1
|
Trop-Steinberg S, Gal M, Azar Y, Kilav-Levin R, Heifetz EM. Effect of omega-3 supplements or diets on fertility in women: A meta-analysis. Heliyon 2024; 10:e29324. [PMID: 38628754 PMCID: PMC11019195 DOI: 10.1016/j.heliyon.2024.e29324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Objective This study aimed to assess the effect of increased omega-3 consumption on fertilization rates and the probability of women getting pregnant. This study is needed because different perspectives exist regarding the use of omega-3 fatty acids in enhancing fertility among women with reproductive issues, and information for those planning a spontaneous pregnancy is limited. Methods PubMed, Clinical Trials, CINAHL/EBSCO, Medline Complete, Cochrane Library, and Google Scholar were searched for articles published until April 2021, and the search was limited to articles in English language. The search strategy included the following key words: "in-vitro fertilization (IVF)," "intracytoplasmic sperm injection techniques (ICSI)," "pregnancy," "omega-3 fatty acid," "alpha-linolenic acid," "eicosapentaenoic acid," "docosahexaenoic acid," "n-3 polyunsaturated fatty acid," and "fish oil and seafood." Studies reporting female fertility occurring naturally or IVF/ICSI concurrent with omega-3 intake were included. Retrospective studies, studies including postmenopausal women, and unevenly matched control and study groups were excluded. To assess bias, we used the Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0. To synthesize the findings from the studies included in this review, a meta-analysis was conducted using calculated or extracted odds ratios (OR) of clinical pregnancies and fertilization rates for each group in each study. Results We included six trials involving 1789 women who received fertility treatment, four trials involving 2607 women who conceived naturally, and three trials involving 1725 oocytes for fertility rates. Aggregated ORs for the effects of omega-3 on pregnancies were 1.74, 1.36, and 2.14 for women who received fertility treatment, those who conceived naturally, and fertilization rate, respectively. All these results were significant (p ≤ 0.01), although they had high heterogeneity I2>68 %. Conclusion This systematic review and meta-analysis suggest that omega-3 intake significantly improves women's pregnancy and fertilization rates; however, the high heterogeneity in this review somewhat limits its interpretation. Therefore, further prospective randomized studies are necessary to better understand this relationship.
Collapse
Affiliation(s)
- Shivtia Trop-Steinberg
- Jerusalem College of Technology, Faculty of Life and Health Science, P.O.B. 16031, Jerusalem, Israel
| | - Michael Gal
- Shaare Zedek Medical Center, IVF Unit, Department of Obstetrics and Gynecology, P.O.B. 3235, Jerusalem, Israel
- Israel and Hebrew University School of Medicine, Jerusalem, Israel
| | - Yehudith Azar
- Hadassah Medical Center, Bone Marrow Transplantation Unit, P.O.B. 12000, Jerusalem, Israel
| | - Rachel Kilav-Levin
- Jerusalem College of Technology, Faculty of Life and Health Science, P.O.B. 16031, Jerusalem, Israel
| | - Eliyahu M Heifetz
- Jerusalem College of Technology, Faculty of Life and Health Science, P.O.B. 16031, Jerusalem, Israel
| |
Collapse
|
2
|
Zhuang P, Liu X, Li Y, Wu Y, Li H, Wan X, Zhang L, Xu C, Jiao J, Zhang Y. Circulating fatty acids, genetic risk, and incident coronary artery disease: A prospective, longitudinal cohort study. SCIENCE ADVANCES 2023; 9:eadf9037. [PMID: 37738352 PMCID: PMC10881029 DOI: 10.1126/sciadv.adf9037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
The role of fatty acids (FAs) in primary prevention of coronary artery disease (CAD) is highly debated, and the modification effect by genetic risk profiles remains unclear. Here, we report the prospective associations of circulating FAs and genetic predisposition with CAD development in 101,367 U.K. Biobank participants. A total of 3719 CAD cases occurred during a mean follow-up of 11.5 years. Plasma monounsaturated FAs (MUFAs) were positively associated with risk of CAD, whereas the risk was significantly lower with higher n-3 polyunsaturated FAs (PUFAs) and more reductions in risk were detected among TT carriers of rs174547. Furthermore, increased plasma saturated FAs (SFAs) and linoleic acid were related to a significant increase in CAD risk among participants with high genetic risk (genetic risk score > 90%). These findings suggest that individuals with high genetic risk need to reduce plasma SFAs levels for CAD prevention. Supplementation of n-3 PUFAs for CAD prevention may consider individuals' genetic makeup.
Collapse
Affiliation(s)
- Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yin Li
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqi Wu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haoyu Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lange Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Bassuk SS, Manson JE, for the VITAL Research Group. Marine omega-3 fatty acid supplementation and prevention of cardiovascular disease: update on the randomized trial evidence. Cardiovasc Res 2023; 119:1297-1309. [PMID: 36378553 PMCID: PMC10262192 DOI: 10.1093/cvr/cvac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
To date, the VITamin D and OmegA-3 TriaL (VITAL) is the only large-scale randomized trial of marine omega-3 fatty acid (n-3 FA) supplementation for cardiovascular disease (CVD) prevention in a general population unselected for elevated cardiovascular risk. We review the findings of VITAL, as well as results from recent secondary prevention trials and updated meta-analyses of n-3 FA trials in the primary and secondary prevention of CVD. In VITAL, a nationwide sample of 25 871 US adults aged 50 and older, including 5106 African Americans, were randomized in a 2 × 2 factorial design to n-3 FAs (1 g/day; 1.2:1 ratio of eicosapentaenoic to docosahexaenoic acid) and vitamin D3 (2000 IU/day) for a median of 5.3 years. Compared with an olive oil placebo, the n-3 FA intervention did not significantly reduce the primary endpoint of major CVD events [composite of myocardial infarction (MI), stroke, and CVD mortality; hazard ratio (HR) = 0.92 (95% confidence interval 0.80-1.06)] but did significantly reduce total MI [HR = 0.72 (0.59-0.90)], percutaneous coronary intervention [HR = 0.78 (0.63-0.95)], fatal MI [HR = 0.50 (0.26-0.97)], and recurrent (but not first) hospitalization for heart failure [HR = 0.86 (0.74-0.998)]. The intervention neither decreased nor increased risk of atrial fibrillation. African Americans derived the greatest treatment benefit for MI and for recurrent hospitalization for heart failure (P interaction < 0.05 for both outcomes). Meta-analyses that include VITAL and high-risk or secondary prevention n-3 FA trials show coronary, but generally not stroke, risk reduction. More research is needed to determine which individuals may be most likely to derive net benefit. (VITAL clinicaltrials.gov identifier: NCT01169259).
Collapse
Affiliation(s)
- Shari S Bassuk
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue, 3rd Floor, Boston, Massachusetts 02215, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue, 3rd Floor, Boston, Massachusetts 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
4
|
Lee-Sarwar KA, Fischer-Rasmussen K, Bønnelykke K, Bisgaard H, Chawes B, Kelly RS, Lasky-Su J, Zeiger RS, O’Connor GT, Bacharier LB, Carey VJ, Laranjo N, Litonjua AA, Weiss ST. Omega-3 Fatty Acids Interact with DPP10 Region Genotype in Association with Childhood Atopy. Nutrients 2023; 15:2416. [PMID: 37242299 PMCID: PMC10223962 DOI: 10.3390/nu15102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Associations of omega-3 fatty acids (n-3) with allergic diseases are inconsistent, perhaps in part due to genetic variation. We sought to identify and validate genetic variants that modify associations of n-3 with childhood asthma or atopy in participants in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) and the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC). Dietary n-3 was derived from food frequency questionnaires and plasma n-3 was measured via untargeted mass spectrometry in early childhood and children aged 6 years old. Interactions of genotype with n-3 in association with asthma or atopy at age 6 years were sought for six candidate genes/gene regions and genome-wide. Two SNPs in the region of DPP10 (rs958457 and rs1516311) interacted with plasma n-3 at age 3 years in VDAART (p = 0.007 and 0.003, respectively) and with plasma n-3 at age 18 months in COPSAC (p = 0.01 and 0.02, respectively) in associationwith atopy. Another DPP10 region SNP, rs1367180, interacted with dietary n-3 at age 6 years in VDAART (p = 0.009) and with plasma n-3 at age 6 years in COPSAC (p = 0.004) in association with atopy. No replicated interactions were identified for asthma. The effect of n-3 on reducing childhood allergic disease may differ by individual factors, including genetic variation in the DPP10 region.
Collapse
Affiliation(s)
- Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kasper Fischer-Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert S. Zeiger
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| | - George T. O’Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Leonard B. Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Vincent J. Carey
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14612, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Roa-Díaz ZM, Teuscher J, Gamba M, Bundo M, Grisotto G, Wehrli F, Gamboa E, Rojas LZ, Gómez-Ochoa SA, Verhoog S, Vargas MF, Minder B, Franco OH, Dehghan A, Pazoki R, Marques-Vidal P, Muka T. Gene-diet interactions and cardiovascular diseases: a systematic review of observational and clinical trials. BMC Cardiovasc Disord 2022; 22:377. [PMID: 35987633 PMCID: PMC9392936 DOI: 10.1186/s12872-022-02808-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Both genetic background and diet are important determinants of cardiovascular diseases (CVD). Understanding gene-diet interactions could help improve CVD prevention and prognosis. We aimed to summarise the evidence on gene-diet interactions and CVD outcomes systematically. METHODS We searched MEDLINE® via Ovid, Embase, PubMed®, and The Cochrane Library for relevant studies published until June 6th 2022. We considered for inclusion cross-sectional, case-control, prospective cohort, nested case-control, and case-cohort studies as well as randomised controlled trials that evaluated the interaction between genetic variants and/or genetic risk scores and food or diet intake on the risk of related outcomes, including myocardial infarction, coronary heart disease (CHD), stroke and CVD as a composite outcome. The PROSPERO protocol registration code is CRD42019147031. RESULTS AND DISCUSSION We included 59 articles based on data from 29 studies; six articles involved multiple studies, and seven did not report details of their source population. The median sample size of the articles was 2562 participants. Of the 59 articles, 21 (35.6%) were qualified as high quality, while the rest were intermediate or poor. Eleven (18.6%) articles adjusted for multiple comparisons, four (7.0%) attempted to replicate the findings, 18 (30.5%) were based on Han-Chinese ethnicity, and 29 (49.2%) did not present Minor Allele Frequency. Fifty different dietary exposures and 52 different genetic factors were investigated, with alcohol intake and ADH1C variants being the most examined. Of 266 investigated diet-gene interaction tests, 50 (18.8%) were statistically significant, including CETP-TaqIB and ADH1C variants, which interacted with alcohol intake on CHD risk. However, interactions effects were significant only in some articles and did not agree on the direction of effects. Moreover, most of the studies that reported significant interactions lacked replication. Overall, the evidence on gene-diet interactions on CVD is limited, and lack correction for multiple testing, replication and sample size consideration.
Collapse
Affiliation(s)
- Zayne M Roa-Díaz
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland. .,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Julian Teuscher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Marvin Bundo
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Giorgia Grisotto
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Faina Wehrli
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Edna Gamboa
- School of Nutrition and Dietetics, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Lyda Z Rojas
- Nursing Research and Knowledge Development Group GIDCEN, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Sergio A Gómez-Ochoa
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Sanne Verhoog
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Raha Pazoki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,CIRTM Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| |
Collapse
|
6
|
Miao Z, Chen GD, Huo S, Fu Y, Wu MY, Xu F, Jiang Z, Tang J, Gou W, Xiao C, Liu YP, Wu YY, Sun TY, Sun L, Shen LR, Lin X, Chen YM, Zheng JS. Interaction of n-3 polyunsaturated fatty acids with host CD36 genetic variant for gut microbiome and blood lipids in human cohorts. Clin Nutr 2022; 41:1724-1734. [DOI: 10.1016/j.clnu.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
|
7
|
Pérez-Beltrán YE, Rivera-Iñiguez I, Gonzalez-Becerra K, Pérez-Naitoh N, Tovar J, Sáyago-Ayerdi SG, Mendivil EJ. Personalized Dietary Recommendations Based on Lipid-Related Genetic Variants: A Systematic Review. Front Nutr 2022; 9:830283. [PMID: 35387194 PMCID: PMC8979208 DOI: 10.3389/fnut.2022.830283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 01/03/2023] Open
Abstract
Background Obesity and dyslipidemias are risk factors for developing cardiovascular diseases, the leading causes of morbidity and mortality worldwide. The pathogenesis of these diseases involves environmental factors, such as nutrition, but other aspects like genetic polymorphisms confer susceptibility to developing obesity and dyslipidemias. In this sense, nutrigenetics is being used to study the influence of genetic variations on the circulating lipid responses promoted by certain nutrients or foods to provide specific dietary strategies considering the genetic factors in personalized nutrition interventions. Objective To identify throughout a systematic review the potential nutrigenetic recommendations that demonstrate a strong interaction between gene-diet and circulating lipid variations. Methods This systematic review used the PRISMA-Protocol for manuscript research and preparation using PubMed and ScienceDirect databases. Human studies published in English from January 2010 to December 2020 were included. The main results were outcomes related to gene-diet interactions and plasmatic lipids variation. Results About 1,110 articles were identified, but only 38 were considered to fulfill the inclusion criteria established based on the reported data. The acquired information was organized based on gene-diet interaction with nutrients and components of the diet and dietary recommendation generated by each interaction: gene-diet interaction with dietary fats, carbohydrates or dietary fiber, gene-diet interaction with nutraceutical or dietary supplementation, and gene-diet interaction with proteins. Conclusion Findings included in this systematic review indicated that a certain percentage of dietary macronutrients, the consumption of specific amounts of polyunsaturated or monounsaturated fatty acids, as well as the ingestion of nutraceuticals or dietary supplements could be considered as potential strategies for the development of a wide range of nutrigenetic interventions since they have a direct impact on the blood levels of lipids. In this way, specific recommendations were identified as potential tools in developing precision diets and highlighted the importance of personalized nutrition. These recommendations may serve as a possible strategy to implement as dietary tools for the preventive treatment and control alterations in lipid metabolism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021248816, identifier [CRD42021248816].
Collapse
Affiliation(s)
- Yolanda E. Pérez-Beltrán
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Instituto Nacional de México, Tepic, Mexico
| | - Ingrid Rivera-Iñiguez
- Departamento de Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Karina Gonzalez-Becerra
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Instituto de Investigación en Genética Molecular, Universidad de Guadalajara, Guadalajara, Mexico
| | - Naomi Pérez-Naitoh
- Grupo de Investigación en Nutrición y Ciencias de los Alimentos, Departamento de Psicología, Educación y Salud, ITESO, Universidad Jesuita de Guadalajara, Tlaquepaque, Mexico
- Departamento de Salud, Universidad Iberoamericana (IBERO), Mexico City, Mexico
| | - Juscelino Tovar
- Department of Food Technology, Engineering, and Nutrition, Lund University, Lund, Sweden
| | - Sonia G. Sáyago-Ayerdi
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Instituto Nacional de México, Tepic, Mexico
| | - Edgar J. Mendivil
- Grupo de Investigación en Nutrición y Ciencias de los Alimentos, Departamento de Psicología, Educación y Salud, ITESO, Universidad Jesuita de Guadalajara, Tlaquepaque, Mexico
- *Correspondence: Edgar J. Mendivil
| |
Collapse
|
8
|
Keathley J, Garneau V, Marcil V, Mutch DM, Robitaille J, Rudkowska I, Sofian GM, Desroches S, Vohl MC. Nutrigenetics, omega-3 and plasma lipids/lipoproteins/apolipoproteins with evidence evaluation using the GRADE approach: a systematic review. BMJ Open 2022; 12:e054417. [PMID: 35193914 PMCID: PMC8867311 DOI: 10.1136/bmjopen-2021-054417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Despite the uptake of nutrigenetic testing through direct-to-consumer services and healthcare professionals, systematic reviews determining scientific validity are limited in this field. The objective of this review was to: retrieve, synthesise and assess the quality of evidence (confidence) for nutrigenetic approaches related to the effect of genetic variation on plasma lipid, lipoprotein and apolipoprotein responsiveness to omega-3 fatty acid intake. DESIGN A systematic review was conducted using three search engines (Embase, Web of Science and Medline) for articles published up until 1 August 2020. We aimed to systematically search, identify (select) and provide a narrative synthesis of all studies that assessed nutrigenetic associations/interactions for genetic variants (comparators) influencing the plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans-both paediatric and adult populations (population). We further aimed to assess the overall quality of evidence for specific priority nutrigenetic associations/interactions based on the following inclusion criteria: nutrigenetic associations/interactions reported for the same genetic variants (comparators) influencing the same plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans-both paediatric and adult populations (population) in at least two independent studies, irrespective of the findings. Risk of bias was assessed in individual studies. Evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach with a modification to further consider biological plausibility. RESULTS Out of 1830 articles screened, 65 met the inclusion criteria for the narrative synthesis (n=23 observational, n=42 interventional); of these, 25 met the inclusion criteria for GRADE evidence evaluation. Overall, current evidence is insufficient for gene-diet associations related to omega-3 fatty acid intake on plasma apolipoproteins, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein (LDL)-cholesterol and LDL particle size. However, there is strong (GRADE rating: moderate quality) evidence to suggest that male APOE-E4 carriers (rs429358, rs7412) exhibit significant triglyceride reductions in response to omega-3-rich fish oil with a dose-response effect. Moreover, strong (GRADE rating: high quality) evidence suggests that a 31-SNP nutrigenetic risk score can predict plasma triglyceride responsiveness to omega-3-rich fish oil in adults with overweight/obesity from various ethnicities. CONCLUSIONS Most evidence in this area is weak, but two specific nutrigenetic interactions exhibited strong evidence, with generalisability limited to specific populations. PROSPERO REGISTRATION NUMBER CRD42020185087.
Collapse
Affiliation(s)
- Justine Keathley
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Véronique Garneau
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Valérie Marcil
- Department of Nutrition, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Sainte-Justine University Health Centre, Montréal, Quebec, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julie Robitaille
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Iwona Rudkowska
- Department of Kinesiology, Université Laval, Quebec City, Quebec, Canada
- Endocrinology and Nephrology Unit, CHU de Québec - Université Laval Research Center, Quebec City, Quebec, Canada
| | | | - Sophie Desroches
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Marie-Claude Vohl
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Panda C, Varadharaj S, Voruganti VS. PUFA, genotypes and risk for cardiovascular disease. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102377. [PMID: 34915303 DOI: 10.1016/j.plefa.2021.102377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are long chain fatty acids that are characterized by the presence of more than one double bond. These include fatty acids such as ꞷ-3-α-linolenic acid (ALA) and ꞷ-6 -linoleic acid (LA) which can only be obtained from dietary sources and are therefore termed essential fatty acids. They contain the building blocks for dihomo-γ-linolenic acid and arachidonic acid in the ꞷ-6 family as well as eicosapentaenoic acid and docosahexaenoic acid in the ꞷ-3 family. Both ALA and LA are important constituents of animal and plant cell membranes and are important components of anti-inflammatory and pro-inflammatory hormones and therefore, often modulate cellular immunity under chronic inflammatory states. The variation in physiological PUFA levels is under significant genetic influence, the fatty acid desaturase (FADS) genes being key regulators of PUFA metabolism. These genetic variants have been shown to alter fatty acid metabolism and influence the onset and progression of various metabolic conditions. This detailed review discusses the role of PUFAs, diet and genotypes in risk for cardiovascular diseases.
Collapse
Affiliation(s)
- Chinmayee Panda
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, United States; Standard Process Inc, United States
| | | | - Venkata Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
10
|
Bassuk SS, Chandler PD, Buring JE, Manson JE. The VITamin D and OmegA-3 TriaL (VITAL): Do Results Differ by Sex or Race/Ethnicity? Am J Lifestyle Med 2020; 15:372-391. [PMID: 34366734 DOI: 10.1177/1559827620972035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Whether vitamin D or marine omega-3 (n-3) fatty acid supplementation reduces risk of cancer or cardiovascular disease (CVD) in general populations at usual risk for these outcomes is relatively unexplored in randomized trials. The primary goal of the VITamin D and OmegA-3 TriaL (VITAL), a nationwide, randomized, placebo-controlled, 2 × 2 factorial trial of vitamin D3 (2000 IU/day) and marine n-3 fatty acids (1 g/day) in the primary prevention of cancer and CVD among 25 871 US men aged ≥50 years and women aged ≥55 years, was to fill these knowledge gaps. Studying the influence of sex and race/ethnicity on treatment-related outcomes was a prespecified goal; such analyses help ensure that important effects are not missed and contribute to the foundation for developing targeted recommendations for supplement use. To enable investigation of potential sex- and race-specific treatment effects, trial investigators enrolled an even balance of men (n = 12 786) and women (n = 13 085) and oversampled African Americans (n = 5106). Significant or suggestive variation in intervention effects according to sex, race/ethnicity, and other participant characteristics was observed for some, though not all, outcomes. Additional research is needed to determine which individuals may be most likely to derive a net benefit from vitamin D or n-3 fatty acid supplementation. (VITAL clinicaltrials.gov identifier: NCT01169259).
Collapse
Affiliation(s)
- Shari S Bassuk
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (SSB, PDC, JEB, JEM).,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (JEB, JEM)
| | - Paulette D Chandler
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (SSB, PDC, JEB, JEM).,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (JEB, JEM)
| | - Julie E Buring
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (SSB, PDC, JEB, JEM).,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (JEB, JEM)
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (SSB, PDC, JEB, JEM).,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (JEB, JEM)
| | | |
Collapse
|
11
|
Agrón E, Mares J, Clemons TE, Swaroop A, Chew EY, Keenan TDL. Dietary Nutrient Intake and Progression to Late Age-Related Macular Degeneration in the Age-Related Eye Disease Studies 1 and 2. Ophthalmology 2020; 128:425-442. [PMID: 32858063 DOI: 10.1016/j.ophtha.2020.08.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To analyze associations between the dietary intake of multiple nutrients and risk of progression to late age-related macular degeneration (AMD), its subtypes, and large drusen. DESIGN Post hoc analysis of 2 controlled clinical trial cohorts: Age-Related Eye Disease Study (AREDS) and AREDS2. PARTICIPANTS Eyes with no late AMD at baseline among AREDS participants (n = 4504) and AREDS2 participants (n = 3738) totaled 14 135 eyes. Mean age was 71.0 years (standard deviation, 6.7 years), and 56.5% of patients were women. METHODS Fundus photographs were collected at annual study visits and graded centrally for late AMD. Dietary intake of multiple nutrients was calculated from food frequency questionnaires. MAIN OUTCOME MEASURES Progression to late AMD, geographic atrophy (GA), neovascular AMD, and (separate analyses) large drusen. RESULTS Over median follow-up of 10.2 years, of the 14 135 eyes, 32.7% progressed to late AMD. For 9 nutrients, intake quintiles 4 or 5 (vs. 1) were associated significantly (P ≤ 0.0005) with decreased risk of late AMD: vitamin A, vitamin B6, vitamin C, folate, β-carotene, lutein and zeaxanthin, magnesium, copper, and alcohol. For 3 nutrients, quintiles 4 or 5 were associated significantly with increased risk: saturated fatty acid, monounsaturated fatty acid, and oleic acid. Similar results were observed for GA. Regarding neovascular AMD, 9 nutrients were associated nominally with decreased risk-vitamin A, vitamin B6, β-carotene, lutein and zeaxanthin, magnesium, copper, docosahexaenoic acid, omega-3 fatty acid, and alcohol-and 3 nutrients were associated with increased risk-saturated fatty acid, monounsaturated fatty acid, and oleic acid. In separate analyses (n = 5399 eyes of 3164 AREDS participants), 12 nutrients were associated nominally with decreased risk of large drusen. CONCLUSIONS Higher dietary intake of multiple nutrients, including minerals, vitamins, and carotenoids, is associated with decreased risk of progression to late AMD. These associations are stronger for GA than for neovascular AMD. The same nutrients also tend to show protective associations against large drusen development. Strong genetic interactions exist for some nutrient-genotype combinations, particularly omega-3 fatty acids and CFH. These data may justify further research into underlying mechanisms and randomized trials of supplementation.
Collapse
Affiliation(s)
- Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Julie Mares
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | | | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | | |
Collapse
|
12
|
Yurko-Mauro K, Van Elswyk M, Teo L. A Scoping Review of Interactions between Omega-3 Long-Chain Polyunsaturated Fatty Acids and Genetic Variation in Relation to Cancer Risk. Nutrients 2020; 12:E1647. [PMID: 32498320 PMCID: PMC7352171 DOI: 10.3390/nu12061647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
This scoping review examines the interaction of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and genetic variants of various types of cancers. A comprehensive search was performed to identify controlled and observational studies conducted through August 2017. Eighteen unique studies were included: breast cancer (n = 2), gastric cancer (n = 1), exocrine pancreatic cancer (n = 1), chronic lymphocytic leukemia (n = 1), prostate cancer (n = 7) and colorectal cancer (n = 6). An additional 13 studies that focused on fish intake or at-risk populations were summarized to increase readers' understanding of the topic based on this review, DHA and EPA interact with certain genetic variants to decrease breast, colorectal and prostate cancer risk, although data was limited and identified polymorphisms were heterogeneous. The evidence to date demonstrates that omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) may decrease cancer risk by affecting genetic variants of inflammatory pathways, oxidative stress and tumor apoptosis. Collectively, data supports the notion that once a genetic variant is identified, the benefits of a targeted, personalized therapeutic regimen that includes DHA and/or EPA should be considered.
Collapse
Affiliation(s)
| | | | - Lynn Teo
- Teo Research Consulting, Silver Spring, MD, 20910, USA;
| |
Collapse
|
13
|
Manson JE, Bassuk SS, Cook NR, Lee IM, Mora S, Albert CM, Buring JE. Vitamin D, Marine n-3 Fatty Acids, and Primary Prevention of Cardiovascular Disease Current Evidence. Circ Res 2020; 126:112-128. [PMID: 31895658 PMCID: PMC7001886 DOI: 10.1161/circresaha.119.314541] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Whether marine omega-3 fatty acid (n-3 FA) or vitamin D supplementation can prevent cardiovascular disease (CVD) in general populations at usual risk for this outcome is unknown. A major goal of VITAL (Vitamin D and Omega-3 Trial) was to fill this knowledge gap. In this article, we review the results of VITAL, discuss relevant mechanistic studies regarding n-3 FAs, vitamin D, and vascular disease, and summarize recent meta-analyses of the randomized trial evidence on these agents. VITAL was a nationwide, randomized, placebo-controlled, 2×2 factorial trial of marine n-3 FAs (1 g/d) and vitamin D3 (2000 IU/d) in the primary prevention of CVD and cancer among 25 871 US men aged ≥50 and women aged ≥55 years, including 5106 blacks. Median treatment duration was 5.3 years. Supplemental n-3 FAs did not significantly reduce the primary cardiovascular end point of major CVD events (composite of myocardial infarction, stroke, and CVD mortality; hazard ratio [HR], 0.92 [95% CI, 0.80-1.06]) but were associated with significant reductions in total myocardial infarction (HR, 0.72 [95% CI, 0.59-0.90]), percutaneous coronary intervention (HR, 0.78 [95% CI, 0.63-0.95]), and fatal myocardial infarction (HR, 0.50 [95% CI, 0.26-0.97]) but not stroke or other cardiovascular end points. For major CVD events, a treatment benefit was seen in those with dietary fish intake below the cohort median of 1.5 servings/wk (HR, 0.81 [95% CI, 0.67-0.98]) but not in those above (P interaction=0.045). For myocardial infarction, the greatest risk reductions were in blacks (HR, 0.23 [95% CI, 0.11-0.47]; P interaction by race, 0.001). Vitamin D supplementation did not reduce major CVD events (HR, 0.97 [95% CI, 0.85-1.12]) or other cardiovascular end points. Updated meta-analyses that include VITAL and other recent trials document coronary risk reduction from supplemental marine n-3 FAs but no clear CVD risk reduction from supplemental vitamin D. Additional research is needed to determine which individuals may be most likely to derive net benefit from supplementation. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01169259.
Collapse
Affiliation(s)
- JoAnn E Manson
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - Shari S Bassuk
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
| | - Nancy R Cook
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - I-Min Lee
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - Samia Mora
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
| | - Christine M Albert
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- the Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA (C.M.A.)
| | - Julie E Buring
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| |
Collapse
|
14
|
Dervishi E, González-Calvo L, Blanco M, Joy M, Sarto P, Martin-Hernandez R, Ordovás JM, Serrano M, Calvo JH. Gene Expression and Fatty Acid Profiling in Longissimus thoracis Muscle, Subcutaneous Fat, and Liver of Light Lambs in Response to Concentrate or Alfalfa Grazing. Front Genet 2019; 10:1070. [PMID: 31737049 PMCID: PMC6834778 DOI: 10.3389/fgene.2019.01070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/04/2019] [Indexed: 11/24/2022] Open
Abstract
A better understanding of gene expression and metabolic pathways in response to a feeding system is critical for identifying key physiological processes and genes associated with polyunsaturated fatty acid (PUFA) content in lamb meat. The main objective of this study was to investigate transcriptional changes in L. thoracis (LT) muscle, liver, and subcutaneous fat (SF) of lambs that grazed alfalfa (ALF) and concentrate-fed (CON) slaughtered at 23 kg and using the Affymetrix Ovine Gene 1.1 ST whole-genome array. The study also evaluated the relationship between meat traits in LT muscle, including color, pigments and lipid oxidation during 7 days of display, α-tocopherol content, intramuscular fat (IMF) content and the fatty acid (FA) profile. Lambs that grazed on alfalfa had a greater α-tocopherol concentration in plasma than CON lambs (P < 0.05). The treatment did not affect the IMF content, meat color or pigments (P > 0.05). Grazing increased the α-tocopherol content (P < 0.001) and decreased lipid oxidation on day 7 of display (P < 0.05) in LT muscle. The ALF group contained a greater amount of conjugated linoleic acid (CLA), C18:3 n−3, C20:5 n−3, C22:5 n−3, and C22:6 n−3 than did the CON group (P < 0.05). We identified 41, 96 and four genes differentially expressed in LT muscle, liver, and subcutaneous fat, respectively. The most enriched biological processes in LT muscle were skeletal muscle tissue development, being the genes related to catabolic and lipid processes downregulated, except for CPT1B, which was upregulated in the ALF lambs. Animals grazing alfalfa had lower expression of desaturase enzymes in the liver (FADS1 and FADS2), which regulate unsaturation of fatty acids and are directly involved in the metabolism of n−3 PUFA series. The results found in the current study showed that ingesting diets richer in n−3 PUFA might have negative effects on the de novo synthesis of n−3 PUFA by downregulating the FADS1 and FADS2 expression. However, feeding diets poorer in n−3 PUFA can promote fatty acid desaturation, which makes these two genes attractive candidates for altering the content of PUFAs in meat.
Collapse
Affiliation(s)
- Elda Dervishi
- Livestock Gentec, University of Alberta, Edmonton, AB, Canada
| | - Laura González-Calvo
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)-Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Mireia Blanco
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)-Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Margalida Joy
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)-Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Pilar Sarto
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)-Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | | | - Jose M Ordovás
- Jean Mayer-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | | | - Jorge H Calvo
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)-Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Zaragoza, Spain.,ARAID, Zaragoza, Spain
| |
Collapse
|
15
|
Yang T, Li X, Montazeri Z, Little J, Farrington SM, Ioannidis JP, Dunlop MG, Campbell H, Timofeeva M, Theodoratou E. Gene-environment interactions and colorectal cancer risk: An umbrella review of systematic reviews and meta-analyses of observational studies. Int J Cancer 2019; 145:2315-2329. [PMID: 30536881 PMCID: PMC6767750 DOI: 10.1002/ijc.32057] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
The cause of colorectal cancer (CRC) is multifactorial, involving both genetic variants and environmental risk factors. We systematically searched the MEDLINE, EMBASE, China National Knowledge Infrastructure (CNKI) and Wanfang databases from inception to December 2016, to identify systematic reviews and meta-analyses of observational studies that investigated gene-environment (G×E) interactions in CRC risk. Then, we critically evaluated the cumulative evidence for the G×E interactions using an extension of the Human Genome Epidemiology Network's Venice criteria. Overall, 15 articles reporting systematic reviews of observational studies on 89 G×E interactions, 20 articles reporting meta-analyses of candidate gene- or single-nucleotide polymorphism-based studies on 521 G×E interactions, and 8 articles reporting 33 genome-wide G×E interaction analyses were identified. On the basis of prior and observed scores, only the interaction between rs6983267 (8q24) and aspirin use was found to have a moderate overall credibility score as well as main genetic and environmental effects. Though 5 other interactions were also found to have moderate evidence, these interaction effects were tenuous due to the lack of main genetic effects and/or environmental effects. We did not find highly convincing evidence for any interactions, but several associations were found to have moderate strength of evidence. Our conclusions are based on application of the Venice criteria which were designed to provide a conservative assessment of G×E interactions and thus do not include an evaluation of biological plausibility of an observed joint effect.
Collapse
Affiliation(s)
- Tian Yang
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Xue Li
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Zahra Montazeri
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Julian Little
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - John P.A. Ioannidis
- Stanford Prevention Research Center, Departments of Medicine, of Health Research and Policy, and of Biomedical Data Science, Stanford University School of Medicine, and Department of StatisticsStanford University School of Humanities and SciencesStanfordCaliforniaUSA
- Meta‐Research Innovation Center at Stanford (METRICS)Stanford UniversityStanfordCaliforniaUSA
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
16
|
Chiu YH, Karmon AE, Gaskins AJ, Arvizu M, Williams PL, Souter I, Rueda BR, Hauser R, Chavarro JE. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum Reprod 2019; 33:156-165. [PMID: 29136189 DOI: 10.1093/humrep/dex335] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Are serum polyunsaturated fatty acids (PUFA) concentrations, including omega-3 (ω3-PUFA) and omega-6 (ω6-PUFA), related to ART outcomes? SUMMARY ANSWER Serum levels of long-chain ω3-PUFA were positively associated with probability of live birth among women undergoing ART. WHAT IS KNOWN ALREADY Intake of ω3-PUFA improves oocyte and embryo quality in animal and human studies. However, a recent cohort study found no relation between circulating ω3-PUFA levels and pregnancy rates after ART. STUDY DESIGN SIZE, AND DURATION This analysis included a random sample of 100 women from a prospective cohort study (EARTH) at the Massachusetts General Hospital Fertility Center who underwent 136 ART cycles within one year of blood collection. PARTICIPANTS/MATERIALS, SETTING, METHODS Serum fatty acids (expressed as percentage of total fatty acids) were measured by gas chromatography in samples taken between Days 3 and 9 of a stimulated cycle. Primary outcomes included the probability of implantation, clinical pregnancy and live birth per initiated cycle. Cluster-weighted generalized estimating equation (GEE) models were used to analyze the association of total and specific PUFAs with ART outcomes adjusting for age, body mass index, smoking status, physical activity, use of multivitamins and history of live birth. MAIN RESULTS AND ROLE OF CHANCE The median [25th, 75th percentile] serum level of ω3-PUFA was 4.7% [3.8%, 5.8%] of total fatty acids. Higher levels of serum long-chain ω3-PUFA were associated with higher probability of clinical pregnancy and live birth. Specifically, after multivariable adjustment, the probability of clinical pregnancy and live birth increased by 8% (4%, 11%) and 8% (95% CI: 1%, 16%), respectively, for every 1% increase in serum long-chain ω3-PUFA levels. Intake of long-chain ω3-PUFA was also associated with a higher probability of life birth in these women, with RR of 2.37 (95% CI: 1.02, 5.51) when replacing 1% energy of long-chain ω3-PUFA for 1% energy of saturated fatty acids. Serum ω6-PUFA, ratios of ω6 and ω3-PUFA, and total PUFA were not associated with ART outcomes. LIMITATIONS REASONS FOR CAUTION The generalizability of the findings to populations not undergoing infertility treatment may be limited. The use of a single measurement of serum fatty acids to characterize exposure may lead to potential misclassification during follow up. WIDER IMPLICATIONS OF THE FINDINGS Serum ω3-PUFA are considered biomarkers of dietary intake. The association of higher serum long chain ω3-PUFA levels with improved ART outcomes suggests that increased intake of these fats be may be beneficial for women undergoing infertility treatment with ART. STUDY FUNDING/COMPETING INTERESTS NIH grants R01-ES009718 from the National Institute of Environmental Health Sciences, P30-DK046200 and T32-DK007703-16 from the National Institute of Diabetes and Digestive and Kidney Diseases, and L50-HD085359 from the National Institute of Child Health and Human Development, and the Early Life Nutrition Fund from Danone Nutricia US. Dr Rueda is involved in a patent 9,295,662, methods for enhancing, improving, or increasing fertility or reproductive function (http://patents.com/us-9295662.html). This patent, however, does not lead to financial gain for Dr Rueda, or for Massachusetts General Hospital. Dr Rueda does not own any part of the company nor does he have any equity in any fertility related company. As Dr Rueda is not a physician, he does not evaluate patients or prescribe medications. All other coauthors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Y-H Chiu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - A E Karmon
- Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - A J Gaskins
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02215, USA
| | - M Arvizu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - P L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - I Souter
- Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - B R Rueda
- Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - R Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - J E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
17
|
Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine 2018; 31:150-156. [PMID: 29703528 PMCID: PMC6013782 DOI: 10.1016/j.ebiom.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Modulation of genetic variants on the effect of omega-3 fatty acid supplements on blood lipids is still unclear. METHODS In a double-blind randomized controlled trial, 150 patients with type 2 diabetes (T2D) were randomized into omega-3 fatty acid group (n = 56 for fish oil and 44 for flaxseed oil) and control group (n = 50) for 180 days. All patients were genotyped for genetic variants at CD36 (rs1527483), NOS3 (rs1799983) and PPARG (rs1801282). Linear regression was used to examine the interaction between omega-3 fatty acid intervention and CD36, NOS3 or PPARG variants for blood lipids. FINDINGS Significant interaction with omega-3 fatty acid supplements was observed for CD36 on triglycerides (p-interaction = 0.042) and PPAGR on low-density lipoprotein-cholesterol (p-interaction = 0.02). We also found a significant interaction between change in erythrocyte phospholipid omega-3 fatty acid composition and NOS3 genotype on triglycerides (p-interaction = 0.042), total cholesterol (p-interaction = 0.013) and ratio of total cholesterol to high-density lipoprotein cholesterol (p-interaction = 0.015). The T2D patients of CD36-G allele, PPARG-G allele and NOS3-A allele tended to respond better to omega-3 fatty acids in improving lipid profiles. The interaction results of the omega-3 fatty acid group were mainly attributed to the fish oil supplements. INTERPRETATION This study suggests that T2D patients with different genotypes at CD36, NOS3 and PPARG respond differentially to intervention of omega-3 supplements in blood lipid profiles.
Collapse
|
18
|
Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep 2017; 7:1649. [PMID: 28490771 PMCID: PMC5431973 DOI: 10.1038/s41598-017-01762-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023] Open
Abstract
There are conflicting data on the impact of zinc transporter 8 (ZNT8) gene variations on the metabolic syndrome (MetS). Hence, the effects of the interaction between rs13266634 and dietary factors on the risk of MetS were investigated in this study. Subjects of this nested case-control study were selected from the participants in Tehran Lipid and Glucose Study. Each of the cases (n = 817) was individually matched with a control. Dietary patterns were determined using factor analysis. The ZNT8 rs13266634 were genotyped by the Tetra-refractory mutation system-polymerase chain reaction analysis. Two dietary patterns were extracted. There were no significant interactions between the ZNT8 SNP and the dietary patterns on the risk of MetS or its components. An interaction was observed between rs13266634 and the omega-3 fatty acid intakes on the risk of MetS in subjects with the CC genotype (P interaction < 0.01). Zinc modified the association of the ZNT8 variant with high fasting blood sugar (P interaction = 0.05) in CC genotype carriers. An interaction was also observed between rs13266634 and salty snacks at the risk of abdominal obesity (P interaction < 0.05). Our findings suggest an interaction between omega-3 fatty acids, zinc, salty snacks and rs13266634, which may affect the risk of MetS or its components.
Collapse
Affiliation(s)
- Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam S Daneshpour
- Cellular Molecular and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kamran Guity
- Cellular Molecular and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Zheng JS, Li K, Huang T, Chen Y, Xie H, Xu D, Sun J, Li D. Genetic Risk Score of Nine Type 2 Diabetes Risk Variants that Interact with Erythrocyte Phospholipid Alpha-Linolenic Acid for Type 2 Diabetes in Chinese Hans: A Case-Control Study. Nutrients 2017; 9:nu9040376. [PMID: 28398239 PMCID: PMC5409715 DOI: 10.3390/nu9040376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 11/16/2022] Open
Abstract
Modulation of n-3 fatty acids on genetic susceptibility to type 2 diabetes (T2D) is still not clear. In a case-control study of 622 Chinese T2D patients and 293 healthy controls, a genetic risk score (GRS) was created based on nine T2D genetic variants. Logistic regression was used to examine the interaction of the GRS with erythrocyte phospholipid n-3 fatty acids for T2D risk. Every 1-unit (corresponding to 1 risk allele) increase in GRS was associated with 12% (Odds ratio (OR): 1.12; 95% confidence intervals (CI): 1.04–1.20) higher risk of T2D. Compared with the lowest quartile, participants had lower T2D risk in the 2nd (OR: 0.55; 95% CI: 0.36–0.84), 3rd (OR: 0.58; 95% CI: 0.38–0.88) and 4th (OR: 0.67; 95% CI: 0.44–1.03) quartile of alpha-linolenic acid (ALA) levels. Significant interaction (p-interaction = 0.029) of GRS with ALA for T2D risk was observed. Higher ALA levels were associated with lower T2D risk only among participants within the lowest GRS tertile, with ORs 0.51 (95% CI: 0.26–1.03), 0.44 (95% CI: 0.22–0.89) and 0.49 (95% CI: 0.25–0.96) for the 2nd, 3rd and 4th ALA quartile, compared with the 1st. This study suggests that higher erythrocyte ALA levels are inversely associated with T2D risk only among participants with low T2D genetic risk, with high genetic risk abolishing the ALA-T2D association.
Collapse
Affiliation(s)
- Ju-Sheng Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Kelei Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Tao Huang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - Yanqiu Chen
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Hua Xie
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Danfeng Xu
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Jianqin Sun
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
20
|
Kuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie 2017; 136:12-20. [PMID: 28087294 DOI: 10.1016/j.biochi.2017.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid that is recognized as a beneficial dietary constituent and as a source of the anti-inflammatory specialized proresolving mediators (SPM): resolvins, protectins and maresins. Apart from SPMs, other metabolites of DHA also exert potent biological effects. This article summarizes current knowledge on the metabolic pathways involved in generation of DHA metabolites. Over 70 biologically active metabolites have been described, but are often discussed separately within specific research areas. This review follows DHA metabolism and attempts to integrate the diverse DHA metabolites emphasizing those with identified biological effects. DHA metabolites could be divided into DHA-derived SPMs, DHA epoxides, electrophilic oxo-derivatives (EFOX) of DHA, neuroprostanes, ethanolamines, acylglycerols, docosahexaenoyl amides of amino acids or neurotransmitters, and branched DHA esters of hydroxy fatty acids. These bioactive metabolites have pleiotropic effects that include augmenting energy expenditure, stimulating lipid catabolism, modulating the immune response, helping to resolve inflammation, and promoting wound healing and tissue regeneration. As a result they have been shown to exert many beneficial actions: neuroprotection, anti-hypertension, anti-hyperalgesia, anti-arrhythmia, anti-tumorigenesis etc. Given the chemical structure of DHA, the number and geometry of double bonds, and the panel of enzymes metabolizing DHA, it is also likely that novel bioactive derivatives will be identified in the future.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
21
|
Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype. J Clin Med 2016; 5:jcm5020025. [PMID: 26891335 PMCID: PMC4773781 DOI: 10.3390/jcm5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 01/11/2023] Open
Abstract
Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis.
Collapse
|
22
|
Dantas NM, Sampaio GR, Ferreira FS, Labre TDS, Torres EAFDS, Saldanha T. Cholesterol Oxidation in Fish and Fish Products. J Food Sci 2015; 80:R2627-39. [PMID: 26555783 DOI: 10.1111/1750-3841.13124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.
Collapse
Affiliation(s)
- Natalie Marinho Dantas
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Geni Rodrigues Sampaio
- Dept. of Nutrition, School of Public Health, Univ. of São Paulo (USP), Brazil - Av. Dr. Arnaldo, 715, São Paulo, SP, CEP, 01246-904, Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | | | - Tatiana Saldanha
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| |
Collapse
|
23
|
Zheng JS, Huang T, Li K, Chen Y, Xie H, Xu D, Sun J, Li D. Modulation of the Association between the PEPD Variant and the Risk of Type 2 Diabetes by n-3 Fatty Acids in Chinese Hans. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2015; 8:36-43. [PMID: 26087900 DOI: 10.1159/000381348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Type 2 diabetes (T2D) is modulated by the interactions between genetic and dietary factors. This study sought to examine whether the associations of genome-wide association study (GWAS)-identified genetic variants with T2D risk were modulated by n-3 fatty acids in Chinese Hans. METHODS Six hundred and twenty-two T2D patients and 293 healthy controls were recruited. Erythrocyte phospholipid fatty acids were measured by standard methods. Nine GWAS-identified T2D-related single-nucleotide polymorphisms (SNPs) were genotyped. These SNPs were all identified in GWAS of Asian populations with a high minor allele frequency (>0.2). RESULTS Among the 9 SNPs, only rs3786897 at PEPD (peptidase D) showed a significant interaction with n-3 fatty acids (p(interaction) after Bonferroni correction = 0.027). The rs3786897 A allele was associated with a higher risk of T2D [GA+AA vs. GG: odds ratio (OR) = 2.16, 95% confidence interval (CI) 1.32-3.55] when n-3 fatty acids were lower than the population median, but no significant association (GA+AA vs. GG: OR = 0.63, 95% CI 0.35-1.12) was observed when n-3 fatty acids were higher than the median. CONCLUSIONS The association between the PEPD genetic variant and the risk of T2D was modulated by n-3 fatty acids. Higher n-3 fatty acids may abolish the adverse effect of the risk allele at PEPD for T2D.
Collapse
Affiliation(s)
- Ju-Sheng Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gil A, Gil F. Fish, a Mediterranean source of n-3 PUFA: benefits do not justify limiting consumption. Br J Nutr 2015; 113 Suppl 2:S58-67. [PMID: 26148923 DOI: 10.1017/s0007114514003742] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fish is an important source of energy, high-quality proteins, fat, vitamins and minerals. Within lipids, n-3 long-chain PUFA (n-3 LC PUFA), mainly EPA and DHA, play an important role in health promotion and disease prevention. In contrast to the potential health benefits of dietary fish intake, certain chemical pollutants, namely heavy metals and some organic compounds, contained in seafood have emerged as an issue of concern, particularly for frequent fish consumers and sensitive groups of populations. The present review summarises the health benefits and risks of fish consumption. n-3 LC-PUFA are key compounds of cell membranes and play an important role in human health from conception through every stage of human development, maturation and ageing. DHA has a major role in the development of brain and retina during fetal development and the first 2 years of life and positively influences neurodevelopment, mainly visual acuity and cognitive functions. n-3 LC-PUFA are also effective in preventing cardiovascular events (mainly stroke and acute myocardial infarction) especially in persons with high cardiovascular risk. By contrast, there is convincing evidence of adverse neurological/neurodevelopmental outcomes in infants and young children associated with methylmercury exposure during fetal development due to maternal fish consumption during pregnancy. Dioxins and polychlorinated biphenyls present in contaminated fish may also develop a risk for both infants and adults. However, for major health outcomes among adults, the vast majority of epidemiological studies have proven that the benefits of fish intake exceed the potential risks with the exception of a few selected species in sensitive populations.
Collapse
Affiliation(s)
- Angel Gil
- Department of Biochemistry and Molecular Biology II,Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n,18100Armilla,Granada,Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology,School of Medicine, University of Granada,Granada,Spain
| |
Collapse
|
25
|
Zheng JS, Lai CQ, Parnell LD, Lee YC, Shen J, Smith CE, Casas-Agustench P, Richardson K, Li D, Noel SE, Tucker KL, Arnett DK, Borecki IB, Ordovás JM. Genome-wide interaction of genotype by erythrocyte n-3 fatty acids contributes to phenotypic variance of diabetes-related traits. BMC Genomics 2014; 15:781. [PMID: 25213455 PMCID: PMC4168207 DOI: 10.1186/1471-2164-15-781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background Little is known about the interplay between n-3 fatty acids and genetic variants for diabetes-related traits at the genome-wide level. The present study aimed to examine variance contributions of genotype by environment (GxE) interactions for different erythrocyte n-3 fatty acids and genetic variants for diabetes-related traits at the genome-wide level in a non-Hispanic white population living in the U.S.A. (n = 820). A tool for Genome-wide Complex Trait Analysis (GCTA) was used to estimate the genome-wide GxE variance contribution of four diabetes-related traits: HOMA-Insulin Resistance (HOMA-IR), fasting plasma insulin, glucose and adiponectin. A GxE genome-wide association study (GWAS) was conducted to further elucidate the GCTA results. Replication was conducted in the participants of the Boston Puerto Rican Health Study (BPRHS) without diabetes (n = 716). Results In GOLDN, docosapentaenoic acid (DPA) contributed the most significant GxE variance to the total phenotypic variance of both HOMA-IR (26.5%, P-nominal = 0.034) and fasting insulin (24.3%, P-nominal = 0.042). The ratio of arachidonic acid to eicosapentaenoic acid + docosahexaenoic acid contributed the most significant GxE variance to the total variance of fasting glucose (27.0%, P-nominal = 0.023). GxE variance of the arachidonic acid/eicosapentaenoic acid ratio showed a marginally significant contribution to the adiponectin variance (16.0%, P-nominal = 0.058). None of the GCTA results were significant after Bonferroni correction (P < 0.001). For each trait, the GxE GWAS identified a far larger number of significant single-nucleotide polymorphisms (P-interaction ≤ 10E-5) for the significant E factor (significant GxE variance contributor) than a control E factor (non-significant GxE variance contributor). In the BPRHS, DPA contributed a marginally significant GxE variance to the phenotypic variance of HOMA-IR (12.9%, P-nominal = 0.068) and fasting insulin (18.0%, P-nominal = 0.033). Conclusion Erythrocyte n-3 fatty acids contributed a significant GxE variance to diabetes-related traits at the genome-wide level. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-781) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - José M Ordovás
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
26
|
Sarkadi Nagy E, Martos É. Present and future of genotype-based personalized nutrition. Orv Hetil 2014; 155:771-7. [DOI: 10.1556/oh.2014.29896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After the completion of the Human Genome Project, the era of providing personalized dietary advice based on an individual’s genetic profile seemed near. Since then more than a decade has passed and the pace of development has been slower than expected. Genotyping single nucleotide polymorphisms which may determine susceptibility to multifactorial diseases is cheaper and more accessible than it was ten years ago. However, few of them are supported by such solid scientific evidence which would justify their use for personalized dietary advice. The future of genotype-based personalized nutrition depends on whether a sufficient amount of gene–diet-disease interactions are identified and scientifically confirmed. Orv. Hetil., 2014, 155(20), 771–777.
Collapse
Affiliation(s)
- Eszter Sarkadi Nagy
- Országos Élelmezés- és Táplálkozástudományi Intézet Budapest Albert Flórián út 3/A 1097
| | - Éva Martos
- Országos Élelmezés- és Táplálkozástudományi Intézet Budapest Albert Flórián út 3/A 1097
| |
Collapse
|
27
|
Corella D, Ordovás JM. How does the Mediterranean diet promote cardiovascular health? Current progress toward molecular mechanisms: gene-diet interactions at the genomic, transcriptomic, and epigenomic levels provide novel insights into new mechanisms. Bioessays 2014; 36:526-37. [PMID: 24706458 DOI: 10.1002/bies.201300180] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidemiological evidence supports a health-promoting effect of the Mediterranean Diet (MedDiet), especially in the prevention of cardiovascular diseases. These cardiovascular benefits have been attributed to a number of components of the MedDiet such as monounsaturated fatty acids, antioxidant vitamins and phytochemicals. However, the underlying mechanisms remain unknown. Likewise, little is known about the genes that define inter-individual variation in response to the MedDiet, although the TCF7L2 gene is emerging as an illustrative candidate for determining relative risk of cardiovascular events in response to the MedDiet. Moreover, omics technologies are providing evidence supporting potential mechanisms, some of them implicating epigenetics (i.e. microRNAs, methylation), and certain data suggest that some traditional foods could contribute via microRNAs possibly acting as exogenous regulators of gene expression. Future research should aim at increasing and consolidating the nutrigenetic and nutrigenomic knowledge of the MedDiet in order to provide sound, personalized and optimized nutritional recommendations.
Collapse
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
28
|
Suburu J, Gu Z, Chen H, Chen W, Zhang H, Chen YQ. Fatty acid metabolism: Implications for diet, genetic variation, and disease. FOOD BIOSCI 2013; 4:1-12. [PMID: 24511462 DOI: 10.1016/j.fbio.2013.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases.
Collapse
Affiliation(s)
- Janel Suburu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
29
|
Mahendran Y, Cederberg H, Vangipurapu J, Kangas AJ, Soininen P, Kuusisto J, Uusitupa M, Ala-Korpela M, Laakso M. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care 2013; 36:3732-8. [PMID: 24026559 PMCID: PMC3816902 DOI: 10.2337/dc13-0800] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated the association of fasting serum glycerol and fatty acids (FAs) as predictors for worsening of hyperglycemia and incident type 2 diabetes. RESEARCH DESIGN AND METHODS Cross-sectional and longitudinal analyses of the population-based METabolic Syndrome in Men (METSIM) Study included 9,398 Finnish men (mean age 57 ± 7 years). At baseline, levels of serum glycerol, free FAs (FFAs), and serum FA profile, relative to total FAs, were measured with proton nuclear magnetic resonance spectroscopy. RESULTS At baseline, levels of glycerol, FFAs, monounsaturated FAs, saturated FAs, and monounsaturated n-7 and -9 FAs, relative to total FAs, were increased in categories of fasting and 2-h hyperglycemia, whereas the levels of n-3 and n-6 FAs, relative to total FAs, decreased (N = 9,398). Among 4,335 men with 4.5-year follow-up data available, 276 developed type 2 diabetes. Elevated levels of glycerol, FFAs, monounsaturated FAs, and saturated and monounsaturated n-7 and -9 FAs, relative to total FAs, predicted worsening of hyperglycemia and development of incident type 2 diabetes after adjustment for confounding factors. n-6 FAs, mainly linoleic acid (LA), relative to total FAs, were associated with reduced risk for the worsening of hyperglycemia and conversion to type 2 diabetes. CONCLUSIONS Our large population-based study shows that fasting serum levels of glycerol, FFAs, monounsaturated FAs, saturated FAs, and n-7 and -9 FAs are biomarkers for an increased risk of development of hyperglycemia and type 2 diabetes, whereas high levels of serum n-6 FAs, reflecting dietary intake of LA, were associated with reduced risk for hyperglycemia and type 2 diabetes.
Collapse
|
30
|
Zheng JS, Arnett DK, Parnell LD, Lee YC, Ma Y, Smith CE, Richardson K, Li D, Borecki IB, Tucker KL, Ordovás JM, Lai CQ. Polyunsaturated Fatty Acids Modulate the Association between PIK3CA-KCNMB3 Genetic Variants and Insulin Resistance. PLoS One 2013; 8:e67394. [PMID: 23826284 PMCID: PMC3694924 DOI: 10.1371/journal.pone.0067394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/16/2013] [Indexed: 01/09/2023] Open
Abstract
Background Neighboring genes PIK3CA and KCNMB3 are both important for insulin signaling and β-cell function, but their associations with glucose-related traits are unclear. Objective The objective was to examine associations of PIK3CA-KCNMB3 variants with glucose-related traits and potential interaction with dietary fat. Design We first investigated genetic associations and their modulation by dietary fat in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study (n = 820). Nine single-nucleotide polymorphisms (SNPs) were selected for analysis, covering more than 80% of the SNPs in the region. We then sought to replicate the findings in the Boston Puerto Rican Health Study (BPRHS) (n = 844). Results For KCNMB3 missense mutation rs7645550, meta-analysis indicated that homeostasis model assessment of insulin resistance (HOMA-IR) was significantly lower in minor allele T homozygotes compared with major allele C carriers (pooled P-value = 0.004); for another SNP rs1183319, which is in moderate LD with rs7645550, minor allele G carriers had higher HOMA-IR compared with non-carriers in both populations (pooled P-value = 0.028). In GOLDN, rs7645550 T allele homozygotes had lower HOMA-IR only when dietary n-3: n-6 PUFA ratio was low (≤0.11, P = 0.001), but not when it was high (>0.11, P-interaction = 0.033). Similar interaction was observed between rs1183319 and n-3: n-6 PUFA ratio on HOMA-IR (P-interaction = 0.001) in GOLDN. Variance contribution analyses in GOLDN confirmed the genetic association and gene-diet interaction. In BPRHS, dietary n-3: n-6 PUFA ratio significantly modulated the association between rs1183319 and HbA1c (P-interaction = 0.034). Conclusion PIK3CA-KCNMB3 variants are associated with insulin resistance in populations of different ancestries, and are modified by dietary PUFA.
Collapse
Affiliation(s)
- Ju-Sheng Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laurence D. Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Yu-Chi Lee
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Yiyi Ma
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Caren E. Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Kris Richardson
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- * E-mail: (CQL); (DL)
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Katherine L. Tucker
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - José M. Ordovás
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
- * E-mail: (CQL); (DL)
| |
Collapse
|
31
|
|
32
|
Influence of genotype on the modulation of gene and protein expression by n-3 LC-PUFA in rats. GENES AND NUTRITION 2013; 8:589-600. [PMID: 23744008 DOI: 10.1007/s12263-013-0349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/22/2013] [Indexed: 01/22/2023]
Abstract
It is becoming increasingly apparent that responsiveness to dietary fat composition is heterogeneous and dependent on the genetic make-up of the individual. The aim of this study was to evidence a genotype-related differential effect of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on the modulation of hepatic genes involved in cholesterol metabolism. Fourteen spontaneously hypertensive (SH) rats, which present a naturally occurring variation in the gene encoding for sterol responsive element binding protein 1 (SREBP-1), contributing to their inherited variation in lipid metabolism, and 14 Wistar-Kyoto (WK) rats were fed a control diet or an n-3 LC-PUFA enriched diet for 90 days. Plasma lipid profile, total lipid fatty acid composition in plasma and liver, and the expression of SREBP-1 and 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase, low-density lipoprotein receptor, and acyl-CoA:cholesterol acyltransferase 2 encoding genes and proteins were determined. The positive effect of the enriched diet on the serum lipid profile, particularly on total cholesterol and triglyceride level, was clearly evidenced in both WK and SH rats, but n-3 LC-PUFA acted through a different modulation of gene and protein expression that appeared related to the genetic background. Our study evidences a different transcriptional effect of specific nutrients related to genetic variants.
Collapse
|
33
|
Gapeyev AB, Kulagina TP, Aripovsky AV. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue. Int J Radiat Biol 2013; 89:602-10. [DOI: 10.3109/09553002.2013.784426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Elosua R, Lucas G, Lluis-Ganella C. Genetics and Cardiovascular Risk Prediction: A Step Toward Personalized Medicine? CURRENT CARDIOVASCULAR RISK REPORTS 2013. [DOI: 10.1007/s12170-012-0285-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Impact of nutrition since early life on cardiovascular prevention. Ital J Pediatr 2012; 38:73. [PMID: 23259704 PMCID: PMC3543392 DOI: 10.1186/1824-7288-38-73] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023] Open
Abstract
The cardiovascular disease represents the leading cause of morbidity and mortality in Western countries and it is related to the atherosclerotic process. Cardiovascular disease risk factors, such as dyslipidemia, hypertension, insulin resistance, obesity, accelerate the atherosclerotic process which begins in childhood and progresses throughout the life span. The cardiovascular disease risk factor detection and management through prevention delays the atherosclerotic progression towards clinical cardiovascular disease. Dietary habits, from prenatal nutrition, breastfeeding, complementary feeding to childhood and adolescence nutrition play a basic role for this topic. The metabolic and neuroendocrine environment of the fetus is fundamental in the body’s “metabolic programming”. Further several studies have demonstrated the beneficial effects of breastfeeding on cardiovascular risk factors reduction. Moreover the introduction of complementary foods represents another important step, with particular regard to protein intake. An adequate distribution between macronutrients (lipids, proteins and carbohydrates) is required for correct growth development from infancy throughout adolescence and for prevention of several cardiovascular disease risk determinants in adulthood. The purpose of this review is to examine the impact of nutrition since early life on disease. La malattia cardiovascolare rappresenta la principale causa di morbilità e mortalità dei paesi occidentali ed è correlata a degenerazione vascolare aterosclerotica. I fattori di rischio cardiovascolari quali dislipidemia, ipertensione, insulino resistenza e obesità accelerano tale processo il cui esordio è noto sin dell’età pediatrica ed evolve nel corso della vita. L’individuazione e la cura dei fattori di rischio cardiovascolari mediante la prevenzione dei fattori causali ritardano la progressione dell’aterosclerosi e l’insorgenza dei sintomi cardiovascolari. La nutrizione svolge un ruolo preventivo fondamentale sin dall’epoca prenatale e nelle diverse età della crescita. La condizione metabolica e neuro-endocrino cui è sottoposto il feto è rilevante per la “programmazione metabolica”. E’ dimostrata inoltre l’importanza delle modalità di allattamento e divezzamento con particolare interesse per l’assunzione di proteine nel controllo dei fattori di rischio cardiovascolari. La corretta distribuzione di macronutrienti (lipidi, proteine e carboidrati) dall’infanzia all’adolescenza favorisce una crescita corretta e risulta utile a prevenire l’insorgenza dei determinanti di rischio di malattia cardiovascolare in età adulta. Nella presente review verrà esaminato l’impatto della nutrizione dalle più precoci fasi delle vita sul rischio cardiovascolare.
Collapse
|