1
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
2
|
Dehzad MJ, Ghalandari H, Fahimzad FS, Maghsoudi Z, Makhtoomi M, Nouri M, Askarpour M. Effects of green tea supplementation on obesity indices and adipokines in adults: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. Int J Food Sci Nutr 2025:1-30. [PMID: 40326418 DOI: 10.1080/09637486.2025.2496400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/18/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND In this systematic review and meta-analysis, the impact of green tea supplementation on measurement/indices of adiposity was investigated. METHODS Using predefined keywords, online databases (PubMed, Scopus, Web of Science Core Collection, and Google Scholar) were searched for relevant studies, published from inception up to February 2024. Data were extracted and registered. Subgroup analyses and the investigation of linear and non-linear associations were carried out. RESULTS Green tea supplementation reduced BW (WMD: -0.74 kg; 95% CI: -0.97, -0.51), BMI (WMD: -0.29 kg/m2; 95% CI: -0.38, -0.19), WC (WMD: -1.04 cm; 95% CI: -1.55, -0.53), BFP (WMD: -0.65%; 95% CI: -1.03, -0.27), and leptin (WMD: -0.92 ng/ml; 95% CI: -1.71, -0.14), but did not change adiponectin levels (WMD: 0.20 µg/ml; 95% CI: -0.17, 0.57). CONCLUSION Supplementation with green tea seems to be effective in reducing excess adiposity.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Fahimzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maede Makhtoomi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Dehzad MJ, Ghalandari H, Nouri M, Makhtoomi M, Askarpour M. Effects of green tea supplementation on antioxidant status and inflammatory markers in adults: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. J Nutr Sci 2025; 14:e25. [PMID: 40160899 PMCID: PMC11950708 DOI: 10.1017/jns.2025.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Green tea, a plant rich in bioactive compounds, has been highlighted for its beneficial effects. In the present systematic review and meta-analysis of randomised controlled trials (RCTs), the impact of green tea on inflammatory and oxidative markers is investigated. Using pre-defined keywords, online databases (PubMed, Scopus, Web of Science Core Collection, and Google Scholar) were searched for relevant articles, published from inception up to February 2024. The outcomes included C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX). Analyses of subgroups, linear, and non-linear associations were also carried out. Out of 1264 records initially retrieved, 38 RCTs were included. Supplementation with green tea improved the following indicators: IL-1β (weighted mean difference (WMD): -0.10 pg/mL; 95% CI: -0.15, -0.06), MDA (WMD: -0.40 mcmol/L; 95 % CI: -0.63, -0.18), TAC (WMD: 0.09 mmol/L; 95% CI: 0.05, 0.13), SOD (WMD: 17.21 u/L; 95% CI: 3.24, 31.19), and GPX (WMD: 3.90 u/L; 95% CI: 1.85, 5.95); but failed to improve others, including CRP (WMD: 0.01 mg/L; 95% CI: -0.14, 0.15), IL-6 (WMD: -0.34 pg/mL; 95% CI:-0.94, 0.26), and TNF-α (WMD: -0.07 pg/mL; 95% CI: -0.42, 0.28). Supplementation with green tea can improve the body's oxidative status. However, the results showed no significant effect of green tea on inflammatory markers, except for IL-1β. Further studies are needed to determine the effectiveness of green tea, particularly on inflammatory status.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maede Makhtoomi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Lu J, Tang Y, Li H, Chen X, Qin P, Xu J, Li W, Chen L. Identifying Exifone as a Dual-Target Agent Targeting Both SARS-CoV-2 3CL Protease and the ACE2/S-RBD Interaction Among Clinical Polyphenolic Compounds. Int J Mol Sci 2025; 26:2243. [PMID: 40076865 PMCID: PMC11900932 DOI: 10.3390/ijms26052243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The ongoing emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to resistance against multiple coronavirus disease 2019 (COVID-19) vaccines and therapeutic medications, making the development of effective therapeutics against SARS-CoV-2 a high priority. Studies have shown that bioactive polyphenols, particularly those with triphenol groups, can effectively inhibit the activity of SARS-CoV-2 3-chymotrypsin-like protease (3CLpro). However, the structural instability of polyphenols necessitates further research. To address this, we conducted a literature review to identify triphenol compounds that are either approved or currently undergoing clinical trials, assessing their potential to inhibit SARS-CoV-2 3CLpro. Exifone and benserazide hydrochloride were identified as the inhibitors of SARS-CoV-2 3CLpro among these compounds, using a fluorescence resonance energy transfer (FRET)-based assay. Benserazide hydrochloride was confirmed as a covalent binder to SARS-CoV-2 3CLpro through time-dependent inhibition and kinetic analysis, with its binding mode elucidated by molecular docking. Notably, exifone not only inhibited the protease activity but also blocked the interaction between the host cell receptor angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor binding domain (S-RBD), as identified by surface plasmon resonance (SPR) and flow cytometry. Additionally, exifone demonstrated antiviral activity against various SARS-CoV-2-S pseudovirus variants. In conclusion, the discovery of exifone and benserazide hydrochloride underscores the potential of polyphenols in developing conserved 3CLpro inhibitors for coronaviruses, offering new strategies for the rapid development of effective drugs against both current and future coronavirus pandemics.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.L.); (H.L.); (P.Q.)
| | - Yan Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China;
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.L.); (H.L.); (P.Q.)
| | - Xixiang Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.C.); (J.X.)
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.L.); (H.L.); (P.Q.)
- School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Jianrong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.C.); (J.X.)
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China;
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.L.); (H.L.); (P.Q.)
| |
Collapse
|
5
|
Handu D, Stote K, Piemonte T. Evaluating Bioactive-Substance-Based Interventions for Adults with MASLD: Results from a Systematic Scoping Review. Nutrients 2025; 17:453. [PMID: 39940310 PMCID: PMC11820841 DOI: 10.3390/nu17030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Objective: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition affecting a broad population. This review aimed to identify and summarize the current evidence on bioactive-substance-based interventions for adults with MASLD, formerly known as nonalcoholic fatty liver disease (NAFLD), covering publications from 2000 to 2023. Methods: A search was conducted across six databases (MEDLINE, CINAHL, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, Food Science Source, and SPORTDiscus) for randomized controlled trials and other study types (e.g., prospective cohort studies and systematic reviews), reflecting the scoping nature of this review. The search was limited to studies in adults (>18 years old), with an intervention of interest and at least one comparator group. Results: A total of 4572 articles were retrieved, with 201 full-text articles screened for eligibility. Of these, 131 primary studies and 49 systematic reviews were included in the scoping review. The most studied bioactive substances were Curcumin (Turmeric) (n = 25), Silymarin (Milk Thistle) (n = 17), Resveratrol (n = 10), Coffee (n = 7), Green Tea (n = 5), and Berberine (n = 5 each). Moreover, 46 studies reported on 36 other bioactive substances with 2 or fewer articles each. Among the included systematic reviews, 13 focused on Curcumin, 12 on Coffee or Tea, 10 on bioactive substance combinations, 6 on Resveratrol, and 2 each on Silymarin and Artichoke Leaf. The included studies showed substantial heterogeneity in reported outcomes, which primarily focused on hepatic health, body weight, adverse events, glycemic control, blood lipids, and body composition. Conclusions: This scoping review highlights a range of bioactive substances used in the treatment of MASLD. While evidence is abundant for bioactive substances like Curcumin and Silymarin, further research and synthesis of findings is necessary to establish the clinical efficacy of all bioactive substances.
Collapse
Affiliation(s)
- Deepa Handu
- Academy of Nutrition and Dietetics, Chicago, IL 60606, USA;
| | - Kim Stote
- Department of Allied Health Sciences, State University of New York, Empire State University, Saratoga Springs, NY 12866, USA;
| | - Tami Piemonte
- Academy of Nutrition and Dietetics, Chicago, IL 60606, USA;
| |
Collapse
|
6
|
Yan R, Cao Y. The Safety and Efficacy of Dietary Epigallocatechin Gallate Supplementation for the Management of Obesity and Non-Alcoholic Fatty Liver Disease: Recent Updates. Biomedicines 2025; 13:206. [PMID: 39857788 PMCID: PMC11762999 DOI: 10.3390/biomedicines13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Epigallocatechin gallate (EGCG) is the predominant bioactive catechin in green tea, and it has been ascribed a range of beneficial health effects. Current increases in obesity and non-alcoholic fatty liver disease (NAFLD) rates represent a persistent and burdensome threat to global public health. While many clinical studies have demonstrated that EGCG is associated with positive effects on various health parameters, including metabolic biomarkers, waist circumference, and body weight when consumed by individuals affected by obesity and NAFLD, there are also some reports suggesting that it may entail some degree of hepatotoxicity. The present review provides a comprehensive summary of the extant clinical findings pertaining to the safety and effectiveness of EGCG in managing obesity and NAFLD, with a particular focus on how treatment duration and dose level affect the bioactivity of this compound.
Collapse
Affiliation(s)
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| |
Collapse
|
7
|
Ghasemzadeh Rahbardar M, Ferns GA, Ghayour Mobarhan M. Assessing the efficacy of herbal supplements for managing obesity: A comprehensive review of global clinical trials. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:691-709. [PMID: 40343290 PMCID: PMC12057756 DOI: 10.22038/ijbms.2025.84150.18198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Obesity remains a significant worldwide health concern, and further research into other strategies, including herbal weight-loss medications, is necessary. By reviewing clinical trials, this study aims to evaluate the effectiveness of herbal medicines for weight loss or obesity. A comprehensive search was conducted using multiple databases. Clinical trials evaluating the effects of herbal medicines on weight loss or obesity management were included. Relevant data, such as study design, intervention details, and outcome measures, were extracted and analyzed. The use of herbal medicines exhibited varying efficacy in promoting weight loss or managing obesity. Some herbal interventions significantly reduced body weight, body mass index (BMI), and waist circumference. Notably, these interventions led to decreases in fasting blood glucose (FBG) and homeostatic model assessment of insulin resistance (HOMA-IR), regulating insulin levels while increasing levels of catalase (CAT) and glutathione (GSH). Additionally, reductions in inflammatory markers such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor-alpha (TNF-α) were observed, indicating a potential anti-inflammatory effect. Mechanisms of action included appetite regulation, fat oxidation, increased satiety, enhanced insulin sensitivity, and modulation of lipid metabolism. However, it is important to note that these herbal interventions' efficacy and safety profiles may vary among different population groups. The findings suggest that certain herbal medicines hold promise as adjunctive therapies for weight loss and obesity management. However, comprehensive and targeted research efforts are warranted to determine these herbal interventions' optimal use, dosages, and long-term effects in specific population subgroups.
Collapse
Affiliation(s)
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Majid Ghayour Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024; 44:430-456. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
9
|
Li S, Wang Z, Liu G, Chen M. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Front Nutr 2024; 11:1425839. [PMID: 39149548 PMCID: PMC11326534 DOI: 10.3389/fnut.2024.1425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Catechins, a class of phytochemicals found in various fruits and tea leaves, have garnered attention for their diverse health-promoting properties, including their potential in combating neurodegenerative diseases. Among these catechins, (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, has emerged as a promising therapeutic agent due to its potent antioxidant and anti-inflammatory effects. Chronic neuroinflammation and oxidative stress are key pathological mechanisms in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). EGCG has neuroprotective efficacy due to scavenging free radicals, reducing oxidative stress and attenuating neuroinflammatory processes. This review discusses the molecular mechanisms of EGCG's anti-oxidative stress and chronic neuroinflammation, emphasizing its effects on autoimmune responses, neuroimmune system interactions, and focusing on the related effects on AD and PD. By elucidating EGCG's mechanisms of action and its impact on neurodegenerative processes, this review underscores the potential of EGCG as a therapeutic intervention for AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges as a promising natural compound for combating chronic neuroinflammation and oxidative stress, offering novel avenues for neuroprotective strategies in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Siying Li
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zaoyi Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Meixia Chen
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
10
|
Yang M, Yan R, Sha R, Wang X, Zhou S, Li B, Zheng Q, Cao Y. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4. Clin Nutr 2024; 43:1769-1780. [PMID: 38936303 DOI: 10.1016/j.clnu.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER ChiCTR2300076741; https://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Mingfeng Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruike Yan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruohe Sha
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xinxin Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shiting Zhou
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Baifeng Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University 110122, Shenyang, Liaoning Province, PR China.
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
11
|
de Oliveira Assis FS, Vasconcellos GL, Lopes DJP, de Macedo LR, Silva M. Effect of Green Tea Supplementation on Inflammatory Markers among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis. Prev Nutr Food Sci 2024; 29:106-117. [PMID: 38974590 PMCID: PMC11223924 DOI: 10.3746/pnf.2024.29.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
Several randomized controlled trials (RCTs) have investigated the potential benefits of green tea on the inflammatory process in metabolic syndrome (MetS). However, the results are inconclusive and inconsistent. In the present study, we performed a literature review and meta-analysis to evaluate the effect of green tea supplementation on inflammatory markers [e.g., tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), and interleukin-6 (IL-6)] among patients with MetS and related disorders. We systematically searched for relevant publications up to March 2022 in the PubMed, Scopus, Web of Science, and SciELO databases. The review was registered with PROSPERO (CRD42022320345). Mean differences with 95% confidence intervals were pooled on the basis of the random effects model to compare the effects of green tea with placebo. We used meta-regression and subgroup analyses to determine the cause of heterogeneity and performed study quality assessment using the Grading of Recommendations Assessment, Development, and Evaluation method. We assessed publication bias using funnel plots and Egger's tests. Out of the total 15 RCTs that were included in this systematic review, 12 were chosen for the meta-analysis. The results revealed that green tea significantly decreased TNF-α levels but did not affect CRP and IL-6 levels. Subgroup analysis showed that green tea supplementation in studies lasting ≤8 weeks significantly increased CRP levels. Furthermore, meta-regression analysis demonstrated a significant association between increasing IL-6 concentration and treatment duration. According to our meta-analysis, green tea was shown to considerably lower circulating TNF-α levels. To confirm these findings, carefully planned trials are required.
Collapse
Affiliation(s)
| | - Gabriel Lima Vasconcellos
- Department of Medicine, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares 35020-360, Brazil
| | - Diego José Pereira Lopes
- Department of Medicine, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares 35020-360, Brazil
| | | | - Maísa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares 35020-360, Brazil
| |
Collapse
|
12
|
Li A, Wang Q, Li P, Zhao N, Liang Z. Effects of green tea on lipid profile in overweight and obese women. INT J VITAM NUTR RES 2024; 94:239-251. [PMID: 37082776 DOI: 10.1024/0300-9831/a000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The effect of green tea administration on serum lipids' concentrations remains unclear as various investigations, which have explored this topic, have produced conflicting results. Gender might be one of the factors influencing the impact of green tea on the lipid profile. Hence, we conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effect of green tea intake on the lipid profile in overweight and obese women. We searched five databases (Web of Science, SCOPUS, Embase, PubMed/Medline, and Google Scholar) using a combination of MeSH and non-MeSH terms. Results were expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs) and synthesized with a random-effects model. In total, 15 eligible RCTs with 16 arms (1818 participants) were included in the meta-analysis. The combined effect size revealed a significant reduction in total cholesterol (TC) (WMD: -4.45 mg/dl, 95% CI: -6.63, -2.27, P<0.001) and low-density lipoprotein cholesterol (LDL-C) (WMD: -4.49 mg/dl, 95% CI: -7.50 to -1.47, P=0.003) concentrations following green tea supplementation in overweight and/or obese women. In addition, a more pronounced reduction of triglyceride (TG) levels occurred when the baseline TG value was ≥150 mg/dL (WMD: -24.45 mg/dL, 95% CI: -40.63 to -8.26, P=0.003). Moreover, a significant decrease in TG concentrations occurred in RCTs conducted on overweight subjects (BMI: 25-29.99 kg/m2) (WMD: -5.88 mg/dl, 95% CI: -10.76 to -0.99, P=0.01). In the subgroup analyses based on the study population, a notable increase in high-density lipoprotein cholesterol (HDL-C) values was observed in obese individuals (>30 kg/m2) (WMD: 2.63 mg/dl, 95% CI: 0.10 to 5.16, P=0.041). Consumption of green tea causes a reduction in LDL-C and TC concentrations in overweight and obese women. The decline in TG levels was notable particularly in overweight patients with hypertriglyceridemia at baseline. In addition, a significant increase in HDL-C was detected in obese subjects following intake of green tea.
Collapse
Affiliation(s)
- Aixin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Qian Wang
- Cardiac Catheterization Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Li
- Department of Neurology, Jiamusi Central Hospital, Jiamusi, China
| | - Na Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhaoguang Liang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Asbaghi O, Rezaei Kelishadi M, Larky DA, Bagheri R, Amirani N, Goudarzi K, Kargar F, Ghanavati M, Zamani M. The effects of green tea extract supplementation on body composition, obesity-related hormones and oxidative stress markers: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. Br J Nutr 2024; 131:1125-1157. [PMID: 38031409 DOI: 10.1017/s000711452300260x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Research indicates that green tea extract (GTE) supplementation is beneficial for a range of conditions, including several forms of cancer, CVD and liver diseases; nevertheless, the existing evidence addressing its effects on body composition, oxidative stress and obesity-related hormones is inconclusive. This systematic review and meta-analysis aimed to investigate the effects of GTE supplementation on body composition (body mass (BM), body fat percentage (BFP), fat mass (FM), BMI, waist circumference (WC)), obesity-related hormones (leptin, adiponectin and ghrelin) and oxidative stress (malondialdehyde (MDA) and total antioxidant capacity (TAC)) markers. We searched proper databases, including PubMed/Medline, Scopus and Web of Science, up to July 2022 to recognise published randomised controlled trials (RCT) that investigated the effects of GTE supplementation on the markers mentioned above. A random effects model was used to carry out a meta-analysis. The heterogeneity among the studies was assessed using the I2 index. Among the initial 11 286 studies identified from an electronic database search, fifty-nine studies involving 3802 participants were eligible to be included in this meta-analysis. Pooled effect sizes indicated that BM, BFP, BMI and MDA significantly reduced following GTE supplementation. In addition, GTE supplementation increased adiponectin and TAC, with no effects on FM, leptin and ghrelin. Certainty of evidence across outcomes ranged from low to high. Our results suggest that GTE supplementation can attenuate oxidative stress, BM, BMI and BFP, which are thought to negatively affect human health. Moreover, GTE as a nutraceutical dietary supplement can increase TAC and adiponectin.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Damoon Ashtary Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kargar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, P.O.19395-4741, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Nassar K, El-Mekawey D, Elmasry AE, Refaey MS, El-Sayed Ghoneim M, Elshaier YAMM. The significance of caloric restriction mimetics as anti-aging drugs. Biochem Biophys Res Commun 2024; 692:149354. [PMID: 38091837 DOI: 10.1016/j.bbrc.2023.149354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Aging is an intricate process characterized by the gradual deterioration of the physiological integrity of a living organism. This unfortunate phenomenon inevitably leads to a decline in functionality and a heightened susceptibility to the ultimate fate of mortality. Therefore, it is of utmost importance to implement interventions that possess the capability to reverse or preempt age-related pathology. Caloric restriction mimetics (CRMs) refer to a class of molecules that have been observed to elicit advantageous outcomes on both health and longevity in various model organisms and human subjects. Notably, these compounds offer a promising alternative to the arduous task of adhering to a caloric restriction diet and mitigate the progression of the aging process and extend the duration of life in laboratory animals and human population. A plethora of molecular signals have been linked to the practice of caloric restriction, encompassing Insulin-like Growth Factor 1 (IGF1), Mammalian Target of Rapamycin (mTOR), the Adenosine Monophosphate-Activated Protein Kinase (AMPK) pathway, and Sirtuins, with particular emphasis on SIRT1. Therefore, this review will center its focus on several compounds that act as CRMs, highlighting their molecular targets, chemical structures, and mechanisms of action. Moreover, this review serves to underscore the significant relationship between post COVID-19 syndrome, antiaging, and importance of utilizing CRMs. This particular endeavor will serve as a comprehensive guide for medicinal chemists and other esteemed researchers, enabling them to meticulously conceive and cultivate novel molecular entities with the potential to function as efficacious antiaging pharmaceutical agents.
Collapse
Affiliation(s)
- Khloud Nassar
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Doaa El-Mekawey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Ahmed E Elmasry
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt.
| | - Yaseen A M M Elshaier
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| |
Collapse
|
16
|
Wang Y, Xia H, Yu J, Sui J, Pan D, Wang S, Liao W, Yang L, Sun G. Effects of green tea catechin on the blood pressure and lipids in overweight and obese population-a meta-analysis. Heliyon 2023; 9:e21228. [PMID: 38034724 PMCID: PMC10681946 DOI: 10.1016/j.heliyon.2023.e21228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Overweight and obesity as main health problems harm human beings worldwide. The number of people diagnosed with overweight and obese is gradually increasing. Green tea catechin has been reported to effectively help control body weight in overweight and obese population, and is protectively against the blood pressure and lipids in people with type 2 diabetes and metabolic syndrome. METHODS We retrieved 4 English databases (PubMed, Web of science, Cochrane, Scoups) from inception to April 20, 2023. Two reviewers independently determined eligibility, assessed the reporting quality of included studies, and extracted the data. Data were extracted from eleven studies. The results were presented with the weighted mean differences (WMDs), and the confidence intervals (CIs) was 95 %. The random-effects or fixed-effects model was applied according to the heterogeneity. The subgroup analysis was used to identify the source of heterogeneity. Publication bias was evaluated using funnel plots, Egger's test, and Begg's test. RESULTS Eleven randomized controlled trials (RCTs) inclusion studies were screened from 3072 literature articles, involving 613 overweight and obese patients. After combining all studies, it was found that in overweight and obese people green tea catechin could reduce waist circumference (WC) (pooled WMD = -1.37 cm, 95 % CI: -2.52 to -0.22 cm, p = 0.019), and triglyceride (TG) (pooled WMD = -0.18 mmol/L, 95 % CI: -0.35 to -0.02 mmol/L, p = 0.032), and increase high density lipoprotein cholesterol (HDL-c) (pooled WMD = 0.07 mmol/L, 95 % CI: 0.01-0.14 mmol/L, p = 0.031). CONCLUSION Green tea catechin supplement effectively reduced WC and TG levels and improved HDL-c levels. However, it did not show the significant effect on the blood pressure in overweight and obese people. The present meta-analysis showed a moderate benefit of green tea catechin supplementation on lipid profiles in overweight and obese people.
Collapse
Affiliation(s)
| | | | - Junhui Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Jing Sui
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| |
Collapse
|
17
|
Witte K, Wolk K, Witte-Händel E, Krause T, Kokolakis G, Sabat R. Targeting Metabolic Syndrome in Hidradenitis Suppurativa by Phytochemicals as a Potential Complementary Therapeutic Strategy. Nutrients 2023; 15:3797. [PMID: 37686829 PMCID: PMC10490062 DOI: 10.3390/nu15173797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of ~0.4-1%, therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular, obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining the high medical need for novel therapeutic options. This review directs attention towards the relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate its components. It starts by describing key facts about HS, the specifics of metabolic alterations in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the outcomes of respective randomized controlled clinical trials in healthy people and patients without HS are presented.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Ellen Witte-Händel
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
18
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
19
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
20
|
De la Fuente-Muñoz M, De la Fuente-Fernández M, Román-Carmena M, Amor S, Iglesias-de la Cruz MC, García-Laínez G, Llopis S, Martorell P, Verdú D, Serna E, García-Villalón ÁL, Guilera SI, Inarejos-García AM, Granado M. Supplementation with a New Standardized Extract of Green and Black Tea Exerts Antiadipogenic Effects and Prevents Insulin Resistance in Mice with Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24108521. [PMID: 37239868 DOI: 10.3390/ijms24108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Insulin resistance is one of the main characteristics of metabolic syndrome (MetS) and the main cause of the development of type II diabetes. The high prevalence of this syndrome in recent decades has made it necessary to search for preventive and therapeutic agents, ideally of natural origin, with fewer side effects than conventional pharmacological treatments. Tea is widely known for its medicinal properties, including beneficial effects on weight management and insulin resistance. The aim of this study was to analyze whether a standardized extract of green and black tea (ADM® Complex Tea Extract (CTE)) prevents the development of insulin resistance in mice with MetS. For this purpose, C57BL6/J mice were fed for 20 weeks with a standard diet (Chow), a diet with 56% kcal from fat and sugar (HFHS) or an HFHS diet supplemented with 1.6% CTE. CTE supplementation reduced body weight gain, adiposity and circulating leptin levels. Likewise, CTE also exerted lipolytic and antiadipogenic effects in 3T3-L1 adipocyte cultures and in the C. elegans model. Regarding insulin resistance, CTE supplementation significantly increased plasma adiponectin concentrations and reduced the circulating levels of insulin and the HOMA-IR. Incubation of liver, gastrocnemius muscle and retroperitoneal adipose tissue explants with insulin increased the pAkt/Akt ratio in mice fed with Chow and HFHS + CTE but not in those fed only with HFHS. The greater activation of the PI3K/Akt pathway in response to insulin in mice supplemented with CTE was associated with a decrease in the expression of the proinflammatory markers Mcp-1, IL-6, IL-1β or Tnf-α and with an overexpression of the antioxidant enzymes Sod-1, Gpx-3, Ho-1 and Gsr in these tissues. Moreover, in skeletal muscle, mice treated with CTE showed increased mRNA levels of the aryl hydrocarbon receptor (Ahr), Arnt and Nrf2, suggesting that the CTE's insulin-sensitizing effects could be the result of the activation of this pathway. In conclusion, supplementation with the standardized extract of green and black tea CTE reduces body weight gain, exerts lipolytic and antiadipogenic effects and reduces insulin resistance in mice with MetS through its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Mario De la Fuente-Muñoz
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | - Marta Román-Carmena
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | - Guillermo García-Laínez
- Nutrition Archer Daniels Midland (ADM) Health & Wellness, Biopolis S. L. Parc Cientific, Universitat de València, 46980 Paterna, Spain
| | - Silvia Llopis
- Nutrition Archer Daniels Midland (ADM) Health & Wellness, Biopolis S. L. Parc Cientific, Universitat de València, 46980 Paterna, Spain
| | - Patricia Martorell
- Nutrition Archer Daniels Midland (ADM) Health & Wellness, Biopolis S. L. Parc Cientific, Universitat de València, 46980 Paterna, Spain
| | - David Verdú
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Eva Serna
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Ángel L García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Sonia I Guilera
- R&D Department of Functional Extracts, ADM® Valencia, 46740 Carcaixent, Spain
| | | | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
21
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
22
|
Churm R, Williams LM, Dunseath G, Prior SL, Bracken RM. The polyphenol epigallocatechin gallate lowers circulating catecholamine concentrations and alters lipid metabolism during graded exercise in man: a randomized cross-over study. Eur J Nutr 2023; 62:1517-1526. [PMID: 36695951 PMCID: PMC10030435 DOI: 10.1007/s00394-023-03092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE Physical exercise is shown to mitigate catecholamine metabolites; however, it is unknown if exercise-induced increases in sympatho-adrenal activity or catecholamine metabolites are influenced by ingestion of specific catechins found within green tea. This study explored the impact of epigallocatechin gallate (EGCG) ingestion on catecholamine metabolism during graded cycle exercise in humans. METHODS Eight males (22.4 ± 3.3 years, BMI:25.7 ± 2.4 kg.m2) performed a randomised, placebo-controlled, single-blind, cross-over trial after consumption (1450 mg) of either EGCG or placebo (PLAC) and performed graded cycling to volitional exhaustion. Venous bloods were taken at rest, 2 h post-ingestion and after every 3-min stage. Blood variables were analysed for catecholamines, catecholamine metanephrines and metabolic variables at rest, 2 h post-ingestion (POST-ING), peak rate of lipid oxidation (FATpeak), lactate threshold (LT) and peak rate of oxygen consumption (VO2peak). Data were analysed using SPSS (Version 26). RESULTS Resting catecholamine and metanephrines were similar between trials. Plasma adrenaline (AD) was lower in ECGC treatment group between trials at FATpeak (P < 0.05), LT (P < 0.001) and VO2peak (P < 0.01). Noradrenaline (NA) was lower under EGCG at POST (P < 0.05), FATpeak (P < 0.05), LT (P < 0.01) and VO2peak (P < 0.05) compared to PLAC. Metanephrines, glucose and lactate increased similarly with exercise intensity in both trials. Lipid oxidation rate was 32% lower in EGCG at FATpeak (EGCG 0.33 ± 0.14 vs. PLAC 0.49 ± 0.11 g.min-1, P < 0.05). Cycle time to exhaustion was similar (NS). CONCLUSION Acute EGCG supplementation reduced circulating catecholamines but not; metanephrine, glucose or lactates, response to graded exercise. Lower circulating catecholamines may explain a lower lipid oxidation rate.
Collapse
Affiliation(s)
- Rachel Churm
- Applied Sports Technology Exercise and Medicine Research Centre (A-STEM), College of Engineering, Faculty of Science and Engineering, Swansea University, Engineering East, Bay Campus, Swansea, SA1 8EN, UK.
- Diabetes Research Group, Swansea University, Singleton Park, Swansea, UK.
| | - Liam M Williams
- Applied Sports Technology Exercise and Medicine Research Centre (A-STEM), College of Engineering, Faculty of Science and Engineering, Swansea University, Engineering East, Bay Campus, Swansea, SA1 8EN, UK
| | - Gareth Dunseath
- Diabetes Research Group, Swansea University, Singleton Park, Swansea, UK
| | - Sarah L Prior
- Medical School, Swansea University, Grove Building, Swansea, UK
| | - Richard M Bracken
- Applied Sports Technology Exercise and Medicine Research Centre (A-STEM), College of Engineering, Faculty of Science and Engineering, Swansea University, Engineering East, Bay Campus, Swansea, SA1 8EN, UK
- Diabetes Research Group, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
23
|
Yu S, Wang B, Li G, Guo X, Yang H, Sun Y. Habitual Tea Consumption Increases the Incidence of Metabolic Syndrome in Middle-Aged and Older Individuals. Nutrients 2023; 15:nu15061448. [PMID: 36986178 PMCID: PMC10055940 DOI: 10.3390/nu15061448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
In middle-aged and elderly individuals, the relationship between tea consumption and incident metabolic syndrome (MetS) is still unclear. Therefore, this study intends to figure out the relationship between tea-drinking frequency and MetS in rural middle-aged and older Chinese residents. In the Northeast China Rural Cardiovascular Health Study, 3632 middle-aged or older individuals (mean age 57 ± 8, 55.2% men) without MetS were included at baseline during 2012–2013 and were followed up on between 2015–2017. Participants showing differential tea consumption frequency were divided into the following classes: non-habitual tea drinkers, occasional tea drinkers, 1–2 times/day drinkers, and ≥3 times/day drinkers. Data showed that non-habitual tea drinking was more common among women. The frequency of tea consumption was higher in ethnic groups other than Han and among singles, as well as in concurrent smokers and drinkers and individuals with primary or lower educational status. The increasing tea consumption was in line with baseline elevations in body mass index, systolic and diastolic blood pressure, high-density lipoprotein cholesterol (HDL-C), and AST/ALT ratio. Multivariate logistic regression analysis confirmed that occasional tea drinking increased the incidence of low HDL-C [OR (95% CI): 1.268 (1.015, 1.584)], high waist circumference [OR (95% CI): 1.336 (1.102, 1.621)], and MetS [OR (95% CI): 1.284 (1.050, 1.570)]. In addition, 1–2 times/day tea drinking increased the cumulative incidence of high TG [OR (95% CI): 1.296 (1.040, 1.616)], high waist circumference [OR (95% CI): 1.296 (1.044, 1.609)] and MetS [OR (95% CI): 1.376 (1.030, 1.760)]. We demonstrated that regular tea consumption is correlated with a greater incidence of metabolic disorders and MetS. Our findings may help clarify the contradictory association reported between tea drinking and MetS development in middle-aged and older residents of rural China.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Bo Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Guangxiao Li
- Department of Clinical Epidemiology, Institute of Cardiovascular Diseases, First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Hongmei Yang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
- Correspondence: ; Tel.: +86-024-8328-2888; Fax: +86-24-8328-2346
| |
Collapse
|
24
|
Braschi A, Lo Presti R, Abrignani MG, Abrignani V, Traina M. Effects of green tea catechins and exercise training on body composition parameters. Int J Food Sci Nutr 2023; 74:3-21. [PMID: 36446085 DOI: 10.1080/09637486.2022.2150152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
The impact of phytochemicals, as green tea catechins, on body composition measures has become a relevant topic as ongoing epidemiological evidence suggests their potential role in weight loss. Although catechins have been shown to modulate fat and energy metabolism, clinical effects of green tea consumption still remain controversial. Given the role played by physical exercise in weight management, it is important to determine whether the association of catechins and exercise is able to improve outcomes over and above the beneficial effects of exercise alone. Considering that scientific findings on this topic are not entirely consistent, aim of the present review was to assess the current scientific literature regarding the interplay between green tea catechins and exercise in overweight and obese populations. In particular, it was evaluated whether the addition of green tea supplementation to exercise training was able to further improve the exercise-induced changes in body composition parameters.
Collapse
Affiliation(s)
- Annabella Braschi
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Rosalia Lo Presti
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Maurizio Giuseppe Abrignani
- Operative Unit of Cardiology, Department of Medicine, S.Antonio Abate Hospital of Trapani, ASP Trapani, Trapani, Italy
| | - Vincenzo Abrignani
- Operative Unit of Internal Medicine with Stroke Care, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Marcello Traina
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
25
|
Zamani M, Kelishadi MR, Ashtary-Larky D, Amirani N, Goudarzi K, Torki IA, Bagheri R, Ghanavati M, Asbaghi O. The effects of green tea supplementation on cardiovascular risk factors: A systematic review and meta-analysis. Front Nutr 2023; 9:1084455. [PMID: 36704803 PMCID: PMC9871939 DOI: 10.3389/fnut.2022.1084455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose A bulk of observational studies have revealed the protective role of green tea supplementation in cardiovascular diseases. The current systematic review and meta-analysis study aimed to establish the effects of green tea supplementation on cardiovascular risk factors including lipid profile, blood pressure, glycemic control markers and CRP. Methods A systematic literature search of randomized clinical trials (RCTs) that investigated the effects of green tea supplementation and cardiovascular risk factors was undertaken in online databases including PubMed/Medline, Scopus, Web of Science, and Embase using a combination of green tea and cardiovascular risk factors search terms. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Results Among the initial 11,286 studies that were identified from electronic databases search, 55 eligible RCTs with 63 effect sizes were eligible. Results from the random effects meta-analysis showed that GTE supplementation significantly reduced TC (WMD = -7.62; 95% CI: -10.51, -4.73; P = < 0.001), LDL-C (WMD = -5.80; 95% CI: -8.30, -3.30; P = < 0.001), FBS (WMD = -1.67; 95% CI: -2.58, -0.75; P = < 0.001), HbA1c (WMD = -0.15; 95% CI: -0.26, -0.04; P = 0.008), DBP (WMD = -0.87; 95% CI: -1.45, -0.29; P = 0.003), while increasing HDL-C (WMD = 1.85; 95% CI: 0.87, 2.84; P = 0.010). Subgroup analyses based on the duration of supplementation (≥ 12 vs. < 12 weeks), dose of green tea extract (GTE) (≥1,000 vs. < 1,000 mg/d), sex (male, female, and both), baseline serum levels of lipid profile, and glycemic control factors demonstrated different results for some risk factors. Conclusion The current study suggests improvements in the lipid and glycemic profiles following green tea supplementation. These findings support previous evidence showing the health benefits of green tea supplementation on cardiometabolic risk factors.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Tea Plant ( Camellia sinensis): A Current Update on Use in Diabetes, Obesity, and Cardiovascular Disease. Nutrients 2022; 15:nu15010037. [PMID: 36615695 PMCID: PMC9823498 DOI: 10.3390/nu15010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.
Collapse
|
27
|
Ramos-Lopez O, Martinez-Urbistondo D, Vargas-Nuñez JA, Martinez JA. The Role of Nutrition on Meta-inflammation: Insights and Potential Targets in Communicable and Chronic Disease Management. Curr Obes Rep 2022; 11:305-335. [PMID: 36258149 PMCID: PMC9579631 DOI: 10.1007/s13679-022-00490-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Chronic low-grade inflammation may contribute to the onset and progression of communicable and chronic diseases. This review examined the effects and eventual mediation roles of different nutritional factors on inflammation. RECENT FINDINGS Potential nutritional compounds influencing inflammation processes include macro and micronutrients, bioactive molecules (polyphenols), specific food components, and culinary ingredients as well as standardized dietary patterns, eating habits, and chrononutrition features. Therefore, research in this field is still required, taking into account critical aspects of heterogeneity including type of population, minimum and maximum intakes and adverse effects, cooking methods, physiopathological status, and times of intervention. Moreover, the integrative analysis of traditional variables (age, sex, metabolic profile, clinical history, body phenotype, habitual dietary intake, physical activity levels, and lifestyle) together with individualized issues (genetic background, epigenetic signatures, microbiota composition, gene expression profiles, and metabolomic fingerprints) may contribute to the knowledge and prescription of more personalized treatments aimed to improving the precision medical management of inflammation as well as the design of anti-inflammatory diets in chronic and communicable diseases.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, 22390, Tijuana, Baja California, Mexico.
| | | | - Juan A Vargas-Nuñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - J Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain
- Department of Nutrition, Food Science, Physiology and Toxicology, Centre for Nutrition Research, University of Navarra, 31009, Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), 28029, Madrid, Spain
| |
Collapse
|
28
|
Ntamo Y, Jack B, Ziqubu K, Mazibuko-Mbeje SE, Nkambule BB, Nyambuya TM, Mabhida SE, Hanser S, Orlando P, Tiano L, Dludla PV. Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Crit Rev Food Sci Nutr 2022; 64:87-109. [PMID: 35916835 DOI: 10.1080/10408398.2022.2104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigallocatechin gallate (EGCG) is one of the most abundant and powerful flavonoids contained in green tea. Because of the global increase in green tea consumption, there has been a general interest in understanding its health benefits, including its bioactive compounds like EGCG. Indeed, preclinical evidence already indicates that EGCG demonstrated a strong antioxidant and anti-inflammatory properties that could be essential in protecting against metabolic syndrome. The current review explores clinical evidence reporting on the beneficial effects of EGCG supplementation in obese subjects or patients with diverse metabolic complications that include type 2 diabetes and cardiovascular disease. The discussion incorporates the impact of different formulations of EGCG, as well as the effective doses and treatment duration. Importantly, besides highlighting the potential use of EGCG as a nutraceutical, the current review also discusses crucial evidence related to its pharmaceutical development as an agent to hinder metabolic diseases, including its bioavailability and metabolism profile, as well as its well-known biological properties.
Collapse
Affiliation(s)
- Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, South Africa
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
29
|
Pang L, Jiang X, Lian X, Chen J, Song EF, Jin LG, Xia ZY, Ma HC, Cai Y. Caloric restriction-mimetics for the reduction of heart failure risk in aging heart: with consideration of gender-related differences. Mil Med Res 2022; 9:33. [PMID: 35786219 PMCID: PMC9252041 DOI: 10.1186/s40779-022-00389-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
The literature is full of claims regarding the consumption of polyphenol or polyamine-rich foods that offer some protection from developing cardiovascular disease (CVD). This is achieved by preventing cardiac hypertrophy and protecting blood vessels through improving the function of endothelium. However, do these interventions work in the aged human hearts? Cardiac aging is accompanied by an increase in left ventricular hypertrophy, along with diastolic and systolic dysfunction. It also confers significant cardiovascular risks for both sexes. The incidence and prevalence of CVD increase sharply at an earlier age in men than women. Furthermore, the patterns of heart failure differ between sexes, as do the lifetime risk factors. Do caloric restriction (CR)-mimetics, rich in polyphenol or polyamine, delay or reverse cardiac aging equally in both men and women? This review will discuss three areas: (1) mechanisms underlying age-related cardiac remodeling; (2) gender-related differences and potential mechanisms underlying diminished cardiac response in older men and women; (3) we select a few polyphenol or polyamine rich compounds as the CR-mimetics, such as resveratrol, quercetin, curcumin, epigallocatechin gallate and spermidine, due to their capability to extend health-span and induce autophagy. We outline their abilities and issues on retarding aging in animal hearts and preventing CVD in humans. We discuss the confounding factors that should be considered for developing therapeutic strategies against cardiac aging in humans.
Collapse
Affiliation(s)
- Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Jiang
- Health Promotion Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, Guangdong, China
| | - Er-Fei Song
- Department of Metabolic and Bariatric Surgery, Jinan University First Affiliated Hospital, Guangzhou, 510630, China.,Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Lei-Gang Jin
- Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zheng-Yuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Hai-Chun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
30
|
Lu F, Zhang G, Zhu Y, Liu Z. (-)-Epigallocatechin Gallate Attenuates Spinal Motoneuron Death Induced by Brachial Plexus Root Avulsion in Rats. Curr Med Chem 2022; 29:5139-5154. [PMID: 35579165 DOI: 10.2174/0929867329666220509204151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
Background:
Recent studies have indicated that epigallocatechin gallate (EGCG) benefits a variety of neurological insults. This study was performed to investigate the neuroprotective effect of EGCG after brachial plexus root avulsion in SD rats.
Methods:
One hundred twenty SD rats were randomized into the following three groups: an EGCG group, an Avulsion group, and a Sham group. There were 40 rats in each group. EGCG (100 mg/kg, i.p.) or normal saline was administered to rats immediately following the injuries. The treatment was continued from day 1 to day 7, and the animals were sacrificed on days 3, 7, 14 and 28 post-surgery for the harvesting of spinal cord samples for Nissl staining, immunohistochemistry (caspase-3, p-JNK, p-c-Jun) and western blot analysis (p-JNK, JNK, p-c-Jun, c-Jun).
Results:
EGCG treatment caused significant increases in the percentage of surviving motoneurons at days 14 and 28 (P<0.05) compared to the control animals. At days 3 and 7 after avulsion, the numbers of caspase-3-positive motoneurons in the EGCG-treated animals were significantly fewer than in the control animals (P<0.05). The numbers of p-JNK-positive motoneurons and the ratio of p-JNK/JNK were no significant differences between the Avulsion group and the EGCG-treated group after injury at any time point. The numbers of p-c-Jun-positive motoneurons and the ratio of p-c-Jun/c-Jun were significantly lower in EGCG-treated group compared with the Avulsion group at 3d and 7d after injury (p<0.05).
Conclusions:
Our results indicated that motoneurons were protected by EGCG against the cell death induced by brachial plexus root avulsion, and this effect was correlated with inhibiting c-Jun phosphorylation.
Collapse
Affiliation(s)
- Fatai Lu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Guodong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Yingkang Zhu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| |
Collapse
|
31
|
Mehmood S, Maqsood M, Mahtab N, Khan MI, Sahar A, Zaib S, Gul S. Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies. J Food Biochem 2022; 46:e14189. [PMID: 35474461 DOI: 10.1111/jfbc.14189] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health-promoting effects. It possesses anti-obesity, antimicrobial, anticancer, anti-inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described. PRACTICAL APPLICATIONS: The main green tea constituent EGCG possesses several health-promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica-based EGCG-NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.
Collapse
Affiliation(s)
- Shomaila Mehmood
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, P. R. China
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Nazia Mahtab
- School of Resources and Environmental Engineering, Anhui University, Hefei, P. R. China
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Sania Zaib
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shehla Gul
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
32
|
Abunofal O, Mohan C. Salubrious Effects of Green Tea Catechins on Fatty Liver Disease: A Systematic Review. MEDICINES 2022; 9:medicines9030020. [PMID: 35323719 PMCID: PMC8949532 DOI: 10.3390/medicines9030020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 01/26/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a polyphenol green tea catechin with potential health benefits and therapeutic effects in non-alcoholic fatty liver disease (NAFLD), a common liver disorder that adversely affects liver function and lipid metabolism. This systematic review surveyed the effects of EGCG or green tea extract (GTE) on NAFLD reported in studies involving rodent models or humans with a focus on clinicopathologic outcomes, lipid and carbohydrate metabolism, and inflammatory, oxidative stress, and liver injury markers. Articles involving clinical efficacy of EGCG/GTE on human subjects and rodent models were gathered by searching the PUBMED database and by referencing additional articles identified from other literature reviews. EGCG or GTE supplementation reduced body weight, adipose tissue deposits, and food intake. Mechanistically, the majority of these studies confirmed that EGCG or GTE supplementation plays a significant role in regulating lipid and glucose metabolism and expression of genes involved in lipid synthesis. Importantly, EGCG and GTE supplementation were shown to have beneficial effects on oxidative stress-related pathways that activate pro-inflammatory responses, leading to liver damage. In conclusion, green tea catechins are a potentially useful treatment option for NAFLD. More research is required to determine the ideal dosage, treatment duration, and most effective delivery method of EGCG or GTE, and to provide more definitive conclusions by performing large, randomized clinical trials.
Collapse
|
33
|
Murakami A. Novel mechanisms underlying bioactivities of polyphenols via hormesis. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Macêdo APA, Gonçalves MDS, Barreto Medeiros JM, David JM, Villarreal CF, Macambira SG, Soares MBP, Couto RD. Potential therapeutic effects of green tea on obese lipid profile - a systematic review. Nutr Health 2022; 28:401-415. [PMID: 35014893 DOI: 10.1177/02601060211073236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Green tea, obtained from the plant Camellis sinensis, is one of the oldest drinks in the world and contains numerous bioactive compounds. Studies have demonstrated the efficacy of green tea in preventing obesity and cardiovascular diseases that may be related to the reduction of lipid levels. Aim: This study aimed to evidence, through a systematic review, the therapeutic potential of green tea on the lipid profile in preclinical studies in obese animals and clinical studies in obese individuals. Methods: This systematic review follows the recommendations of the preferred report items for systematic reviews and meta-analyses. The electronic databases, PubMed (Medline), Science Direct, Scopus, and Web of Science were consulted. Articles from January 2009 to December 2019 were selected. Results: This search resulted in twenty-nine articles were included cirtically reviewed. In experimental studies, green tea administration has been shown to reduce total cholesterol, triglycerides and low-density lipoprotein cholesterol in animals exposed to obesity-inducing diet. In humans' studies green tea was not shown to be effective for obese lipid control. Because supplementation with green tea extract reduced total cholesterol, triglycerides, low-density lipoprotein for three months at a specific dose. Conclusion: Therefore, green tea appears to act as a protective agent for dyslipidemia in obesity-induced animals. In human studies, green tea has not been shown to be effective in controlling obese lipids.
Collapse
Affiliation(s)
- Ana Paula Azevêdo Macêdo
- Postgraduate Program in Food Sciences, Faculty of Pharmacy, 28111Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mariane Dos Santos Gonçalves
- Postgraduate Program in Food Sciences, Faculty of Pharmacy, 28111Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Jorge Mauricio David
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Simone Garcia Macambira
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- Laboratory of Tissue Engineering and Immuno Pharmacology, 42509Research Center Gonçalo Moniz, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Ricardo David Couto
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
35
|
Yao J, Zhang Y, Zhao J, Wang XZ, Lin YP, Sun L, Lu QY, Fan GJ. Efficacy of flavonoids-containing supplements on insulin resistance and associated metabolic risk factors in overweight and obese subjects: a systematic review and meta-analysis of 25 randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:917692. [PMID: 35937836 PMCID: PMC9355558 DOI: 10.3389/fendo.2022.917692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Obesity is becoming a global epidemic. Flavonoids, with anti-inflammatory and antioxidative functions, are proposed to treat insulin resistance (IR) in obese subjects. We aimed to evaluate the effectiveness and safety of flavonoids-containing supplements on IR and associated metabolic risk factors in overweight and obese participants. METHODS Randomized controlled trials (RCTs) involving flavonoids-containing supplements used to treat overweight and obese subjects with results of IR, other associated metabolic risk factors, and adverse effects published were retrieved from 5 electronic databases from the year of inception to January 2, 2022. RESULTS Twenty-five RCTs (n = 1950) were included. Pooled results demonstrated that HOMA-IR in the group receiving flavonoids-containing supplements significantly decreased versus the control group (WMD = -0.132, 95% CI: -0.236 to -0.027, p = 0.013). Subgroup analyses showed that HOMA-IR in the subgroup receiving flavonoid-containing mixtures significantly decreased (WMD = -0.25, 95% CI: -0.43 to -0.06, p = 0.008), whereas such result was not found in the singly-used flavonoids subgroup (WMD = -0.08, 95% CI: -0.20 to 0.05, p = 0.240). In addition, QUICKI in the experimental group had an increasing trend compared to that in the control group (WMD = 0.01, 95% CI: -0.00 to 0.02, p = 0.065). For secondary outcomes, FBG, FBI, TC, TG, SBP, weight, BMI, and WHR in the group receiving flavonoids-containing supplements dropped significantly compared to those in the controls (WMD = -0.05, 95% CI: -0.08 to -0.02, p = 0.002; WMD = -0.58, 95% CI: -1.04 to -0.12, p = 0.014; WMD = -0.04, 95% CI: -0.06 to -0.03, p < 0.001; WMD = -0.04, 95% CI: -0.05 to -0.03, p < 0.001; WMD = -2.01, 95% CI: -3.17 to -0.86, p = 0.001; WMD = -0.29, 95% CI: -0.49 to -0.09, p = 0.004; WMD = -0.10 95% CI: -0.17 to -0.04, p = 0.003; WMD = -0.10, 95% CI: -0.01 to -0.00, p = 0.015; respectively). Adverse reactions did not differ between the group receiving flavonoids-containing supplements and the control group (RR = 0.97, 95% CI: 0.62 to 1.52, p = 0.905). CONCLUSION This study showed that flavonoids-containing supplements may be efficacious and safe in improving IR and associated metabolic risk factors in overweight and obese participants. Nevertheless, doubt over the findings remains because limited RCTs per type of flavonoids-containing supplement were investigated, and many of the RCTs had a small sample size. Therefore, the findings must be validated in future research. SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/inplasy-2022-2-0011/, identifier INPLASY202220011.
Collapse
Affiliation(s)
- Jia Yao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuan Zhang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia Zhao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhe Wang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Ping Lin
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qi-Yun Lu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guan-Jie Fan
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Guan-Jie Fan,
| |
Collapse
|
36
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
37
|
The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: a randomized placebo-controlled clinical trial. Sci Rep 2021; 11:19067. [PMID: 34561541 PMCID: PMC8463579 DOI: 10.1038/s41598-021-98612-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Green tea, a widely consumed beverage in Asia, contains green tea catechins effective against obesity, especially epigallocatechin-3-O-gallate (EGCG), but must be consumed in an impractically huge amount daily to elicit its biological effect. Meanwhile, citrus polyphenols have various physiological effects that could enhance EGCG functionality. Here we investigated the antiobesity effect of a combination of EGCG and α-glucosyl hesperidin, a citrus polyphenol, at doses that have not been previously reported to exert antiobesity effects by themselves in any clinical trial. In a randomized, placebo-controlled, double-blinded, and parallel-group-designed clinical trial, 60 healthy Japanese males and females aged 30-75 years consumed green tea combined with α-glucosyl hesperidin (GT-gH), which contained 178 mg α-glucosyl hesperidin and 146 mg EGCG, for 12 weeks. Physical, hematological, blood biochemical, and urine examinations showed that GT-gH is safe to use. At week 12, GT-gH prevented weight gain and reduced body mass index (BMI) compared with the placebo. Especially in those aged < 50 years, triglyceride and body fat percentage decreased at week 6, visceral fat level and body fat percentage decreased at week 12; body weight, BMI, and blood LDL/HDL ratio also decreased. In conclusion, taking GT-gH prevents weight gain, and the antiobesity effect of GT-gH was more pronounced in people aged < 50 years.
Collapse
|
38
|
The effects of supplementation with green tea on energy expenditure rate and thermal energy expenditure in adult individuals: A systematic review of clinical trials. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Huang J, Li W, Liao W, Hao Q, Tang D, Wang D, Wang Y, Ge G. Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet. Food Funct 2021; 11:9924-9935. [PMID: 33095225 DOI: 10.1039/d0fo02152k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green tea polyphenol epigallocatechin-3-gallate (EGCG) may help prevent metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its protective effects are complicated and remain unclear. With the gut-liver axis theory as a foundation, the present study investigated the effects of EGCG on intestinal mucosal immunity in male C57BL/6 mice fed a high-fat Western diet or the diet supplemented with 0.4% dietary EGCG (w/w) for 14 weeks. Dietary EGCG supplementation effectively prevented changes-including excessive accumulation of visceral and hepatic fat, abnormal liver function, and elevated concentrations of serum and liver inflammatory cytokines-known to be caused by high-fat diets. In addition, serum lipopolysaccharide concentrations decreased by 94.3%. RNA sequencing data of differentially expressed genes in ileal samples among three groups indicated that most of the pathways in the Kyoto Encyclopedia of Genes and Genomes in the first 20 enrichment levels were related to immunity and inflammatory reactions. Real-time reverse transcription quantitative polymerase chain reaction was used to determine alterations in expression levels of key genes related to intestinal immune function and inflammatory responses from ileal and colonic samples. Changes in secretory immunoglobulin A in the small intestine, serum, and feces further demonstrated improved intestinal mucosal immunity in the EGCG-treated mice. In conclusion, dietary EGCG effectively prevented the development of NAFLD and significantly improved intestinal mucosal immunity in mice with obesity induced by a high-fat diet. However, whether improved intestinal immune function is the key mechanism underlying the health benefits of dietary EGCG warrants further research.
Collapse
Affiliation(s)
- Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ma Y, Shi Y, Wu Q, Ma W. Epigallocatechin-3-gallate Alleviates Vanadium-Induced Reduction of Antioxidant Capacity via Keap1-Nrf2-sMaf Pathway in the Liver, Kidney, and Ovary of Laying Hens. Biol Trace Elem Res 2021; 199:2707-2716. [PMID: 33405082 DOI: 10.1007/s12011-020-02398-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
This study evaluated the effect of epigallocatechin-3-gallate (EGCG) alleviating the reduction of antioxidant capacity induced by dietary vanadium (V) in the liver, kidney, and ovary of laying hens. Furthermore, Kelch-like ECH-associated protein 1(Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-small Maf proteins (sMaf) pathway was explored to reveal the molecular mechanism. A total of 768 40-week-old Hyline-Brown laying hens were randomly allocated to 4 groups with 8 pens per group and 24 hens per pen. The experimental groups were as follows: control (basal diet); V15, control + 15 mg/kg V; EGCG150, control + 150 mg/kg EGCG; V15 + EGCG150, V15 + 150 mg/kg EGCG. Our results revealed that dietary EGCG supplementation completely alleviated the V-induced reductions of hen-day egg production, average egg weight, Haugh unit, albumen height, eggshell strength, and eggshell thickness. Dietary EGCG supplementation completely prevented the V-induced reductions of serum follicle-stimulating hormone and luteinizing hormone levels. Besides, dietary EGCG supplementation reversed the V-induced increments of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr), and uric acid (UA). In addition, dietary EGCG supplementation partially alleviated the V-induced reductions of the enzyme activities and gene expressions of superoxidative dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSH-Px). Furthermore, dietary EGCG supplementation partially alleviated the V-induced reductions of Nrf2 and sMaf gene expressions, and the increments of Keap1 gene expression. In summary, EGCG partially alleviated V-induced reduction of antioxidant capacity through Keap1-Nrf2-sMaf pathway in the liver, kidney, and ovary of laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
41
|
Sirotkin AV, Kolesárová A. The anti-obesity and health-promoting effects of tea and coffee. Physiol Res 2021; 70:161-168. [PMID: 33992045 DOI: 10.33549/physiolres.934674] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This paper reviews provenance, chemical composition and properties of tea (Camelia sinensis L.) and coffee (Coffee arabica, L. and Coffeacaniphora, L.), their general health effects, as well as the currently available knowledge concerning their action on fat storage, physiological mechanisms of their effects, as well as their safety and recommended dosage for treatment of obesity. Both tea and coffee possess the ability to promote health and to prevent, to mitigate and to treat numerous disorders. This ability can be partially due to presence of caffeine in both plants. Further physiological and medicinal effects could be explained by other molecules (theaflavins, catechins, their metabolites and polyphenols in tea and polyphenol chlorogenic acid in coffee). These plants and plant molecules can be efficient for prevention and treatment of numerous metabolic disorders including metabolic syndrome, cardiovascular diseases, type 2 diabetes and obesity. Both plants and their constituents can reduce fat storage through suppression of adipocyte functions, and support of gut microbiota. In addition, tea can prevent obesity via reduction of appetite, food consumption and food absorption in gastrointestinal system and through the changes in fat metabolism.
Collapse
Affiliation(s)
- A V Sirotkin
- Faculty of Natural Science, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.
| | | |
Collapse
|
42
|
Roberts JD, Willmott AGB, Beasley L, Boal M, Davies R, Martin L, Chichger H, Gautam L, Del Coso J. The Impact of Decaffeinated Green Tea Extract on Fat Oxidation, Body Composition and Cardio-Metabolic Health in Overweight, Recreationally Active Individuals. Nutrients 2021; 13:nu13030764. [PMID: 33652910 PMCID: PMC7996723 DOI: 10.3390/nu13030764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of decaffeinated green tea extract (dGTE), with or without antioxidant nutrients, on fat oxidation, body composition and cardio-metabolic health measures in overweight individuals engaged in regular exercise. Twenty-seven participants (20 females, 7 males; body mass: 77.5 ± 10.5 kg; body mass index: 27.4 ± 3.0 kg·m2; peak oxygen uptake (V.O2peak): 30.2 ± 5.8 mL·kg−1·min−1) were randomly assigned, in a double-blinded manner, either: dGTE (400 mg·d−1 (−)-epigallocatechin−3-gallate (EGCG), n = 9); a novel dGTE+ (400 mg·d−1 EGCG, quercetin (50 mg·d−1) and α-lipoic acid (LA, 150 mg·d−1), n = 9); or placebo (PL, n = 9) for 8 weeks, whilst maintaining standardised, aerobic exercise. Fat oxidation (‘FATMAX’ and steady state exercise protocols), body composition, cardio-metabolic and blood measures (serum glucose, insulin, leptin, adiponectin, glycerol, free fatty acids, total cholesterol, high [HDL-c] and low-density lipoprotein cholesterol [LDL-c], triglycerides, liver enzymes and bilirubin) were assessed at baseline, week 4 and 8. Following 8 weeks of dGTE+, maximal fat oxidation (MFO) significantly improved from 154.4 ± 20.6 to 224.6 ± 23.2 mg·min−1 (p = 0.009), along with a 22.5% increase in the exercise intensity at which fat oxidation was deemed negligible (FATMIN; 67.6 ± 3.6% V.O2peak, p = 0.003). Steady state exercise substrate utilisation also improved for dGTE+ only, with respiratory exchange ratio reducing from 0.94 ± 0.01 at week 4, to 0.89 ± 0.01 at week 8 (p = 0.004). This corresponded with a significant increase in the contribution of fat to energy expenditure for dGTE+ from 21.0 ± 4.1% at week 4, to 34.6 ± 4.7% at week 8 (p = 0.006). LDL-c was also lower (normalised fold change of −0.09 ± 0.06) for dGTE+ by week 8 (p = 0.038). No other significant effects were found in any group. Eight weeks of dGTE+ improved MFO and substrate utilisation during exercise, and lowered LDL-c. However, body composition and cardio-metabolic markers in healthy, overweight individuals who maintained regular physical activity were largely unaffected by dGTE.
Collapse
Affiliation(s)
- Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (M.B.); (R.D.); (L.M.)
- Correspondence: ; Tel.: +44-845-196-5154
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (M.B.); (R.D.); (L.M.)
| | - Liam Beasley
- Department for Health, University of Bath, Bath BA2 7AY, UK;
| | - Mariette Boal
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (M.B.); (R.D.); (L.M.)
| | - Rory Davies
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (M.B.); (R.D.); (L.M.)
| | - Laurence Martin
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (M.B.); (R.D.); (L.M.)
| | - Havovi Chichger
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK; (H.C.); (L.G.)
| | - Lata Gautam
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK; (H.C.); (L.G.)
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943, Fuenlabrada, Spain;
| |
Collapse
|
43
|
Effect of Acute and Chronic Dietary Supplementation with Green Tea Catechins on Resting Metabolic Rate, Energy Expenditure and Respiratory Quotient: A Systematic Review. Nutrients 2021; 13:nu13020644. [PMID: 33671139 PMCID: PMC7922336 DOI: 10.3390/nu13020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
The consumption of green tea catechins (GTC) is associated with modulations of fat metabolism and consequent weight loss. The aim of this systematic review was to investigate the effect of GTC on resting metabolic rate (RMR), energy expenditure (EE), and respiratory quotient (RQ). Eligible studies considered both the chronic and acute intake of GTC-based supplements, with epigallocatechin gallate (EGCG) doses ranging between 100–800 mg. Findings from 15 studies (n = 499 participants) lasting 8–12 weeks (for chronic consumption) or 1–3 days (for acute intake) are summarized. This review reveals the positive effects of GTC supplementation on RQ values (272 subjects). Regarding the effects of acute and chronic GTC supplementation on RMR (244 subjects) and EE (255 subjects), the results did not allow for a definitive conclusion, even though they were promising, because some reported a positive improvement (two studies revealed an increase in RMR: one demonstrated an RMR increase of 43.82 kcal/day and another demonstrated an increase of 260.8 kcal/day, mainly when subjects were also engaged in resistance training exercise). Considering GTC daily dose supplementation, studies in which modifications of energetic parameters occurred, in particular RQ reduction, considered GTC low doses (100–300 mg). GTC may be useful for improving metabolic profiles. Further investigations are needed to better define adequate doses of supplementation.
Collapse
|
44
|
Noce A, Di Lauro M, Di Daniele F, Pietroboni Zaitseva A, Marrone G, Borboni P, Di Daniele N. Natural Bioactive Compounds Useful in Clinical Management of Metabolic Syndrome. Nutrients 2021; 13:630. [PMID: 33669163 PMCID: PMC7919668 DOI: 10.3390/nu13020630] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) is a clinical manifestation characterized by a plethora of comorbidities, including hyperglycemia, abdominal obesity, arterial hypertension, and dyslipidemia. All MetS comorbidities participate to induce a low-grade inflammation state and oxidative stress, typical of this syndrome. MetS is related to an increased risk of cardiovascular diseases and early death, with an important impact on health-care costs. For its clinic management a poly-pharmaceutical therapy is often required, but this can cause side effects and reduce the patient's compliance. For this reason, finding a valid and alternative therapeutic strategy, natural and free of side effects, could represent a useful tool in the fight the MetS. In this context, the use of functional foods, and the assumption of natural bioactive compounds (NBCs), could exert beneficial effects on body weight, blood pressure and glucose metabolism control, on endothelial damage, on the improvement of lipid profile, on the inflammatory state, and on oxidative stress. This review focuses on the possible beneficial role of NBCs in the prevention and in the clinical management of MetS and its comorbidities.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Patrizia Borboni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| |
Collapse
|
45
|
Clark JE, Welch S. Comparing effectiveness of fat burners and thermogenic supplements to diet and exercise for weight loss and cardiometabolic health: Systematic review and meta-analysis. Nutr Health 2021; 27:445-459. [PMID: 33427571 DOI: 10.1177/0260106020982362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Those who are overfat face an onslaught of advice for losing weight, including using dietary supplements that purport to have fat burning capabilities to achieve a reduced body mass, fat mass and improvement in cardiometabolic health in combination with exercise or diet and exercise regimens. AIM To examine long-term effectiveness of supplements for both weight loss and improvements in cardiometabolic health for these individuals. METHODS A PRISMA methods of systematic review was conducted from August 2018 through January 2019 using Medline, PubChem, PubMed, EBOSCO CINHAL and SPORTDiscus, and Google Scholar yielding 23,441 returns of which 21 studies (duration greater than 8 weeks with participant populations of BMI greater than 24.9) were included for meta-analysis. Meta-analysis examined pooled effect size and 95% confidence interval for: body mass, fat mass, fat-free mass, total cholesterol, high-density lipoproteins, low-density lipoproteins, resting metabolic rate. Intra-study effect sizes were compared with previously reported results for diet or diet and exercise in a 2x2 chi-square analysis for the number of studies that induced effects greater than or less than the effect size. RESULTS There is a general trend to show effectiveness (effect size greater than 0.00) for obtaining beneficial changes from use of thermogenic dietary supplements, yet the 95% confidence interval for effect size crossed 0.00 (indicating no benefit). Chi-square comparison to exercise, or combination of diet and exercise, indicates that responses induced from weight-loss supplements were less effective than what is obtained from utilizing exercise, or diet and exercise, without additional weight-loss supplements. CONCLUSION There appears to be limited benefit that may be derived from the inclusion of thermogenic dietary supplements to reduce body mass and improve cardiometabolic health for individuals who are overfat.
Collapse
Affiliation(s)
- James E Clark
- Scientific Health: Education and Human Performance, Brentwood, CA, USA.,Los Medanos College Brentwood Center, Brentwood, USA
| | - Sarah Welch
- Scientific Health: Education and Human Performance, Brentwood, CA, USA
| |
Collapse
|
46
|
Chatree S, Sitticharoon C, Maikaew P, Pongwattanapakin K, Keadkraichaiwat I, Churintaraphan M, Sripong C, Sririwichitchai R, Tapechum S. Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects. Exp Biol Med (Maywood) 2021; 246:163-176. [PMID: 33045853 PMCID: PMC7871112 DOI: 10.1177/1535370220962708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kitchaya Pongwattanapakin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanakarn Sripong
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
47
|
Sciarretta S, Forte M, Castoldi F, Frati G, Versaci F, Sadoshima J, Kroemer G, Maiuri MC. Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc Res 2020; 117:1434-1449. [PMID: 33098415 DOI: 10.1093/cvr/cvaa297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction mimetics (CRMs) are emerging as potential therapeutic agents for the treatment of cardiovascular diseases. CRMs include natural and synthetic compounds able to inhibit protein acetyltransferases, to interfere with acetyl coenzyme A biosynthesis, or to activate (de)acetyltransferase proteins. These modifications mimic the effects of caloric restriction, which is associated with the activation of autophagy. Previous evidence demonstrated the ability of CRMs to ameliorate cardiac function and reduce cardiac hypertrophy and maladaptive remodelling in animal models of ageing, mechanical overload, chronic myocardial ischaemia, and in genetic and metabolic cardiomyopathies. In addition, CRMs were found to reduce acute ischaemia-reperfusion injury. In many cases, these beneficial effects of CRMs appeared to be mediated by autophagy activation. In the present review, we discuss the relevant literature about the role of different CRMs in animal models of cardiac diseases, emphasizing the molecular mechanisms underlying the beneficial effects of these compounds and their potential future clinical application.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Versaci
- Division of Cardiology, S. Maria Goretti Hospital, 04100 Latina, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, G-609, Newark, NJ 07103, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| |
Collapse
|
48
|
Koonyosying P, Tantiworawit A, Hantrakool S, Utama-Ang N, Cresswell M, Fucharoen S, Porter JB, Srichairatanakool S. Consumption of a green tea extract-curcumin drink decreases blood urea nitrogen and redox iron in β-thalassemia patients. Food Funct 2020; 11:932-943. [PMID: 31950948 DOI: 10.1039/c9fo02424g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The most important cause of death in β-thalassemia major patients is organ dysfunction due to iron deposits. Non-transferrin bound iron (NTBI), labile plasma iron (LPI) and labile iron pool are redox-active forms of iron found in thalassemia. Iron chelation therapy is adopted to counteract the resulting iron overload. Extracts of green tea (GTE) and curcumin exhibit iron-chelating and antioxidant activities in iron-loaded cells and β-thalassemic mice. We have used our GTE-CUR drink to investigate the potential amelioration of iron overload and oxidative stress in transfusion-dependent β-thalassemia (TDT) patients. The patients were enrolled for a control group without and with GTE-CUR treatments (17.3 and 35.5 mg EGCG equivalent). Along with regular chelation therapy, they were daily administered the drink for 60 d. Blood samples were collected at the beginning of the study and after 30 d and 60 d for biochemical and hematological tests. Interestingly, we found a decrease of blood urea nitrogen levels (P < 0.05), along with a tendency for a decrease of NTBI and LPI, and a delay in increasing lipid-peroxidation product levels in the GTE-CUR groups. The findings suggest that GTE-CUR could increase kidney function and diminish redox-active iron in iron overloaded β-thalassemia patients.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
50
|
Lai WF, Baig MMFA, Wong WT, Zhu BT. Epigallocatechin-3-gallate in functional food development: From concept to reality. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|