1
|
Mendoza-de Gives P. Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies. Pathogens 2022; 11:pathogens11060640. [PMID: 35745494 PMCID: PMC9229181 DOI: 10.3390/pathogens11060640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Soil-borne parasitic nematodes cause severe deterioration in the health of crops and supply animals, leading to enormous economic losses in the agriculture and livestock industry worldwide. The traditional strategy to control these parasites has been based on chemically synthesised compounds with parasiticidal activity, e.g., pesticides and anthelmintic drugs, which have shown a negative impact on the environment. These compounds affect the soil’s beneficial microbiota and can also remain as toxic residues in agricultural crops, e.g., fruits and legumes, and in the case of animal products for human consumption, toxic residues can remain in milk, meat, and sub-products derived from the livestock industry. Other alternatives of control with much less negative environmental impact have been studied, and new strategies of control based on the use of natural nematode enemies have been proposed from a sustainable perspective. In this review, a general view of the problem caused by parasitic nematodes affecting the agriculture and livestock industry, traditional methods of control, and new strategies of control based on eco-friendly alternatives are briefly described, with a special focus on a group of natural nematode antagonists that have been recently explored with promising results against plagues of importance for agricultural and livestock production systems.
Collapse
Affiliation(s)
- Pedro Mendoza-de Gives
- National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), Laboratory of Helminthology, National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos 62550, Mexico
| |
Collapse
|
2
|
Orr JN, Neilson R, Freitag TE, Roberts DM, Davies KG, Blok VC, Cock PJA. Parallel Microbial Ecology of Pasteuria and Nematode Species in Scottish Soils. FRONTIERS IN PLANT SCIENCE 2019; 10:1763. [PMID: 32063916 PMCID: PMC6997879 DOI: 10.3389/fpls.2019.01763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/17/2019] [Indexed: 05/14/2023]
Abstract
Pasteuria spp. are endospore forming bacteria which act as natural antagonists to many of the most economically significant plant parasitic nematodes (PPNs). Highly species-specific nematode suppression may be observed in soils containing a sufficiently high density of Pasteuria spp. spores. This suppression is enacted by the bacteria via inhibition of root invasion and sterilization of the nematode host. Molecular methods for the detection of Pasteuria spp. from environmental DNA (eDNA) have been described; however, these methods are limited in both scale and in depth. We report the use of small subunit rRNA gene metabarcoding to profile Pasteuria spp. and nematode communities in parallel. We have investigated Pasteuria spp. population structure in Scottish soils using eDNA from two sources: soil extracted DNA from the second National Soil Inventory of Scotland (NSIS2); and nematode extracted DNA collected from farms in the East Scotland Farm Network (ESFN). We compared the Pasteuria spp. community culture to both nematode community structure and the physiochemical properties of soils. Our results indicate that Pasteuria spp. populations in Scottish soils are broadly dominated by two sequence variants. The first of these aligns with high identity to Pasteuria hartismeri, a species first described parasitizing Meloidogyne ardenensis, a nematode parasite of woody and perennial plants in northern Europe. The second aligns with a Pasteuria-like sequence which was first recovered from a farm near Edinburgh which was found to contain bacterial feeding nematodes and Pratylenchus spp. encumbered by Pasteuria spp. endospores. Further, soil carbon, moisture, bulk density, and pH showed a strong correlation with the Pasteuria spp. community composition. These results indicate that metabarcoding is appropriate for the sensitive, specific, and semi-quantitative profiling of Pasteuria species from eDNA.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- *Correspondence: Jamie N. Orr,
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Thomas E. Freitag
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - David M. Roberts
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Keith G. Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Peter J. A. Cock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
3
|
Davies KG. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp. ADVANCES IN PARASITOLOGY 2009; 68:211-45. [PMID: 19289196 DOI: 10.1016/s0065-308x(08)00609-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Keith G Davies
- Plant Pathology and Microbiology, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
4
|
Davies KG, Rowe JA, Williamson VM. Inter- and intra-specific cuticle variation between amphimictic and parthenogenetic species of root-knot nematode (Meloidogyne spp.) as revealed by a bacterial parasite (Pasteuria penetrans). Int J Parasitol 2007; 38:851-9. [PMID: 18171577 DOI: 10.1016/j.ijpara.2007.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/12/2007] [Accepted: 11/07/2007] [Indexed: 11/29/2022]
Abstract
Specific host-parasite interactions exist between species and strains of plant parasitic root-knot nematodes and the Gram-positive bacterial hyperparasite Pasteuria penetrans. This bacterium produces endospores that adhere to the cuticle of migrating juveniles, germinate and colonise the developing female within roots. Endospore attachment of P. penetrans populations to second-stage juveniles of the root-knot nematode species Meloidogyne incognita and Meloidogyne hapla showed there were interactive differences between bacterial populations and nematode species. Infected females of M. incognita produced a few progeny which were used to establish two nematode lines from single infective juveniles encumbered with either three or 26 endospores. Single juvenile descent lines of each nematode species were produced to test whether cuticle variation was greater within M. hapla lines that reproduce by facultative meiotic parthenogenesis than within lines of M. incognita, which reproduces by obligate parthenogenesis. Assays revealed variability between broods of individual females derived from single second-stage juvenile descent lines of both M. incognita and M. hapla suggesting that progeny derived from a single individual can differ in spore adhesion in both sexual and asexual nematode species. These results suggest that special mechanisms that produced these functional differences in the cuticle surface may have evolved in both sexually and asexually reproducing nematodes as a strategy to circumvent infection by this specialised hyperparasite.
Collapse
Affiliation(s)
- K G Davies
- Nematode Interactions Unit, Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, UK.
| | | | | |
Collapse
|
5
|
Tian B, Yang J, Zhang KQ. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 2007; 61:197-213. [PMID: 17651135 DOI: 10.1111/j.1574-6941.2007.00349.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
As a group of important natural enemies of nematode pests, nematophagous bacteria exhibit diverse modes of action: these include parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; inducing systemic resistance of plants; and promoting plant health. They act synergistically on nematodes through the direct suppression of nematodes, promoting plant growth, and facilitating the rhizosphere colonization and activity of microbial antagonists. This review details the nematophagous bacteria known to date, including parasitic bacteria, opportunistic parasitic bacteria, rhizobacteria, Cry protein-forming bacteria, endophytic bacteria and symbiotic bacteria. We focus on recent research developments concerning their pathogenic mechanisms at the biochemical and molecular levels. Increased understanding of the molecular basis of the various pathogenic mechanisms of the nematophagous bacteria could potentially enhance their value as effective biological control agents. We also review a number of molecular biological approaches currently used in the study of bacterial pathogenesis in nematodes. We discuss their merits, limitations and potential uses.
Collapse
Affiliation(s)
- Baoyu Tian
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | | | | |
Collapse
|
6
|
Yook K, Hodgkin J. Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 2006; 175:681-97. [PMID: 17151260 PMCID: PMC1800622 DOI: 10.1534/genetics.106.060087] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific host-pathogen interaction exists between Caenorhabditis elegans and the gram-positive bacterium Microbacterium nematophilum. This bacterium is able to colonize the rectum of susceptible worms and induces a defensive tail-swelling response in the host. Previous mutant screens have identified multiple loci that affect this interaction. Some of these loci correspond to known genes, but many bus genes [those with a bacterially unswollen (Bus) mutant phenotype] have yet to be cloned. We employed Mos1 transposon mutagenesis as a means of more rapidly cloning bus genes and identifying new mutants with altered pathogen response. This approach revealed new infection-related roles for two well-characterized and much-studied genes, egl-8 and tax-4. It also allowed the cloning of a known bus gene, bus-17, which encodes a predicted galactosyltransferase, and of a new bus gene, bus-19, which encodes a novel, albeit ancient, protein. The results illustrate advantages and disadvantages of Mos1 transposon mutagenesis in this system.
Collapse
Affiliation(s)
- Karen Yook
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
7
|
Costa SR, Kerry BR, Bardgett RD, Davies KG. Exploitation of immunofluorescence for the quantification and characterization of small numbers of Pasteuria endospores. FEMS Microbiol Ecol 2006; 58:593-600. [PMID: 17118000 DOI: 10.1111/j.1574-6941.2006.00188.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Pasteuria group of endospore-forming bacteria has been studied as a biocontrol agent of plant-parasitic nematodes. Techniques have been developed for its detection and quantification in soil samples, and these mainly focus on observations of endospore attachment to nematodes. Characterization of Pasteuria populations has recently been performed with DNA-based techniques, which usually require the extraction of large numbers of spores. We describe a simple immunological method for the quantification and characterization of Pasteuria populations. Bayesian statistics were used to determine an extraction efficiency of 43% and a threshold of detection of 210 endospores g(-1) sand. This provided a robust means of estimating numbers of endospores in small-volume samples from a natural system. Based on visual assessment of endospore fluorescence, a quantitative method was developed to characterize endospore populations, which were shown to vary according to their host.
Collapse
Affiliation(s)
- Sofia R Costa
- Nematode Interactions Unit, Rhizosphere Biology Programme, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | | | |
Collapse
|
8
|
Charles L, Carbone I, Davies KG, Bird D, Burke M, Kerry BR, Opperman CH. Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci. J Bacteriol 2005; 187:5700-8. [PMID: 16077116 PMCID: PMC1196054 DOI: 10.1128/jb.187.16.5700-5708.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasteuria penetrans is a gram-positive, endospore-forming eubacterium that apparently is a member of the Bacillus-Clostridium clade. It is an obligate parasite of root knot nematodes (Meloidogyne spp.) and preferentially grows on the developing ovaries, inhibiting reproduction. Root knot nematodes are devastating root pests of economically important crop plants and are difficult to control. Consequently, P. penetrans has long been recognized as a potential biocontrol agent for root knot nematodes, but the fastidious life cycle and the obligate nature of parasitism have inhibited progress on mass culture and deployment. We are currently sequencing the genome of the Pasteuria bacterium and have performed amino acid level analyses of 33 bacterial species (including P. penetrans) using concatenation of 40 housekeeping genes, with and without insertions/deletions (indels) removed, and using each gene individually. By application of maximum-likelihood, maximum-parsimony, and Bayesian methods to the resulting data sets, P. penetrans was found to cluster tightly, with a high level of confidence, in the Bacillus class of the gram-positive, low-G+C-content eubacteria. Strikingly, our analyses identified P. penetrans as ancestral to Bacillus spp. Additionally, all analyses revealed that P. penetrans is surprisingly more closely related to the saprophytic extremophile Bacillus haladurans and Bacillus subtilis than to the pathogenic species Bacillus anthracis and Bacillus cereus. Collectively, these findings strongly imply that P. penetrans is an ancient member of the Bacillus group. We suggest that P. penetrans may have evolved from an ancient symbiotic bacterial associate of nematodes, possibly as the root knot nematode evolved to be a highly specialized parasite of plants.
Collapse
Affiliation(s)
- Lauren Charles
- Center for the Biology of Nematode Parasitism, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Davies KG. Interactions Between Nematodes and Microorganisms: Bridging Ecological and Molecular Approaches. ADVANCES IN APPLIED MICROBIOLOGY 2005; 57:53-78. [PMID: 16002009 DOI: 10.1016/s0065-2164(05)57002-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Keith G Davies
- Nematode Interactions Unit, Rothamsted Research Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| |
Collapse
|
10
|
Duffy B, Schouten A, Raaijmakers JM. Pathogen self-defense: mechanisms to counteract microbial antagonism,. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:501-538. [PMID: 12730392 DOI: 10.1146/annurev.phyto.41.052002.095606] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Natural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to antagonistic and parasitic. Antagonistic and parasitic interactions have been exploited in the area of biological control of plant pathogenic microorganisms. To date, biocontrol is typically viewed from the perspective of how antagonists affect pathogens. This review examines the other face of this interaction: how plant pathogens respond to antagonists and how this can affect the efficacy of biocontrol. Just as microbial antagonists utilize a diverse arsenal of mechanisms to dominate interactions with pathogens, pathogens have surprisingly diverse responses to counteract antagonism. These responses include detoxification, repression of biosynthetic genes involved in biocontrol, active efflux of antibiotics, and antibiotic resistance. Understanding pathogen self-defense mechanisms for coping with antagonist assault provides a novel approach to improving the durability of biologically based disease control strategies and has implications for the deployment of transgenes (microorganisms or plants).
Collapse
Affiliation(s)
- Brion Duffy
- Swiss Federal Research Center for Fruit Production, Viticulture and Horticulture, FAW, Postfach 185, CH-8820 Wadenswil, Switzerland.
| | | | | |
Collapse
|