1
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
2
|
Yu X, Hu J, Yang X, Xu Q, Chen H, Zhan P, Zhang B. Sesamin inhibits RANKL-induced osteoclastogenesis and attenuates LPS-induced osteolysis via suppression of ERK and NF-κB signalling pathways. J Cell Mol Med 2024; 28:e18056. [PMID: 37988238 PMCID: PMC10828734 DOI: 10.1111/jcmm.18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Infection by bacterial products in the implant and endotoxin introduced by wear particles activate immune cells, enhance pro-inflammatory cytokines production, and ultimately promote osteoclast recruitment and activity. These factors are known to play an important role in osteolysis as well as potential targets for the treatment of osteolysis. Sesamin has been shown to have a variety of biological functions, such as inhibiting inflammation, anti-tumour and involvement in the regulation of fatty acid and cholesterol metabolism. However, the therapeutic effect of sesamin on osteolysis and its mechanism remain unclear. Present studies shown that in the condition of in vitro, sesamin could inhibit osteoclastogenesis and bone resorption, as well as suppressing the expression of osteoclast-specific genes. Further studies on the mechanism suggest that the effect of sesamin on human osteoclasts was mediated by blocking the ERK and NF-κB signalling pathways. Besides, sesamin was found to be effective in treating LPS-induced osteolysis by decreasing the production of pro-inflammatory cytokines and inhibiting osteoclastogenesis in vivo. Sesamin was non-toxic to heart, liver, kidney, lung and spleen. Therefore, sesamin is a promising phytochemical agent for the therapy of osteolysis-related diseases caused by inflammation and excessive osteoclast activation.
Collapse
Affiliation(s)
- Xiaolong Yu
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Jiawei Hu
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Xinming Yang
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Qiang Xu
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Hangjun Chen
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Ping Zhan
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Bin Zhang
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| |
Collapse
|
3
|
Astragalus Polysaccharides Alleviate Lung Adenocarcinoma Bone Metastases by Inhibiting the CaSR/PTHrP Signaling Pathway. J Food Biochem 2023. [DOI: 10.1155/2023/8936119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone metastasis is one of the common complications of lung cancer and can lead to bone-related adverse events, such as pathological fractures, spinal cord defects, and nerve compression syndrome. As an effective medicinal component of Astragalus membranaceus, Astragalus polysaccharide (APS) has antitumor activity and alleviates osteoporosis to a certain extent. In this study, we explored the possible role and mechanism underlying APS inhibition of lung adenocarcinoma bone metastases by constructing a mouse model of lung adenocarcinoma bone metastases. First, we constructed osteoclast (OC) and osteoblast (OB) culture systems in vitro to confirm that APS affected the differentiation and function of OCs and OBs. Then, using the mouse bone metastasis model, microCT, and bone histopathology, we confirmed that APS inhibited osteolytic metastasis and tumor cell proliferation in mice, and the effect was mainly realized by inhibiting the CaSR/PTHrP signal pathway. The results showed that APS had a protective effect on lung adenocarcinoma bone metastases.
Collapse
|
4
|
A New Method to Sort Differentiating Osteoclasts into Defined Homogeneous Subgroups. Cells 2022; 11:cells11243973. [PMID: 36552735 PMCID: PMC9777285 DOI: 10.3390/cells11243973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts regulate skeletal development but also drive pathological osteolysis, making them prime therapeutic targets. Osteoclast research is limited by the heterogeneity of osteoclast populations generated in vitro, where the mixture of undifferentiated monocytes, binuclear pre-osteoclasts and multinucleated osteoclasts has by necessity been considered a single osteoclast population. This study describes the differentiation of primary human CD14+ monocyte-derived osteoclasts in 3D collagen gels. These osteoclasts remained small (>95% with ≤5 nuclei) but were viable and active; when released from the gel with collagenase, they fused rapidly when reseeded onto solid substrates and resorbed dentine for 2-3 weeks. 3D-generated osteoclasts expressed cell surface markers of osteoclast differentiation (e.g., CD9, RANK, OSCAR, CD63, CD51/61) which, with their small size, enabled live cell sorting of highly enriched viable subpopulations of human osteoclasts that retained full functional resorption capacity. Low-yield osteoclast preparations were strongly enriched to remove undifferentiated cells (e.g., 13.3% CD51/61+ to 84.2% CD51/61+), and subpopulations of CD9+CD51/61- early osteoclasts and CD9+CD51/61+ mature cells were distinguished. This novel approach allows the study of selected populations of differentiating osteoclasts in vitro and opens the door to in-depth transcriptomic and proteomic analysis of these cells, increasing our ability to study human osteoclast molecular mechanisms relevant to development, aging and disease.
Collapse
|
5
|
Ishida M, Kawao N, Mizukami Y, Takafuji Y, Kaji H. Serpinb1a suppresses osteoclast formation. Biochem Biophys Rep 2021; 26:101004. [PMID: 33997318 PMCID: PMC8100536 DOI: 10.1016/j.bbrep.2021.101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Serpinb1a, a serine protease inhibitor family protein, has been implicated in immunoregulation and several metabolic disorders, such as diabetes and obesity; however, its roles in bone remain unknown. Therefore, we herein investigated the physiological functions of Serpinb1a in osteoclastic and osteoblastic differentiation using mouse cell lines. Serpinb1a overexpression markedly reduced the number of tartrate-resistant acid phosphatase (TRAP)- and calcitonin receptor-positive multinucleated cells increased by receptor activator nuclear factor κB ligand (RANKL) in mouse preosteoclastic RAW 264.7 cells. Moreover, it significantly decreased the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), TRAP and cathepsin K in these cells. Regarding osteoblasts, Serpinb1a overexpression significantly reduced the mRNA levels of alkaline phosphatase (ALP) and osteocalcin as well as ALP activity induced by bone morphogenetic protein-2 (BMP-2) in mouse mesenchymal ST2 cells, although it did not alter osteoblast differentiation in mouse osteoblastic MC3T3-E1 cells. Concerning the pathophysiological relevance of Serpinb1a, Serpinb1a mRNA levels were decreased in the soleus and gastrocnemius muscles of mice 4 weeks after bilateral sciatic nerve resection. In conclusion, we herein revealed for the first time that Serpinb1a inhibited osteoclast formation induced by RANKL in RAW 264.7 cells and suppressed BMP-2-induced ALP activity in ST2 cells.
Collapse
Affiliation(s)
- Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
6
|
Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:127. [PMID: 33767177 PMCID: PMC7994399 DOI: 10.1038/s41392-021-00506-6] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, Butt D, Nguyen A, Corr A, Warren S, Biro M, Butterfield NC, Guilfoyle SE, Komla-Ebri D, Dack MRG, Dewhurst HF, Logan JG, Li Y, Mohanty ST, Byrne N, Terry RL, Simic MK, Chai R, Quinn JMW, Youlten SE, Pettitt JA, Abi-Hanna D, Jain R, Weninger W, Lundberg M, Sun S, Ebetino FH, Timpson P, Lee WM, Baldock PA, Rogers MJ, Brink R, Williams GR, Bassett JHD, Kemp JP, Pavlos NJ, Croucher PI, Phan TG. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 2021; 184:1330-1347.e13. [PMID: 33636130 PMCID: PMC7938889 DOI: 10.1016/j.cell.2021.02.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Michelle M McDonald
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Weng Hua Khoo
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Pei Ying Ng
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Ya Xiao
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jad Zamerli
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Thatcher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Wunna Kyaw
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Abigail K Grootveld
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Imogen Moran
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Danyal Butt
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Akira Nguyen
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Alexander Corr
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Sean Warren
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Yongxiao Li
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sindhu T Mohanty
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Niall Byrne
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rachael L Terry
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Marija K Simic
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Ryan Chai
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Julian M W Quinn
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Scott E Youlten
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jessica A Pettitt
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Abi-Hanna
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rohit Jain
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mischa Lundberg
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | | | | | - Paul Timpson
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Woei Ming Lee
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Paul A Baldock
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Michael J Rogers
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Robert Brink
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John P Kemp
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nathan J Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Peter I Croucher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia.
| | - Tri Giang Phan
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Yang J, Yu X, Zhang Z, Xu R, Wu F, Wang T, Liu Y, Ouyang J, Deng F. Surface modification of titanium manufactured through selective laser melting inhibited osteoclast differentiation through mitogen-activated protein kinase signaling pathway. J Biomater Appl 2020; 35:169-181. [PMID: 32340522 DOI: 10.1177/0885328220920457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective laser melting used in manufacturing custom-made titanium implants becomes more popular. In view of the important role played by osteoclasts in peri-implant bone resorption and osseointegration, we modified selective laser melting-manufactured titanium surfaces using sandblasting/alkali-heating and sandblasting/acid-etching, and investigated their effect on osteoclast differentiation as well as their underlying mechanisms. The properties of the surfaces, including elements, roughness, wettability and topography, were analyzed. We evaluated the proliferation and morphology of primary mouse bone marrow-derived monocytes, as well as induced osteoclasts derived from bone marrow-derived monocytes, on samples. Then, osteoclast differentiation was determined by the tartrate-resistant acid phosphatase activity assay, calcitonin receptors immunofluorescence staining and the expression of osteoclast-related genes. The results showed that sandblasting/alkali-heating established nanonet structure with the lowest water contact angle, and both sandblasting/alkali-heating and sandblasting/acid-etching significantly decreased surface roughness and heterogeneity compared with selective laser melting. Surface modifications of selective laser melting-produced titanium altered bone marrow-derived monocyte morphology and suppressed bone marrow-derived monocyte proliferation and osteoclastogenesis in vitro (sandblasting/alkali-heating>sandblasting/acid-etching>selective laser melting). These surface modifications reduced the activation of extracellular signal-regulated kinase and c-Jun N-terminal kinases compared to native-selective laser melting. Sandblasting/alkali-heating additionally blocked tumor necrosis factor receptor-associated factor 6 recruitment. The results suggested that sandblasting/alkali-heating and sandblasting/acid-etching modifications on selective laser melting titanium could inhibit osteoclast differentiation through suppressing extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation in mitogen-activated protein kinase signaling pathway and provide a promising technique which might reduce peri-implant bone resorption for optimizing native-selective laser melting implants.
Collapse
Affiliation(s)
- Jiamin Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaolin Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Fan Wu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Tianlu Wang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yun Liu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianglin Ouyang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou, PR China.,Guangzhou Janus Biotechnology Co., Ltd, Chinese Academy of Sciences, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| |
Collapse
|
9
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
10
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
11
|
Madel MB, Ibáñez L, Rouleau M, Wakkach A, Blin-Wakkach C. A Novel Reliable and Efficient Procedure for Purification of Mature Osteoclasts Allowing Functional Assays in Mouse Cells. Front Immunol 2018; 9:2567. [PMID: 30450105 PMCID: PMC6224441 DOI: 10.3389/fimmu.2018.02567] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023] Open
Abstract
Osteoclasts (OCLs) are multinucleated phagocytes of monocytic origin responsible for physiological and pathological bone resorption including aging processes, chronic inflammation and cancer. Besides bone resorption, they are also involved in the modulation of immune responses and the regulation of hematopoietic niches. Accordingly, OCLs are the subject of an increasing number of studies. Due to their rarity and the difficulty to isolate them directly ex vivo, analyses on OCLs are usually performed on in vitro differentiated cells. In this state, however, OCLs represent a minority of differentiated cells. Since up to date a reliable purification procedure is still lacking for mature OCLs, all cells present in the culture are analyzed collectively to answer OCL-specific questions. With the development of in-depth transcriptomic and proteomic analyses, such global analyses on unsorted cells can induce severe bias effects in further results. In addition, for instance, analysis on OCL immune function requires working on purified OCLs to avoid contamination effects of monocytic precursors that may persist during the culture. This clearly highlights the need for a reliable OCL purification procedure. Here, we describe a novel and reliable method to sort OCLs based on cell multinucleation while preserving cell viability. Using this method, we successfully purified multinucleated murine cells. We showed that they expressed high levels of OCL markers and retained a high capacity of bone resorption, demonstrating that these are mature OCLs. The same approach was equally applied for the purification of human mature OCLs. Comparison of purified OCLs with mononucleated cells or unsorted cells revealed significant differences in the expression of OCL-specific markers at RNA and/or protein level. This exemplifies that substantially better outcomes for OCLs are achieved after the exclusion of mononucleated cells. Our results clearly demonstrate that the in here presented procedure for the analysis and sorting of pure OCLs represents a novel, robust and reliable method for the detailed examination of bona fide mature OCLs in a range that was previously impossible. Noteworthy, this procedure will open new perspectives into the biology of osteoclasts and osteoclast-related diseases.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Lidia Ibáñez
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Matthieu Rouleau
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Abdelilah Wakkach
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Claudine Blin-Wakkach
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| |
Collapse
|
12
|
Chai RC, McDonald MM, Terry RL, Kovačić N, Down JM, Pettitt JA, Mohanty ST, Shah S, Haffari G, Xu J, Gillespie MT, Rogers MJ, Price JT, Croucher PI, Quinn JMW. Melphalan modifies the bone microenvironment by enhancing osteoclast formation. Oncotarget 2017; 8:68047-68058. [PMID: 28978095 PMCID: PMC5620235 DOI: 10.18632/oncotarget.19152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022] Open
Abstract
Melphalan is a cytotoxic chemotherapy used to treat patients with multiple myeloma (MM). Bone resorption by osteoclasts, by remodeling the bone surface, can reactivate dormant MM cells held in the endosteal niche to promote tumor development. Dormant MM cells can be reactivated after melphalan treatment; however, it is unclear whether melphalan treatment increases osteoclast formation to modify the endosteal niche. Melphalan treatment of mice for 14 days decreased bone volume and the endosteal bone surface, and this was associated with increases in osteoclast numbers. Bone marrow cells (BMC) from melphalan-treated mice formed more osteoclasts than BMCs from vehicle-treated mice, suggesting that osteoclast progenitors were increased. Melphalan also increased osteoclast formation in BMCs and RAW264.7 cells in vitro, which was prevented with the cell stress response (CSR) inhibitor KNK437. Melphalan also increased expression of the osteoclast regulator the microphthalmia-associated transcription factor (MITF), but not nuclear factor of activated T cells 1 (NFATc1). Melphalan increased expression of MITF-dependent cell fusion factors, dendritic cell-specific transmembrane protein (Dc-stamp) and osteoclast-stimulatory transmembrane protein (Oc-stamp) and increased cell fusion. Expression of osteoclast stimulator receptor activator of NFκB ligand (RANKL) was unaffected by melphalan treatment. These data suggest that melphalan stimulates osteoclast formation by increasing osteoclast progenitor recruitment and differentiation in a CSR-dependent manner. Melphalan-induced osteoclast formation is associated with bone loss and reduced endosteal bone surface. As well as affecting bone structure this may contribute to dormant tumor cell activation, which has implications for how melphalan is used to treat patients with MM.
Collapse
Affiliation(s)
- Ryan C Chai
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Michelle M McDonald
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Rachael L Terry
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Nataša Kovačić
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,Department of Anatomy, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Jenny M Down
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,Bone Biology Group, Department of Human Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica A Pettitt
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Sindhu T Mohanty
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Shruti Shah
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Gholamreza Haffari
- Faculty of Information Technology, Monash University, Clayton, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Australia
| | - Matthew T Gillespie
- Faculty of Medicine and Health Sciences, Monash University, Clayton, Australia
| | - Michael J Rogers
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - John T Price
- College of Health and Biomedicine, Victoria University, St Albans, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne, Victoria University and Western Health, St. Albans, Australia
| | - Peter I Croucher
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| |
Collapse
|
13
|
Yang C, Ding P, Wang Q, Zhang L, Zhang X, Zhao J, Xu E, Wang N, Chen J, Yang G, Hu W, Zhou X. Inhibition of Complement Retards Ankylosing Spondylitis Progression. Sci Rep 2016; 6:34643. [PMID: 27698377 PMCID: PMC5048143 DOI: 10.1038/srep34643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/14/2016] [Indexed: 01/20/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-β1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-β1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy.
Collapse
Affiliation(s)
- Chaoqun Yang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Hand Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingkai Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Long Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianquan Zhao
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Enjie Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Na Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuhui Zhou
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
14
|
Zhu Y, Wu Y, Liang Y, Tan W, Liu Z, Xiao J. Regulation of expression level of fms-like tyrosine kinase-4 is related to osteoclast differentiation. Arch Med Sci 2016; 12:502-6. [PMID: 27279840 PMCID: PMC4889680 DOI: 10.5114/aoms.2015.55821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/18/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of this study is to determine whether regulation of the expression level of fms-like tyrosine kinase-4 (Flt-4) is related to osteoclast differentiation. MATERIAL AND METHODS Osteoclast formation and differentiation of mouse bone marrow cells and RAW264.7 cells were performed. To induce osteoclast differentiation, RANKL (50 ng/ml) with or without vascular endothelial growth factor-C (VEGF-C) and vascular endothelial growth factor-D (VEGF-D) was added to mouse bone marrow cells and RAW264.7 cells. Then cells were examined under a microscope. TRAP-positive cells with 3 nuclei or more were considered as osteoclasts and counted. The Flt-4 gene was knocked down by transfection of siRNAs against Flt-4. Immunoblot analyses were performed. RESULTS The osteoclast formation assay indicated that VEGF-C resulted in 500 or 450 vs. 100 (p < 0.05) of osteoclasts in mouse bone marrow cells and RAW264.7 cells, respectively. Vascular endothelial growth factor-D resulted in about 600 or 630 vs. 100 (p < 0.05) of osteoclasts for both mouse bone marrow cells and RAW264.7 cells. The knock-down of Flt-4 expression abolished the induction by VEGF-C or VEGF-D, resulting in induction similar to that of the negative control PBS. CONCLUSIONS Both VEGF-C and VEGF-D can induce osteoclast differentiation in the presence of the receptor activator of nuclear factor κB ligand. Down-regulation of expression level of Flt-4 protein abolishes osteoclast differentiation induced by VEGF-C or VEGF-D.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Orthopaedics, the Second Hospital Affiliated to the University of South China, Hengyang, China
| | - Yuan Wu
- Department of Laboratory, the Second Hospital Affiliated to the University of South China, Hengyang, China
| | - Yu Liang
- Institute of Pathogen Biology, Medical College, the University of South China, Hengyang, China
| | - Wenfu Tan
- Department of Orthopaedics, the Second Hospital Affiliated to the University of South China, Hengyang, China
| | - Zhuoran Liu
- Department of Laboratory, the Second Hospital Affiliated to the University of South China, Hengyang, China
| | - Jianhua Xiao
- Institute of Pathogen Biology, Medical College, the University of South China, Hengyang, China
| |
Collapse
|
15
|
Noya Maiz N, de la Rosa-García E, Irigoyen Camacho ME. Immunohistochemical expression of alpha-smooth muscle actin and glucocorticoid and calcitonin receptors in central giant-cell lesions. J Oral Pathol Med 2015; 45:289-94. [DOI: 10.1111/jop.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Nancy Noya Maiz
- Department of Health Care; Universidad Autónoma Metropolitana; Xochimilco México City México
| | | | | |
Collapse
|
16
|
Martins AFL, Souza POC, Rege ICC, Morais MO, Mendonça EF. Glucocorticoids, calcitonin, and osteocalcin cannot differentiate between aggressive and nonaggressive central giant cell lesions of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:386-95. [DOI: 10.1016/j.oooo.2015.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
17
|
Liu WW, Xu ZM, Li ZQ, Zhang Y, Han B. RANKL, OPG and CTR mRNA expression in the temporomandibular joint in rheumatoid arthritis. Exp Ther Med 2015; 10:895-900. [PMID: 26622411 DOI: 10.3892/etm.2015.2629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
The calcitonin receptor (CTR) and receptor activator of nuclear factor κB ligand (RANKL) have been found to be involved in the differentiation of osteoclasts. The association between the RANKL:osteoprotegerin (OPG) expression ratio and the pathogenesis of bone-destructive rheumatoid arthritis (RA) has been described in several joints, but the available data for the temporomandibular joint (TMJ) are limited. The aim of the present study was to investigate the involvement of osteoclasts at sites of bone erosion by determining the CTR expression and the RANKL:OPG expression ratio in the TMJ in a collagen-induced arthritis (CIA) model. Forty-eight male Wistar rats were randomly divided into two groups: Control group, injected with saline solution for 6 weeks; and CIA group, injected with emulsion. The RANKL and OPG mRNA expression was significantly increased in immunized rats compared with that in non-immunized rats. The RANKL:OPG expression ratio on the trabecular bone surface was 9.0 and 6.4 in the CIA group at weeks 4 and 6, respectively, while the RANKL:OPG expression ratio in the controls was 1.0:2. CTR mRNA expression was significantly upregulated in immunized rats compared with that in non-immunized rats; the level of CTR mRNA in the CTR-positive osteoclasts on the trabecular bone surface was 10.9- and 7.8-fold higher in the CIA rats than that in the control rats at weeks 4 and 6, respectively. In conclusion, focal bone destruction in an experimental model of arthritis in the TMJ can be attributed to cells expressing CTR, a defining feature of osteoclasts. The expression of RANKL and OPG mRNA within the inflamed synovium provides an insight into the mechanism of osteoclast differentiation and function at the border of bone erosion in arthritis.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhi-Min Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zheng-Qiang Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Zhang
- Department of General Therapy Dentistry, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Eeles DG, Hodge JM, Singh PP, Schuijers JA, Grills BL, Gillespie MT, Myers DE, Quinn JMW. Osteoclast formation elicited by interleukin-33 stimulation is dependent upon the type of osteoclast progenitor. Mol Cell Endocrinol 2015; 399:259-66. [PMID: 25458701 DOI: 10.1016/j.mce.2014.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Osteoclasts are bone resorbing multinucleated cells (MNCs) derived from macrophage progenitors. IL-33 has been reported to drive osteoclastogenesis independently of receptor activator of NFκB ligand (RANKL) but this remains controversial as later studies did not confirm this. We found IL-33 clearly elicited functional dentine-resorbing osteoclast formation from human adult monocytes. However, monocytes from only 3 of 12 donors responded this way, while all responded to RANKL. Human cord blood-derived progenitors and murine bone marrow macrophages lacked an osteoclastogenic response to IL-33. In RAW264.7 cells, IL-33 elicited NFκB and p38 responses but not NFATc1 signals (suggesting poor osteoclastogenic responses) and formed only mononuclear tartrate-resistant acid phosphatase positive (TRAP(+)) cells. Since TGFβ boosts osteoclastogenesis in RAW264.7 cells we employed an IL-33/TGFβ co-treatment, which resulted in small numbers of MNCs expressing key osteoclast markers TRAP and calcitonin receptors. Thus, IL-33 possesses weak osteoclastogenic activity suggesting pathological significance and, perhaps, explaining previous conflicting reports.
Collapse
Affiliation(s)
- Damien G Eeles
- MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia; Department of Human Biosciences, La Trobe University, Bundoora, VIC, Australia
| | - Jason M Hodge
- Barwon Biomedical Research, Department of Medicine, The Geelong Hospital, Geelong, VIC, Australia; School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | | | - Brian L Grills
- Department of Human Biosciences, La Trobe University, Bundoora, VIC, Australia
| | - Matthew T Gillespie
- MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Damian E Myers
- Department of Orthopaedics, St Vincent's Hospital, Fitzroy, VIC, Australia; Department of Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Julian M W Quinn
- MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
19
|
Klinck R, Laberge G, Bisson M, McManus S, Michou L, Brown JP, Roux S. Alternative splicing in osteoclasts and Paget's disease of bone. BMC MEDICAL GENETICS 2014; 15:98. [PMID: 25115182 PMCID: PMC4143580 DOI: 10.1186/s12881-014-0098-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/07/2014] [Indexed: 01/12/2023]
Abstract
Background Mutations in the SQSTM1/p62 gene have been reported in Paget’s disease of bone (PDB), but they are not sufficient to induce the pagetic osteoclast (OC) phenotype. We hypothesized that specific RNA isoforms of OC-related genes may contribute to the overactivity of pagetic OCs, along with other genetic predisposing factors. Methods Alternative splicing (AS) events were studied using a PCR-based screening strategy in OC cultures from 29 patients with PDB and 26 healthy donors (HD), all genotyped for the p62P392L mutation. Primer pairs targeting 5223 characterized AS events were used to analyze relative isoform ratios on pooled cDNA from samples of the four groups (PDB, PDBP392L, HD, HDP392L). Of the 1056 active AS events detected in the screening analysis, 192 were re-analyzed on non-amplified cDNA from each subject of the whole cohort. Results This analysis led to the identification of six AS events significantly associated with PDB, but none with p62P392L. The corresponding genes included LGALS8, RHOT1, CASC4, USP4, TBC1D25, and PIDD. In addition, RHOT1 and LGALS8 genes were upregulated in pagetic OCs, as were CASC4 and RHOT1 genes in the presence of p62P392L. Finally, we showed that the proteins encoded by LGALS8, RHOT1, USP4, TBC1D25, and PIDD were expressed in human OCs. Conclusion This study allowed the identification of hitherto unknown players in OC biology, and our findings of a differential AS in pagetic OCs may generate new concepts in the pathogenesis of PDB.
Collapse
|
20
|
Chai RC, Kouspou MM, Lang BJ, Nguyen CH, van der Kraan AGJ, Vieusseux JL, Lim RC, Gillespie MT, Benjamin IJ, Quinn JMW, Price JT. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner. J Biol Chem 2014; 289:13602-14. [PMID: 24692538 DOI: 10.1074/jbc.m113.530626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.
Collapse
Affiliation(s)
- Ryan C Chai
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Tissue-resident macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These range from dedicated homeostatic functions, such as clearance of cellular debris and iron processing, to central roles in tissue immune surveillance, response to infection and the resolution of inflammation. Recent studies highlight marked heterogeneity in the origins of tissue macrophages that arise from hematopoietic versus self-renewing embryo-derived populations. We discuss the tissue niche-specific factors that dictate cell phenotype, the definition of which will allow new strategies to promote the restoration of tissue homeostasis. Understanding the mechanisms that dictate tissue macrophage heterogeneity should explain why simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo.
Collapse
|
22
|
Fernandes TJ, Hodge JM, Singh PP, Eeles DG, Collier FM, Holten I, Ebeling PR, Nicholson GC, Quinn JMW. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One 2013; 8:e73266. [PMID: 24069182 PMCID: PMC3772005 DOI: 10.1371/journal.pone.0073266] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 07/22/2013] [Indexed: 11/18/2022] Open
Abstract
In bone, depletion of osteoclasts reduces bone formation in vivo, as does osteal macrophage depletion. How osteoclasts and macrophages promote the action of bone forming osteoblasts is, however, unclear. Since recruitment and differentiation of multi-potential stromal cells/mesenchymal stem cells (MSC) generates new active osteoblasts, we investigated whether human osteoclasts and macrophages (generated from cord blood-derived hematopoietic progenitors) induce osteoblastic maturation in adipose tissue-derived MSC. When treated with an osteogenic stimulus (ascorbate, dexamethasone and β-glycerophosphate) these MSC form matrix-mineralising, alkaline phosphatase-expressing osteoblastic cells. Cord blood-derived progenitors were treated with macrophage colony stimulating factor (M-CSF) to form immature proliferating macrophages, or with M-CSF plus receptor activator of NFκB ligand (RANKL) to form osteoclasts; culture medium was conditioned for 3 days by these cells to study their production of osteoblastic factors. Both osteoclast- and macrophage-conditioned medium (CM) greatly enhanced MSC osteoblastic differentiation in both the presence and absence of osteogenic medium, evident by increased alkaline phosphatase levels within 4 days and increased mineralisation within 14 days. These CM effects were completely ablated by antibodies blocking gp130 or oncostatin M (OSM), and OSM was detectable in both CM. Recombinant OSM very potently stimulated osteoblastic maturation of these MSC and enhanced bone morphogenetic protein-2 (BMP-2) actions on MSC. To determine the influence of macrophage activation on this OSM-dependent activity, CM was collected from macrophage populations treated with M-CSF plus IL-4 (to induce alternative activation) or with GM-CSF, IFNγ and LPS to cause classical activation. CM from IL-4 treated macrophages stimulated osteoblastic maturation in MSC, while CM from classically-activated macrophages did not. Thus, macrophage-lineage cells, including osteoclasts but not classically activated macrophages, can strongly drive MSC-osteoblastic commitment in OSM-dependent manner. This supports the notion that eliciting gp130-dependent signals in human MSC would be a useful approach to increase bone formation.
Collapse
Affiliation(s)
- Tania J. Fernandes
- Northwest Academic Centre, Department of Medicine, The University of Melbourne, Victoria, Australia
- Barwon Biomedical Research, The Geelong Hospital, Geelong, Victoria, Australia
| | - Jason M. Hodge
- Northwest Academic Centre, Department of Medicine, The University of Melbourne, Victoria, Australia
- Barwon Biomedical Research, The Geelong Hospital, Geelong, Victoria, Australia
- School of Medicine, Deakin University: Barwon Health, Geelong, Victoria, Australia
| | | | - Damien G. Eeles
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Human Biosciences, La Trobe University, Bundoora, Victoria, Australia
| | - Fiona M. Collier
- Barwon Biomedical Research, The Geelong Hospital, Geelong, Victoria, Australia
- School of Medicine, Deakin University: Barwon Health, Geelong, Victoria, Australia
| | - Ian Holten
- Department of Plastic Surgery, Barwon Health, Geelong, Victoria, Australia
| | - Peter R. Ebeling
- Northwest Academic Centre, Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Geoffrey C. Nicholson
- Northwest Academic Centre, Department of Medicine, The University of Melbourne, Victoria, Australia
- Rural Clinical School, The University of Queensland, Toowoomba, Queensland, Australia
| | - Julian M. W. Quinn
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
HSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors. Biochem J 2013; 451:235-44. [PMID: 23379601 DOI: 10.1042/bj20121626] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The HSP90 (heat-shock protein 90) inhibitor 17-AAG (17-allylamino-demethoxygeldanamycin) increases osteoclast formation both in vitro and in vivo, an action that can enhance cancer invasion and growth in the bone microenvironment. The cellular mechanisms through which 17-AAG exerts this action are not understood. Thus we sought to clarify the actions of 17-AAG on osteoclasts and determine whether other HSP90 inhibitors had similar properties. We determined that 17-AAG and the structurally unrelated HSP90 inhibitors CCT018159 and NVP-AUY922 dose-dependently increased RANKL [receptor activator of NF-κB (nuclear factor κB) ligand]-stimulated osteoclastogenesis in mouse bone marrow and pre-osteoclastic RAW264.7 cell cultures. Moreover, 17-AAG also enhanced RANKL- and TNF (tumour necrosis factor)-elicited osteoclastogenesis, but did not affect RANKL-induced osteoclast survival, suggesting that only differentiation mechanisms are targeted. 17-AAG affected the later stages of progenitor maturation (after 3 days of incubation), whereas the osteoclast formation enhancer TGFβ (transforming growth factor β) acted prior to this, suggesting different mechanisms of action. In studies of RANKL-elicited intracellular signalling, 17-AAG treatment did not increase c-Fos or NFAT (nuclear factor of activated T-cells) c1 protein levels nor did 17-AAG increase activity in luciferase-based NF-κB- and NFAT-response assays. In contrast, 17-AAG treatment (and RANKL treatment) increased both MITF (microphthalmia-associated transcription factor) protein levels and MITF-dependent vATPase-d2 (V-type proton ATPase subunit d2) gene promoter activity. These results indicate that HSP90 inhibitors enhance osteoclast differentiation in an NFATc1-independent manner that involves elevated MITF levels and activity.
Collapse
|
24
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
25
|
Fong D, Bisson M, Laberge G, McManus S, Grenier G, Faucheux N, Roux S. Bone morphogenetic protein-9 activates Smad and ERK pathways and supports human osteoclast function and survival in vitro. Cell Signal 2013; 25:717-28. [PMID: 23313128 DOI: 10.1016/j.cellsig.2012.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/25/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
Abstract
BMP-9 is a potent osteogenic factor; however, its effects on osteoclasts, the bone-resorbing cells, remain unknown. To determine the effects of BMP-9 on osteoclast formation, activity and survival, we used human cord blood monocytes as osteoclast precursors that form multinucleated osteoclasts in the presence of RANKL and M-CSF in long-term cultures. BMP-9 did not affect osteoclast formation, but adding BMP-9 at the end of the culture period significantly increased bone resorption compared to untreated cultures, and reduced both the rate of apoptosis and caspase-9 activity. BMP-9 also significantly downregulated the expression of pro-apoptotic Bid, but only after RANKL and M-CSF, which are both osteoclast survival factors, had been eliminated from the culture medium. To investigate the mechanisms involved in the effects of BMP-9, we first showed that osteoclasts expressed some BMP receptors, including BMPR-IA, BMPR-IB, ALK1, and BMPR-II. We also found that BMP-9 was able to induce the phosphorylation of Smad-1/5/8 and ERK 1/2 proteins, but did not induce p38 phosphorylation. Finally, knocking down the BMPR-II receptor abrogated the BMP-9-induced ERK-signaling, as well as the increase in bone resorption. In conclusion, these results show for the first time that BMP-9 directly affects human osteoclasts, enhancing bone resorption and protecting osteoclasts against apoptosis. BMP-9 signaling in human osteoclasts involves the canonical Smad-1/5/8 pathway, and the ERK pathway.
Collapse
Affiliation(s)
- David Fong
- Division of Rheumatology, Faculty of Medicine, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Park JK, Askin F, Giles JT, Halushka MK, Rosen A, Levine SM. Increased generation of TRAP expressing multinucleated giant cells in patients with granulomatosis with polyangiitis. PLoS One 2012; 7:e42659. [PMID: 22905158 PMCID: PMC3414441 DOI: 10.1371/journal.pone.0042659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022] Open
Abstract
Background Tissue-infiltrating multinucleated giant cells (MNGs) within geographic necrosis are pathologic hallmarks of granulomatosis with polyangiitis (GPA). However, the origin, phenotype, and function of these cells in GPA remain undefined. Methodology/Principal Findings MNG phenotype in GPA lung tissue was examined by immunohistochemistry using antibody directed against cathepsin K and calcitonin-receptor. Tartrate-resistant-acid-phosphatase (TRAP) expression was assessed using enzymatic color reaction. Peripheral blood mononuclear cells (PBMCs) from 13 GPA patients (5 with localized and 8 with systemic disease) and 11 healthy controls were cultured in the presence of RANKL and M-CSF for 9 days, and TRAP+ MNGs containing 3 or more nuclei were identified. GPA lung granulomata contained numerous MNGs that expressed osteoclastic TRAP and cathepsin K but not calcitonin receptors. In the presence of RANKL and M-CSF, PBMCs of GPA patients formed significantly more MNGs than healthy controls (114±29 MNG/well vs. 22±9 MNG/well, P = 0.02). In a subgroup analysis, patients with systemic disease generated significantly more MNGs than patients with localized disease (161±35 MNG/well vs. 39±27 MNG/well, P<0.01) or healthy controls (P<0.01). MNG production did not differ between localized GPA and control subjects (P = 0.96). Conclusions/Significance MNGs in granulomata in the GPA lung express osteoclastic enzymes TRAP and cathepsin K. GPA patients have a higher propensity to form TRAP+ MNGs from peripheral blood than healthy controls. These data suggest that (i) the tendency to form MNGs is a component of the GPA phenotype itself, and (ii) that lesional MNGs might participate in the destructive process through their proteolytic enzymes.
Collapse
Affiliation(s)
- Jin Kyun Park
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | |
Collapse
|
27
|
Membrane-bound receptor activator of NFκB ligand (RANKL) activity displayed by osteoblasts is differentially regulated by osteolytic factors. Biochem Biophys Res Commun 2012; 422:48-53. [PMID: 22561018 DOI: 10.1016/j.bbrc.2012.04.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
Osteoclast formation is central to bone metabolism, occurring when myelomonocytic progenitors are stimulated by membrane-bound receptor activator of NFκB ligand (RANKL) on osteoblasts. Osteolytic hormones induce osteoblast RANKL expression, and reduce production of RANKL decoy receptor osteoprotegerin (OPG). However, rather than RANKL and OPG mRNA or protein levels, to measure hormonally-induced osteoclastogenic stimuli the net RANKL activity at the osteoblast surface needs to be determined. To estimate this we developed a cell reporter approach employing pre-osteoclast RAW264.7 cells transfected with luciferase reporter constructs controlled by NFκB (NFκB-RAW) or NFATc1 (NFAT-RAW)-binding promoter elements. Strong signals were induced in these cells by recombinant RANKL over 24h. When NFκB-RAW cells were co-cultured on osteoblastic cells (primary osteoblasts or Kusa O cells) stimulated by osteolytic factors 1,25(OH)(2) vitamin D(3) (1,25(OH)(2)D(3)) and prostaglandin E(2) (PGE(2)), a strong dose dependent signal in NFκB-RAW cells was induced. These signals were completely blocked by soluble recombinant RANKL receptor, RANK.Fc. This osteoblastic RANKL activity was sustained for 3 days in Kusa O cells; with 1,25(OH)(2)D(3) withdrawal, RANKL-induced signal was still detectable 24 h later. However, conditioned medium from stimulated osteoblasts induced no signal. TGFβ treatment inhibited osteoclast formation supported by 1,25(OH)(2)D(3)-treated Kusa O cells, and likewise blocked RANKL-dependent signals in NFAT-RAW co-cultured with these cells. These data indicate net RANKL stimulus at the osteoblast surface is increased by 1,25(OH)(2)D(3) and PGE(2), and suppressed by TGFβ, in line with their effects on RANKL mRNA levels. These results demonstrate the utility of this simple co-culture-based reporter assay for osteoblast RANKL activity.
Collapse
|
28
|
Fu W, Ruangkittisakul A, MacTavish D, Shi JY, Ballanyi K, Jhamandas JH. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J Biol Chem 2012; 287:18820-30. [PMID: 22500019 DOI: 10.1074/jbc.m111.331181] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two age-prevalent diseases Alzheimer disease and type 2 diabetes mellitus share many common features including the deposition of amyloidogenic proteins, amyloid β protein (Aβ) and amylin (islet amyloid polypeptide), respectively. Recent evidence suggests that both Aβ and amylin may express their effects through the amylin receptor, although the precise mechanisms for this interaction at a cellular level are unknown. Here, we studied this by generating HEK293 cells with stable expression of an isoform of the amylin receptor family, amylin receptor-3 (AMY3). Aβ1-42 and human amylin (hAmylin) increase cytosolic cAMP and Ca(2+), trigger multiple pathways involving the signal transduction mediators protein kinase A, MAPK, Akt, and cFos. Aβ1-42 and hAmylin also induce cell death during exposure for 24-48 h at low micromolar concentrations. In the presence of hAmylin, Aβ1-42 effects on HEK293-AMY3-expressing cells are occluded, suggesting a shared mechanism of action between the two peptides. Amylin receptor antagonist AC253 blocks increases in intracellular Ca(2+), activation of protein kinase A, MAPK, Akt, cFos, and cell death, which occur upon AMY3 activation with hAmylin, Aβ1-42, or their co-application. Our data suggest that AMY3 plays an important role by serving as a receptor target for actions Aβ and thus may represent a novel therapeutic target for development of compounds to treat neurodegenerative conditions such as Alzheimer disease.
Collapse
Affiliation(s)
- Wen Fu
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Yang B, Zhou H, Zhang XD, Liu Z, Fan FY, Sun YM. Effect of radiation on the expression of osteoclast marker genes in RAW264.7 cells. Mol Med Rep 2012; 5:955-8. [PMID: 22294242 PMCID: PMC3493054 DOI: 10.3892/mmr.2012.765] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/20/2012] [Indexed: 12/02/2022] Open
Abstract
Cancer radiation therapy can cause skeletal complications, such as osteopenia and osteoporosis. To understand the mechanism responsible for the skeletal complications, the expression profiles of osteoclast marker genes in RAW264.7 cells were observed. Osteoclast formation was established by RAW264.7 cells that were treated with the receptor activator of nuclear factor (NF)-κB ligand (RANKL) and detected using immunochemistry and morphological observations. Quantitative real-time polymerase chain reaction was used to assess the expression of a panel of osteoclast markers, including the receptor activator of NF-κB (RANK), tartrate-resistant acid phosphatase (TRAP), integrin β3 and the calcitonin receptor (CTR). RANKL-induced osteoclasts were TRAP-positive and multinucleated, and displayed a distinct morphology. RANKL-induced osteoclast precursor cells had increased TRAP and RANK expression and decreased CTR expression compared to the control cells not treated with RANKL. RAW264.7 cells irradiated with 2-Gy γ-rays had upregulated integrin β3 and RANK expression and downregulated CTR expression compared to the control RAW264.7 cells. The effect of radiation on RANKL-induced osteoclast differentiation enhanced the expression of CTR and inhibited the expression of RANK and TRAP. Therefore, radiation damage from 2-Gy γ-rays can promote the activities of osteoclast precursor cells, but not those of osteoclasts.
Collapse
Affiliation(s)
- Bing Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | | | | | | | | | | |
Collapse
|
30
|
McNally AK, Anderson JM. Foreign body-type multinucleated giant cells induced by interleukin-4 express select lymphocyte co-stimulatory molecules and are phenotypically distinct from osteoclasts and dendritic cells. Exp Mol Pathol 2011; 91:673-81. [PMID: 21798256 PMCID: PMC3220734 DOI: 10.1016/j.yexmp.2011.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/28/2022]
Abstract
Foreign body-type multinucleated giant cells (FBGC), formed by macrophage fusion, are a prominent cell type on implanted biomaterials, although the roles they play at these and other sites of chronic inflammation are not understood. Why lymphocytes are present in this scenario and the effects of fusing macrophages/FBGC on subsequent lymphocyte responses are also unclear. To address the physiological significance of FBGC in this regard, we employed our in vitro system of interleukin (IL)-4-induced human monocyte-derived macrophage fusion/FBGC formation. Initially, we pursued the identities of lymphocyte co-stimulatory molecules on fusing macrophages/FBGC. In addition, we further compared the FBGC phenotype to that currently associated with osteoclasts and dendritic cells using recognized markers. Immunoblotting of cell lysates and immunochemistry of macrophages/FBGC in situ, revealed that IL-4-induced macrophages/FBGC strongly express HLA-DR, CD98, B7-2 (CD86), and B7-H1 (PD-L1), but not B7-1 (CD80) or B7-H2 (B7RP-1). Furthermore, molecules currently recognized to be expressed on osteoclasts (calcitonin receptor, tartrate-resistant acid phosphatase, RANK) or dendritic cells (CD1a, CD40, CD83, CD95/fas) are undetectable. In contrast, fusing macrophages/FBGC strongly express the macrophage markers αX integrin (CD11c), CD68, and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), whereas CD14 is completely down-modulated with IL-4-induced macrophage fusion. These novel data demonstrate that IL-4-induction of macrophage multinucleation/FBGC formation features the acquisition of a CD14-negative phenotypic profile which is distinguishable from that of dendritic cells and osteoclasts, yet potentially exhibits multiple capacities for lymphocyte interactions with resultant lymphocyte down-modulation.
Collapse
Affiliation(s)
- Amy K McNally
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, Room 5104, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | |
Collapse
|
31
|
|
32
|
Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A 2011; 17:1389-99. [PMID: 21247344 DOI: 10.1089/ten.tea.2010.0555] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.
Collapse
Affiliation(s)
- Janette N Zara
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gooi JH, Pompolo S, Karsdal MA, Kulkarni NH, Kalajzic I, McAhren SHM, Han B, Onyia JE, Ho PWM, Gillespie MT, Walsh NC, Chia LY, Quinn JMW, Martin TJ, Sims NA. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone 2010; 46:1486-97. [PMID: 20188226 DOI: 10.1016/j.bone.2010.02.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 11/28/2022]
Abstract
The therapeutic goal of increasing bone mass by co-treatment of parathyroid hormone (PTH) and an osteoclast inhibitor has been complicated by the undefined contribution of osteoclasts to the anabolic activity of PTH. To determine whether active osteoclasts are required at the time of PTH administration, we administered a low dose of the transient osteoclast inhibitor salmon calcitonin (sCT) to young rats receiving an anabolic PTH regimen. Co-administration of sCT significantly blunted the anabolic effect of PTH as measured by peripheral quantitative computer tomography (pQCT) and histomorphometry in the femur and tibia, respectively. To determine gene targets of sCT, we carried out quantitative real time PCR and microarray analysis of metaphyseal samples 1.5, 4 and 6.5h after administration of a single injection of PTH, sCT or PTH+sCT. Known targets of PTH action, IL-6, ephrinB2 and RANKL, were not modified by co-administration with sCT. Surprisingly, at all time points, we noted a significant upregulation of sclerostin mRNA by sCT treatment, as well as down-regulation of two other osteocyte gene products, MEPE and DMP1. Immunohistochemistry confirmed that sCT administration increased the percentage of osteocytes expressing sclerostin, suggesting a mechanism by which sCT reduced the anabolic effect of PTH. Neither mRNA for CT receptor (Calcr) nor labeled CT binding could be detected in sclerostin-enriched cells differentiated from primary calvarial osteoblasts. In contrast, osteocytes freshly isolated from calvariae expressed a high level of Calcr mRNA. Furthermore immunohistochemistry revealed co-localization of CT receptor (CTR) and sclerostin in some osteocytes in calvarial sections. Taken together these data indicate that co-treatment with sCT can blunt the anabolic effect of PTH and this may involve direct stimulation of sclerostin production by osteocytes. These data directly implicate calcitonin as a negative regulator of bone formation through a previously unsuspected mechanism.
Collapse
Affiliation(s)
- J H Gooi
- Department of Medicine at St. Vincent's Hospital, St. Vincent's Institute and University of Melbourne, Fitzroy, 3065, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lesclous P, Abi Najm S, Carrel JP, Baroukh B, Lombardi T, Willi JP, Rizzoli R, Saffar JL, Samson J. Bisphosphonate-associated osteonecrosis of the jaw: a key role of inflammation? Bone 2009; 45:843-52. [PMID: 19631301 DOI: 10.1016/j.bone.2009.07.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 05/05/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Osteonecrosis of the jaw (ONJ) can be associated with nitrogen-containing bisphosphonates (NBPs) therapy. Various mechanisms of NBP-associated ONJ have been proposed and there is currently no consensus of the underlying pathogenesis. The detailed medical and dental histories of 30 ONJ patients treated with NBPs for malignant diseases (24) or osteoporosis (6) were analyzed. The necrotic bone was resected and analyzed histologically after demineralization. In 10 patients the perinecrotic bone was also resected and processed without demineralization. Alveolar bone samples from 5 healthy patients were used as controls. In 14 ONJ patients, serial technetium-99m-methylene diphosphonate scintigraphic scans were also available and confronted to the other data. Strong radionuclide uptake was detected in some patients several months before clinical diagnosis of ONJ. The medullary spaces of the necrotic bone were filled with bacterial aggregates. In the perinecrotic bone, the bacteria-free bone marrow characteristically showed an inflammatory reaction. The number of medullary inflammatory cells taken as an index of inflammation allowed us to discriminate two inflammation grades in the ONJ samples. Low-grade inflammation, characterized by marrow fibrosis and low inflammatory cells infiltration, increased numbers of TRAP(+) mono- and multineacleated cells was seen in patients with bone exposure<2 cm(2). High-grade inflammation, associated with larger lesions, showed amounts of tartrate-resistant acid phosphatase(+)/calcitonin receptor(-) mono- and multinucleated cells, osteocyte apoptosis, hypervascularization and high inflammatory cell infiltration. The clinical extent of ONJ was statistically linked to the numbers of inflammatory cell. Taken together these data suggest that bone necrosis precedes clinical onset and is an inflammation-associated process. We hypothesize that from an initial focus, bone damage spreads centrifugally, both deeper into the jaw and towards the mucosa before the oral bone exposure and the clinical diagnosis of ONJ.
Collapse
Affiliation(s)
- Philippe Lesclous
- Laboratoire Réparation et Remodelages Oro-Faciaux, EA2496, Université Paris Descartes, Faculté de Chirurgie Dentaire, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Quinn JMW, Tam S, Sims NA, Saleh H, McGregor NE, Poulton IJ, Scott JW, Gillespie MT, Kemp BE, van Denderen BJW. Germline deletion of AMP-activated protein kinase beta subunits reduces bone mass without altering osteoclast differentiation or function. FASEB J 2009; 24:275-85. [PMID: 19723702 DOI: 10.1096/fj.09-137158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since AMP-activated protein kinase (AMPK) plays important roles in modulating metabolism in response to diet and exercise, both of which influence bone mass, we examined the influence of AMPK on bone mass in mice. AMPK is an alphabetagamma heterotrimer where the beta subunit anchors the alpha catalytic and gamma regulatory subunits. Germline deletion of either AMPK beta1 or beta2 subunit isoforms resulted in reduced trabecular bone density and mass, but without effects on osteoclast (OC) or osteoblast (OB) numbers, as compared to wild-type littermate controls. We tested whether activating AMPK in vivo would enhance bone density but found AICA-riboside treatment caused a profound loss of trabecular bone volume (49.5%) and density and associated increased OC numbers. Consistent with this, AICA-riboside strongly stimulated OC differentiation in vitro, in an adenosine kinase-dependent manner. OCs and macrophages (unlike OBs) lacked AMPK beta2 subunit expression, and when generated from AMPK beta1(-/-) mice displayed no detectable AMPK activity. Nevertheless, AICA-riboside was equally effective at stimulating OC differentiation from wild-type or beta1(-/-) progenitors, indicating that AMPK is not essential for OC differentiation or the stimulatory action of AICA-riboside. These results show that AMPK is required to maintain normal bone density, but not through bone cell differentiation, and does not mediate powerful osteolytic effects of AICA-riboside.
Collapse
Affiliation(s)
- Julian M W Quinn
- Prince Henry's Institute, Monash Medical Centre, Clayton, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The elevated expression of calcitonin receptor by cells recruited into the endothelial layer and neo-intima of atherosclerotic plaque. Histochem Cell Biol 2009; 132:181-9. [DOI: 10.1007/s00418-009-0600-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2009] [Indexed: 02/04/2023]
|
37
|
Lari R, Kitchener PD, Hamilton JA. The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res Ther 2009; 11:R23. [PMID: 19222861 PMCID: PMC2688256 DOI: 10.1186/ar2616] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 01/19/2009] [Accepted: 02/17/2009] [Indexed: 01/25/2023] Open
Abstract
Introduction Immediate precursors of bone-resorbing osteoclasts are cells of the monocyte/macrophage lineage. Particularly during clinical conditions showing bone loss, it would appear that osteoclast precursors are mobilized from bone marrow into the circulation prior to entering tissues undergoing such loss. The observed heterogeneity of peripheral blood monocytes has led to the notion that different monocyte subpopulations may have special or restricted functions, including as osteoclast precursors. Methods Human peripheral blood monocytes were sorted based upon their degree of proliferation and cultured in macrophage colony-stimulating factor (M-CSF or CSF-1) and receptor activator of nuclear factor-kappa-B ligand (RANKL). Results The monocyte subpopulation that is capable of proliferation gave rise to significantly more multinucleated, bone-resorbing osteoclasts than the bulk of the monocytes. Conclusions Human peripheral blood osteoclast precursors reside in the proliferative monocyte subpopulation.
Collapse
Affiliation(s)
- Roya Lari
- Department of Medicine and Cooperative Research Centre for Chronic Inflammatory Diseases, University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
38
|
Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M, Chen C, Hosokawa K, Nakauchi H, Nakayama K, Nakayama KI, Harada M, Motoyama N, Suda T, Hirao A. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2008; 208:2175-81. [PMID: 22006978 PMCID: PMC3201203 DOI: 10.1084/jem.20101890] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mobilization of hematopoietic stem cells does not require osteoclasts, which may even have an inhibitory effect. Hematopoietic stem cells (HSCs) are maintained in a specific bone marrow (BM) niche in cavities formed by osteoclasts. Osteoclast-deficient mice are osteopetrotic and exhibit closed BM cavities. Osteoclast activity is inversely correlated with hematopoietic activity; however, how osteoclasts and the BM cavity potentially regulate hematopoiesis is not well understood. To investigate this question, we evaluated hematopoietic activity in three osteopetrotic mouse models: op/op, c-Fos-deficient, and RANKL (receptor activator of nuclear factor kappa B ligand)-deficient mice. We show that, although osteoclasts and, by consequence, BM cavities are absent in these animals, hematopoietic stem and progenitor cell (HSPC) mobilization after granulocyte colony-stimulating factor injection was comparable or even higher in all three lines compared with wild-type mice. In contrast, osteoprotegerin-deficient mice, which have increased numbers of osteoclasts, showed reduced HSPC mobilization. BM-deficient patients and mice reportedly maintain hematopoiesis in extramedullary spaces, such as spleen; however, splenectomized op/op mice did not show reduced HSPC mobilization. Interestingly, we detected an HSC population in osteopetrotic bone of op/op mice, and pharmacological ablation of osteoclasts in wild-type mice did not inhibit, and even increased, HSPC mobilization. These results suggest that osteoclasts are dispensable for HSC mobilization and may function as negative regulators in the hematopoietic system.
Collapse
Affiliation(s)
- Kana Miyamoto
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alnaeeli M, Penninger JM, Teng YTA. Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3314-26. [PMID: 16920972 DOI: 10.4049/jimmunol.177.5.3314] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) are innate immune effectors and are critically involved in regulating T cell immunity. Osteoclasts (OC) are bone-resorbing cells derived from the monocyte/macrophage lineage in response to receptor activator of NF-kappaB ligand (RANKL). DC and T cells form aggregates in the inflammatory infiltrates at active disease sites in human and in experimental rheumatoid arthritis and periodontitis. We investigated whether DC interactions with T cells in the bone environment can support the development of functional OC. In the present study, we demonstrate that upon proper activation by microbial or protein Ags (namely Actinobacillus actinomycetemcomitans, bovine insulin, and outer membrane protein-1) and during immune interactions with CD4+ T cells in vitro, murine BM-derived and splenic CD11c+ DC (CD11b- F4/80- Ly-6C- CD31-) develop into TRAP+ CT-R+ cathepsin-k+ functional OC in a RANKL/RANK-dependent manner. Rescue and blocking experiments using CD11c+ DC derived from Csf-1(-/-) op/op mice show that M-CSF is required "before" developing such osteoclastogenic potential upstream of RANKL/RANK signaling, suggesting that immature CD11c+ DC can indeed act like OC precursors. In addition, these CD11c+ DC-derived OC are capable of inducing bone loss after adoptive transfer in vivo. These data suggest a direct contribution of DC during immune interactions with CD4+ T cells to inflammation-induced osteoclastogenesis. Therefore, our findings not only provide further evidence for DC plasticity, but also extend the current paradigm of osteoimmunology.
Collapse
Affiliation(s)
- Mawadda Alnaeeli
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14620, USA
| | | | | |
Collapse
|
40
|
Blin-Wakkach C, Breuil V, Quincey D, Bagnis C, Carle GF. Establishment and characterization of new osteoclast progenitor cell lines derived from osteopetrotic and wild type mice. Bone 2006; 39:53-60. [PMID: 16503212 DOI: 10.1016/j.bone.2005.12.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 12/16/2005] [Indexed: 11/30/2022]
Abstract
Malignant infantile osteopetrosis is a rare and lethal disease characterized by the absence of bone resorption due to inactive osteoclasts (OCLs). Among the murine models of osteopetrosis, the Tcirg1oc/oc mouse is the most resembling to the human pathology. In the majority of patients as in Tcirg1oc/oc mouse, the gene involved is the Tcirg1 gene, encoding the a3 subunit of the vacuolar proton pump. However, to date, no osteoclastic cell lines from osteopetrotic mice are available to facilitate the study of either OCL differentiation in osteopetrosis or the factors involved in the control of Tcirg1 gene expression. Heterozygotes Tcirg1+/oc mice were crossed with p53+/- mice to obtain homozygotes p53-/-Tcirg1oc/oc and p53-/-Tcirg1+/+ animals. The p53-/-Tcirg1oc/oc mice display the same bone and hematological phenotype as the original Tcirg1oc/oc mice. From the bone marrow of these mice, we have derived cell lines named POC-MGoc/oc and POC-MG+/+. These cell lines express standard osteoclastogenic markers and differentiate into OCLs in the presence of RANK-L and M-CSF. Furthermore, both cell lines can be transduced by a lentiviral vector with a high efficiency and without alteration of their OCL differentiation potential. Therefore, these cell lines provide valuable new tools to study the differentiation and function of osteoclasts in normal and resorption defective conditions.
Collapse
Affiliation(s)
- Claudine Blin-Wakkach
- CNRS/UNSA Unité K2943, IFR50, Faculté de Médecine, and Service de Rhumatologie, Hôpital L'Archet 1, Nice, France
| | | | | | | | | |
Collapse
|
41
|
Karsdal MA, Tanko LB, Riis BJ, Sondergard BC, Henriksen K, Altman RD, Qvist P, Christiansen C. Calcitonin is involved in cartilage homeostasis: is calcitonin a treatment for OA? Osteoarthritis Cartilage 2006; 14:617-24. [PMID: 16698291 DOI: 10.1016/j.joca.2006.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/28/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common form of degenerative joint diseases and a major cause of disability and impaired quality of life in the elderly. Recent observations suggest that calcitonin may act on both osteoclasts and chondrocytes. The present review was sought to summarize emerging observations from the molecular level to the preliminary clinical findings of possible chondroprotective effects of calcitonin. METHOD This review summarizes peer-reviewed articles found using pre-defined search criteria and published in the PubMed database before January 2006. In addition, abstracts from the OsteoArthritis Research Society International (OARSI) conferences in the time period 2000-2005 have been included in the search. RESULTS Ample evidence for the effect of calcitonin on bone resorption was found. Support for direct effects of calcitonin on chondrocytes on matrix synthesis and inhibition of cartilage degradation have been published. In addition, clinical evidence for the effect of calcitonin on cartilage degradation is emerging. CONCLUSION Several independent lines of evidence suggest a direct chondroprotective effect of calcitonin in addition to the well-established effect on bone resorption. Given the currently limited availability of chondroprotective agents, much expectation regards the ongoing clinical assessment of calcitonin therapy for the prevention and treatment of OA.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience Diagnostics, Herlev, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ramirez-Yañez GO, Seymour GJ, Symons AL. Local application of prostaglandin E2 reduces trap, calcitonin receptor and metalloproteinase-2 immunoreactivity in the rat periodontium. Arch Oral Biol 2005; 50:1014-22. [PMID: 15878156 DOI: 10.1016/j.archoralbio.2005.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 03/20/2005] [Indexed: 11/30/2022]
Abstract
It has been shown that prostaglandin E2 (PGE2) locally released adjacent to the mandible over a 20-day period increases alveolar bone area, in part, due to a reduction in the percentage of eroded surface. To determine the effect of PGE2 on alveolar bone resorption, left mandibles from 24 Lewis rats were treated over a 20-day period with a local application of PGE2 (0.1, 0.05 or 0.025 mg/day) or placebo. The right side served as the non-treated matched control. Tissue sections were stained for tartrate resistant acid phosphatase (TRAP) calcitonin receptor (CTR) and metalloproteinase-2 (MMP-2). Matched samples were analysed by Wilcoxon matched pairs test and, a non-parametric one-way analysis of variance compared groups of treatment. Those tissues treated with PGE2 at doses of 0.1 and 0.05 mg/day showed significantly reduced numbers of TRAP and CTR-positive multinucleated cells compared with matched controls (p<0.005), as well as significantly reduced numbers of TRAP- and CTR-positive multinucleated cells when compared with the placebo-treated group (p<0.001). The number of periodontal ligament cells expressing MMP-2 was also significantly reduced in tissues treated with the two higher doses of PGE2 (p<0.001) comparing with both matched controls and the placebo-treated group. Following a 20-day period, locally released PGE2 at doses of 0.1 and 0.05 mg/day appears to affect alveolar bone resorption in the periodontium of rats, as the number of multinucleated cells expressing TRAP and CTR are significantly reduced. Furthermore, the same doses of PGE2 also significantly reduced the expression of MMP-2 by the periodontal cells.
Collapse
Affiliation(s)
- G O Ramirez-Yañez
- Oral Biology and Pathology, School of Dentistry, The University of Queensland, 5th Floor, St. Lucia Campus, Brisbane, Qld 4072, Australia.
| | | | | |
Collapse
|
43
|
Phelps E, Bezouglaia O, Tetradis S, Nervina JM. Parathyroid hormone induces receptor activity modifying protein-3 (RAMP3) expression primarily via 3',5'-cyclic adenosine monophosphate signaling in osteoblasts. Calcif Tissue Int 2005; 77:96-103. [PMID: 16075364 DOI: 10.1007/s00223-004-0239-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Parathyroid hormone (PTH) has significant anabolic and catabolic effects on bone. We hypothesize that PTH-induced primary response genes are important determinants of osteoblast function. PTH induces osteoblastic gene expression through PTHR1, a heptahelical receptor that triggers cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. By using representational difference analysis we found that receptor activity modifying protein-3 (RAMP3) is a PTH-induced primary response gene in osteoblastic cells. RAMP3 is a coactivator that directs calcitonin receptor (CTR) and CTR-like receptor (CRLR) glycosylation, trafficking, and ligand-binding specificity. Our purpose was to characterize PTH-induced RAMP3 messenger ribonucleic acid (mRNA) levels in primary mouse osteoblasts (MOBs) and to determine which signaling pathway mediates this effect. 10 nM PTH maximally induced RAMP3 mRNA levels in MOBs at 4 hours. Protein synthesis inhibition with 3 microg/mL cycloheximide did not affect PTH-induced RAMP3 mRNA levels. Selective activation of cAMP-PKA signaling with, 10 microM forskolin (FSK) and PKC signaling with 1 microM phorbol 12-myristate 13-acetate (PMA) significantly increased RAMP3 mRNA levels, whereas 1 microM ionomycin (a calcium ionophore) had no effect. Pretreatment with 30 microM H89, a PKA inhibitor, significantly blocked PTH- and FSK-induced RAMP3 mRNA levels. Pretreatment with 1 microM PMA, which depletes PKC, had no effect on PTH- and FSK-induced RAMP3 mRNA levels but blocked PMA-induced RAMP3 mRNA levels. 100 nM PTH (3-34), which activates PKC and calcium but not PKA, had no effect on RAMP3 mRNA levels. These findings indicate that RAMP3 is a PTH-induced primary response gene in primary MOBs and that PTH regulates RAMP3 gene expression primarily through the cAMP-PKA pathway.
Collapse
Affiliation(s)
- E Phelps
- Section of Orthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | |
Collapse
|
44
|
Cowan CM, Aalami OO, Shi YY, Chou YF, Mari C, Thomas R, Quarto N, Nacamuli RP, Contag CH, Wu B, Longaker MT. Bone Morphogenetic Protein 2 and Retinoic Acid Acceleratein VivoBone Formation, Osteoclast Recruitment, and Bone Turnover. ACTA ACUST UNITED AC 2005; 11:645-58. [PMID: 15869441 DOI: 10.1089/ten.2005.11.645] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reconstruction of craniofacial defects presents a substantial biomedical burden, and requires complex surgery. Interestingly, children after age 2 years and adults are unable to heal large skull defects. This nonhealing paradigm provides an excellent model system for craniofacial skeletal tissueengineering strategies. Previous studies have documented the in vivo osteogenic potential of adipose-derived stromal (ADS) cells and bone marrow-derived stromal (BMS) cells. This study investigates the ability to accelerate in vivo osteogenesis on ex vivo recombinant human bone morphogenetic protein 2 (BMP-2) and retinoic acid stimulation. Mouse osteoblasts, ADS cells, and BMS cells were seeded onto apatite-coated PLGA scaffolds, stimulated with rhBMP-2 and retinoic acid ex vivo for 4 weeks, and subsequently implanted into critically sized (4 mm) calvarial defects. Samples were harvested after 2, 4, 8, and 12 weeks. Areas of complete bony bridging were noted as early as 2 weeks in vivo; however, osteoclasts were attracted to the scaffold as identified by calcitonin receptor staining and tartrate-resistant acid phosphatase activity staining. Although the optimal method of in vitro osteogenic priming for mesenchymal cells remains unknown, these results provide evidence that BMP-2 and retinoic acid stimulation of multipotent cells ex vivo can subsequently induce significant quantities of bone formation within a short time period in vivo.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Surgery, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dempster DW, Hughes-Begos CE, Plavetic-Chee K, Brandao-Burch A, Cosman F, Nieves J, Neubort S, Lu SS, Iida-Klein A, Arnett T, Lindsay R. Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem 2005; 95:139-48. [PMID: 15723294 DOI: 10.1002/jcb.20388] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevailing view for many years has been that osteoclasts do not express parathyroid hormone (PTH) receptors and that PTH's effects on osteoclasts are mediated indirectly via osteoblasts. However, several recent reports suggest that osteoclasts express PTH receptors. In this study, we tested the hypothesis that human osteoclasts formed in vitro express functional PTH type 1 receptors (PTH1R). Peripheral blood monocytes (PBMC) were cultured on bone slices or plastic culture dishes with human recombinant RANK ligand (RANKL) and recombinant human macrophage colony-stimulating factor (M-CSF) for 16-21 days. This resulted in a mixed population of mono- and multi-nucleated cells, all of which stained positively for the human calcitonin receptor. The cells actively resorbed bone, as assessed by release of C-terminal telopeptide of type I collagen and the formation of abundant resorption pits. We obtained evidence for the presence of PTH1R in these cells by four independent techniques. First, using immunocytochemistry, positive staining for PTH1R was observed in both mono- and multi-nucleated cells intimately associated with resorption cavities. Second, PTH1R protein expression was demonstrated by Western blot analysis. Third, the cells expressed PTH1R mRNA at 21 days and treatment with 10(-7) M hPTH (1-34) reduced PTH1R mRNA expression by 35%. Finally, bone resorption was reproducibly increased by two to threefold when PTH (1-34) was added to the cultures. These findings provide strong support for a direct stimulatory action of PTH on human osteoclasts mediated by PTH1R. This suggests a dual regulatory mechanism, whereby PTH acts both directly on osteoclasts and also, indirectly, via osteoblasts.
Collapse
Affiliation(s)
- David W Dempster
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York 10993, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. ACTA ACUST UNITED AC 2004; 164:509-14. [PMID: 14970190 PMCID: PMC2171986 DOI: 10.1083/jcb.200312135] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amylin is a member of the calcitonin family of hormones cosecreted with insulin by pancreatic β cells. Cell culture assays suggest that amylin could affect bone formation and bone resorption, this latter function after its binding to the calcitonin receptor (CALCR). Here we show that Amylin inactivation leads to a low bone mass due to an increase in bone resorption, whereas bone formation is unaffected. In vitro, amylin inhibits fusion of mononucleated osteoclast precursors into multinucleated osteoclasts in an ERK1/2-dependent manner. Although Amylin +/− mice like Amylin-deficient mice display a low bone mass phenotype and increased bone resorption, Calcr +/− mice display a high bone mass due to an increase in bone formation. Moreover, compound heterozygote mice for Calcr and Amylin inactivation displayed bone abnormalities observed in both Calcr +/− and Amylin +/− mice, thereby ruling out that amylin uses CALCR to inhibit osteoclastogenesis in vivo. Thus, amylin is a physiological regulator of bone resorption that acts through an unidentified receptor.
Collapse
Affiliation(s)
- Romain Dacquin
- Department of Molecular and Human Genetics and Bone Disease Program of Texas, Baylor College of Medicine, One Baylor Plaza, Room S921, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blin-Wakkach C, Wakkach A, Sexton PM, Rochet N, Carle GF. Hematological defects in the oc/oc mouse, a model of infantile malignant osteopetrosis. Leukemia 2004; 18:1505-11. [PMID: 15284856 DOI: 10.1038/sj.leu.2403449] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Infantile malignant osteopetrosis (IMO) is a rare and lethal disease characterized by an absence of bone resorption due to inactive OCLs. Affected patients display an increased bone mass and hematological defects. The osteopetrotic oc/oc mouse displays a bone phenotype similar to the one observed in IMO patients, and the same gene, Tcirg1, is mutated in this model and in the majority of these patients. Therefore, we explored in oc/oc mice the consequences of the perturbed bone microenvironment on hematopoiesis. We show that the myelomonocytic differentiation is increased, leading to an elevated number of OCLs and dendritic cells. B lymphopoiesis is blocked at the pro-B stage in the bone marrow of oc/oc mouse, leading to a low mature B-cell number. T-cell activation is also affected, with a reduction of IFNgamma secretion by splenic CD4(+) T cells. These alterations are associated with a low IL-7 expression in bone marrow. All these data indicate that the lack of bone resorption in oc/oc mice has important consequences in both myelopoiesis and lymphopoiesis, leading to a form of immunodeficiency. The oc/oc mouse is therefore an appropriate model to understand the hematological defects described in IMO patients, and to derive new therapeutic strategies.
Collapse
Affiliation(s)
- C Blin-Wakkach
- GPM FRE2720, CNRS/UNSA, Faculté de Médecine, av de Valombrose, Nice, France
| | | | | | | | | |
Collapse
|
48
|
Hirotani H, Tuohy NA, Woo JT, Stern PH, Clipstone NA. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 2004; 279:13984-92. [PMID: 14722106 DOI: 10.1074/jbc.m213067200] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although best known for its role in T lymphocyte activation, the calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway is also known to be involved in a wide range of other biological responses in a variety of different cell types. Here we have investigated the role of the calcineurin/NFAT signaling pathway in the regulation of osteoclast differentiation. Osteoclasts are bone-resorbing multinucleated cells that are derived from the monocyte/macrophage cell lineage after stimulation with a member of the tumor necrosis factor family of ligands known as receptor activator of nuclear factor-kappaB ligand (RANKL). We now report that inhibition of calcineurin with either the immunosuppressant drugs cyclosporin A and FK506, or the retrovirally mediated ectopic expression of a specific calcineurin inhibitory peptide, all potently inhibit the RANKL-induced differentiation of the RAW264.7 monocyte/macrophage cell line into mature multinucleated osteoclasts. In addition, we find that NFAT family members are expressed in RAW264.7 cells and that their expression is up-regulated in response to RANKL stimulation. Most importantly, we find that ectopic expression of a constitutively active, calcineurin-independent NFATc1 mutant in RAW264.7 cells is sufficient to induce these cells to express an osteoclast-specific pattern of gene expression and differentiate into morphologically distinct, multinucleated osteoclasts capable of inducing the resorption of a physiological mineralized matrix substrate. Taken together, these data define calcineurin as an essential downstream effector of the RANKL-induced signal transduction pathway leading toward the induction of osteoclast differentiation and furthermore, indicate that the activation of the NFATc1 transcription factor is sufficient to initiate a genetic program that results in the specification of the mature functional osteoclast cell phenotype.
Collapse
Affiliation(s)
- Hiroaki Hirotani
- Department of Molecular Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
49
|
Hu YS, Zhou H, Myers D, Quinn JMW, Atkins GJ, Ly C, Gange C, Kartsogiannis V, Elliott J, Kostakis P, Zannettino ACW, Cromer B, McKinstry WJ, Findlay DM, Gillespie MT, Ng KW. Isolation of a human homolog of osteoclast inhibitory lectin that inhibits the formation and function of osteoclasts. J Bone Miner Res 2004; 19:89-99. [PMID: 14753741 DOI: 10.1359/jbmr.0301215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Osteoclast inhibitory lectin (OCIL) is a newly recognized inhibitor of osteoclast formation. We identified a human homolog of OCIL and its gene, determined its regulation in human osteoblast cell lines, and established that it can inhibit murine and human osteoclast formation and resorption. OCIL shows promise as a new antiresorptive. INTRODUCTION Murine and rat osteoclast inhibitory lectins (mOCIL and rOCIL, respectively) are type II membrane C-type lectins expressed by osteoblasts and other extraskeletal tissues, with the extracellular domain of each, expressed as a recombinant protein, able to inhibit in vitro osteoclast formation. MATERIALS AND METHODS We isolated the human homolog of OCIL (hOCIL) from a human fetal cDNA library that predicts a 191 amino acid type II membrane protein, with the 112 amino acid C-type lectin region in the extracellular domain having 53% identity with the C-type lectin sequences of rOCIL and mOCIL. The extracellular domain of hOCIL was expressed as a soluble recombinant protein in E. coli, and its biological effects were determined. RESULTS AND CONCLUSIONS The hOCIL gene is 25 kb in length, comprised of five exons, and is a member of a superfamily of natural killer (NK) cell receptors encoded by the NK gene complex located on chromosome 12. Human OCIL mRNA expression is upregulated by interleukin (IL)-1alpha and prostaglandin E2 (PGE2) in a time-dependent manner in human osteogenic sarcoma MG63 cells, but not by dexamethasone or 1,25 dihydroxyvitamin D3. Soluble recombinant hOCIL had biological effects comparable with recombinant mOCIL on human and murine osteoclastogenesis. In addition to its capacity to limit osteoclast formation, OCIL was also able to inhibit bone resorption by mature, giant-cell tumor-derived osteoclasts. Thus, a human homolog of OCIL exists that is highly conserved with mOCIL in its primary amino acid sequence (C-lectin domain), genomic structure, and activity to inhibit osteoclastogenesis.
Collapse
Affiliation(s)
- Yun Shan Hu
- Bone, Joint, and Cancer Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suda N, Kitahara Y, Hammond VE, Ohyama K. Development of a novel mouse osteoclast culture system including cells of mandibular body and erupting teeth. Bone 2003; 33:38-45. [PMID: 12919698 DOI: 10.1016/s8756-3282(03)00172-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteoclasts are multinucleated cells with the specialized function of resorbing calcified tissues. These cells develop from hemopoietic cells of the monocyte-macrophage lineage with the support of osteoblasts/stromal cells. Tooth eruption is a vertical movement of teeth via creation of an eruption pathway in and through the alveolar bone. The precise cellular and molecular determinants of tooth eruption are not yet clear, and a cell culture system that can reproduce the activity of osteoclast formation during tooth eruption is expected to be a useful tool to clarify the mechanism of eruption pathway formation. To this end, mandibular bodies, including incisors and molars, were isolated from 9- to 11-day-old mice undergoing active tooth eruption. Primary cells were obtained from mandibular bodies by enzymatic digestion and cultured in alphaMEM containing 15% FBS without any cytokine or growth factor or hormone in the culture (AFT culture, for alveolar bone, dental follicle, and tooth). A progressive increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclastic cells was observed in AFT culture. The osteoclastic cells generated were immunopositive for cathepsin K and calcitonin receptor, and formed resorption pits when cultured on dentine slices. Parathyroid hormone-related protein (PTHrP), expressed by the enamel organ of tooth, is reported to be an essential factor in creation of the eruption pathway. To verify this point, cells were isolated from mandibular bodies from which all teeth and dental follicles had been removed and cultured similarly (A culture, for alveolar bone). Osteoclastic cells were not formed and PTHrP production was hardly detected in the medium of A culture, in contrast to the high level of PTHrP in AFT culture. Since our previous study demonstrated that neonatal homozygous PTHrP-knockout mice show impaired osteoclastogenesis around tooth germs, AFT culture was performed by using this sample to examine whether this culture system can reproduce the status of osteoclastogenesis observed in vivo. The result showed that none of the osteoclastic cells were generated from cells of homozygous mice. We here report a novel mouse osteoclast culture system that reproduces the activity of osteoclast formation around erupting teeth without addition of any cytokine or growth factor or hormone to the medium. Histological examination of various transgenic and mutant mice now offers valuable findings on studies of tooth eruption and the present culture system using these animals would be a powerful tool in clarifying the cellular and molecular mechanisms of eruption pathway formation.
Collapse
Affiliation(s)
- N Suda
- Department of Maxillofacial Reconstruction and Function, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8549 Tokyo, Japan.
| | | | | | | |
Collapse
|