1
|
Baccari MC, Vannucchi MG, Idrizaj E. The Possible Involvement of Glucagon-like Peptide-2 in the Regulation of Food Intake through the Gut-Brain Axis. Nutrients 2024; 16:3069. [PMID: 39339669 PMCID: PMC11435434 DOI: 10.3390/nu16183069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Food intake regulation is a complex mechanism involving the interaction between central and peripheral structures. Among the latter, the gastrointestinal tract represents one of the main sources of both nervous and hormonal signals, which reach the central nervous system that integrates them and sends the resulting information downstream to effector organs involved in energy homeostasis. Gut hormones released by nutrient-sensing enteroendocrine cells can send signals to central structures involved in the regulation of food intake through more than one mechanism. One of these is through the modulation of gastric motor phenomena known to be a source of peripheral satiety signals. In the present review, our attention will be focused on the ability of the glucagon-like peptide 2 (GLP-2) hormone to modulate gastrointestinal motor activity and discuss how its effects could be related to peripheral satiety signals generated in the stomach and involved in the regulation of food intake through the gut-brain axis. A better understanding of the possible role of GLP-2 in regulating food intake through the gut-brain axis could represent a starting point for the development of new strategies to treat some pathological conditions, such as obesity.
Collapse
Affiliation(s)
- Maria Caterina Baccari
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| | - Maria Giuliana Vannucchi
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, 50139 Florence, Italy;
| | - Eglantina Idrizaj
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
2
|
Guo B, Zhang J, Zhang W, Chen F, Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut-brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit Rev Food Sci Nutr 2023; 65:265-286. [PMID: 37897083 DOI: 10.1080/10408398.2023.2272769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Neurodegenerative diseases associated with aging are often accompanied by cognitive decline and gut microbiota disorder. But the impact of gut microbiota on these cognitive disturbances remains incompletely understood. Short chain fatty acids (SCFAs) are major metabolites produced by gut microbiota during the digestion of dietary fiber, serving as an energy source for gut epithelial cells and/or circulating to other organs, such as the liver and brain, through the bloodstream. SCFAs have been shown to cross the blood-brain barrier and played crucial roles in brain metabolism, with potential implications in mediating Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanisms that SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, the dietary sources which determine these SCFAs production was not thoroughly evaluated yet. This comprehensive review explores the production of SCFAs by gut microbiota, their transportation through the gut-brain axis, and the potential mechanisms by which they influence age-related neurodegenerative disorders. Also, the review discusses the importance of dietary fiber sources and the challenges associated with harnessing dietary-derived SCFAs as promoters of neurological health in elderly individuals. Overall, this study suggests that gut microbiota-derived SCFAs and/or dietary fibers hold promise as potential targets and strategies for addressing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bingbing Guo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Sangiorgi GM, Cereda A, Porchetta N, Benedetto D, Matteucci A, Bonanni M, Chiricolo G, De Lorenzo A. Endovascular Bariatric Surgery as Novel Minimally Invasive Technique for Weight Management in the Morbidly Obese: Review of the Literature. Nutrients 2021; 13:nu13082541. [PMID: 34444701 PMCID: PMC8401754 DOI: 10.3390/nu13082541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Nowadays, obesity represents one of the most unresolved global pandemics, posing a critical health issue in developed countries. According to the World Health Organization, its prevalence has tripled since 1975, reaching a prevalence of 13% of the world population in 2016. Indeed, as obesity increases worldwide, novel strategies to fight this condition are of the utmost importance to reduce obese-related morbidity and overall mortality related to its complications. Early experimental and initial clinical data have suggested that endovascular bariatric surgery (EBS) may be a promising technique to reduce weight and hormonal imbalance in the obese population. Compared to open bariatric surgery and minimally invasive surgery (MIS), EBS is much less invasive, well tolerated, with a shorter recovery time, and is probably cost-saving. However, there are still several technical aspects to investigate before EBS can be routinely offered to all obese patients. Further prospective studies and eventually a randomized trial comparing open bariatric surgery vs. EBS are needed, powered for clinically relevant outcomes, and with adequate follow-up. Yet, EBS may already appear as an appealing alternative treatment for weight management and cardiovascular prevention in morbidly obese patients at high surgical risk.
Collapse
Affiliation(s)
- Giuseppe Massimo Sangiorgi
- Department of Biomedicine and Prevention, Institute of Cardiology, Cardiac Cath Lab, University of Rome Tor Vergata, 00133 Rome, Italy; (N.P.); (D.B.); (A.M.); (M.B.); (G.C.); (A.D.L.)
- Correspondence:
| | - Alberto Cereda
- Department of Cardiology, Cardiac Cath Lab, San Gaudenzio Clinic, 28100 Novara, Italy;
| | - Nicola Porchetta
- Department of Biomedicine and Prevention, Institute of Cardiology, Cardiac Cath Lab, University of Rome Tor Vergata, 00133 Rome, Italy; (N.P.); (D.B.); (A.M.); (M.B.); (G.C.); (A.D.L.)
| | - Daniela Benedetto
- Department of Biomedicine and Prevention, Institute of Cardiology, Cardiac Cath Lab, University of Rome Tor Vergata, 00133 Rome, Italy; (N.P.); (D.B.); (A.M.); (M.B.); (G.C.); (A.D.L.)
| | - Andrea Matteucci
- Department of Biomedicine and Prevention, Institute of Cardiology, Cardiac Cath Lab, University of Rome Tor Vergata, 00133 Rome, Italy; (N.P.); (D.B.); (A.M.); (M.B.); (G.C.); (A.D.L.)
| | - Michela Bonanni
- Department of Biomedicine and Prevention, Institute of Cardiology, Cardiac Cath Lab, University of Rome Tor Vergata, 00133 Rome, Italy; (N.P.); (D.B.); (A.M.); (M.B.); (G.C.); (A.D.L.)
| | - Gaetano Chiricolo
- Department of Biomedicine and Prevention, Institute of Cardiology, Cardiac Cath Lab, University of Rome Tor Vergata, 00133 Rome, Italy; (N.P.); (D.B.); (A.M.); (M.B.); (G.C.); (A.D.L.)
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Institute of Cardiology, Cardiac Cath Lab, University of Rome Tor Vergata, 00133 Rome, Italy; (N.P.); (D.B.); (A.M.); (M.B.); (G.C.); (A.D.L.)
| |
Collapse
|
5
|
Smith KA, Pugh JN, Duca FA, Close GL, Ormsbee MJ. Gastrointestinal pathophysiology during endurance exercise: endocrine, microbiome, and nutritional influences. Eur J Appl Physiol 2021; 121:2657-2674. [PMID: 34131799 DOI: 10.1007/s00421-021-04737-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Gastrointestinal symptoms are abundant among athletes engaging in endurance exercise, particularly when exercising in increased environmental temperatures, at higher intensities, or over extremely long distances. It is currently thought that prolonged ischemia, mechanical damage to the epithelial lining, and loss of epithelial barrier integrity are likely contributors of gastrointestinal (GI) distress during bouts of endurance exercise, but due to the many potential causes and sporadic nature of symptoms this phenomenon has proven difficult to study. In this review, we cover known factors that contribute to GI distress symptoms in athletes during exercise, while further attempting to identify novel avenues of future research to help elucidate mechanisms leading to symptomology. We explore the link between the intestinal microbiome, the integrity of the gut epithelia, and add detail on gut hormone and peptide secretion that could potentially contribute to GI distress symptoms in athletes. The influence of nutrition and dietary supplementation strategies are also detailed, where much research has opened up new ideas and potential mechanisms for understanding gut pathophysiology during exercise. The etiology of gastrointestinal symptoms during endurance exercise is multi-factorial with neuroendocrine, microbial, and nutritional factors likely contributing to specific, individualized symptoms. Recent work in previously unexplored areas of both microbiome and gut peptide secretion are pertinent areas for future work, and the numerous supplementation strategies explored to date have provided insight into physiological mechanisms that may be targetable to reduce the incidence and severity of gastrointestinal symptoms in athletes.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Michael J Ormsbee
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA. .,Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
6
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Adiponectin Exerts Peripheral Inhibitory Effects on the Mouse Gastric Smooth Muscle through the AMPK Pathway. Int J Mol Sci 2020; 21:ijms21249617. [PMID: 33348652 PMCID: PMC7767160 DOI: 10.3390/ijms21249617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Some adipokines, such as adiponectin (ADPN), other than being implicated in the central regulation of feeding behavior, may influence gastric motor responses, which are a source of peripheral signals that also influence food intake. The present study aims to elucidate the signaling pathways through which ADPN exerts its actions in the mouse gastric fundus. To this purpose, we used a multidisciplinary approach. The mechanical results showed that ADPN caused a decay of the strip basal tension, which was abolished by the nitric oxide (NO) synthesis inhibitor, L-NG-nitro arginine (L-NNA). The electrophysiological experiments confirmed that all ADPN effects were abolished by L-NNA, except for the reduction of Ca2+ current, which was instead prevented by the inhibitor of AMP-activated protein kinase (AMPK), dorsomorphin. The activation of the AMPK signaling by ADPN was confirmed by immunofluorescence analysis, which also revealed the ADPN R1 receptor (AdipoR1) expression in glial cells of the myenteric plexus. In conclusion, our results indicate that ADPN exerts an inhibitory action on the gastric smooth muscle by acting on AdipoR1 and involving the AMPK signaling pathway at the peripheral level. These findings provide novel bases for considering AMPK as a possible pharmacologic target for the potential treatment of obesity and eating disorders.
Collapse
|
8
|
Mediavilla C. Bidirectional gut-brain communication: A role for orexin-A. Neurochem Int 2020; 141:104882. [PMID: 33068686 DOI: 10.1016/j.neuint.2020.104882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
It is increasingly evident that bidirectional gut-brain signaling provides a communication pathway that uses neural, hormonal, and immunological routes to regulate homeostatic mechanisms such as hunger/satiety as well as emotions and inflammation. Hence, disruption of the gut-brain axis can cause numerous pathophysiologies, including obesity and intestinal inflammatory diseases. One chemical mediator in the gut-brain axis is orexin-A, given that hypothalamic orexin-A affects gastrointestinal motility and secretion, and peripheral orexin in the intestinal mucosa can modulate brain functions, making possible an orexinergic gut-brain network. It has been proposed that orexin-A acts on this axis to regulate nutritional processes, such as short-term intake, gastric acid secretion, and motor activity associated with the cephalic phase of feeding. Orexin-A has also been related to stress systems and stress responses via the hypothalamic-pituitary-adrenal axis. Recent studies on the relationship of orexin with immune system-brain communications in an animal model of colitis suggested an immunomodulatory role for orexin-A in signaling and responding to infection by reducing the production of pro-inflammatory cytokines (e.g., tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein-1). These studies suggested that orexin administration might be of potential therapeutic value in irritable bowel syndrome or chronic intestinal inflammatory diseases, in which gastrointestinal symptoms frequently coexist with behavioral disorders, including loss of appetite, anxiety, depression, and sleeping disorders. Interventions in the orexinergic system have been proposed as a therapeutic approach to these diseases and for the treatment of chemotherapeutic drug-related hyperalgesia and fatigue in cancer patients.
Collapse
Affiliation(s)
- Cristina Mediavilla
- Department of Psychobiology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain.
| |
Collapse
|
9
|
Cena H, Chiovato L, Nappi RE. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J Clin Endocrinol Metab 2020; 105:5842158. [PMID: 32442310 PMCID: PMC7457958 DOI: 10.1210/clinem/dgaa285] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Obesity is responsible for an increased risk of sub-fecundity and infertility. Obese women show poorer reproductive outcomes regardless of the mode of conception, and higher body mass index (BMI) is associated with poorer fertility prognosis. Polycystic ovary syndrome (PCOS) is one of the leading causes of infertility, and many women with PCOS are also overweight or obese. EVIDENCE ACQUISITION The aim of the present narrative review is to describe the mechanisms responsible for the development of infertility and PCOS in women with obesity/overweight, with a focus on the emerging role of glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) as a therapeutic option for obese women with PCOS. EVIDENCE SYNTHESIS Weight reduction represents the most significant factor affecting fertility and pregnancy outcomes. Current experimental and clinical evidence suggests the presence of an underlying pathophysiological link between obesity, GLP-1 kinetic alterations, and PCOS pathogenesis. Based on the positive results in patients affected by obesity, with or without diabetes, the administration of GLP-1 RA (mainly liraglutide) alone or in combination with metformin has been investigated in women with obesity and PCOS. Several studies demonstrated significant weight loss and testosterone reduction, with mixed results relative to improvements in insulin resistance parameters and menstrual patterns. CONCLUSIONS The weight loss effects of GLP-1 RA offer a unique opportunity to expand the treatment options available to PCOS patients.
Collapse
Affiliation(s)
- Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Correspondence and Reprint Requests: Hellas Cena, Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia, Italy. E-mail:
| | - Luca Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Rossella E Nappi
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Can adiponectin have an additional effect on the regulation of food intake by inducing gastric motor changes? World J Gastroenterol 2020; 26:2472-2478. [PMID: 32523305 PMCID: PMC7265147 DOI: 10.3748/wjg.v26.i20.2472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The regulation of food intake is a complex mechanism, and the hypothalamus is the main central structure implicated. In particular, the arcuate nucleus appears to be the most critical area in the integration of multiple peripheral signals. Among these signals, those originating from the white adipose tissue and the gastrointestinal tract are known to be involved in the regulation of food intake. The present paper focuses on adiponectin, an adipokine secreted by white adipose tissue, which is reported to have a role in the control of feeding by acting centrally. The recent observation that adiponectin is also able to influence gastric motility raises the question of whether this action represents an additional peripheral mechanism that concurs with the central effects of the hormone on food intake. This possibility, which represents an emerging aspect correlating the central and peripheral effects of adiponectin in the hunger-satiety cycle, is discussed in the present paper.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| |
Collapse
|
11
|
Idrizaj E, Garella R, Castellini G, Francini F, Ricca V, Baccari MC, Squecco R. Adiponectin Decreases Gastric Smooth Muscle Cell Excitability in Mice. Front Physiol 2019; 10:1000. [PMID: 31447692 PMCID: PMC6691180 DOI: 10.3389/fphys.2019.01000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Some adipokines known to regulate food intake at a central level can also affect gastrointestinal motor responses. These are recognized to be peripheral signals able to influence feeding behavior as well. In this view, it has been recently observed that adiponectin (ADPN), which seems to have a role in sending satiety signals at the central nervous system level, actually affects the mechanical responses in gastric strips from mice. However, at present, there are no data in the literature about the electrophysiological effects of ADPN on gastric smooth muscle. To this aim, we achieved experiments on smooth muscle cells (SMCs) of gastric fundus to find out a possible action on SMC excitability and on membrane phenomena leading to the mechanical response. Experiments were made inserting a microelectrode in a single cell of a muscle strip of the gastric fundus excised from adult female mice. We found that ADPN was able to hyperpolarize the resting membrane potential, to enhance the delayed rectifier K+ currents and to reduce the voltage-dependent Ca2+ currents. Our overall results suggest an inhibitory action of ADPN on gastric SMC excitation-contraction coupling. In conclusion, the depressant action of ADPN on the gastric SMC excitability, here reported for the first time, together with its well-known involvement in metabolism, might lead us to consider a possible contribution of ADPN also as a peripheral signal in the hunger-satiety cycle and thus in feeding behavior.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Giovanni Castellini
- Psychiatric Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Fabio Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Valdo Ricca
- Psychiatric Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Gilchrist IC. A catheter-based bariatric procedure: Wishful thinking or an intriguing concept. Catheter Cardiovasc Interv 2019; 93:371-372. [PMID: 30770664 DOI: 10.1002/ccd.28139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 11/12/2022]
Abstract
Left gastric artery embolization acutely lowers ghrelin levels and is associated with modest weight loss sustainable for 1 year in morbidly obese patients. The procedure is relative quick, free of access complications when done via the radial artery, but long-term sequelae and the durability of ischemic injury to the fundus of the stomach is uncertain. Present reports provide pilot and proof-of-concept data that should fashion further study, but application to routine practice today is premature.
Collapse
Affiliation(s)
- Ian C Gilchrist
- MS Hershey Medical Center, College of Medicine, Heart and Vascular Institute, Penn State University, Hershey, Pennsylvania
| |
Collapse
|
13
|
Carvalho FMC, Lima VCO, Costa IS, Medeiros AF, Serquiz AC, Lima MCJS, Serquiz RP, Maciel BLL, Uchôa AF, Santos EA, Morais AHA. A Trypsin Inhibitor from Tamarind Reduces Food Intake and Improves Inflammatory Status in Rats with Metabolic Syndrome Regardless of Weight Loss. Nutrients 2016; 8:E544. [PMID: 27690087 PMCID: PMC5083972 DOI: 10.3390/nu8100544] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023] Open
Abstract
Trypsin inhibitors are studied in a variety of models for their anti-obesity and anti-inflammatory bioactive properties. Our group has previously demonstrated the satietogenic effect of tamarind seed trypsin inhibitors (TTI) in eutrophic mouse models and anti-inflammatory effects of other trypsin inhibitors. In this study, we evaluated TTI effect upon satiety, biochemical and inflammatory parameters in an experimental model of metabolic syndrome (MetS). Three groups of n = 5 male Wistar rats with obesity-based MetS received for 10 days one of the following: (1) Cafeteria diet; (2) Cafeteria diet + TTI (25 mg/kg); and (3) Standard diet. TTI reduced food intake in animals with MetS. Nevertheless, weight gain was not different between studied groups. Dyslipidemia parameters were not different with the use of TTI, only the group receiving standard diet showed lower very low density lipoprotein (VLDL) and triglycerides (TG) (Kruskal-Wallis, p < 0.05). Interleukin-6 (IL-6) production did not differ between groups. Interestingly, tumor necrosis factor-alpha (TNF-α) was lower in animals receiving TTI. Our results corroborate the satietogenic effect of TTI in a MetS model. Furthermore, we showed that TTI added to a cafeteria diet may decrease inflammation regardless of weight loss. This puts TTI as a candidate for studies to test its effectiveness as an adjuvant in MetS treatment.
Collapse
Affiliation(s)
- Fabiana M C Carvalho
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Vanessa C O Lima
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Izael S Costa
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Amanda F Medeiros
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Alexandre C Serquiz
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Course of Nutrition, Potiguar University, Natal RN 59056-000, Brazil.
| | - Maíra C J S Lima
- Course of Veterinary Medicine, Potiguar University, Natal RN 59056-000, Brazil.
| | - Raphael P Serquiz
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Technical School Health, Potiguar University, Natal RN 59056-000, Brazil.
| | - Bruna L L Maciel
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Tropical Medicine Institute (TMI), Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Adriana F Uchôa
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Tropical Medicine Institute (TMI), Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Elizeu A Santos
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Tropical Medicine Institute (TMI), Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Ana H A Morais
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| |
Collapse
|
14
|
Bariatric Left Gastric Artery Embolization for the Treatment of Obesity: A Review of Gut Hormone Involvement in Energy Homeostasis. AJR Am J Roentgenol 2016; 206:202-10. [PMID: 26700353 DOI: 10.2214/ajr.15.14331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The global population is becoming more overweight and obese, leading to increases in associated morbidity and mortality rates. Advances in catheter-directed embolotherapy offer the potential for the interventional radiologist to make a contribution to weight loss. Left gastric artery embolization reduces the supply of blood to the gastric fundus and decreases serum levels of ghrelin. Early evidence suggests that this alteration in gut hormone balance leads to changes in energy homeostasis and weight reduction. The pathophysiologic findings and current evidence associated with the use of left gastric artery embolization are reviewed. CONCLUSION The prevalence of obesity continues to increase at an alarming rate, and, thus far, advances in medical management have been relatively ineffective in slowing this trend. Lifestyle modifications such as diet and exercise are effective initially, but most patients regain the weight in the long term. Bariatric surgery is the most effective strategy for achieving long-term weight loss; however, as with all surgical procedures, it has potential complications.
Collapse
|
15
|
Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci 2016; 73:737-55. [PMID: 26542800 PMCID: PMC11108299 DOI: 10.1007/s00018-015-2083-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.
Collapse
Affiliation(s)
- Paige V Bauer
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sophie C Hamr
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Frank A Duca
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.
- MaRS Centre, Toronto Medical Discovery Tower, Room 10-701H, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
16
|
Duca FA, Katebzadeh S, Covasa M. Impaired GLP-1 signaling contributes to reduced sensitivity to duodenal nutrients in obesity-prone rats during high-fat feeding. Obesity (Silver Spring) 2015; 23:2260-8. [PMID: 26530935 DOI: 10.1002/oby.21231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Increased consumption of a high-fat (HF) diet is a salient contributor to obesity; however, how diminished satiation signaling contributes to overconsumption and obesity development remains poorly understood. METHODS Using obese-prone (OP) and obese-resistant (OR) rats, we tested feeding responses to intragastric liquid meal replacement, prior and after HF feeding. Next, chow- and HF-fed OP and OR rats were tested for sensitivity to intraduodenal glucose, intralipid, and meal replacement loads. To examine the role of glucagon-like peptide-1 (GLP-1) and vagal signaling, animals were treated with exendin-9, GLP-1 receptor antagonist, prior to meal replacement infusion, and Fos-like immunoreactivity (Fos-Li) in the dorsal hindbrain was examined after infusion. RESULTS OP and OR rats reduced chow intake equally following gastric liquid meal; however, after 2 weeks of HF feeding, intragastric meal replacement reduced food intake less in OP than OR. Similarly, HF feeding, but not chow, diminished the suppressive effects of intraduodenal meal replacement, glucose, and intralipid in OP compared to OR. This effect was associated with lower Fos-Li expression in the dorsal hindbrain of OP rats. Finally, exendin-9 failed to attenuate reduction of food intake by meal replacement in OP rats during HF feeding. CONCLUSIONS Susceptibility to obesity coupled with HF feeding results in rapid impairments in nutrient-induced satiation through blunted responses in endogenous GLP-1 and hindbrain vagal afferent signaling.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Shahbaz Katebzadeh
- College of Dental Medicine, Western University of the Health Sciences, Pomona, California, USA
| | - Mihai Covasa
- College of Osteopathic Medicine, Department of Basic Medical Sciences, Western University of the Health Sciences, Pomona, California, USA
- Department of Health and Human Development, University "Stefan Cel Mare" Suceava, Suceava, Romania
| |
Collapse
|
17
|
Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev 2015; 31:545-61. [PMID: 25352002 DOI: 10.1002/dmrr.2617] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Animals
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diet, High-Fat/adverse effects
- Enteritis/etiology
- Enteritis/immunology
- Enteritis/microbiology
- Enteritis/physiopathology
- Gastrointestinal Hormones/metabolism
- Gastrointestinal Microbiome
- Humans
- Immunity, Mucosal
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Models, Biological
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Myositis/etiology
- Myositis/immunology
- Myositis/microbiology
- Myositis/physiopathology
- Obesity/etiology
- Obesity/immunology
- Obesity/metabolism
- Obesity/microbiology
- Panniculitis/etiology
- Panniculitis/immunology
- Panniculitis/microbiology
- Panniculitis/physiopathology
- Systemic Vasculitis/etiology
- Systemic Vasculitis/immunology
- Systemic Vasculitis/microbiology
- Systemic Vasculitis/physiopathology
Collapse
Affiliation(s)
- Christian Bleau
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Antony D Karelis
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - David H St-Pierre
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Lucie Lamontagne
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| |
Collapse
|
18
|
Jacquier M, Soula HA, Crauste F. A mathematical model of leptin resistance. Math Biosci 2015; 267:10-23. [DOI: 10.1016/j.mbs.2015.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
|
19
|
Liu X. Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity. Psychopharmacology (Berl) 2015; 232:2049-60. [PMID: 25510859 PMCID: PMC4433618 DOI: 10.1007/s00213-014-3838-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Overeating beyond individuals' homeostatic needs critically contributes to obesity. The neurobehavioral mechanisms underlying the motivation to consume excessive foods with high calories are not fully understood. OBJECTIVE The present study examined whether a pharmacological stressor, yohimbine, enhances the motivation to procure food reward with an emphasis on comparisons between standard lab chow and high-fat foods. The effects of corticotropin-releasing factor (CRF) receptor blockade by a CRF1-selective antagonist NBI on the stress-enhanced motivation for food reward were also assessed. METHODS Male Sprague-Dawley rats with chow available ad libitum in their home cages were trained to press a lever under a progressive ratio schedule for deliveries of either standard or high-fat food pellets. For testing yohimbine stress effects, rats received an intraperitoneal administration of yohimbine 10 min before start of the test sessions. For testing effects of CRF1 receptor blockade on stress responses, NBI was administered 20 min prior to yohimbine challenge. RESULTS The rats emitted higher levels of lever responses to procure the high-fat food pellets compared with their counterparts on standard food pellets. Yohimbine challenge facilitated lever responses for the reward in all of the rats, whereas the effect was more robust in the rats on high-fat food pellets compared with their counterparts on standard food pellets. An inhibitory effect of pretreatment with NBI was observed on the enhancing effect of yohimbine challenge but not on the responses under baseline condition without yohimbine administration. CONCLUSIONS Stress challenge significantly enhanced the motivation of satiated rats to procure extra food reward, especially the high-fat food pellets. Activation of CRF1 receptors is required for the stress-enhanced motivation for food reward. These results may have implications for our better understanding of the biobehavioral mechanisms of overeating and obesity.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA,
| |
Collapse
|
20
|
Peripheral signals mediate the beneficial effects of gastric surgery in obesity. Gastroenterol Res Pract 2015; 2015:560938. [PMID: 25960740 PMCID: PMC4413036 DOI: 10.1155/2015/560938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/21/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is nowadays a public health problem both in the industrialized world and developing countries. The different treatments to fight against obesity are not very successful with the exception of gastric surgery. The mechanism behind the achievement of this procedure remains unclear although the modifications in the pattern of gastrointestinal hormones production appear to be responsible for the beneficial effect. The gastrointestinal tract has emerged in the last time as an endocrine organ in charge of response to the different stimulus related to nutritional status by the modulation of more than 30 signals acting at central level to modulate food intake and body weight. The production of some of these gastric derived signals has been proved to be altered in obesity (ghrelin, CCK, and GLP-1). In fact, bariatric surgery modifies the production of both gastrointestinal and adipose tissue peripheral signals beyond the gut microbiota composition. Through this paper the main peripheral signals altered in obesity will be reviewed together with their modifications after bariatric surgery.
Collapse
|
21
|
Green BP, Gonzalez JT, Thomas K, Stevenson E, Rumbold PLS. Agreement between fingertip-capillary and antecubital-venous appetite-related peptides. Endocr Connect 2014; 3:233-42. [PMID: 25351445 PMCID: PMC8473955 DOI: 10.1530/ec-14-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study examined the agreement between fingertip-capillary and antecubital-venous measures of appetite-related peptides. Simultaneous fingertip-capillary and antecubital-venous blood samples were collected from 19 participants. The samples were obtained at baseline, 30, 60, 90, and 120 min following breakfast for the determination of plasma GLP17-36, glucagon, insulin and leptin. Between-day reproducibility of fingertip-capillary-derived estimates was assessed in 18 participants. Deming regression, limits of agreement (LOA) and typical error as a coefficient of variation (CV) were used to quantify agreement (CVa) and reproducibility (CVr). Deming regression revealed no systematic bias for any of the analytes studied, but for insulin there was evidence of a proportional difference at higher concentrations. Measures of GLP17-36 (CVa=24.0%, LOA ±2.5 pg m/l per h), leptin (CVa=9.0%, LOA ×/÷1.19) and glucagon (CVa=21.0%, LOA, ±31.5 pg m/l per h) revealed good agreement between methodological approaches. Fingertip-capillary glucagon was highly reproducible between days (CVr=8.2%). GLP17-36 and leptin demonstrated modest reproducibility (CVr=22.7 and 25.0% respectively). For insulin, agreement (CVa=36.0%, LOA ×/÷1.79) and reproducibility were poor (CVr=36.0%). Collectively, the data demonstrate that fingertip-capillary blood sampling provides a comparable and reproducible alternative to antecubital-venous blood sampling for the quantification of glucagon, and to a lesser extent for GLP17-36 and leptin. Caution should be exercised when utilising fingertip-capillary blood sampling for insulin quantification, and consequently should not be employed interchangeably with antecubital-venous blood sampling.
Collapse
Affiliation(s)
- Benjamin Paul Green
- Department of SportExercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne NE1 8ST, UK
| | - Javier Thomas Gonzalez
- Department of SportExercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne NE1 8ST, UK
| | - Kevin Thomas
- Department of SportExercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne NE1 8ST, UK
| | - Emma Stevenson
- Department of SportExercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne NE1 8ST, UK
| | - Penny Louise Sheena Rumbold
- Department of SportExercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
22
|
Duca FA, Yue JTY. Fatty acid sensing in the gut and the hypothalamus: in vivo and in vitro perspectives. Mol Cell Endocrinol 2014; 397:23-33. [PMID: 25261798 DOI: 10.1016/j.mce.2014.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022]
Abstract
The ability to properly sense both ingested and circulating nutrients is crucial for the maintenance of metabolic homeostasis. As such, both the gastrointestinal tract and the hypothalamus have demonstrated the capacity to sense and effectively respond to nutrients, such as fatty acids, to control food intake and glucose production to regulate energy and glucose homeostasis. In modern, Westernized societies, obesity and diabetes rates continue to rise unabated, due in part to an increase in highly palatable high-fat diet consumption. Thus, our understanding in the ability of the body to successfully monitor lipids is more vital than ever. This review details the current understanding of both the gut and the brain, specifically the hypothalamus, in sensing fatty acids. Highlighting both in vivo and in vitro studies, we explore some of the mechanisms upon which different fatty acids activate enteroendocrine and neural lipid-sensing signaling mechanisms to subsequently lower food intake and glucose production to ultimately regulate metabolic homeostasis. A better understanding of these lipid-sensing pathways could lay the groundwork for successful pharmacological targets for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, M5G 1L7, Canada
| | - Jessica T Y Yue
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, M5G 1L7, Canada.
| |
Collapse
|
23
|
Duca FA, Swartz TD, Covasa M. Effect of diet on preference and intake of sucrose in obese prone and resistant rats. PLoS One 2014; 9:e111232. [PMID: 25329959 PMCID: PMC4203826 DOI: 10.1371/journal.pone.0111232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/29/2014] [Indexed: 01/03/2023] Open
Abstract
Increased orosensory stimulation from palatable diets and decreased feedback from gut signals have been proposed as contributing factors to obesity development. Whether altered taste functions associated with obesity are common traits or acquired deficits to environmental factors, such as a high-energy (HE)-diet, however, is not clear. To address this, we examined preference and sensitivity of increasing concentrations of sucrose solutions in rats prone (OP) and resistant (OR) to obesity during chow and HE feeding and measured lingual gene expression of the sweet taste receptor T1R3. When chow-fed, OP rats exhibited reduced preference and acceptance of dilute sucrose solutions, sham-fed less sucrose compared to OR rats, and had reduced lingual T1R3 gene expression. HE-feeding abrogated differences in sucrose preference and intake and lingual T1R3 expression between phenotypes. Despite similar sucrose intakes however, OP rats consumed significantly more total calories during 48-h two-bottle testing compared to OR rats. The results demonstrate that OP rats have an innate deficit for sweet taste detection, as illustrated by a reduction in sensitivity to sweets and reduced T1R3 gene expression; however their hyperphagia and subsequent obesity during HE-feeding is most likely not due to altered consumption of sweets.
Collapse
Affiliation(s)
- Frank A. Duca
- UMR 1319 MICALIS, Institut National de la Recherche Agronomique, Centre de Recherche de Jouy-, Jouy-en-Josas, France
- AgroParisTech, Jouy-en-Josas, France
| | - Timothy D. Swartz
- UMR 1319 MICALIS, Institut National de la Recherche Agronomique, Centre de Recherche de Jouy-, Jouy-en-Josas, France
- AgroParisTech, Jouy-en-Josas, France
| | - Mihai Covasa
- UMR 1319 MICALIS, Institut National de la Recherche Agronomique, Centre de Recherche de Jouy-, Jouy-en-Josas, France
- AgroParisTech, Jouy-en-Josas, France
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, United States of America
- Department of Human Health and Development, University of Suceava, Suceava, Romania
- * E-mail:
| |
Collapse
|
24
|
Mattes R. Energy intake and obesity: Ingestive frequency outweighs portion size. Physiol Behav 2014; 134:110-8. [DOI: 10.1016/j.physbeh.2013.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022]
|
25
|
A predictive model of the dynamics of body weight and food intake in rats submitted to caloric restrictions. PLoS One 2014; 9:e100073. [PMID: 24932616 PMCID: PMC4059745 DOI: 10.1371/journal.pone.0100073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 05/22/2014] [Indexed: 01/28/2023] Open
Abstract
Dynamics of body weight and food intake can be studied by temporally perturbing food availability. This perturbation can be obtained by modifying the amount of available food over time while keeping the overall food quantity constant. To describe food intake dynamics, we developed a mathematical model that describes body weight, fat mass, fat-free mass, energy expenditure and food intake dynamics in rats. In addition, the model considers regulation of food intake by leptin, ghrelin and glucose. We tested our model on rats experiencing temporally variable food availability. Our model is able to predict body weight and food intake variations by taking into account energy expenditure dynamics based on a memory of the previous food intake. This model allowed us to estimate this memory lag to approximately 8 days. It also explains how important variations in food availability during periods longer than these 8 days can induce body weight gains.
Collapse
|
26
|
Côté CD, Zadeh-Tahmasebi M, Rasmussen BA, Duca FA, Lam TKT. Hormonal signaling in the gut. J Biol Chem 2014; 289:11642-11649. [PMID: 24577102 DOI: 10.1074/jbc.o114.556068] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gut is anatomically positioned to play a critical role in the regulation of metabolic homeostasis, providing negative feedback via nutrient sensing and local hormonal signaling. Gut hormones, such as cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), are released following a meal and act on local receptors to regulate glycemia via a neuronal gut-brain axis. Additionally, jejunal nutrient sensing and leptin action are demonstrated to suppress glucose production, and both are required for the rapid antidiabetic effect of duodenal jejunal bypass surgery. Strategies aimed at targeting local gut hormonal signaling pathways may prove to be efficacious therapeutic options to improve glucose control in diabetes.
Collapse
Affiliation(s)
- Clémence D Côté
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - Melika Zadeh-Tahmasebi
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - Brittany A Rasmussen
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - Frank A Duca
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Medicine, University of Toronto, Toronto, Ontario M5S 1A8
| | - Tony K T Lam
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8; Departments of Medicine, University of Toronto, Toronto, Ontario M5S 1A8; Departments of Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
27
|
Myer JR, Romach EH, Elangbam CS. Species- and dose-specific pancreatic responses and progression in single- and repeat-dose studies with GI181771X: a novel cholecystokinin 1 receptor agonist in mice, rats, and monkeys. Toxicol Pathol 2014; 42:260-274. [PMID: 24178573 DOI: 10.1177/0192623313506792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Compound-induced pancreatic injury is a serious liability in preclinical toxicity studies. However, its relevance to humans should be cautiously evaluated because of interspecies variations. To highlight such variations, we evaluated the species- and dose-specific pancreatic responses and progression caused by GI181771X, a novel cholecystokinin 1 receptor agonist investigated by GlaxoSmithKline for the treatment of obesity. Acute (up to 2,000 mg/kg GI181771X, as single dose) and repeat-dose studies in mice and/or rats (0.25-250 mg/kg/day for 7 days to 26 weeks) showed wide-ranging morphological changes in the pancreas that were dose and duration dependent, including necrotizing pancreatitis, acinar cell hypertrophy/atrophy, zymogen degranulation, focal acinar cell hyperplasia, and interstitial inflammation. In contrast to rodents, pancreatic changes were not observed in cynomolgus monkeys given GI181771X (1-500 mg/kg/day with higher systemic exposure than rats) for up to 52 weeks. Similarly, no GI181771X treatment-associated abnormalities in pancreatic structure were noted in a 24-week clinical trial with obese patients (body mass index >30 or >27 kg/m(2)) as assessed by abdominal ultrasound or by magnetic resonance imaging. Mechanisms for interspecies variations in the pancreatic response to CCK among rodents, monkeys, and humans and their relevance to human risk are discussed.
Collapse
Affiliation(s)
- James R Myer
- 1Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
28
|
The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment? Clin Transl Gastroenterol 2013; 4:e39. [PMID: 23842483 PMCID: PMC3724044 DOI: 10.1038/ctg.2013.11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/02/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity is a metabolic disorder and fundamental cause of other fatal diseases including atherosclerosis and cancer. One of the main factor that contributes to the development of obesity is high-fat (HF) consumption. Lipid ingestion will initiate from the gut feedback mechanisms to regulate glucose and lipid metabolisms. But these lipid-sensing pathways are impaired in HF-induced insulin resistance, resulting in hyperglycemia. Besides that, duodenal lipid activates mucosal mast cells, leading to the disruption of the intestinal tight junction. Lipopolysaccharide that is co-transited with dietary fat postprandially, promotes the release of cytokines and the development of metabolic syndrome. HF-diet also alters microbiota composition and enhances fat storage. Although gut is protected by immune system and contains high level of antioxidants, obesity developed presumably when this protective mechanism is compromised by the presence of excessive fat. Several therapeutic approaches targeting different pathways have been proposed. There may be no one single most effective treatment, but all aimed to prevent obesity. This review will elaborate on the physiological and molecular changes in the gut that lead to obesity, and will provide a summary of potential treatments to manage these pathophysiological changes.
Collapse
|
29
|
Abstract
Gastrointestinal mechanisms involved in the suppression of appetite are compromised in obesity. Glucagon-like peptide-1 (GLP-1) is released in response to nutrients, suppresses food intake, and has been shown to play a role in regulation of energy balance. It is not known whether obese-prone (OP) rats exhibit dysfunctional GLP-1 signaling that could contribute to decreased nutrient-induced satiation and hyperphagia. Therefore, we examined the effects of exogenous intraperitoneal administration of the GLP-1R agonist, exendin-4 (Ex-4), on food intake in OP and obese-resistant (OR) rats during chow or high-energy/high-fat (HE/HF) feeding. All doses of Ex-4 effectively suppressed intake in OP and OR rats fed chow; however, during HE/HF-feeding, OP rats suppressed intake significantly less than OR rats at all Ex-4 doses tested. This was associated with downregulation of GLP-1R mRNA expression in the vagal nodose ganglia of OP rats. Furthermore, HE/HF-fed OP rats had significantly lower plasma GLP-1 levels, decreased protein levels of GLP-1 in the intestinal epithelium, and reduced number of L cells in the distal ileum. These results demonstrate that HE/HF-feeding, coupled with OP phenotype, results in reduced endogenous GLP-1 and GLP-1R activation, indicating that impaired GLP-1 signaling during obesity may exacerbate hyperphagia and weight gain.
Collapse
Affiliation(s)
- Frank A. Duca
- Neurobiology of Ingestive Behavior, Institut National de la Recherche Agronomique (INRA), UMR 1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- Université Pierre-et-Marie-Curie, Paris, France
| | - Yassine Sakar
- Neurobiology of Ingestive Behavior, Institut National de la Recherche Agronomique (INRA), UMR 1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Mihai Covasa
- Neurobiology of Ingestive Behavior, Institut National de la Recherche Agronomique (INRA), UMR 1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- Department of Basic Medical Sciences, Western University of the Health Sciences, College of Osteopathic Medicine, Pomona, California
- Department of Health and Human Development, University “Stefan cel Mare” Suceava, Suceava, Romania
- Corresponding author: Mihai Covasa,
| |
Collapse
|
30
|
Overeating makes the gut grow fonder; new insights in gastrointestinal satiety signaling in obesity. Curr Opin Gastroenterol 2013; 29:177-83. [PMID: 23295637 DOI: 10.1097/mog.0b013e32835d9fe0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW As the prevalence of overweight and obesity increases, there is a growing need to develop effective treatment strategies in addition to bariatric surgery. Research has focused on understanding the pathophysiologic mechanisms that contribute to the occurrence and maintenance of obesity and overweight, and on how bariatric surgery is able to overcome these obstacles. In this review, new insights in the gastrointestinal regulatory mechanisms in obesity and bariatric surgery will be discussed. RECENT FINDINGS Diet-induced obesity (DIO) leads to changes in gut peptide secretion and other gastrointestinal responses to nutrients. These changes reduce satiety signaling and therefore complicate loss of body weight. Weight loss by dietary restriction does not restore gastrointestinal responses to nutrients to normal, but alters these responses to further complicate weight loss. Only bariatric surgery is able to overcome these changes by mechanisms that are hitherto unclear but may involve altered gut peptide secretion or changes in bile acid metabolism. SUMMARY DIO alters nutrient-induced gastrointestinal signaling in a way that facilitates further weight gain and complicates weight loss. A better understanding of these mechanisms and the way bariatric surgery can overcome these changes is crucial in developing effective treatment strategies.
Collapse
|
31
|
Adebakin A, Bradley J, Gümüsgöz S, Waters EJ, Lawrence CB. Impaired satiation and increased feeding behaviour in the triple-transgenic Alzheimer's disease mouse model. PLoS One 2012; 7:e45179. [PMID: 23056194 PMCID: PMC3464300 DOI: 10.1371/journal.pone.0045179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/17/2012] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is associated with non-cognitive symptoms such as changes in feeding behaviour that are often characterised by an increase in appetite. Increased food intake is observed in several mouse models of AD including the triple transgenic (3×TgAD) mouse, but the mechanisms underlying this hyperphagia are unknown. We therefore examined feeding behaviour in 3×TgAD mice and tested their sensitivity to exogenous and endogenous satiety factors by assessing food intake and activation of key brain regions. In the behavioural satiety sequence (BSS), 3×TgAD mice consumed more food after a fast compared to Non-Tg controls. Feeding and drinking behaviours were increased and rest decreased in 3×TgAD mice, but the overall sequence of behaviours in the BSS was maintained. Exogenous administration of the satiety factor cholecystokinin (CCK; 8–30 µg/kg, i.p.) dose-dependently reduced food intake in Non-Tg controls and increased inactive behaviour, but had no effect on food intake or behaviour in 3×TgAD mice. CCK (15 µg/kg, i.p.) increased c-Fos protein expression in the supraoptic nucleus of the hypothalamus, and the nucleus tractus solitarius (NTS) and area postrema of the brainstem to the same extent in Non-Tg and 3×TgAD mice, but less c-Fos positive cells were detected in the paraventricular hypothalamic nucleus of CCK-treated 3×TgAD compared to Non-Tg mice. In response to a fast or a period of re-feeding, there was no difference in the number of c-Fos-positive cells detected in the arcuate nucleus of the hypothalamus, NTS and area postrema of 3×TgAD compared to Non-Tg mice. The degree of c-Fos expression in the NTS was positively correlated to food intake in Non-Tg mice, however, this relationship was absent in 3×TgAD mice. These data demonstrate that 3×TgAD mice show increased feeding behaviour and insensitivity to satiation, which is possibly due to defective gut-brain signalling in response to endogenous satiety factors released by food ingestion.
Collapse
Affiliation(s)
| | | | | | | | - Catherine B. Lawrence
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|