the bioinert surface of the implant into a bioactive surface. PLLA degradation resulted in an acidic microenvironment and the release of SrO2 nanoparticles. The acidic microenvironment then accelerated the decomposition of SrO2, resulting in the release of O2 and Sr ions. O2 released from Ti_P@SrO2 can alleviate the hypoxic microenvironment, thus enhancing cell proliferation in an O2-insufficient microenvironment. Furthermore, under hypoxic and normal microenvironments, Ti_P@SrO2 enhanced alkaline phosphatase activity and bone-related gene expression in C3H10T1/2 cells with the continuous release of Sr ions. Meanwhile, Ti_P@SrO2 suppressed M1 polarization and promoted M2 polarization of bone marrow-derived monocytes under hypoxic and normal conditions. Furthermore, in a rat implantation model, the implant enhanced new bone formation and improved osteointegration after modification with SrO2. In summary, the newly designed O2- and Sr ion-releasing Ti implants are promising for applications in bone defects.
Collapse
Affiliation(s)
- Dongdong Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, PR China
| | - Han Liu
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China; Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Xiaodong Xue
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Feihong Liu
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, PR China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, PR China
| | - Feng Peng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China.
| | - Mei Li
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
9
|
Ru X, Yang L, Shen G, Wang K, Xu Z, Bian W, Zhu W, Guo Y. Microelement strontium and human health: comprehensive analysis of the role in inflammation and non-communicable diseases (NCDs). Front Chem 2024; 12:1367395. [PMID: 38606081 PMCID: PMC11007224 DOI: 10.3389/fchem.2024.1367395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Strontium (Sr), a trace element with a long history and a significant presence in the Earth's crust, plays a critical yet often overlooked role in various biological processes affecting human health. This comprehensive review explores the multifaceted implications of Sr, especially in the context of non-communicable diseases (NCDs) such as cardiovascular diseases, osteoporosis, hypertension, and diabetes mellitus. Sr is predominantly acquired through diet and water and has shown promise as a clinical marker for calcium absorption studies. It contributes to the mitigation of several NCDs by inhibiting oxidative stress, showcasing antioxidant properties, and suppressing inflammatory cytokines. The review delves deep into the mechanisms through which Sr interacts with human physiology, emphasizing its uptake, metabolism, and potential to prevent chronic conditions. Despite its apparent benefits in managing bone fractures, hypertension, and diabetes, current research on Sr's role in human health is not exhaustive. The review underscores the need for more comprehensive studies to solidify Sr's beneficial associations and address the gaps in understanding Sr intake and its optimal levels for human health.
Collapse
Affiliation(s)
- Xin Ru
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lida Yang
- College of Nursing, Mudanjiang Medical University, Mudanjiang, China
| | - Guohui Shen
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kunzhen Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zihan Xu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenbo Bian
- Zibo Agricultural Science Research Institute, Shandong, China
- Digital Agriculture and Rural Research Institute of CAAS (Zibo), Shandong, China
| | - Wenqi Zhu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhi Guo
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Wang H, Zhang Y, Li H, Li J, Liu Q, Wang Y, Sun L, Hu B, Chen G, Zhang D, Liang C, Lei J, Wang P, Tao F, Yang L. The Association Between Essential Metal Element Mixture and Sleep Quality in Chinese Community-Dwelling Older Adults. Biol Trace Elem Res 2024; 202:900-912. [PMID: 37340210 DOI: 10.1007/s12011-023-03729-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023]
Abstract
Previous studies have related single essential metal elements (EMEs) to sleep quality among older adults, however, the association of the EME mixture with sleep quality remained poorly understood. This study aimed to investigate the relationships between single EMEs and the EME mixture and sleep quality in older adults living in Chinese communities. This study consisted of 3957 older adults aged 60 years or over. Urinary concentrations of cobalt (Co), vanadium (V), selenium (Se), molybdenum (Mo), strontium (Sr), calcium (Ca), and magnesium (Mg) were detected using inductively coupled plasma mass spectrometry. Sleep quality was evaluated using Pittsburgh Sleep Quality Index (PSQI). The associations of single EMEs and EME mixture with sleep quality were assessed using logistic regression and Bayesian kernel machine regression (BKMR) models, respectively. Adjusted single-element logistic regression models showed that Mo (OR = 0.927, 95%CI:0.867-0.990), Sr (OR = 0.927, 95%CI:0.864-0.994), and Mg (OR = 0.934, 95%CI:0.873-0.997) were negatively related to poor sleep quality. BKMR models exhibited similar results. Also, higher levels of the EME mixture in urine were inversely related to the odds of poor sleep quality after adjustment for covariates, and Mo had the largest conditional posterior inclusion probability (condPIP) value in the mixture. Mo, Sr, and Mg were negatively related to poor sleep quality, separately and as the mixture. The EME mixture in urine was associated with decreased odds of poor sleep quality in older adults, and Mo was the greatest contributor within the mixture. Additional cohort research is warranted to clarify the relationship of multiple EMEs with sleep quality.
Collapse
Affiliation(s)
- Hongli Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Yan Zhang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Huaibiao Li
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Junzhe Li
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Qiang Liu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Yuan Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Guimei Chen
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jingyuan Lei
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Panpan Wang
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, Anhui, China
| | - Linsheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Zhang X, Zhou W, Xi W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Front Chem 2024; 12:1353950. [PMID: 38456182 PMCID: PMC10917964 DOI: 10.3389/fchem.2024.1353950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.
Collapse
Affiliation(s)
- Xue’e Zhang
- Jiangxi Province Key Laboratory of Oral Biomedicine, School of Stomatology, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Wuchao Zhou
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Weihong Xi
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Gang H, Zuo J, Jia Z, Liu H, Xia W, Xu S, Shen Y, Li Y. Trimester-Specific Urinary Strontium Concentrations during Pregnancy and Longitudinally Assessed Fetal Growth: Findings from a Prospective Cohort. J Nutr 2024; 154:224-232. [PMID: 37984738 DOI: 10.1016/j.tjnut.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Studies have claimed that strontium (Sr) is associated with fetal growth, but the research evidence is insufficient. OBJECTIVES Our study aimed to evaluate associations of trimester-specific urinary Sr concentrations with fetal growth parameters and birth size indicators. METHODS In this prospective cohort, 9015 urine samples (first trimester: 3561, 2nd trimester: 2756, 3rd trimester: 2698) from 3810 mothers were measured for urinary Sr levels using inductively coupled plasma mass spectrometry (ICP-MS) and adjusted to urine specific gravity. We calculated standard deviation scores (SD-scores) for ultrasound-measured fetal growth parameters (head circumference, abdominal circumference, femur length, and estimated fetal weight) at 16, 24, 31, and 37 wk of gestation and birth size indicators (birth weight, birth length, and Ponderal index). Generalized linear models and generalized estimating equations models were used. Models were adjusted for potential covariates (gestational age, maternal age, body mass index, parity, passive smoking during pregnancy, education, folic acid supplements use, physical activity, maternal and paternal height, and infant sex). RESULTS Positive associations of naturally logarithm-transformed Sr concentrations with fetal growth parameters and birth size indicators were observed. With each doubling increase in the urinary ln-Sr level in all 3 trimesters resulting in a percent change in SD-scores fetal growth parameters at 24, 31, and 37 wk of gestation and birth size indicators, 5.09%-8.23% in femur length, 7.57%-11.53% in estimated fetal weight, 6.56%-10.42% in abdominal circumference, 6.25% in head circumference, 5.15%-7.85% in birth weight, and 5.71%-9.39% in birth length, respectively. Most of the above statistical results could only be observed in male fetuses. CONCLUSIONS Our findings suggest a potential association between Sr concentration and increased fetal growth, but these results and underlying mechanisms need further confirmation and clarification.
Collapse
Affiliation(s)
- Huiqing Gang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingwen Zuo
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Shen
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Choi AH, Choi G, Ben-Nissan B. Surface modification and its influence on osseointegration of implants. MULTISCALE CELL-BIOMATERIALS INTERPLAY IN MUSCULOSKELETAL TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2024:93-111. [DOI: 10.1016/b978-0-323-91821-3.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Stipniece L, Ramata-Stunda A, Vecstaudza J, Kreicberga I, Livkisa D, Rubina A, Sceglovs A, Salma-Ancane K. A Comparative Study on Physicochemical Properties and In Vitro Biocompatibility of Sr-Substituted and Sr Ranelate-Loaded Hydroxyapatite Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:5264-5281. [PMID: 38039078 PMCID: PMC10731655 DOI: 10.1021/acsabm.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, i.e., bone extracellular matrix trace element, has been proven to be an effective biomaterial-based strategy for promoting osteogenesis in vitro and in vivo. Functionalizing nHAp with Sr2+ ions or strontium ranelate (SrRAN) can provide favorable bone tissue regeneration by locally delivering bioactive molecules to the bone defect microenvironment. Moreover, administering an antiosteoporotic drug, SrRAN, directly into site-specific bone defects could significantly reduce the necessary drug dosage and the risk of possible side effects. Our study evaluated the impact of the Sr source (Sr2+ ions and SrRAN) used to functionalize nHAp by wet precipitation on its in vitro cellular activities. The systematic comparison of physicochemical properties, in vitro Sr2+ and Ca2+ ion release, and their effect on in vitro cellular activities of the developed Sr-functionalized nHAp was performed. The ion release tests in TRIS-HCl demonstrated a 21-day slow and continuous release of the Sr2+ and Ca2+ ions from both Sr-substituted nHAp and SrRAN-loaded HAp. Also, SrRAN and Sr2+ ion release kinetics were evaluated in DMEM to understand their correlation with in vitro cellular effects in the same time frame. Relatively low concentration (up to 2 wt %) of Sr in the nHAp led to an increase in the alkaline phosphatase activity in preosteoblasts and expression of collagen I and osteocalcin in osteoblasts, demonstrating their ability to boost bone formation.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Anna Ramata-Stunda
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Jana Vecstaudza
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Inta Kreicberga
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Dora Livkisa
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Anna Rubina
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Artemijs Sceglovs
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Kristine Salma-Ancane
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| |
Collapse
|
15
|
Hemming SD, Purkis JM, Warwick PE, Cundy AB. Current and emerging technologies for the remediation of difficult-to-measure radionuclides at nuclear sites. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1909-1925. [PMID: 37909868 DOI: 10.1039/d3em00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Difficult-to-measure radionuclides (DTMRs), defined by an absence of high energy gamma emissions during decay, are problematic in groundwaters at nuclear sites. DTMRs are common contaminants at many nuclear facilities, with (often) long half-lives and high radiotoxicities within the human body. Effective remediation is, therefore, essential if nuclear site end-state targets are to be met. However, due to a lack of techniques for in situ DTMR detection, technologies designed to remediate these nuclides are underdeveloped and tend to be environmentally invasive. With a growing agenda for sustainable remediation and reduction in nuclear decommissioning costs, there is renewed international focus on the development of less invasive technologies for DTMR clean-up. Here, we review recent developments for remediation of selected problem DTMRs (129I, 99Tc, 90Sr and 3H), with a focus on industrial and site-scale applications. We find that pump and treat (P&T) is the most used technique despite efficacy issues for 129I and 3H. Permeable reactive barriers (PRBs) are a less invasive alternative but have only been demonstrated for removal of 99Tc and 90Sr at scale. Phytoremediation shows promise for site-scale removal of 3H but is unsuitable for 129I and 99Tc due to biotoxicity and bioavailability hazards, respectively. No single technique can remediate all DTMRs of focus. Likewise, there has been no successful site-applied technology with high removal efficiencies for iodine species typically present in groundwaters (iodide/I-, iodate/IO3- and organoiodine). Further work is needed to adapt and improve current techniques to field scales, as well as further research into targeted application of emerging technologies.
Collapse
Affiliation(s)
- Shaun D Hemming
- GAU-Radioanalytical, School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, UK.
| | - Jamie M Purkis
- GAU-Radioanalytical, School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, UK.
| | - Phillip E Warwick
- GAU-Radioanalytical, School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, UK.
| | - Andrew B Cundy
- GAU-Radioanalytical, School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, UK.
| |
Collapse
|
16
|
Tajchman K, Ukalska-Jaruga A, Ceacero F, Janiszewski P, Pecio M. Concentration of Potentially Toxic Elements in Farmed Fallow Deer Antlers Depending on Diet and Age. Animals (Basel) 2023; 13:3468. [PMID: 38003086 PMCID: PMC10668784 DOI: 10.3390/ani13223468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Deer antlers, usually harvested annually on a farm, are an accessible material used to determine the exposition to potentially toxic elements, PTEs, during growth. Moreover, the study of antlers from animals of different ages allows the assessment of long-term exposition to these elements. The aim of the study was to analyze the concentration of eight potentially toxic elements (Cd, Pb, As, Ba, Ni, Sr, La, Ce) in individual positions of the antlers (first, second, and third position, corresponding to the stages of development and life of these animals) and in the food that the animals consumed during the growth of individual antler fragments, depending on the age of the farmed fallow deer (Dama dama). The mineral composition of samples was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The analysis included 31 male deer aged 2-8 years old. The average concentration of Pb, Ba, and Ni was higher in the second position of the antler, and As, La, and Ce in the third position. In addition, the oldest individuals showed a higher Cd, Pb, and As concentration in the third position. A significant positive relationship was found between the age of animals and accumulation of As (r = 0.582, p < 0.05), as well as Ba and Sr (r = -0.534, r = -0.644 at p < 0.05, respectively). The average content of Ba and Sr also significantly negatively depended on body mass and antler mass stags (r = -0.436, r = -0.515 at p < 0.05, respectively). Cd concentration in feed was significantly higher in June compared to winter, spring, and later summer (p < 0.05). On the other hand, the concentration of Ba in food was significantly higher in spring and winter than in early and later summer (p < 0.05). An increase in the PTEs in the pasture determined the concentration of these components in fallow deer antlers.
Collapse
Affiliation(s)
- Katarzyna Tajchman
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Aleksandra Ukalska-Jaruga
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Fracisco Ceacero
- Department of Animal Science and Food Processing, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic
| | - Pawel Janiszewski
- Department of Fur-Wearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - Monika Pecio
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
17
|
Gao H, Wang L, Lin Z, Jin H, Lyu Y, Kang Y, Zhu T, Zhao J, Jiang J. Bi-lineage inducible and immunoregulatory electrospun fibers scaffolds for synchronous regeneration of tendon-to-bone interface. Mater Today Bio 2023; 22:100749. [PMID: 37545569 PMCID: PMC10400930 DOI: 10.1016/j.mtbio.2023.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Facilitating regeneration of the tendon-to-bone interface can reduce the risk of postoperative retear after rotator cuff repair. Unfortunately, undesirable inflammatory responses following injury, difficulties in fibrocartilage regeneration, and bone loss in the surrounding area are major contributors to suboptimal tendon-bone healing. Thus, the development of biomaterials capable of regulating macrophage polarization to a favorable phenotype and promoting the synchronous regeneration of the tendon-to-bone interface is currently a top priority. Here, strontium-doped mesoporous bioglass nanoparticles (Sr-MBG) were synthesized through a modulated sol-gel method and Bi-lineage Inducible and Immunoregulatory Electrospun Fibers Scaffolds (BIIEFS) containing Sr-MBG were fabricated. The BIIEFS were biocompatible, showed sustained release of multiple types of bioactive ions, enhanced osteogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs), and facilitated macrophage polarization towards the M2 phenotype in vitro. The implantation of BIIEFS at the torn rotator cuff resulted in greater numbers of M2 macrophages and the synchronous regeneration of tendon, fibrocartilage, and bone at the tendon-to-bone interface, leading to a significant improvement in the biomechanical strength of the supraspinatus tendon-humerus complexes. Our research offers a feasible strategy to fabricate immunoregulatory and multi-lineage inducible electrospun fibers scaffolds incorporating bioglass nanoparticles for the regeneration of soft-to-hard tissue interfaces.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Zhiqi Lin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haocheng Jin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangbao Lyu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
18
|
Di D, Zhang J, Zhou H, Cui Z, Zhang R, Liu Q, Yuan T, Zhou T, Luo X, Ling D, Wang Q. Mediating role of host metabolites in strontium's effect on osteoporosis among older individuals: Findings from Wuhan, China. Bone 2023; 175:116858. [PMID: 37487859 DOI: 10.1016/j.bone.2023.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Strontium is receiving widespread attention due to its remarkable biological qualities in preventing bone resorption and fostering osteogenesis. However, the chemical processes behind strontium's dual activities on bone cells are not yet fully understood. This study used the metabolomic technique to identify and examine potential biomarkers between strontium exposure and osteoporosis (OP) risk. A total of 806 participants were recruited for the detection of plasma strontium content via inductively coupled plasma-mass spectrometry. Plasma metabolites were profiled in 254 participants through an untargeted metabolomics technique. Generalized linear models were primarily used to analyze associations among plasma strontium, metabolites, and OP. The mediating effects of metabolites on the strontium-OP association were further investigated. A total of 31 differential metabolites were observed, 10 of which were upregulated and 21 were downregulated in the OP group compared with the non-OP group. Five metabolites (3-phenoxybenzoic acid, Cer (t18:0/16:1), HexCer(t16:1/12:1(2OH)), HexCer(t14:2/18:1(2OH)), and TG(16:0-18:1-24:4)) were selected as potential mediators based on their significant association with OP risk and with femoral neck and lumbar spine bone mineral density (BMD). Moreover, all except TG(16:0-18:1-24:4) were involved in the OP discrimination model with excellent power combined with several traditional variables. 3-Phenoxybenzoic acid and Cer(t18:0/16:1) had significant indirect effects on the strontium-OP association. The five candidate metabolites mediated 83.79 % of the strontium-OP association. Plasma strontium level was associated with reduced OP risk in the Han population in Wuhan. Thus, plasma metabolite profiling revealed five BMD/OP-associated metabolites that acted as mediators in the strontium-OP association. Our findings provided evidence of the mediating role of host plasma metabolites in strontium's effect on OP pathology.
Collapse
Affiliation(s)
- Dongsheng Di
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianli Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolong Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyang Ling
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Bussola Tovani C, Divoux T, Manneville S, Azaïs T, Laurent G, de Frutos M, Gloter A, Ciancaglini P, Ramos AP, Nassif N. Strontium-driven physiological to pathological transition of bone-like architecture: A dose-dependent investigation. Acta Biomater 2023; 169:579-588. [PMID: 37516416 DOI: 10.1016/j.actbio.2023.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Whilst strontium (Sr2+) is widely investigated for treating osteoporosis, it is also related to mineralization disorders such as rickets and osteomalacia. In order to clarify the physiological and pathological effects of Sr2+ on bone biomineralization , we performed a dose-dependent investigation in bone components using a 3D scaffold that displays the hallmark features of bone tissue in terms of composition (osteoblast, collagen, carbonated apatite) and architecture (mineralized collagen fibrils hierarchically assembled into a twisted plywood geometry). As the level of Sr2+ is increased from physiological-like to excess, both the mineral and the collagen fibrils assembly are destabilized, leading to a drop in the Young modulus, with strong implications on pre-osteoblastic cell proliferation. Furthermore, the microstructural and mechanical changes reported here correlate with that observed in bone-weakening disorders induced by Sr2+ accumulation, which may clarify the paradoxical effects of Sr2+ in bone mineralization. More generally, our results provide physicochemical insights into the possible effects of inorganic ions on the assembly of bone extracellular matrix and may contribute to the design of safer therapies for treating osteoporosis. STATEMENT OF SIGNIFICANCE: Physiological-like (10% Sr2+) and excess accumulation-like (50% Sr2+) doses of Sr2+ are investigated in 3D biomimetic assemblies possessing the high degree of organization found in the extracellular of bone. Above the physiological dose, the organic and inorganic components of the bone-like scaffold are destabilized, resulting in impaired cellular activity, which correlates with bone-weakening disorders induced by Sr2+.
Collapse
Affiliation(s)
- Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Thibaut Divoux
- Laboratoire de Physique, ENSL, CNRS, F-69342 Lyon, France
| | | | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Guillaume Laurent
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Marta de Frutos
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Alexandre Gloter
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France.
| |
Collapse
|
20
|
Abd Elkader RS, Mohamed MK, Hasanien YA, Kandeel EM. Experimental and Modeling Optimization of Strontium Adsorption on Microbial Nanocellulose, Eco-friendly Approach. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/22/2023] [Indexed: 09/02/2023]
Abstract
AbstractGreen synthesized cellulose nanocrystals (CNCs) was prepared using Neurospora intermedia, characterized, and used to remove Strontium ions (Sr2+) from an aqueous solution with high efficiency. The characterization of CNCs was performed using a UV-Vis Spectrophotometer, Dynamic Light Scattering (DLS), Zeta Potential (ZP), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) mapping, EDX elemental analysis and BET surface analyzer. In this study, Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) was successfully applied for the first time to optimize the dynamic adsorption conditions for the maximum removal of Sr2+ ions from aqueous solutions using CNCs as adsorbent. The effects of parameters, such as initial concentration of Sr2+ (50–500 ppm), adsorbent dosage (0.05–0.2 g/50ml), and contact time (15–120 min.) on removal efficiency were investigated. A mathematical model was studied to predict the removal performance. The significance and adequacy of the model were surveyed using the analysis of variance (ANOVA). The results showed that the second-order polynomial model is suitable for the prediction removal of Sr2+ with regression coefficient (R2 = 97.41%). The highest sorption capacity value of Sr2+ was obtained (281.89 mg/g) at the adsorbent dosage of 0.05 g/50 ml, contact time of 120 min., and the pollutant (Sr2+) concentration of 275 ppm.
Collapse
|
21
|
Duan S, Wang R, He P, Sun J, Yang H. Associations between multiple urinary metals and the risk of hypertension in community-dwelling older adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27797-2. [PMID: 37233942 DOI: 10.1007/s11356-023-27797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Although metal exposure has been associated with hypertension, the conclusions remain controversial, and studies investigating the predictive effect of multiple metals on hypertension are limited. In this study, we aimed to evaluate the nonlinear dose-response relationship between a single urinary metal and the risk of hypertension, and to assess the predictive effect of multiple urinary metals on hypertension. Of the Yinchuan community-dwelling elderly cohort launched in 2020, 3,733 participants (803 with hypertension and 2,930 without hypertension) were analysed in this study, and the concentrations of 13 metal elements in urine were measured. We found that urinary vanadium (odds ratio (OR): 1.16, 95% confidence interval [CI]: 1.08-1.25), molybdenum (OR: 1.08, 95% CI: 1.01-1.16), and tellurium (OR: 1.14, 95% CI: 1.06-1.22) were associated with higher risk of hypertension, whereas iron (OR: 0.92, 95% CI: 0.85-0.98) and strontium (0.92, 95% CI: 0.85-0.99) were significantly associated with lower risk of hypertension. Restricted cubic splines analysis was conducted in patients with iron concentrations of ≥ 15.48 μg/g and ≤ 399.41 μg/g and a strontium concentration of ≤ 69.41 μg/g, results showed that the risk of hypertension decreased gradually as the urinary concentrations of these metals increased. With an increase in the vanadium concentration in urine, the risk of hypertension gradually increased. In patients with a molybdenum concentration of ≥ 56.82 μg/g and a tellurium concentration of ≥ 21.98 μg/g, the risk of hypertension gradually decreased as the urinary concentrations of these metals increased. Predictive scores based on the 13 metallic elements were significantly associated with a higher risk of hypertension (OR: 1.34 (95% CI: 1.25-1.45). After additionally including urinary metal concentrations as a parameter variable in the traditional hypertension risk assessment model, integrated discrimination and net reclassification increased by 8.00% (P < 0.001) and 2.41% (P < 0.001), respectively. Urinary vanadium, Mo, and Te concentrations were associated with a higher risk of hypertension, while iron and strontium concentrations were associated with a lower risk of hypertension. Multiple urinary metal concentrations can significantly improve the predictive ability of traditional hypertension risk-assessment models.
Collapse
Affiliation(s)
- Siyu Duan
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Rui Wang
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Pei He
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jian Sun
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Huifang Yang
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
22
|
Wang J, Cheng Z, Chen D, Li G, Chen J, Wang K, Xu L, Huang J. An injectable porous bioactive magnesium phosphate bone-cement foamed with calcium carbonate and citric acid for periodontal bone regeneration. J Mech Behav Biomed Mater 2023; 142:105805. [PMID: 37087954 DOI: 10.1016/j.jmbbm.2023.105805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
Abstract
Magnesium phosphate cement (MPC) has been evaluated as a novel bone substitute owing to its favorable biocompatibility, plasticity, and osteogenic potential. However, the low porosity of MPC prevents growth factors and osteoblasts from fully growing into the material, thereby limiting its clinical use. In this study, different concentrations (0-5%) of calcium carbonate and citric acid (CA) were used as foaming agents to prepare porous MPC. The MPC containing 3% CaCO3/CA exhibited the best physicochemical properties, including greater porosity, improved injectability, extended setting time, and decreased hydration temperature. The proliferation and adhesion of cells on 3%CaCO3/CA-MPC were higher than those on MPC alone. To explore its osteogenesis in vivo, 3% CaCO3/CA-MPC and Bio-Oss® bone powder were implanted into periodontal bone defects in rats for 4 weeks and 12 weeks, respectively. Micro-CT and histological analysis demonstrated the improved bone regeneration of 3%CaCO3/CA-MPC compared to the blank group (P < 0.05); it had slightly lower bone regeneration than the Bio-Oss® group but no statistical difference. The results indicated that porous MPC foamed with calcium carbonate and CA improved its physicochemical properties and enhanced its biocompatibility, making it a promising material for bone regeneration.
Collapse
|
23
|
Le Corre M, Grimes V, Lam R, Britton K. Comparison between strip sampling and laser ablation methods to infer seasonal movements from intra-tooth strontium isotopes profiles in migratory caribou. Sci Rep 2023; 13:3621. [PMID: 36869076 PMCID: PMC9984400 DOI: 10.1038/s41598-023-30222-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Strontium isotopes analysis is a powerful tool in the study of past animal movements, notably the sequential analysis of tooth enamel to reconstruct individual movements in a time-series. Compared to traditional solution analysis, high resolution sampling using laser-ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) has the potential to reflect fine scale mobility. However, the averaging of the 87Sr/86Sr intake during the enamel mineralization process may limit fine scale inferences. We compared solution and LA-MC-ICP-MS 87Sr/86Sr intra-tooth profiles from the second and third molars of 5 caribou from the Western Arctic herd, Alaska. Profiles from both methods showed similar trends, reflecting the seasonal migratory movements, but LA-MC-ICP-MS profiles showed a less damped 87Sr/86Sr signal than solution profiles. Geographic assignments of the profile endmembers to the known summer and winter ranges were consistent between methods and with the expected timing of enamel formation but showed discrepancy at a finer scale. Variations on LA-MC-ICP-MS profiles, consistent with expected seasonal movements, suggested more than an admixture of the endmember values. However, more work in understanding enamel formation in Rangifer, and other ungulates, and how 87Sr/86Sr daily intake translates into enamel are needed to assess the real resolution that can be achieved with LA-MC-ICP-MS.
Collapse
Affiliation(s)
- Mael Le Corre
- Department of Archaeology, University of Aberdeen, Aberdeen, AB252SU, UK.
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Rebecca Lam
- CREAIT Network, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Kate Britton
- Department of Archaeology, University of Aberdeen, Aberdeen, AB252SU, UK.
| |
Collapse
|
24
|
Charczuk N, Nowak N, Wiglusz RJ. Synthesis and Investigation of Physicochemical Properties and Biocompatibility of Phosphate-Vanadate Hydroxyapatite Co-Doped with Tb 3+ and Sr 2+ Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:457. [PMID: 36770418 PMCID: PMC9919158 DOI: 10.3390/nano13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Searching for biocompatible materials with proper luminescent properties is of fundamental importance, as they can be applied in fluorescent labeling and regenerative medicine. In this study, we obtained new phosphate-vanadate hydroxyapatites (abbr. HVps) co-doped with Sr2+ and Tb3+ ions via the hydrothermal method. We focused on examining the effect of various annealing temperatures (500, 600 and 700 °C) on the spectroscopic properties and morphology of the obtained HVps. To characterize their morphology, XRPD (X-ray powder diffraction), SEM-EDS (scanning electron microscopy-energy-dispersive spectrometry), FT-IR (Fourier transform infrared) spectroscopy and ICP-OES (inductively coupled plasma-optical emission spectrometry) techniques were used. A further study of luminescent properties and cytocompatibility showed that the obtained HVps co-doped with Sr2+ and Tb3+ ions are highly biocompatible and able to enhance the proliferation process and can therefore be potentially used as fluorescent probes or in regenerative medicine.
Collapse
Affiliation(s)
- Natalia Charczuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
- Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
25
|
Obtel N, Le Cabec A, Nguyen TN, Giabicani E, Van Malderen SJM, Garrevoet J, Percot A, Paris C, Dean C, Hadj‐Rabia S, Houillier P, Breiderhoff T, Bardet C, Coradin T, Ramirez Rozzi F, Chaussain C. Impact of claudin-10 deficiency on amelogenesis: Lesson from a HELIX tooth. Ann N Y Acad Sci 2022; 1516:197-211. [PMID: 35902997 PMCID: PMC9796262 DOI: 10.1111/nyas.14865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In epithelia, claudin proteins are important components of the tight junctions as they determine the permeability and specificity to ions of the paracellular pathway. Mutations in CLDN10 cause the rare autosomal recessive HELIX syndrome (Hypohidrosis, Electrolyte imbalance, Lacrimal gland dysfunction, Ichthyosis, and Xerostomia), in which patients display severe enamel wear. Here, we assess whether this enamel wear is caused by an innate fragility directly related to claudin-10 deficiency in addition to xerostomia. A third molar collected from a female HELIX patient was analyzed by a combination of microanatomical and physicochemical approaches (i.e., electron microscopy, elemental mapping, Raman microspectroscopy, and synchrotron-based X-ray fluorescence). The enamel morphology, formation time, organization, and microstructure appeared to be within the natural variability. However, we identified accentuated strontium variations within the HELIX enamel, with alternating enrichments and depletions following the direction of the periodical striae of Retzius. These markings were also present in dentin. These data suggest that the enamel wear associated with HELIX may not be related to a disruption of enamel microstructure but rather to xerostomia. However, the occurrence of events of strontium variations within dental tissues might indicate repeated episodes of worsening of the renal dysfunction that may require further investigations.
Collapse
Affiliation(s)
- Nicolas Obtel
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199PessacFrance,Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Thè Nghia Nguyen
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Eloise Giabicani
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | | | | | - Aline Percot
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Céline Paris
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Christopher Dean
- Department of Earth Sciences, Centre for Human Evolution ResearchNatural History MuseumLondonUK,Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Smail Hadj‐Rabia
- Université Paris Cité, INSERM1163 Institut Imagine; APHP, Hôpital Necker‐Enfants Malades, Department of Dermatology, Reference Center for Rare Skin DiseasesParisFrance
| | - Pascal Houillier
- Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM, CNRS‐ERL8228ParisFrance,APHP, Service de Physiologie, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Européen Georges PompidouParisFrance
| | - Tilman Breiderhoff
- Charité Universitaetsmedizin Berlin, Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of PediatricsBerlinGermany
| | - Claire Bardet
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de ParisParisFrance
| | - Fernando Ramirez Rozzi
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,Eco‐anthropologie (EA), Muséum national d'Histoire naturelle, CNRSUniversité de ParisParisFrance
| | - Catherine Chaussain
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| |
Collapse
|
26
|
Saha J, Pal K. Investigation on Mechanical, Biocorrosion, and Biocompatibility Behavior of HAp-Assisted Sr-Based Mg Composites. ACS APPLIED BIO MATERIALS 2022; 5:2608-2621. [PMID: 35654437 DOI: 10.1021/acsabm.2c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous biodegradable Mg-based biomaterials have been developed in recent years because of their outstanding biocompatibility, biodegradation, and mechanical properties. The Mg-based composite is an appropriate candidate for orthopedic implants, such as supporting the fractured bone due to its superb biocompatibility and biodegradation properties. In the present work, a Mg-based biomaterial is developed by incorporating low wt % of alloying elements such as Zn, Ca, Mn, and Sr and ceramic powders such as HAp to improve the biocompatibility and biodegradebility and strengthen the mechanical properties. In this study, the Mg-4Zn-3Ca-1HAp-0.5Mn and Mg-4Zn-2.9Ca-1HAp-0.5Mn-0.1Sr composites are prepared, and the mechanical, microstructure, and in vitro degradation behavior of these composites are studied. The Mg-4Zn-2.9Ca-1HAp-0.5Mn-0.1Sr composite has good mechanical properties and a low uniform in vitro degradation rate (0.587 mm/year). From the dynamic mechanical analysis, it is found that the composites have better damping characteristics than the pure Mg. The composites are chosen for further evaluation. All the composites show no cytotoxicity to MG63 cells. The composite having Sr with PVA/ZrO2 coating showed the highest cell viability. On the basis of the above observation, the viability of the Mg-4Zn-3Ca-1HAp-0.5Mn and Mg-4Zn-2.9Ca-1HAp-0.5Mn-0.1Sr composites is discussed systematically for the use as an orthopedic implant. This investigation delivers a new idea for the evolution of a high-performance Sr-based Mg composite having excellent mechanical and corrosion properties while successfully reducing the cytotoxicity effect.
Collapse
Affiliation(s)
- Joy Saha
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Kaushik Pal
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| |
Collapse
|
27
|
Munir MU, Salman S, Ihsan A, Elsaman T. Synthesis, Characterization, Functionalization and Bio-Applications of Hydroxyapatite Nanomaterials: An Overview. Int J Nanomedicine 2022; 17:1903-1925. [PMID: 35530974 PMCID: PMC9075913 DOI: 10.2147/ijn.s360670] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
Hydroxyapatite (HA) is similar to natural bone regarding composition, and its structure favors in biomedical applications. Continuous research and progress on HA nanomaterials (HA-NMs) have explored novel fabrication approaches coupled with functionalization and characterization methods. These nanomaterials have a significant role in many biomedical areas like sustained drug and gene delivery, bio-imaging, magnetic resonance, cell separation, and hyperthermia treatment due to their promising biocompatibility. This review highlighted the HA-NMs chemical composition, recent progress in synthesis methods, characterization and surface modification methods, ion-doping, and role in biomedical applications. HA-NMs have a substantial role as drug delivery vehicles, coating material, bone implant, coating, ceramic, and composite materials. Here, we try to summarize an overview of HA-NMs with the provision of future directions.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ayehsa Ihsan
- Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| |
Collapse
|
28
|
Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N. Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. MATERIALS 2022; 15:ma15051724. [PMID: 35268956 PMCID: PMC8911212 DOI: 10.3390/ma15051724] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials’ functionalization with Sr as an osteopromoting dopant in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-6366748
| | - Gabriela Ciapetti
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratory for Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
29
|
Kuo YJ, Chen CH, Dash P, Lin YC, Hsu CW, Shih SJ, Chung RJ. Angiogenesis, Osseointegration, and Antibacterial Applications of Polyelectrolyte Multilayer Coatings Incorporated With Silver/Strontium Containing Mesoporous Bioactive Glass on 316L Stainless Steel. Front Bioeng Biotechnol 2022; 10:818137. [PMID: 35223788 PMCID: PMC8879691 DOI: 10.3389/fbioe.2022.818137] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
The main causes for failure in implant surgery are prolonged exposure of implants or wound and tissue ischemia. Bacterial infection caused by the surrounding medical environment and equipment is also a major risk factor. The medical risk would be greatly reduced if we could develop an implant coating to guide tissue growth and promote antibacterial activity. Mesoporous bioactive glasses are mainly silicates with good osteoinductivity and have been used in medical dentistry and orthopedics for several decades. Strontium ions and silver ions could plausibly be incorporated into bioactive glass to achieve the required function. Strontium ions are trace elements in human bone that have been proposed to promote osseointegration and angiogenesis. Silver ions can cause bacterial apoptosis through surface charge imbalance after bonding to the cell membrane. In this study, functional polyelectrolyte multilayer (PEM) coatings were adhered to 316L stainless steel (SS) by spin coating. The multilayer film was composed of biocompatible and biodegradable collagen as a positively charged layer, γ-polyglutamic acid (γ-PGA) as a negatively charged layer. Chitosan was incorporated to the 11th positively charged layer as a stabilizing barrier. Spray pyrolysis prepared mesoporous bioactive glass incorporated with silver and strontium (AgSrMBG) was added to each negatively charged layer. The PEM/AgSrMBG coating was well hydrophilic with a contact angle of 37.09°, hardness of 0.29 ± 0.09 GPa, Young’s modulus of 5.35 ± 1.55 GPa, and roughness of 374.78 ± 22.27 nm, as observed through nano-indention and white light interferometry. The coating’s antibacterial activity was sustained for 1 month through the inhibition zone test, and was biocompatible with rat bone marrow mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs), as observed in the MTT assay. There was more hydroxyapatite precipitation on the PEM/AgSrMBG surface after being soaked in simulated body fluid (SBF), as observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In both in vitro and in vivo tests, the PEM/AgSrMBG coating promoted angiogenesis, osseointegration, and antibacterial activity due to the sustained release of silver and strontium ions.
Collapse
Affiliation(s)
- Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsien Chen
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Yu-Chien Lin
- Department of Materials, Imperial College London, London, United Kingdom
| | - Chih-Wei Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Shao-Ju Shih
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
- *Correspondence: Ren-Jei Chung,
| |
Collapse
|
30
|
Zhou J, Jian L, Xie J, Cheng S, Li B, Wang D, Shao H, Zhang Y, Peng F. Strontium-Containing Barium Titanate-Modified Titanium for Enhancement of Osteointegration. ACS Biomater Sci Eng 2022; 8:1271-1278. [PMID: 35143178 DOI: 10.1021/acsbiomaterials.1c01393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the major challenges for Ti-based implants is insufficient osteointegration, which might result in the loosening of the implant. In this study, we fabricated strontium (Sr)-containing barium titanate (BST) on the surface of Ti to improve the bioactivity for osteointegration enhancement. The introduction of Sr significantly reduced the crystallization time and improved crystallinity, which was proved by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Compared with Ti, the BST film showed greater wettability surface and lower elastic modulus and hardness. Furthermore, in synergy with the release of Sr ions, the BST film improved early adhesion and followed osteogenic differentiation of rat bone mesenchymal stem cells. Furthermore, the bone implantation experiment suggested that the BST film could significantly improve the in vivo osteogenesis and osteointegration capabilities of Ti implants. In summary, this study revealed that BST-modified Ti has potential application in bone repair.
Collapse
Affiliation(s)
- Jielong Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Linjia Jian
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Juning Xie
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi Cheng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Hongwei Shao
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
31
|
Kern C, Jamous R, El Khassawna T, Rohnke M. Characterisation of Sr 2+ mobility in osteoporotic rat bone marrow by cryo-ToF-SIMS and cryo-OrbiSIMS. Analyst 2022; 147:4141-4157. [DOI: 10.1039/d2an00913g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometric imaging approach for ex vivo monitoring of drug transport in bone sections. Cryo-ToF-SIMS depth profiling and high-resolution imaging as well as OrbiSIMS analysis revealed inhomogeneous Sr2+ transport in rat bone marrow.
Collapse
Affiliation(s)
- Christine Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Reem Jamous
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
32
|
Chen D, Zhao J, Jiang X. Synthesis and characterization of silver substituted strontium phosphate silicate apatite using solid-state reaction for osteoregenerative applications. Bioengineered 2021; 12:1111-1125. [PMID: 33818276 PMCID: PMC8806222 DOI: 10.1080/21655979.2021.1899670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Strontium phosphosilicate is one of the fastest-growing apatite in bone regeneration application due to the presence of strontium and silica components in the parent materials. However, bacterial infections cause setbacks to the bone regeneration process often leading to surgical revisions, and is a big issue that needs to be addressed. Silver on this front has proven to be a great substituent as seen in the case of calcium phosphate-based ceramics that addresses the bactericidal properties of a biomaterial. Apatite strontium phosphosilicate substituted with a stoichiometric amount of silver as a dopant was synthesized using a high-temperature solid-state reaction. The phase formation was characterized by XRD and FT-IR coupled with morphological features visualized using Electron Microscopy. Antibacterial properties were investigated quantitatively using Colony-forming unit method against both Gram-positive as well as Gram-negative bacteria. Cytotoxicity assay was performed against MG-63 Cell lines and it showed excellent biocompatibility at 25ug/ml with optimal doping of 2% silver. Further, apatite seeding and formation were characterized after immersion in simulated body fluid solution which showed apatite phase formation initiated after 4 days of treatment characterized by XRD and FT-IR studies. This apatite formation was also visualized and confirmed using SEM.
Collapse
Affiliation(s)
- Dong Chen
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| | - Jingxin Zhao
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| | - Xin Jiang
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
33
|
Tomazela L, Cruz MAE, Nascimento LA, Fagundes CC, da Veiga MAMS, Zamarioli A, Bottini M, Ciancaglini P, Brassesco MS, Engel EE, Ramos AP. Fabrication and characterization of a bioactive polymethylmethacrylate-based porous cement loaded with strontium/calcium apatite nanoparticles. J Biomed Mater Res A 2021; 110:812-826. [PMID: 34783455 DOI: 10.1002/jbm.a.37330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022]
Abstract
Polymethylmethacrylate (PMMA)-based cements are used for bone reparation due to their biocompatibility, suitable mechanical properties, and mouldability. However, these materials suffer from high exothermic polymerization and poor bioactivity, which can cause the formation of fibrous tissue around the implant and aseptic loosening. Herein, we tackled these problems by adding Sr2+ -substituted hydroxyapatite nanoparticles (NPs) and a porogenic compound to the formulations, thus creating a microenvironment suitable for the proliferation of osteoblasts. The NPs resembled the structure of the bone's apatite and enabled the controlled release of Sr2+ . Trends in the X-ray patterns and infrared spectra confirmed that Sr2+ replaced Ca2+ in the whole composition range of the NPs. The inclusion of an effervescent additive reduced the polymerization temperature and lead to the formation of highly porous cement exhibiting mechanical properties comparable to the trabecular bone. The formation of an opened and interconnected matrix allowed osteoblasts to penetrate the cement structure. Most importantly, the gas formation confined the NPs at the surface of the pores, guaranteeing the controlled delivery of Sr2+ within a concentration sufficient to maintain osteoblast viability. Additionally, the cement was able to form apatite when immersed into simulated body fluids, further increasing its bioactivity. Therefore, we offer a formulation of PMMA cement with improved in vitro performance supported by enhanced bioactivity, increased osteoblast viability and deposition of mineralized matrix assigned to the loading with Sr2+ -substituted hydroxyapatite NPs and the creation of an interconnected porous structure. Altogether, our results hold promise for enhanced bone reparation guided by PMMA cements.
Collapse
Affiliation(s)
- Larissa Tomazela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Antônio Eufrásio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Aine Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cecilia C Fagundes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ariane Zamarioli
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Sol Brassesco
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Edgard E Engel
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Synthesis, Drug Release, and Antibacterial Properties of Novel Dendritic CHX-SrCl 2 and CHX-ZnCl 2 Particles. Pharmaceutics 2021; 13:pharmaceutics13111799. [PMID: 34834214 PMCID: PMC8625704 DOI: 10.3390/pharmaceutics13111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 12/29/2022] Open
Abstract
This work demonstrated for the first time the synthesis of novel chlorhexidine particles containing strontium and zinc, to provide an effective, affordable, and safe intervention in the treatment of recurrent infections found in Medicine and Dentistry. The CHX-SrCl2 and CHX-ZnCl2 particles were synthesized by co-precipitation of chlorhexidine diacetate (CHXD) and zinc chloride or strontium chloride, where particle size was manipulated by controlling processing time and temperature. The CHX-ZnCl2 and CHX-SrCl2 particles were characterized using SEM, FTIR, and XRD. UV-Vis using artificial saliva (pH 4 and pH 7) was used to measure the drug release and ICP-OES ion release. The antibacterial properties were examined against P. gingivalis, A. actinomycetemcomitans, and F. nucleatum subsp. Polymorphum, and cytotoxicity was evaluated using mouse fibroblast L929 cells. The novel particles were as safe as commercial CHXD, with antibacterial activity against a range of oral pathogens. UV-Vis results run in artificial saliva (pH 4 and pH 7) indicated a higher release rate in acidic rather than neutral conditions. The CHX-ZnCl2 particles provided the functionality of a smart Zinc and CHX release, with respect to environmental pH, allowing responsive antibacterial applications in the field of medicine and dentistry.
Collapse
|
35
|
Calcium Chelidonate: Semi-Synthesis, Crystallography, and Osteoinductive Activity In Vitro and In Vivo. Pharmaceuticals (Basel) 2021; 14:ph14060579. [PMID: 34204329 PMCID: PMC8235635 DOI: 10.3390/ph14060579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Calcium chelidonate [Ca(ChA)(H2O)3]n was obtained by semi-synthesis using natural chelidonic acid. The structure of the molecular complex was determined by X-ray diffraction analysis. The asymmetric unit of [Ca(ChA)(H2O)3]n includes chelidonic acid coordinated through three oxygen atoms, and three water ligands. The oxygen atoms of acid and oxygen atoms of water from each asymmetric unit are also coordinated to the calcium of another one, forming an infinite linear complex. Calcium geometry is close to the trigonal dodecahedron (D2d). The intra-complex hydrogen bonds additionally stabilize the linear species, which are parallel to the axis. In turn the linear species are packed into the 3D structure through mutual intercomplex hydrogen bonds. The osteogenic activity of the semi-synthetic CaChA was studied in vitro on 21-day hAMMSC culture and in vivo in mice using ectopic (subcutaneous) implantation of CaP-coated Ti plates saturated in vitro with syngeneic bone marrow. The enhanced extracellular matrix ECM mineralization in vitro and ectopic bone tissue formation in situ occurred while a water solution of calcium chelidonate at a dose of 10 mg/kg was used. The test substance promotes human adipose-derived multipotent mesenchymal stromal/stem cells (hAMMSCs), as well as mouse MSCs to differentiate into osteoblasts in vitro and in vivo, respectively. Calcium chelidonate is non-toxic and can stimulate osteoinductive processes.
Collapse
|
36
|
Tang Y, Xia W, Xu SQ, Liu HX, Li YY. Association of Urinary Strontium Levels with Pregnancy-induced Hypertension. Curr Med Sci 2021; 41:535-541. [PMID: 34047946 DOI: 10.1007/s11596-021-2366-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/05/2020] [Indexed: 10/21/2022]
Abstract
Pregnancy-induced hypertension (PIH), including gestational hypertension and preeclampsia, accounts for the majority of maternal and perinatal morbidity and mortality. Strontium (Sr) has been recently associated with preeclampsia in a small group of women; however, the role of Sr in PIH is not fully understood and warrants further investigation. In this study, we examined the association between urinary Sr levels and PIH, and assessed the effect of maternal age on the association. Urinary Sr concentrations were measured in 5423 pregnant women before delivery by inductively coupled plasma mass spectrometry (ICP-MS). Logistic regression analysis adjusting for potential confounders was applied to explore the association between Sr and PIH, and to evaluate the Sr-PIH relationship stratified by maternal age. Among the participants, 200 (3.83%) women were diagnosed with PIH. Compared with non-PIH women, women who developed PIH had lower urinary Sr concentrations (131.26 vs. 174.98 μg/L creatinine, P<0.01). With the natural log-transformed urinary creatinine-standardized Sr concentrations increasing, the risk of PIH decreased significantly [adjusted OR=0.60 (95%CI: 0.51, 0.72)]. Furthermore, the significant association of Sr with PIH was found among women under 35 years (P<0.01). Our finding suggested that Sr may play a potential protective role in the pathogenesis of PIH, especially among young pregnant women under 35 years old.
Collapse
Affiliation(s)
- Yi Tang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shun-Qing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Xiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
37
|
Yuan Z, Bi J, Wang W, Sun X, Wang L, Mao J, Yang F. Synthesis and properties of Sr 2+ doping α-tricalcium phosphate at low temperature. J Appl Biomater Funct Mater 2021; 19:2280800021996999. [PMID: 33653180 DOI: 10.1177/2280800021996999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Strontium has been widely used in bone repair materials due to its roles in promoting osteoclast apoptosis and enhancing osteoblast proliferation. In this work, synthesis and the effects of Sr2+ doping α-tricalcium phosphate at low-temperature was studied. The setting time and the mechanical properties of α-tricalcium phosphate were controlled by varying the content of Sr2+. The synthesized compounds were evaluated by XRD, SEM, XPS, setting time, compressive strength, SBF immersion, and colorimetric CCK-8 assay. The results showed that Sr2+ can improve the compressive strength and cell activity of calcium phosphate bone cement.
Collapse
Affiliation(s)
- Zhen Yuan
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Jianqiang Bi
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Weili Wang
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Xiaoning Sun
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Lu Wang
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Junjie Mao
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Fushuai Yang
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| |
Collapse
|
38
|
Efficacy of strontium supplementation on implant osseointegration under osteoporotic conditions: A systematic review. J Prosthet Dent 2021; 128:341-349. [PMID: 33589234 DOI: 10.1016/j.prosdent.2020.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/24/2023]
Abstract
STATEMENT OF PROBLEM Strontium has been validated for potent bone-seeking and antiosteoporotic properties and elicits a potentially beneficial impact on implant osseointegration in patients with osteoporosis. However, the efficacy of strontium supplementation on improving new bone formation and implant osseointegration in the presence of osteoporotic bone is still unclear. PURPOSE The purpose of this systematic review was to comprehensively assess the efficacy of strontium supplementation, encompassing oral intake and local delivery of strontium, on implant osseointegration in patients with osteoporosis. MATERIAL AND METHODS Searches on electronic databases (MEDLINE or PubMed, Web of Science, EBSCO, Embase, and Clinicaltrials.gov) and manual searches were conducted to identify relevant preclinical animal trials up to June 2020. The primary outcomes were the percentage of bone-implant contact and bone area; the secondary outcomes were quantitative parameters of biomechanical tests and microcomputed tomography (μCT). RESULTS Fourteen preclinical trials (1 rabbit, 1 sheep, and 12 rat), with a total of 404 ovariectomized animals and 798 implants, were eligible for analysis. The results revealed a significant 17.1% increase in bone-implant contact and 13.5% increase in bone area, favoring strontium supplementation despite considerable heterogeneity. Subgroup analyses of both bone-implant contact and bone area exhibited similar outcomes with low to moderate heterogeneity. Results of biomechanical and μCT tests showed that strontium-enriched implantation tended to optimize the mechanical strength and microarchitecture of newly formed bone despite moderate to generally high heterogeneity. CONCLUSIONS Based on the available preclinical evidence, strontium supplementation, including local and systemic delivery, showed promising results for enhancing implant osseointegration in the presence of osteoporosis during 4 to 12 weeks of healing. Future well-designed standardized studies are necessary to validate the efficacy and safety of strontium supplementation and to establish a standard methodology for incorporating Sr into implant surfaces in a clinical setting.
Collapse
|
39
|
Di Y, Wasan EK, Cawthray J, Syeda J, Ali M, Cooper DML, Al-Dissi A, Ashjaee N, Cheng W, Johnston J, Weekes DM, Kostelnik TI, Orvig C, Wasan KM. Evaluation of La(XT), a novel lanthanide compound, in an OVX rat model of osteoporosis. Bone Rep 2021; 14:100753. [PMID: 33665236 PMCID: PMC7905442 DOI: 10.1016/j.bonr.2021.100753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the efficacy and toxicity of a novel lanthanum compound, La(XT), in an ovariectomized (OVX) rat model of osteoporosis. Methods Twenty-four ovariectomized female Sprague Dawley rats were divided into 3 groups receiving a research diet with/without treatment compounds (alendronate: 3 mg/kg; La(XT) 100 mg/kg) for three months. At the time of sacrifice, the kidney, liver, brain, lung and spleen were collected for histological examination. The trabecular bone structure of the tibiae was evaluated using micro-CT and a three-point metaphyseal mechanical test was used to evaluate bone failure load and stiffness. Results No significant differences were noted in plasma levels of calcium, phosphorus, creatinine, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) between the La(XT) treatment compared to the non-treated OVX group. Alendronate-treated animals (positive control) showed higher BV/TV, Tb.N and lower Tb.Th and Tb.Sp when compared to the non-treated OVX group. Mechanical analysis indicated that stiffness was higher in the alendronate (32.88%, p = 0.04) when compared to the non-treated OVX group. Failure load did not differ among the groups. Conclusions No kidney or liver toxicities of La(XT) treatments were found during the three-month study. The absence of liver and kidney toxicity with drug treatment for 3 months, as well as the increased trabecular bone stiffness are encouraging for the pursuit of further studies with La(XT) for a longer duration of time.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BMD, bone mineral density
- BV/TV, bone volume fraction
- CRF, chronic renal failure
- Ca2+, calcium
- Cr, creatinine
- HAP, hydroxyapatite
- La(XT)
- La3+, lanthanum
- Lanthanum
- OVX
- OVX, ovariectomized
- Osteoporosis
- SD, Sprague Dawley
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- Toxicity
Collapse
Affiliation(s)
- Yunyun Di
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada
| | - Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada
| | - Jaweria Syeda
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada
| | - Munawar Ali
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada
| | - David M L Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Ahmad Al-Dissi
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Nima Ashjaee
- College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Wubin Cheng
- College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - James Johnston
- College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - David M Weekes
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Miao Y, Liu L, Liu C, Deng YL, Chen PP, Luo Q, Cui FP, Zhang M, Lu WQ, Zeng Q. Urinary biomarker of strontium exposure is positively associated with semen quality among men from an infertility clinic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111694. [PMID: 33396025 DOI: 10.1016/j.ecoenv.2020.111694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Experimental studies have shown that nonradioactive strontium (Sr), in the form of Sr2+, have a positive effect on semen quality, but human evidence is lacking. This study aimed to examine the associations between nonradioactive Sr exposure and semen quality in Chinese men (n = 394). We recruited men who presented at an infertility clinic in Wuhan, China to seek for semen parameter analyses. Urinary Sr concentration as an exposure biomarker was measured using inductively coupled plasma mass spectrometer. We estimated the associations between urinary Sr concentrations and semen parameters using multivariable logistic and linear regression models. In multivariable linear regressions models, positive dose-response associations were estimated for sperm concentration, motility, and count across increasing urinary Sr quartiles (all p for trends<0.05), and the consistent positive associations were also observed for urinary Sr concentration modeled as a continuous exposure. In multivariable logistic models, decreased risks of below-reference sperm concentration, motility, and count were also estimated across increasing urinary Sr quartiles (all p for trends<0.05). Our results suggest that nonradioactive Sr exposure may have a beneficial effect on semen quality, but more investigations are warranted to confirm the results.
Collapse
Affiliation(s)
- Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lin Liu
- Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
41
|
Zhang H, Cai Q, Zhu Y, Zhu W. A simple hydrogel scaffold with injectability, adhesivity and osteogenic activity for bone regeneration. Biomater Sci 2021; 9:960-972. [DOI: 10.1039/d0bm01840f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A simple hydrogel scaffold with injectability, adhesivity and osteogenic activity is facilely prepared by directly mixing strontium chloride and Alg-DA aqueous solutions.
Collapse
Affiliation(s)
- Hongjie Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yanhui Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
42
|
Sánchez-Gavilán I, Rufo L, Rodríguez N, de la Fuente V. On the elemental composition of the Mediterranean euhalophyte Salicornia patula Duval-Jouve (Chenopodiaceae) from saline habitats in Spain (Huelva, Toledo and Zamora). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2719-2727. [PMID: 32889657 DOI: 10.1007/s11356-020-10663-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
A complete survey is presented on the inorganic composition of the euhalophyte annual succulent species Salicornia patula (Chenopodiaceae), including materials from the Iberian Peninsula, littoral-coastal Tinto River basin areas (SW Spain: Huelva province), and mainland territories (NW and central Spain: Zamora and Toledo provinces). The aim of this contribution is to characterize the elemental composition of the selected populations and their soils and compare the relationship between them and the macro- and micronutrient plant intake; all these nutrients may allow this species to be considered an edible plant. Using analytical techniques such as ICP-MS (inductively coupled plasma mass spectrometry), our results revealed high values of Na and K followed by Ca, Mg, Fe and Sr in stems. These data demonstrate the importance of annual halophytic species as edible plants and their potential uses in phytoremediation procedures involving soils with certain heavy metals (Pb, Sr, As, Cu, Zn).
Collapse
Affiliation(s)
- Irene Sánchez-Gavilán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain
| | - Lourdes Rufo
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Nuria Rodríguez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Vicenta de la Fuente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain.
| |
Collapse
|
43
|
Weber M, Tacail T, Lugli F, Clauss M, Weber K, Leichliter J, Winkler DE, Mertz-Kraus R, Tütken T. Strontium Uptake and Intra-Population 87Sr/86Sr Variability of Bones and Teeth—Controlled Feeding Experiments With Rodents (Rattus norvegicus, Cavia porcellus). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strontium isotopes in biogenic apatite, especially enamel, are widely employed to determine provenance and track migration in palaeontology and archaeology. Body tissues record the 87Sr/86Sr of bioavailable Sr of ingested food and water. To identify non-local individuals, knowledge of the 87Sr/86Sr of a non-migratory population is required. However, varying factors such as tissue turnover rates, feeding selectivity, Sr content, digestibility of food, and the ingestion of mineral dust can influence body tissue 87Sr/86Sr. To evaluate the Sr contribution of diet and water to mammalian hard tissues 87Sr/86Sr, controlled feeding studies are necessary. Here we present 87Sr/86Sr from controlled feeding experiments with two rodent species (Rattus norvegicus, Cavia porcellus). Due to the continuous and fast incremental growth of rat and guinea pig incisors (~0.1 – 0.5 mm/day), their enamel is expected to record isotopic dietary changes. For Experiment-1: Diet Switch, animals were switched from their respective supplier food to a pelleted experimental diet containing either insect-, plant-, or meat-meal and a staggered-sampling approach was used to monitor the 87Sr/86Sr changes in rat incisor enamel and bone over the course of the experiment. In Experiment-2: Basic Diets, separated cohorts (n = 6) of rats and guinea pigs were fed one of the three pelleted diets and received tap water for 54 days. While the rat incisors showed a complete tissue turnover, the slower-growing guinea pig incisors partially retained supplier diet-related isotopic compositions. In addition, one group of rats fed plant-meal pellets received Sr-rich mineral water, demonstrating that drinking water can be an important Sr source in addition to diet. Additionally, a leaching experiment showed that only a small fraction of diet-related Sr is bioavailable. Finally, in Experiment-3: Dust Addition, guinea pigs were fed pellets with and without addition of 4% of isotopically distinct dust (loess or kaolin). Animals that received kaolin-containing pellets displayed increased enamel 87Sr/86Sr. Intra-population 87Sr/86Sr variability within each feeding group was small and thus we conclude that it should not affect interpretations of 87Sr/86Sr in provenance studies. However, the differences between bulk food and leachate 87Sr/86Sr highlight the importance of Sr bioavailability for provenance studies and Sr isoscapes.
Collapse
|
44
|
Zhong NY, Wang LP. [Research progress in the osteogenetic mechanism of strontium]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:697-703. [PMID: 33377350 PMCID: PMC7738917 DOI: 10.7518/hxkq.2020.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/10/2020] [Indexed: 11/21/2022]
Abstract
Strontium (Sr) is an essential trace element and widely exists in nature. It plays an important role in the in vivo regulation of bone metabolism. Sr locates below Fe in the periodic table, and its chemical structure and polarity are similar to those of Ca. It can induce bone mesenchymal stem cells to differentiate into osteoblasts by inhibiting the activity of osteoclasts and reducing bone resorption. It promotes bone formation through a series of related pathways. The mechanism of Sr regulation of bone metabolism has been extensively researched in recent years. The current study aims to investigate the mechanism of Sr and provide a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Ning-Ying Zhong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou 510140, China;Stomatology Center, Shunde Hospital, Southern Medical University The First People's Hospital of Shunde, Foshan 528308, China
| | - Li-Ping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou 510140, China
| |
Collapse
|
45
|
Toncala A, Trautmann B, Velte M, Kropf E, McGlynn G, Peters J, Harbeck M. On the premises of mixing models to define local bioavailable 87Sr/ 86Sr ranges in archaeological contexts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140902. [PMID: 32717600 DOI: 10.1016/j.scitotenv.2020.140902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
In archaeological mobility studies, non-local humans and animals can be identified by means of stable strontium isotope analysis. However, defining the range of local 87Sr/86Sr ratios is prerequisite. To achieve this goal, proxy-based mixing models have recently been proposed using 87Sr/86Sr ratios measured in modern local vegetation, water and soil samples. Our study complements earlier efforts by introducing archaeological animal bones as an additional proxy. We then evaluate the different modelling approaches by contrasting proxy-results generated for the county of Erding (Upper Bavaria, Germany) with a comprehensive set of strontium measurements obtained from tooth enamel of late antique and early medieval human individuals (n = 49) from the same micro-region. We conclude that current mixing models based on environmental proxies clearly underestimate the locally bioavailable 87Sr/86Sr ratios due to the limited sample size of modern environmental specimens and a suit of imponderables inherent to efforts modelling complex geobiological processes. In sum, currently available mixing models are deemed inadequate and can therefore not be recommended.
Collapse
Affiliation(s)
- Anita Toncala
- SNSB, State Collection for Anthropology and Palaeoanatomy, Karolinenplatz 2a, 80333 Munich, Germany.
| | - Bernd Trautmann
- SNSB, State Collection for Anthropology and Palaeoanatomy, Karolinenplatz 2a, 80333 Munich, Germany
| | - Maren Velte
- SNSB, State Collection for Anthropology and Palaeoanatomy, Karolinenplatz 2a, 80333 Munich, Germany
| | - Eva Kropf
- SNSB, State Collection for Anthropology and Palaeoanatomy, Karolinenplatz 2a, 80333 Munich, Germany
| | - George McGlynn
- SNSB, State Collection for Anthropology and Palaeoanatomy, Karolinenplatz 2a, 80333 Munich, Germany
| | - Joris Peters
- SNSB, State Collection for Anthropology and Palaeoanatomy, Karolinenplatz 2a, 80333 Munich, Germany; Department of Veterinary Sciences, Institute of Paleoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig Maximilian University Munich, Kaulbachstr. 37 III, 80539 Munich, Germany
| | - Michaela Harbeck
- SNSB, State Collection for Anthropology and Palaeoanatomy, Karolinenplatz 2a, 80333 Munich, Germany
| |
Collapse
|
46
|
Dean MC, Le Cabec A, Van Malderen SJ, Garrevoet J. Synchrotron X-ray fluorescence imaging of strontium incorporated into the enamel and dentine of wild-shot orangutan canine teeth. Arch Oral Biol 2020; 119:104879. [DOI: 10.1016/j.archoralbio.2020.104879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
|
47
|
Kao CT, Chiu YC, Lee AKX, Lin YH, Huang TH, Liu YC, Shie MY. The synergistic effects of Xu Duan combined Sr-contained calcium silicate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis marker expression and the induction of bone regeneration in osteoporosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111629. [PMID: 33321669 DOI: 10.1016/j.msec.2020.111629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Osteoporosis and its related problems such as fractures are gradually becoming common due to an aging population. Current methods to treat osteoporosis include medical and surgical options such as bone implants. Recent developments in 3D printing and materials science technologies has allowed us to fabricate individualized scaffolds with desired properties. In this study, we mixed Xu Duan into strontium‑calcium silicate powder at 5% (XD5) and 10% (XD10) and fabricated 3D scaffolds with polycaprolactone. All scaffolds were assessed for its physical, mechanical, and biological properties to evaluated for its feasibility for bone tissue engineering in the osteoporosis model. Our results showed that such a scaffold could be fabricated using extrusion-based printing techniques and that addition of XD did not alter original structural properties of the SrCS. Furthermore, the XD5 and XD10 scaffolds were found to be non-toxic to cells and cells cultured on the scaffolds had significantly higher proliferation and secreted increased osteogenic-related proteins in in vitro studies as compared to the XD0 groups. Remarkably, the XD10 scaffolds could be used as substitutes for the critical-sized bone defect (7.0 mm diameter and 8.0 mm depth) in the osteoporotic rabbit model. The XD10 scaffolds can enhance bone ingrowth and accelerate new bone regeneration even in complex osteoporotic pathological environments. These results showed that such a Chinese medicine-contained scaffold had potential in osteoporosis bone tissue regeneration and could be considered as a promising tool for future clinical used applications.
Collapse
Affiliation(s)
- Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan; Department of Stomatology, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yung-Cheng Chiu
- School of Medicine, China Medical University, Taichung City, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung City, Taiwan; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City, Taiwan
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City, Taiwan; The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung City, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan; Department of Stomatology, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yen-Chieh Liu
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung City, Taiwan
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City, Taiwan; School of Dentistry, China Medical University, Taichung City, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan.
| |
Collapse
|
48
|
Cappelli J, Frasca I, García A, Landete-Castillejos T, Luccarini S, Gallego L, Morimando F, Varuzza P, Zaccaroni M. Roe deer as a bioindicator: preliminary data on the impact of the geothermal power plants on the mineral profile in internal and bone tissues in Tuscany (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36121-36131. [PMID: 32557025 DOI: 10.1007/s11356-020-09708-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The European roe deer (Capreolus capreolus) is one of the most abundant ungulate species in Europe. Many studies have investigated its distribution, behavior, and ecology, but few have focused on its role as bioindicators for pollutants, particularly regarding antlers, which has been shown to indicate also deer physiology. The presence of geothermal power plants can induce accumulation of potentially polluting elements (such as Tl, S, and Pb). Thus, we collected roe deer samples from areas of Tuscany (Italy) where power plants are present. They were divided according to whether their home range included areas close or far from geothermal power plants. We analyzed the body measurements and the profile of the minerals in the liver and antlers tissues using the ICP-OES technique. Results showed that livers from roe deer close to power plant accumulated higher quantity of Bi, Co, Ni, Tl, and S compared to controls. Males culled close to geothermal power plants had significantly lower values for weight and chest circumference, and also, the antlers showed higher values for Li and Sr in the first sampling position. Thus, despite the small sample size in this preliminary study, antlers and livers of roe deer seem to be a bioindicator of industrial impact on the environment.
Collapse
Affiliation(s)
- Jamil Cappelli
- Department of Science and Agroforestry Technology and Genetics ETSIAM, University of Castilla-La Mancha (UCLM), 02071, Albacete, Spain.
- Livestock and hunting resources section, Institute of Regional Development (IDR), University of Castilla-La Mancha (UCLM), 02071, Albacete, Spain.
- Sección de recursos cinegéticos y ganaderos, Instituto de Desarrollo Regional (IDR), Universidad de Castilla-La Mancha (UCLM), Campus Universitario s/n, 02071, Albacete, Spain.
| | - Irene Frasca
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Andrés García
- Department of Science and Agroforestry Technology and Genetics ETSIAM, University of Castilla-La Mancha (UCLM), 02071, Albacete, Spain
- Livestock and hunting resources section, Institute of Regional Development (IDR), University of Castilla-La Mancha (UCLM), 02071, Albacete, Spain
- Research Institute in Hunting Resources, IREC (CSIC, UCLM, JCCM), University campus s/n, 02071, Albacete, Spain
| | - Tomas Landete-Castillejos
- Department of Science and Agroforestry Technology and Genetics ETSIAM, University of Castilla-La Mancha (UCLM), 02071, Albacete, Spain
- Livestock and hunting resources section, Institute of Regional Development (IDR), University of Castilla-La Mancha (UCLM), 02071, Albacete, Spain
- Research Institute in Hunting Resources, IREC (CSIC, UCLM, JCCM), University campus s/n, 02071, Albacete, Spain
| | - Siriano Luccarini
- ATC 14 PISA OVEST, Via Gioacchino Volpe, 92, 56121, Ospedaletto, Pisa, Italy
| | - Laureano Gallego
- Department of Science and Agroforestry Technology and Genetics ETSIAM, University of Castilla-La Mancha (UCLM), 02071, Albacete, Spain
| | - Federico Morimando
- PROECO Studio Associato, Via Uopini 21-23, 53035, Monteriggioni, SI, Italy
- ATC 3 SIENA NORD, Via Leonida Cialfi 29, 53100, Siena, SI, Italy
| | - Paolo Varuzza
- Geographicasrl, via Prato I, 41, 84039, Teggiano, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
49
|
Tovani CB, Oliveira TM, Soares MPR, Nassif N, Fukada SY, Ciancaglini P, Gloter A, Ramos AP. Strontium Calcium Phosphate Nanotubes as Bioinspired Building Blocks for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43422-43434. [PMID: 32876428 DOI: 10.1021/acsami.0c12434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calcium phosphate (CaP)-based ceramics are the most investigated materials for bone repairing and regeneration. However, the clinical performance of commercial ceramics is still far from that of the native tissue, which remains as the gold standard. Thus, reproducing the structural architecture and composition of bone matrix should trigger biomimetic response in synthetic materials. Here, we propose an innovative strategy based on the use of track-etched membranes as physical confinement to produce collagen-free strontium-substituted CaP nanotubes that tend to mimic the building block of bone, i.e., the mineralized collagen fibrils. A combination of high-resolution microscopic and spectroscopic techniques revealed the underlying mechanisms driving the nanotube formation. Under confinement, poorly crystalline apatite platelets assembled into tubes that resembled the mineralized collagen fibrils in terms of diameter and structure of bioapatite. Furthermore, the synergetic effect of Sr2+ and confinement gave rise to the stabilization of amorphous strontium CaP nanotubes. The nanotubes were tested in long-term culture of osteoblasts, supporting their maturation and mineralization without eliciting any cytotoxicity. Sr2+ released from the particles reduced the differentiation and activity of osteoclasts in a Sr2+ concentration-dependent manner. Their bioactivity was evaluated in a serum-like solution, showing that the particles spatially guided the biomimetic remineralization. Further, these effects were achieved at strikingly low concentrations of Sr2+ that is crucial to avoid side effects. Overall, these results open simple and promising pathways to develop a new generation of CaP multifunctional ceramics that are active in tissue regeneration and able to simultaneously induce biomimetic remineralization and control the imbalanced osteoclast activity responsible for bone density loss.
Collapse
Affiliation(s)
- Camila B Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamires M Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Mariana P R Soares
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005 Paris, France
| | - Sandra Y Fukada
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France
| | - Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
50
|
JIANG H, ZHOU W, WANG B, TANG L. The effect of strontium modified rough titanium surface on biologic response of MC3T3-E1 cells. Dent Mater J 2020; 39:808-814. [DOI: 10.4012/dmj.2019-188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Huanhuan JIANG
- Department of Dental Implantology, Wuxi Stomatological Hospital
| | - Wenjuan ZHOU
- Department of Dental Implantology, Yantai Stomatological Hospital
| | - Binchen WANG
- Department of Dental Implantology, Yantai Stomatological Hospital
| | - Liqin TANG
- Department of Dental Implantology, Wuxi Stomatological Hospital
| |
Collapse
|