1
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
2
|
Effect of low complexity regions within the PvMSP3α block II on the tertiary structure of the protein and implications to immune escape mechanisms. BMC STRUCTURAL BIOLOGY 2019; 19:6. [PMID: 30917807 PMCID: PMC6437935 DOI: 10.1186/s12900-019-0104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 01/24/2023]
Abstract
Background Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is a promising vaccine candidate which has shown strong association with immunogenicity and protectiveness. Its use is however complicated by evolutionary plasticity features which enhance immune evasion. Low complexity regions (LCRs) provide plasticity in surface proteins of Plasmodium species, but its implication in vaccine design remain unexplored. Here population genetic, comparative phylogenetic and structural biology analysis was performed on the gene encoding PvMSP3α. Results Three LCRs were found in PvMSP3α block II. Both the predicted tertiary structure of the protein and the phylogenetic trees based on this region were influenced by the presence of the LCRs. The LCRs were mainly B cell epitopes within or adjacent. In addition a repeat motif mimicking one of the B cell epitopes was found within the PvMSP3a block II low complexity region. This particular B cell epitope also featured rampant alanine substitutions which might impair antibody binding. Conclusion The findings indicate that PvMSP3α block II possesses LCRs which might confer a strong phenotypic plasticity. The phenomenon of phenotypic plasticity and implication of LCRs in malaria immunology in general and vaccine candidate genes in particular merits further exploration. Electronic supplementary material The online version of this article (10.1186/s12900-019-0104-0) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Das SC, Morales RA, Seow J, Krishnarjuna B, Dissanayake R, Anders RF, MacRaild CA, Norton RS. Lipid interactions modulate the structural and antigenic properties of the C-terminal domain of the malaria antigen merozoite surface protein 2. FEBS J 2017; 284:2649-2662. [DOI: 10.1111/febs.14135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/18/2017] [Accepted: 06/12/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Sreedam C. Das
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Rodrigo A.V. Morales
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Jeffrey Seow
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Ravindu Dissanayake
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Australia
| | - Robin F. Anders
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Raymond S. Norton
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| |
Collapse
|
4
|
Durand J, Jacquet M, Rais O, Gern L, Voordouw MJ. Fitness estimates from experimental infections predict the long-term strain structure of a vector-borne pathogen in the field. Sci Rep 2017; 7:1851. [PMID: 28500292 PMCID: PMC5431797 DOI: 10.1038/s41598-017-01821-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022] Open
Abstract
The populations of many pathogen species consist of a collection of common and rare strains but the factors underlying this strain-specific variation in frequency are often unknown. Understanding frequency variation among strains is particularly challenging for vector-borne pathogens where the strain-specific fitness depends on the performance in both the vertebrate host and the arthropod vector. Two sympatric multiple-strain tick-borne pathogens, Borrelia afzelii and B. garinii, that use the same tick vector, Ixodes ricinus, but different vertebrate hosts were studied. 454-sequencing of the polymorphic ospC gene was used to characterize the community of Borrelia strains in a local population of I. ricinus ticks over a period of 11 years. Estimates of the reproduction number (R0), a measure of fitness, were obtained for six strains of B. afzelii from a previous laboratory study. There was substantial variation in prevalence among strains and some strains were consistently common whereas other strains were consistently rare. In B. afzelii, the strain-specific estimates of R0 in laboratory mice explained over 70% of the variation in the prevalences of the strains in our local population of ticks. Our study shows that laboratory estimates of fitness can predict the community structure of multiple-strain pathogens in the field.
Collapse
Affiliation(s)
- Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lise Gern
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
5
|
Gitaka JN, Takeda M, Kimura M, Idris ZM, Chan CW, Kongere J, Yahata K, Muregi FW, Ichinose Y, Kaneko A, Kaneko O. Selections, frameshift mutations, and copy number variation detected on the surf 4.1 gene in the western Kenyan Plasmodium falciparum population. Malar J 2017; 16:98. [PMID: 28253868 PMCID: PMC5335827 DOI: 10.1186/s12936-017-1743-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum SURFIN4.1 is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf 4.1 sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand. RESULTS Positively significant departures from neutral expectations were detected on the surf 4.1 region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf 4.1 gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36). CONCLUSIONS The authors infer that the high polymorphism of SURFIN4.1 Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1 Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1 on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.
Collapse
Affiliation(s)
- Jesse N. Gitaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Mika Takeda
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Masatsugu Kimura
- Radioisotope Centre, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Chim W. Chan
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
| | - James Kongere
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Kazuhide Yahata
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Francis W. Muregi
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Yoshio Ichinose
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Akira Kaneko
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Osamu Kaneko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| |
Collapse
|
6
|
De Silva JR, Lau YL, Fong MY. Genetic clustering and polymorphism of the merozoite surface protein-3 of Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Parasit Vectors 2017; 10:2. [PMID: 28049516 PMCID: PMC5209848 DOI: 10.1186/s13071-016-1935-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in P. knowlesi clinical samples from Peninsular Malaysia. Methods Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008–2012). The pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3 sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3 were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes. Results From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and haplotype network analyses revealed that the haplotypes clustered into two distinct groups. Conclusions A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region (Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human knowlesi malaria infection still occur. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1935-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeremy Ryan De Silva
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Chaurio RA, Pacheco MA, Cornejo OE, Durrego E, Stanley CE, Castillo AI, Herrera S, Escalante AA. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection. PLoS Negl Trop Dis 2016; 10:e0004786. [PMID: 27347876 PMCID: PMC4922550 DOI: 10.1371/journal.pntd.0004786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/28/2016] [Indexed: 11/23/2022] Open
Abstract
Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. Plasmodium vivax is the most prevalent human malarial parasite outside Africa. The fact that patients can relapse due to the parasite dormant liver stages, among other biologic and epidemiologic characteristics of vivax malaria, facilitates the persistence of the disease in many endemic areas. These challenges have fueled the search for new control tools, including transmission blocking (TB) vaccines targeting the parasite sexual stages. Here we study the genetic diversity of two major TB vaccine antigens, Pvs25 and Pvs28. We show that these genes are relatively conserved worldwide but still harbor diversity that is not evenly distributed across the genes. These patterns are shared by the same proteins in closely related parasite species suggesting their functional importance. We also identify strong geographic differentiation between the circulating variants found in Asia and the Americas. Finally, evolutionary genetic analyses indicate that the observed variation in both genes could be maintained by natural selection. Thus, these polymorphisms may confer an adaptive advantage to the parasite. These results indicate that the genetic variation found in these genes and their geographic distribution should be considered by vaccine developers.
Collapse
Affiliation(s)
- Ricardo A Chaurio
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Andreína Pacheco
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ester Durrego
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Craig E Stanley
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Andreína I Castillo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Cross-Immunity and Community Structure of a Multiple-Strain Pathogen in the Tick Vector. Appl Environ Microbiol 2015; 81:7740-52. [PMID: 26319876 DOI: 10.1128/aem.02296-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
Many vector-borne pathogens consist of multiple strains that circulate in both the vertebrate host and the arthropod vector. Characterization of the community of pathogen strains in the arthropod vector is therefore important for understanding the epidemiology of mixed vector-borne infections. Borrelia afzelii and B. garinii are two species of tick-borne bacteria that cause Lyme disease in humans. These two sympatric pathogens use the same tick, Ixodes ricinus, but are adapted to different classes of vertebrate hosts. Both Borrelia species consist of multiple strains that are classified using the highly polymorphic ospC gene. Vertebrate cross-immunity against the OspC antigen is predicted to structure the community of multiple-strain Borrelia pathogens. Borrelia isolates were cultured from field-collected I. ricinus ticks over a period spanning 11 years. The Borrelia species of each isolate was identified using a reverse line blot (RLB) assay. Deep sequencing was used to characterize the ospC communities of 190 B. afzelii isolates and 193 B. garinii isolates. Infections with multiple ospC strains were common in ticks, but vertebrate cross-immunity did not influence the strain structure in the tick vector. The pattern of genetic variation at the ospC locus suggested that vertebrate cross-immunity exerts strong selection against intermediately divergent ospC alleles. Deep sequencing found that more than 50% of our isolates contained exotic ospC alleles derived from other Borrelia species. Two alternative explanations for these exotic ospC alleles are cryptic coinfections that were not detected by the RLB assay or horizontal transfer of the ospC gene between Borrelia species.
Collapse
|
9
|
Gupta B, Reddy BPN, Fan Q, Yan G, Sirichaisinthop J, Sattabongkot J, Escalante AA, Cui L. Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS One 2015; 10:e0135396. [PMID: 26266539 PMCID: PMC4534382 DOI: 10.1371/journal.pone.0135396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide). Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - B. P. Niranjan Reddy
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, United States of America
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
- * E-mail:
| |
Collapse
|
10
|
Antigenic characterization of an intrinsically unstructured protein, Plasmodium falciparum merozoite surface protein 2. Infect Immun 2012; 80:4177-85. [PMID: 22966050 DOI: 10.1128/iai.00665-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an abundant glycosylphosphatidylinositol (GPI)-anchored protein of Plasmodium falciparum, which is a potential component of a malaria vaccine. As all forms of MSP2 can be categorized into two allelic families, a vaccine containing two representative forms of MSP2 may overcome the problem of diversity in this highly polymorphic protein. Monomeric recombinant MSP2 is an intrinsically unstructured protein, but its conformational properties on the merozoite surface are unknown. This question is addressed here by analyzing the 3D7 and FC27 forms of recombinant and parasite MSP2 using a panel of monoclonal antibodies raised against recombinant MSP2. The epitopes of all antibodies, mapped using both a peptide array and by nuclear magnetic resonance (NMR) spectroscopy on full-length recombinant MSP2, were shown to be linear. The antibodies revealed antigenic differences, which indicate that the conserved N- and C-terminal regions, but not the central variable region, are less accessible in the parasite antigen. This appears to be an intrinsic property of parasite MSP2 and is not dependent on interactions with other merozoite surface proteins as the loss of some conserved-region epitopes seen using the immunofluorescence assay (IFA) on parasite smears was also seen on Western blot analyses of parasite lysates. Further studies of the structural basis of these antigenic differences are required in order to optimize recombinant MSP2 constructs being evaluated as potential vaccine components.
Collapse
|
11
|
Mahamdallie SS, Ready PD. No recent adaptive selection on the apyrase of Mediterranean Phlebotomus: implications for using salivary peptides to vaccinate against canine leishmaniasis. Evol Appl 2012; 5:293-305. [PMID: 25568049 PMCID: PMC3353351 DOI: 10.1111/j.1752-4571.2011.00226.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/02/2011] [Indexed: 12/12/2022] Open
Abstract
Vaccine development is informed by a knowledge of genetic variation among antigen alleles, especially the distribution of positive and balancing selection in populations and species. A combined approach using population genetic and phylogenetic methods to detect selective signatures can therefore be informative for identifying vaccine candidates. Parasitic Leishmania species cause the disease leishmaniasis in humans and mammalian reservoir hosts after inoculation by female phlebotomine sandflies. Like other arthropod vectors of disease agents, sandflies use salivary peptides to counteract host haemostatic and immunomodulatory responses during bloodfeeding, and these peptides are vaccine candidates because they can protect against Leishmania infection. We detected no contemporary adaptive selection on one salivary peptide, apyrase, in 20 populations of Phlebotomus ariasi, a European vector of Leishmania infantum. Maximum likelihood branch models on a gene phylogeny showed apyrase to be a single copy in P. ariasi but an ancient duplication event associated with temporary positive selection was observed in its sister group, which contains most Mediterranean vectors of L. infantum. The absence of contemporary adaptive selection on the apyrase of P. ariasi may result from this sandfly's opportunistic feeding behaviour. Our study illustrates how the molecular population genetics of arthropods can help investigate the potential of salivary peptides for disease control and for understanding geographical variation in vector competence.
Collapse
Affiliation(s)
| | - Paul D Ready
- Department of Entomology, Natural History Museum London, UK
| |
Collapse
|
12
|
Reeder JC, Wapling J, Mueller I, Siba PM, Barry AE. Population genetic analysis of the Plasmodium falciparum 6-cys protein Pf38 in Papua New Guinea reveals domain-specific balancing selection. Malar J 2011; 10:126. [PMID: 21569602 PMCID: PMC3112457 DOI: 10.1186/1475-2875-10-126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/14/2011] [Indexed: 11/29/2022] Open
Abstract
Background The Plasmodium falciparum merozoite surface protein Pf38 is targeted by antibodies of malaria immune adults and has been shown to be under balancing (immune) selection in a Gambian parasite population, indicating potential as a malaria vaccine candidate. This study explores the population genetics of Pf38 in Papua New Guinea, to determine the extent and geographic distribution of diversity and to measure selective pressure along the length of the gene. Methods Using samples collected during community-based cross-sectional surveys in the Mugil and Wosera regions, the Pf38 genes of 59 P. falciparum isolates were amplified and sequenced. These sequences, along with previously sequenced Gambian and laboratory isolates, were then subjected to an array of population genetic analyses, examining polymorphisms, haplotype diversity and balancing selection. In addition to whole-gene analysis, the two 6-cys domains were considered separately, to investigate domain specific polymorphism and selection. Results Nineteen polymorphic sites were identified in the Pf 38 gene. Of these, 13 were found in the Gambia, 10 in Mugil and 8 in Wosera. Notably, the majority of common polymorphisms were confined to domain I. Although only moderate levels of nucleotide diversity were observed, the haplotype diversity was high in all populations, suggesting extensive recombination. Analyses of the full-length sequence provided only modest evidence for balancing selection. However, there was a strong contrast between domain I, which showed strong evidence for positive balancing selection, and domain II which was neutral. Analyses of the geographic distribution of Pf38 haplotypes showed that four haplotypes accounted for the majority of sequences found world-wide, but there were many more haplotypes unique to the African than the PNG populations. Conclusion This study confirmed previous findings that Pf38 is a polymorphic gene under balancing selection. However, analysing polymorphism and selection across the length of the gene painted a considerably different picture. Domain I is highly polymorphic and the target of significant balancing selection. In contrast, domain II is relatively conserved and does not show evidence of immune selective pressure. The findings have implications for future population genetic studies on vaccine candidates, showing that the biological context must also be considered as a framework for analysis.
Collapse
|
13
|
Ochola LI, Tetteh KKA, Stewart LB, Riitho V, Marsh K, Conway DJ. Allele frequency-based and polymorphism-versus-divergence indices of balancing selection in a new filtered set of polymorphic genes in Plasmodium falciparum. Mol Biol Evol 2010; 27:2344-51. [PMID: 20457586 PMCID: PMC2944029 DOI: 10.1093/molbev/msq119] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signatures of balancing selection operating on specific gene loci in endemic pathogens can identify candidate targets of naturally acquired immunity. In malaria parasites, several leading vaccine candidates convincingly show such signatures when subjected to several tests of neutrality, but the discovery of new targets affected by selection to a similar extent has been slow. A small minority of all genes are under such selection, as indicated by a recent study of 26 Plasmodium falciparum merozoite-stage genes that were not previously prioritized as vaccine candidates, of which only one (locus PF10_0348) showed a strong signature. Therefore, to focus discovery efforts on genes that are polymorphic, we scanned all available shotgun genome sequence data from laboratory lines of P. falciparum and chose six loci with more than five single nucleotide polymorphisms per kilobase (including PF10_0348) for in-depth frequency-based analyses in a Kenyan population (allele sample sizes >50 for each locus) and comparison of Hudson-Kreitman-Aguade (HKA) ratios of population diversity (π) to interspecific divergence (K) from the chimpanzee parasite Plasmodium reichenowi. Three of these (the msp3/6-like genes PF10_0348 and PF10_0355 and the surf(4.1) gene PFD1160w) showed exceptionally high positive values of Tajima's D and Fu and Li's F indices and have the highest HKA ratios, indicating that they are under balancing selection and should be prioritized for studies of their protein products as candidate targets of immunity. Combined with earlier results, there is now strong evidence that high HKA ratio (as well as the frequency-independent ratio of Watterson's /K) is predictive of high values of Tajima's D. Thus, the former offers value for use in genome-wide screening when numbers of genome sequences within a species are low or in combination with Tajima's D as a 2D test on large population genomic samples.
Collapse
Affiliation(s)
- Lynette Isabella Ochola
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Kevin K. A. Tetteh
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Victor Riitho
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - David J. Conway
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
14
|
Osier FHA, Murungi LM, Fegan G, Tuju J, Tetteh KK, Bull PC, Conway DJ, Marsh K. Allele-specific antibodies to Plasmodium falciparum merozoite surface protein-2 and protection against clinical malaria. Parasite Immunol 2010; 32:193-201. [PMID: 20398182 PMCID: PMC2847195 DOI: 10.1111/j.1365-3024.2009.01178.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
IgG and IgG3 antibodies to merozoite surface protein-2 (MSP-2) of Plasmodium falciparum have been associated with protection from clinical malaria in independent studies. We determined whether this protection was allele-specific by testing whether children who developed clinical malaria lacked IgG/IgG3 antibodies specific to the dominant msp2 parasite genotypes detected during clinical episodes. We analysed pre-existing IgG and IgG1/IgG3 antibodies to antigens representing the major dimorphic types of MSP-2 by ELISA. We used quantitative real-time PCR to determine the dominant msp2 alleles in parasites detected in clinical episodes. Over half (55%, 80/146) of infections contained both allelic types. Single or dominant IC1- and FC27-like alleles were detected in 46% and 42% of infections respectively, and both types were equally dominant in 12%. High levels of IgG/IgG3 antibodies to the FC27-like antigen were not significantly associated with a lower likelihood of clinical episodes caused by parasites bearing FC27-like compared to IC1-like alleles, and vice versa for IgG/IgG3 antibodies to the IC1-like antigen. These findings were supported by competition ELISAs which demonstrated the presence of IgG antibodies to allele-specific epitopes within both antigens. Thus, even for this well-studied antigen, the importance of an allele-specific component of naturally acquired protective immunity to malaria remains to be confirmed.
Collapse
Affiliation(s)
- F H A Osier
- KEMRI-Centre for Geographic Medicine Research, Coast, Kilifi, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Regev-Yochay G, Hanage WP, Trzcinski K, Rifas-Shiman SL, Lee G, Bessolo A, Huang SS, Pelton SI, McAdam AJ, Finkelstein JA, Lipsitch M, Malley R. Re-emergence of the type 1 pilus among Streptococcus pneumoniae isolates in Massachusetts, USA. Vaccine 2010; 28:4842-6. [PMID: 20434550 PMCID: PMC2897942 DOI: 10.1016/j.vaccine.2010.04.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
Pneumococcal type 1 pilus proteins have been proposed as potential vaccine candidates. Following conjugate pneumococcal vaccination, the prevalence of the pneumococcal type 1 pilus declined dramatically, a decline associated with the elimination of vaccine-type (VT) strains. Here we show that between 2004 and 2007, there has been a significant increase in pilus prevalence, now exceeding rates from the pre-conjugate vaccine era. This increase is primarily due to non-VT strains. These emerging piliated non-VT strains are mostly novel clones, with some exceptions. The rise in pilus type 1 frequency across multiple distinct genetic backgrounds suggests that the pilus may confer an intrinsic advantage.
Collapse
Affiliation(s)
- Gili Regev-Yochay
- Division of Infectious Diseases, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Andreína Pacheco M, Ryan EM, Poe AC, Basco L, Udhayakumar V, Collins WE, Escalante AA. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2010; 10:655-61. [PMID: 20363375 PMCID: PMC2881667 DOI: 10.1016/j.meegid.2010.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/18/2022]
Abstract
Assessing how natural selection, negative or positive, operates on genes with low polymorphism is challenging. We investigated the genetic diversity of orthologous genes encoding the rhoptry-associated protein 1 (RAP-1), a low polymorphic protein of malarial parasites that is involved in erythrocyte invasion. We applied evolutionary genetic methods to study the polymorphism in RAP-1 from Plasmodium falciparum (n=32) and Plasmodium vivax (n=6), the two parasites responsible for most human malaria morbidity and mortality, as well as RAP-1 orthologous in closely related malarial species found in non-human primates (NHPs). Overall, genes encoding RAP-1 are highly conserved in all Plasmodium spp. included in this investigation. We found no evidence for natural selection, positive or negative, acting on the gene encoding RAP-1 in P. falciparum or P. vivax. However, we found evidence that the orthologous genes in non-human primate parasites (Plasmodium cynomolgi, Plasmodium inui, and Plasmodium knowlesi) are under purifying (negative) selection. We discuss the importance of considering negative selection while studying genes encoding proteins with low polymorphism and how selective pressures may differ among orthologous genes in closely related malarial parasites species.
Collapse
Affiliation(s)
- M. Andreína Pacheco
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501, United States
| | - Elizabeth M. Ryan
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501, United States
| | - Amanda C. Poe
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vectorborne and Enteric Diseases, Coordianting Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Leonardo Basco
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement Cameroon
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vectorborne and Enteric Diseases, Coordianting Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Williams E. Collins
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vectorborne and Enteric Diseases, Coordianting Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Ananias A. Escalante
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501, United States
| |
Collapse
|
17
|
Weedall GD, Conway DJ. Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol 2010; 26:363-9. [PMID: 20466591 DOI: 10.1016/j.pt.2010.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/04/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Parasite antigen genes might evolve under frequency-dependent immune selection. The distinctive patterns of polymorphism that result can be detected using population genetic methods that test for signatures of balancing selection, allowing genes encoding important targets of immunity to be identified. Analyses can be complicated by population structures, histories and features of a parasite's genome. However, new sequencing technologies facilitate scans of polymorphism throughout parasite genomes to identify the most exceptional gene specific signatures. We focus on malaria parasites to illustrate challenges and opportunities for detecting targets of frequency-dependent immune selection to discover new potential vaccine candidates.
Collapse
Affiliation(s)
- Gareth D Weedall
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, UK, L69 7ZB.
| | | |
Collapse
|
18
|
Weir W, Karagenç T, Baird M, Tait A, Shiels BR. Evolution and diversity of secretome genes in the apicomplexan parasite Theileria annulata. BMC Genomics 2010; 11:42. [PMID: 20082698 PMCID: PMC2826314 DOI: 10.1186/1471-2164-11-42] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/18/2010] [Indexed: 11/21/2022] Open
Abstract
Background Little is known about how apicomplexan parasites have evolved to infect different host species and cell types. Theileria annulata and Theileria parva invade and transform bovine leukocytes but each species favours a different host cell lineage. Parasite-encoded proteins secreted from the intracellular macroschizont stage within the leukocyte represent a critical interface between host and pathogen systems. Genome sequencing has revealed that several Theileria-specific gene families encoding secreted proteins are positively selected at the inter-species level, indicating diversification between the species. We extend this analysis to the intra-species level, focusing on allelic diversity of two major secretome families. These families represent a well-characterised group of genes implicated in control of the host cell phenotype and a gene family of unknown function. To gain further insight into their evolution and function, this study investigates whether representative genes of these two families are diversifying or constrained within the T. annulata population. Results Strong evidence is provided that the sub-telomerically encoded SVSP family and the host-nucleus targeted TashAT family have evolved under contrasting pressures within natural T. annulata populations. SVSP genes were found to possess atypical codon usage and be evolving neutrally, with high levels of nucleotide substitutions and multiple indels. No evidence of geographical sub-structuring of allelic sequences was found. In contrast, TashAT family genes, implicated in control of host cell gene expression, are strongly conserved at the protein level and geographically sub-structured allelic sequences were identified among Tunisian and Turkish isolates. Although different copy numbers of DNA binding motifs were identified in alleles of TashAT proteins, motif periodicity was strongly maintained, implying conserved functional activity of these sites. Conclusions This analysis provides evidence that two distinct secretome genes families have evolved under contrasting selective pressures. The data supports current hypotheses regarding the biological role of TashAT family proteins in the management of host cell phenotype that may have evolved to allow adaptation of T. annulata to a specific host cell lineage. We provide new evidence of extensive allelic diversity in representative members of the enigmatic SVSP gene family, which supports a putative role for the encoded products in subversion of the host immune response.
Collapse
Affiliation(s)
- William Weir
- Division of Veterinary Infection and Immunity, University of Glasgow, Faculty of Veterinary Medicine, Institute of Comparative Medicine, Bearsden Road, Glasgow, Scotland, G61 1QH, UK.
| | | | | | | | | |
Collapse
|
19
|
Tetteh KKA, Stewart LB, Ochola LI, Amambua-Ngwa A, Thomas AW, Marsh K, Weedall GD, Conway DJ. Prospective identification of malaria parasite genes under balancing selection. PLoS One 2009; 4:e5568. [PMID: 19440377 PMCID: PMC2679211 DOI: 10.1371/journal.pone.0005568] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/13/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi), and in allele frequency based indices. METHODOLOGY/PRINCIPAL FINDINGS To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA) and McDonald-Kreitman (MK) indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajima's D (TjD) index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96) as well as the positive control ama1 antigen gene (TjD = 1.22). Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates), but no correlation with the MK indices. CONCLUSIONS/SIGNIFICANCE Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.
Collapse
Affiliation(s)
- Kevin K. A. Tetteh
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lynette Isabella Ochola
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- MRC Laboratories, Fajara, Banjul, The Gambia
- KEMRI Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | | | - Alan W. Thomas
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Kevin Marsh
- KEMRI Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Gareth D. Weedall
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David J. Conway
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- MRC Laboratories, Fajara, Banjul, The Gambia
| |
Collapse
|
20
|
Osier FHA, Fegan G, Polley SD, Murungi L, Verra F, Tetteh KKA, Lowe B, Mwangi T, Bull PC, Thomas AW, Cavanagh DR, McBride JS, Lanar DE, Mackinnon MJ, Conway DJ, Marsh K. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun 2008; 76:2240-8. [PMID: 18316390 PMCID: PMC2346713 DOI: 10.1128/iai.01585-07] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 02/09/2008] [Accepted: 02/23/2008] [Indexed: 11/20/2022] Open
Abstract
Individuals living in areas where malaria is endemic are repeatedly exposed to many different malaria parasite antigens. Studies on naturally acquired antibody-mediated immunity to clinical malaria have largely focused on the presence of responses to individual antigens and their associations with decreased morbidity. We hypothesized that the breadth (number of important targets to which antibodies were made) and magnitude (antibody level measured in a random serum sample) of the antibody response were important predictors of protection from clinical malaria. We analyzed naturally acquired antibodies to five leading Plasmodium falciparum merozoite-stage vaccine candidate antigens, and schizont extract, in Kenyan children monitored for uncomplicated malaria for 6 months (n = 119). Serum antibody levels to apical membrane antigen 1 (AMA1) and merozoite surface protein antigens (MSP-1 block 2, MSP-2, and MSP-3) were inversely related to the probability of developing malaria, but levels to MSP-1(19) and erythrocyte binding antigen (EBA-175) were not. The risk of malaria was also inversely associated with increasing breadth of antibody specificities, with none of the children who simultaneously had high antibody levels to five or more antigens experiencing a clinical episode (17/119; 15%; P = 0.0006). Particular combinations of antibodies (AMA1, MSP-2, and MSP-3) were more strongly predictive of protection than others. The results were validated in a larger, separate case-control study whose end point was malaria severe enough to warrant hospital admission (n = 387). These findings suggest that under natural exposure, immunity to malaria may result from high titers antibodies to multiple antigenic targets and support the idea of testing combination blood-stage vaccines optimized to induce similar antibody profiles.
Collapse
Affiliation(s)
- Faith H A Osier
- KEMRI Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Weedall GD, Preston BMJ, Thomas AW, Sutherland CJ, Conway DJ. Differential evidence of natural selection on two leading sporozoite stage malaria vaccine candidate antigens. Int J Parasitol 2007; 37:77-85. [PMID: 17046771 DOI: 10.1016/j.ijpara.2006.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 12/01/2022]
Abstract
Experimental malaria vaccines based on two sporozoite stage candidate antigens of Plasmodium falciparum, the circumsporozoite protein (CSP) and thrombospondin-related adhesive protein (TRAP), have undergone clinical trials of efficacy. The relevance of naturally existing polymorphism in these molecules remains unknown. Sequence polymorphism in the genes encoding these antigens was studied in a Gambian population (sample of 48 trap and 44 csp gene sequences) to test for signatures of selection that would result from naturally acquired immunity. Allele frequency distributions were analyzed and compared with data from another population (in Thailand). Patterns of non-synonymous and synonymous polymorphism in P. falciparum and in Plasmodium vivax were compared with divergence from related species. Results indicate that polymorphism in TRAP is under strong selection for amino acid sequence diversity and that allele frequencies are under balancing selection within the Gambian P. falciparum population. There was no such evidence for CSP, calling into question the idea that most polymorphisms in this gene are under immune selection. There was a weak trend for regions known to encode T cell epitopes to have slightly higher indices suggesting balancing selection. Overall, the results predict more allele-specific immunity to TRAP than to CSP and should be considered in design and efficacy testing of vaccine candidates based on these antigens.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Antibody Formation/genetics
- Antibody Formation/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Child
- Gene Frequency/genetics
- Gene Frequency/immunology
- Genes, Protozoan/genetics
- Genes, Protozoan/immunology
- Humans
- Malaria/genetics
- Malaria/immunology
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/immunology
- Malaria, Vivax/genetics
- Malaria, Vivax/immunology
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Polymorphism, Genetic/genetics
- Polymorphism, Genetic/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Selection, Genetic
- Species Specificity
- Sporozoites/immunology
Collapse
Affiliation(s)
- Gareth D Weedall
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | | | |
Collapse
|
22
|
Abstract
Malaria persists as an undiminished global problem, but the resources available to address it have increased. Many tools for understanding its biology and epidemiology are well developed, with a particular richness of comparative genome sequences. Targeted genetic manipulation is now effectively combined with in vitro culture assays on the most important human parasite, Plasmodium falciparum, and with in vivo analysis of rodent and monkey malaria parasites in their laboratory hosts. Studies of the epidemiology, prevention, and treatment of human malaria have already been influenced by the availability of molecular methods, and analyses of parasite polymorphisms have long had useful and highly informative applications. However, the molecular epidemiology of malaria is currently undergoing its most substantial revolution as a result of the genomic information and technologies that are available in well-resourced centers. It is a challenge for research agendas to face the real needs presented by a disease that largely exists in extremely resource-poor settings, but it is one that there appears to be an increased willingness to undertake. To this end, developments in the molecular epidemiology of malaria are reviewed here, emphasizing aspects that may be current and future priorities.
Collapse
Affiliation(s)
- David J Conway
- Medical Research Council Laboratories, Fajara, P.O. Box 273, Banjul, The Gambia.
| |
Collapse
|
23
|
Verra F, Chokejindachai W, Weedall GD, Polley SD, Mwangi TW, Marsh K, Conway DJ. Contrasting signatures of selection on the Plasmodium falciparum erythrocyte binding antigen gene family. Mol Biochem Parasitol 2006; 149:182-90. [PMID: 16837078 DOI: 10.1016/j.molbiopara.2006.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/12/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Erythrocyte binding antigens of Plasmodium falciparum are involved in erythrocyte invasion, and may be targets of acquired immunity. Of the five eba genes, protein products have been detected for eba-175, eba-181 and eba-140, but not for psieba-165 or ebl-1, providing opportunity for comparative analysis of genetic variation to identify selection. Region II of each of these genes was sequenced from a cross-sectional sample of parasites in an endemic Kenyan population, and the frequency distributions of polymorphisms analysed. A positive value of Tajima's D was observed for eba-175 (D=1.13) indicating an excess of intermediate frequency polymorphisms, while all other genes had negative values, the most negative being ebl-1 (D=-2.35) followed by psieba-165 (D=-1.79). The eba-175 and ebl-1 genes were then studied in a sample of parasites from Thailand, for which a positive Tajima's D value was again observed for eba-175 (D=1.79), and a negative value for ebl-1 (D=-1.85). This indicates that eba-175 is under balancing selection in each population, in strong contrast to the other members of the gene family, particularly ebl-1 and psieba-165 that may have been under recent directional selection. Population expansion simulations were performed under a neutral model, further supporting the departures from neutrality of these genes.
Collapse
Affiliation(s)
- Federica Verra
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ord R, Polley S, Tami A, Sutherland CJ. High sequence diversity and evidence of balancing selection in the Pvmsp3alpha gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol 2005; 144:86-93. [PMID: 16159677 DOI: 10.1016/j.molbiopara.2005.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/04/2005] [Accepted: 08/11/2005] [Indexed: 11/16/2022]
Abstract
The genetic diversity of a defined Plasmodium vivax population from the Venezuelan Amazon was evaluated by direct sequencing of the gene encoding the P. vivax merozoite surface protein-3alpha, Pvmsp3alpha. Three allele sizes (1.9, 1.4 and 1.1kb) were amplified from 58 isolates with frequencies of 59.3%, 21.9% and 18.8%, respectively. 27 Pvmsp3alpha nucleotide sequences were determined, with nine distinct haplotypes observed. The genetic diversity (h) at this single locus was 0.774. The P. vivax population in this region exhibits significant diversity in contrast to the genetically restricted diversity of the sympatric P. falciparum population. Despite sharing vector and human hosts, different control strategies may be required for these two species in this region. Substitution patterns in the conserved C-terminus of Pvmsp3alpha showed a significant departure from neutrality, suggesting these polymorphisms are being maintained by frequency-dependent selection as the result of an effective immune response from the host. Our findings support the use of Pvmsp3alpha genotyping as a tool for monitoring interventions aimed at control of P. vivax.
Collapse
Affiliation(s)
- Rosalynn Ord
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | | | | | | |
Collapse
|
25
|
Anderson TJC, Nair S, Sudimack D, Williams JT, Mayxay M, Newton PN, Guthmann JP, Smithuis FM, Tran TH, van den Broek IVF, White NJ, Nosten F. Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites. Mol Biol Evol 2005; 22:2362-74. [PMID: 16093566 DOI: 10.1093/molbev/msi235] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach.
Collapse
Affiliation(s)
- Tim J C Anderson
- Southwest Foundation for Biomedical Research, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Criscione CD, Poulin R, Blouin MS. Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 2005; 14:2247-57. [PMID: 15969711 DOI: 10.1111/j.1365-294x.2005.02587.x] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We review studies that have used molecular markers to address ecological and microevolutionary processes in parasites. Our goal is to highlight areas of research that may be of particular interest in relation to the parasitic lifestyle, and to draw attention to areas that require additional study. Topics include species identification, phylogeography, host specificity and speciation, population genetic structure, modes of reproduction and transmission patterns, and searching for loci under selection.
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
27
|
Ferreira MU, da Silva Nunes M, Wunderlich G. Antigenic diversity and immune evasion by malaria parasites. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:987-95. [PMID: 15539495 PMCID: PMC524792 DOI: 10.1128/cdli.11.6.987-995.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo (SP), Brazil.
| | | | | |
Collapse
|
28
|
Martinelli A, Cheesman S, Hunt P, Culleton R, Raza A, Mackinnon M, Carter R. A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proc Natl Acad Sci U S A 2005; 102:814-9. [PMID: 15640359 PMCID: PMC545519 DOI: 10.1073/pnas.0405097102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 11/18/2022] Open
Abstract
Vaccine research in malaria has a high priority. However, identification of specific antigens as candidates for vaccines against asexual blood stages of malaria parasites has been based on largely circumstantial evidence. We describe here how genes encoding target antigens of strain-specific immunity in malaria can be directly located in the parasite's genome without prior information concerning their identity, by the method we call linkage group selection. Two genetically distinct clones of the rodent malaria parasite Plasmodium chabaudi chabaudi, each of which induces an immunity in laboratory mice that is more protective against challenge with itself than with the heterologous strain, were genetically crossed, and the uncloned cross progeny selected in mice that had been made partially immune by infection and drug cure with one or the other parental strain. Proportions of parental alleles in the selected and unselected cross progeny were compared by using quantitative genome-wide molecular markers. A small number, including groups of linked markers forming so-called selection valleys, were markedly reduced under strain-specific immune pressure. A very prominent selection valley was found to contain the gene for merozoite surface protein-1, a major candidate antigen for malaria vaccine development, at the locus at which the strongest reduction under strain-specific immune selection was detected. Closely linked to the merozoite surface protein-1 gene was a gene containing the signature motif of the ring-infected erythrocyte surface antigen family. Another affected locus, unlinked to this selection valley, contained a member of the serine repeat antigen gene family.
Collapse
Affiliation(s)
- Axel Martinelli
- Institute of Immunology and Infection Research, Ashworth Laboratories, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Cortés A, Mellombo M, Masciantonio R, Murphy VJ, Reeder JC, Anders RF. Allele specificity of naturally acquired antibody responses against Plasmodium falciparum apical membrane antigen 1. Infect Immun 2005; 73:422-30. [PMID: 15618180 PMCID: PMC538974 DOI: 10.1128/iai.73.1.422-430.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody responses against proteins located on the surface or in the apical organelles of merozoites are presumed to be important components of naturally acquired protective immune responses against the malaria parasite Plasmodium falciparum. However, many merozoite antigens are highly polymorphic, and antibodies induced against one particular allelic form might not be effective in controlling growth of parasites expressing alternative forms. The apical membrane antigen 1 (AMA1) is a polymorphic merozoite protein that is a target of naturally acquired invasion-inhibitory antibodies and is a leading asexual-stage vaccine candidate. We characterized the antibody responses against AMA1 in 262 individuals from Papua New Guinea exposed to malaria by using different allelic forms of the full AMA1 ectodomain and some individual subdomains. The majority of individuals had very high levels of antibodies against AMA1. The prevalence and titer of these antibodies increased with age. Although antibodies against conserved regions of the molecule were predominant in the majority of individuals, most plasma samples also contained antibodies directed against polymorphic regions of the antigen. In a few individuals, predominantly from younger age groups, the majority of antibodies against AMA1 were directed against polymorphic epitopes. The D10 allelic form of AMA1 apparently contains most if not all of the epitopes present in the other allelic forms tested, which might argue for its inclusion in future AMA1-based vaccines to be tested. Some important epitopes in AMA1 involved residues located in domain II or III but depended on more than one domain.
Collapse
Affiliation(s)
- Alfred Cortés
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Ramanathan MP, Chambers JA, Taylor J, Korber BT, Lee MD, Nalca A, Dang K, Pankhong P, Attatippaholkun W, Weiner DB. Expression and evolutionary analysis of West Nile virus (Merion Strain). J Neurovirol 2005; 11:544-56. [PMID: 16338748 DOI: 10.1080/13550280500385229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors report a new strain of West Nile virus (WNV) with the expression analysis of its individual open reading frames. Since its sudden appearance in the summer of 1999 in New York City, the virus has spread rapidly across the continental United States into Canada and Mexico. Besides, its rapid transmission by various vectors, the spread of this virus through organ transplantation, blood transfusion, and mother-child transmission through breast milk is of concern. In order to understand molecular variations of WNV in North America and to generate new tools for understanding WNV biology, a complete clone of WNV has been constructed. Investigations so far have focused only on half of its genes products and a detailed molecular and cell biological aspects on all of WNV gene have yet to be clearly established. The open reading frames of WNV were recovered through an reverse transcriptase-polymerase chain reaction (RT-PCR)-PCR using brain tissue from a dead crow collected in Merion, PA, and cloned into a mammalian expression vector. The deduced amino acid sequences of individual open reading frames were analyzed to determine various structural motifs and functional domains. Expression analysis shows that in neuronal cells, C, NS1, and NS5 proteins are nuclear localized whereas the rest of the antigens are confined to the cytoplasm when they are expressed in the absence of other viral antigens. This is the first report that provides an expression analysis as well as intracellular distribution pattern for all of WNV gene products, cloned from an infected bird. Evolutionary analysis of Merion strain sequences indicates that this strain is distinct phylogenetically from the previously reported WNV strains.
Collapse
Affiliation(s)
- Mathura P Ramanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Elsheikha HM, Mansfield LS. Sarcocystis neurona major surface antigen gene 1 (SAG1) shows evidence of having evolved under positive selection pressure. Parasitol Res 2004; 94:452-9. [PMID: 15517384 DOI: 10.1007/s00436-004-1237-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
The major surface antigen gene 1 (SAG1) is conserved among members of Sarcocystidae and may play an important role in parasite pathogenesis. Additionally, generation and selection of different antigenic variants of SAG1 has the potential for inclusion in a subunit vaccine or in the development of a diagnostic assay. In this study, patterns of nucleotide polymorphism were used to test the hypothesis that natural selection promotes diversity in different parts of SAG1 of Sarcocystis neurona. Nucleotide and amino acid sequence analysis of SAG1 from multiple S. neurona isolates identified two alleles. Sequences were identical intra-allele and highly divergent inter-alleles. Also, phylogenetic reconstruction showed sequences clustering into two clades. Tajima's and Fu and Li's neutrality tests indicated that selection is more likely to be acting on SAG1. Moreover, a sliding window analysis based on the ratio of silent substitutions to amino acid replacements provided strong evidence that two short segments in the central and 3' domain of SAG1 have been under positive selection in the divergence of the two alleles, suggesting that it may be important for the evasion of host immune responses and would be a suitable target for vaccine development.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
32
|
Benet A, Tavul L, Reeder JC, Cortés A. Diversity of Plasmodium falciparum vaccine candidate merozoite surface protein 4 (MSP4) in a natural population. Mol Biochem Parasitol 2004; 134:275-80. [PMID: 15003847 DOI: 10.1016/j.molbiopara.2003.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 12/02/2003] [Indexed: 11/16/2022]
MESH Headings
- Amino Acid Sequence
- Animals
- Antigenic Variation
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Base Sequence
- DNA, Protozoan/chemistry
- DNA, Protozoan/isolation & purification
- Genes, Protozoan
- Genetic Variation
- Genetics, Population
- Molecular Sequence Data
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium falciparum/isolation & purification
- Polymorphism, Genetic
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Selection, Genetic
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Ariadna Benet
- PNG Institute of Medical Research, P.O. Box 378, Madang MP 511, Papua New Guinea
| | | | | | | |
Collapse
|
33
|
Kimbi HK, Tetteh KKA, Polley SD, Conway DJ. Cross-sectional study of specific antibodies to a polymorphic Plasmodium falciparum antigen and of parasite antigen genotypes in school children on the slope of Mount Cameroon. Trans R Soc Trop Med Hyg 2004; 98:284-9. [PMID: 15109551 DOI: 10.1016/s0035-9203(03)00068-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 09/29/2003] [Accepted: 10/01/2003] [Indexed: 10/26/2022] Open
Abstract
To investigate relationships between Plasmodium falciparum parasitaemia, parasite genotypes, and specific anti-parasite antibodies, 244 school children (aged 4 to 16 years) were studied in April/May 2002, the peak malaria transmission season in Buea, Cameroon. Antibody reactivities were analysed by ELISA using an array of recombinant antigens representing different sequences from the polymorphic block 2 region of the merozoite surface protein 1 (MSP1), and the blood samples that were slide-positive for P. falciparum were genotyped for msp1 block 2 alleles. The prevalence of antibodies to the specific MSP1 block 2 antigens was significantly higher in children at one particular school (situated at the lowest altitude) compared to the others, although the prevalence of infection or particular parasite genotypes did not differ. Thus, at a population level, the prevalence of these antibodies does not simply reflect prevalence of parasites, but rather may be due to differences in the incidence of past infections. However, there were weak positive associations between specific antibody reactivity and the presence of the corresponding allele in the blood of individuals (statistically significant for the MAD20-type allele of block 2), indicating that antibody specificities are to some extent determined by current parasite infections.
Collapse
Affiliation(s)
- Helen K Kimbi
- Department of Life Sciences, University of Buea, P.O. Box 63 Buea, S.W.P., Cameroon.
| | | | | | | |
Collapse
|
34
|
Polley SD, Chokejindachai W, Conway DJ. Allele Frequency-Based Analyses Robustly Map Sequence Sites Under Balancing Selection in a Malaria Vaccine Candidate Antigen. Genetics 2003; 165:555-61. [PMID: 14573469 PMCID: PMC1462796 DOI: 10.1093/genetics/165.2.555] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading candidate for a malaria vaccine. Here, within-population analyses of alleles from 50 Thai P. falciparum isolates yield significant evidence for balancing selection on polymorphisms within the disulfide-bonded domains I and III of the surface accessible ectodomain of AMA1, a result very similar to that seen previously in a Nigerian population. Studying the frequency of nucleotide polymorphisms in both populations shows that the between-population component of variance (FST) is significantly lower in domains I and III compared to the intervening domain II and compared to 11 unlinked microsatellite loci. A nucleotide site-by-site analysis shows that sites with exceptionally high or low FST values cluster significantly into serial runs, with four runs of low values in domain I and one in domain III. These runs may map the sequences that are consistently under the strongest balancing selection from naturally acquired immune responses.
Collapse
Affiliation(s)
- Spencer D Polley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.
| | | | | |
Collapse
|