1
|
Ferrer P, Berry AA, Bucsan AN, Prajapati SK, Krishnan K, Barbeau MC, Rickert DM, Guerrero SM, Usui M, Abebe Y, Patil A, Chakravarty S, Billingsley PF, Pa'ahana-Brown F, Strauss K, Shrestha B, Nomicos E, Deye GA, Sim BKL, Hoffman SL, Williamson KC, Lyke KE. Repeat controlled human Plasmodium falciparum infections delay bloodstream patency and reduce symptoms. Nat Commun 2024; 15:5194. [PMID: 38890271 PMCID: PMC11189388 DOI: 10.1038/s41467-024-49041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.
Collapse
Affiliation(s)
- Patricia Ferrer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison N Bucsan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Karthik Krishnan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - David M Rickert
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Sandra Mendoza Guerrero
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | | | | | | | | | - Faith Pa'ahana-Brown
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Effie Nomicos
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
3
|
Distinct kinetics of antibodies to 111 Plasmodium falciparum proteins identifies markers of recent malaria exposure. Nat Commun 2022; 13:331. [PMID: 35039519 PMCID: PMC8764098 DOI: 10.1038/s41467-021-27863-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Strengthening malaria surveillance is a key intervention needed to reduce the global disease burden. Reliable serological markers of recent malaria exposure could improve current surveillance methods by allowing for accurate estimates of infection incidence from limited data. We studied the IgG antibody response to 111 Plasmodium falciparum proteins in 65 adult travellers followed longitudinally after a natural malaria infection in complete absence of re-exposure. We identified a combination of five serological markers that detect exposure within the previous three months with >80% sensitivity and specificity. Using mathematical modelling, we examined the antibody kinetics and determined that responses informative of recent exposure display several distinct characteristics: rapid initial boosting and decay, less inter-individual variation in response kinetics, and minimal persistence over time. Such serological exposure markers could be incorporated into routine malaria surveillance to guide efforts for malaria control and elimination. Serological markers of recent Plasmodium falciparum infection could be useful to estimate incidence. Here, the authors identify a combination of five serological markers to detect exposure to infection within the previous three months with >80% sensitivity and specificity.
Collapse
|
4
|
Mahon BE, Simon J, Widdowson MA, Samai M, Rogier E, Legardy-Williams J, Liu K, Schiffer J, Lange J, DeByle C, Pinner R, Schuchat A, Slutsker L, Goldstein S. Baseline Asymptomatic Malaria Infection and Immunogenicity of Recombinant Vesicular Stomatitis Virus-Zaire Ebola Virus Envelope Glycoprotein. J Infect Dis 2021; 224:1907-1915. [PMID: 34013349 PMCID: PMC8643414 DOI: 10.1093/infdis/jiab243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The effect of malaria infection on the immunogenicity of the recombinant vesicular stomatitis virus-Zaire Ebola virus envelope glycoprotein (GP) vaccine (rVSVΔG-ZEBOV-GP) (ERVEBO) is unknown. METHODS The Sierra Leone Trial to Introduce a Vaccine Against Ebola (STRIVE) vaccinated 7998 asymptomatic adults with rVSVΔG-ZEBOV-GP during the 2014-2016 Ebola epidemic. In STRIVE's immunogenicity substudy, participants provided blood samples at baseline and at 1, 6, and 9-12 months. Anti-GP binding and neutralizing antibodies were measured using validated assays. Baseline samples were tested for malaria parasites by polymerase chain reaction. RESULTS Overall, 506 participants enrolled in the immunogenicity substudy and had ≥1 postvaccination antibody titer. Of 499 participants with a result, baseline malaria parasitemia was detected in 73 (14.6%). All GP enzyme-linked immunosorbent assay (ELISA) and plaque reduction neutralization test (PRNT) geometric mean titers (GMTs) at 1, 6, and 9-12 months were above baseline, and 94.1% of participants showed seroresponse by GP-ELISA (≥2-fold rise and ≥200 ELISA units/mL), while 81.5% showed seroresponse by PRNT (≥4-fold rise) at ≥1 postvaccination assessment. In participants with baseline malaria parasitemia, the PRNT seroresponse proportion was lower, while PRNT GMTs and GP-ELISA seroresponse and GMTs showed a trend toward lower responses at 6 and 9-12 months. CONCLUSION Asymptomatic adults with or without malaria parasitemia had robust immune responses to rVSVΔG-ZEBOV-GP, persisting for 9-12 months. Responses in those with malaria parasitemia were somewhat lower.
Collapse
Affiliation(s)
- Barbara E Mahon
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jakub Simon
- Global Clinical Development–Vaccines, Merck & Co, Inc., Kenilworth, New Jersey, USA
| | | | - Mohamed Samai
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Eric Rogier
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kenneth Liu
- Biostatistics, Merck & Co, Inc., Kenilworth, New Jersey, USA
| | - Jarad Schiffer
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James Lange
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carolynn DeByle
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Robert Pinner
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anne Schuchat
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Susan Goldstein
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
6
|
Moita D, Nunes-Cabaço H, Mendes AM, Prudêncio M. A guide to investigating immune responses elicited by whole-sporozoite pre-erythrocytic vaccines against malaria. FEBS J 2021; 289:3335-3359. [PMID: 33993649 DOI: 10.1111/febs.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
In the last few decades, considerable efforts have been made toward the development of efficient vaccines against malaria. Whole-sporozoite (Wsp) vaccines, which induce efficient immune responses against the pre-erythrocytic (PE) stages (sporozoites and liver forms) of Plasmodium parasites, the causative agents of malaria, are among the most promising immunization strategies tested until present. Several Wsp PE vaccination approaches are currently under evaluation in the clinic, including radiation- or genetically-attenuated Plasmodium sporozoites, live parasites combined with chemoprophylaxis, or genetically modified rodent Plasmodium parasites. In addition to the assessment of their protective efficacy, clinical trials of Wsp PE vaccine candidates inevitably involve the thorough investigation of the immune responses elicited by vaccination, as well as the identification of correlates of protection. Here, we review the main methodologies employed to dissect the humoral and cellular immune responses observed in the context of Wsp PE vaccine clinical trials and discuss future strategies to further deepen the knowledge generated by these studies, providing a toolbox for the in-depth analysis of vaccine-induced immunogenicity.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
7
|
Lamsfus Calle C, Fendel R, Singh A, Richie TL, Hoffman SL, Kremsner PG, Mordmüller B. Expansion of Functional Myeloid-Derived Suppressor Cells in Controlled Human Malaria Infection. Front Immunol 2021; 12:625712. [PMID: 33815377 PMCID: PMC8017236 DOI: 10.3389/fimmu.2021.625712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria can cause life-threatening complications which are often associated with inflammatory reactions. More subtle, but also contributing to the burden of disease are chronic, often subclinical infections, which result in conditions like anemia and immunologic hyporesponsiveness. Although very frequent, such infections are difficult to study in endemic regions because of interaction with concurrent infections and immune responses. In particular, knowledge about mechanisms of malaria-induced immunosuppression is scarce. We measured circulating immune cells by cytometry in healthy, malaria-naïve, adult volunteers undergoing controlled human malaria infection (CHMI) with a focus on potentially immunosuppressive cells. Infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) were inoculated during two independent studies to assess malaria vaccine efficacy. Volunteers were followed daily until parasites were detected in the circulation by RT-qPCR. This allowed us to analyze immune responses during pre-patency and at very low parasite densities in malaria-naïve healthy adults. We observed a consistent increase in circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in volunteers who developed P. falciparum blood stage parasitemia. The increase was independent of preceding vaccination with a pre-erythrocytic malaria vaccine. PMN-MDSC were functional, they suppressed CD4+ and CD8+ T cell proliferation as shown by ex-vivo co-cultivation with stimulated T cells. PMN-MDSC reduced T cell proliferation upon stimulation by about 50%. Interestingly, high circulating PMN-MDSC numbers were associated with lymphocytopenia. The number of circulating regulatory T cells (Treg) and monocytic MDSC (M-MDSC) showed no significant parasitemia-dependent variation. These results highlight PMN-MDSC in the peripheral circulation as an early indicator of infection during malaria. They suppress CD4+ and CD8+ T cell proliferation in vitro. Their contribution to immunosuppression in vivo in subclinical and uncomplicated malaria will be the subject of further research. Pre-emptive antimalarial pre-treatment of vaccinees to reverse malaria-associated PMN-MDSC immunosuppression could improve vaccine response in exposed individuals.
Collapse
Affiliation(s)
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Anurag Singh
- Department of Pediatrics 1, University Children's Hospital Tübingen, Tübingen, Germany.,Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| |
Collapse
|
8
|
Bucşan AN, Williamson KC. Setting the stage: The initial immune response to blood-stage parasites. Virulence 2020; 11:88-103. [PMID: 31900030 PMCID: PMC6961725 DOI: 10.1080/21505594.2019.1708053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
Individuals growing up in malaria endemic areas gradually develop protection against clinical malaria and passive transfer experiments in humans have demonstrated that this protection is mediated in part by protective antibodies. However, neither the target antigens, specific effector mechanisms, nor the role of continual parasite exposure have been elucidated, which complicates vaccine development. Progress has been made in defining the innate signaling pathways activated by parasite components, including DNA, RNA, hemozoin, and phospholipids, which initiate the immune response and will be the focus of this review. The challenge that remains within the field is to understand the role of these early responses in the development of protective adaptive responses that clear iRBC and block merozoite invasion so that optimal vaccines and therapeutics may be produced.
Collapse
Affiliation(s)
- Allison N. Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kim C. Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
9
|
Mo AXY, Pesce J, Augustine AD, Bodmer JL, Breen J, Leitner W, Hall BF. Understanding vaccine-elicited protective immunity against pre-erythrocytic stage malaria in endemic regions. Vaccine 2020; 38:7569-7577. [PMID: 33071001 DOI: 10.1016/j.vaccine.2020.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Recent malaria vaccine trials in endemic areas have yielded disparate results compared to studies conducted in non-endemic areas. A workshop was organized to discuss the differential pre-erythrocytic stage malaria vaccine (Pre-E-Vac) efficacies and underlying protective immunity under various conditions. It was concluded that many factors, including vaccine technology platforms, host genetics or physiologic conditions, and parasite and mosquito vector variations, may all contribute to Pre-E-Vac efficacy. Cross-disciplinary approaches are needed to decipher the multi-dimensional variables that contribute to the observed vaccine hypo-responsiveness. The malaria vaccine community has an opportunity to leverage recent advances in immunology, systems vaccinology, and high dimensionality data science methodologies to generate new clinical datasets with unprecedented levels of functional resolution as well as capitalize on existing datasets for comprehensive and aggregate analyses. These approaches would help to unlock our understanding of Pre-E-Vac immunology and to translate new candidates from the laboratory to the field more predictably.
Collapse
Affiliation(s)
- Annie X Y Mo
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA.
| | - John Pesce
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - Alison Deckhut Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | | | - Joseph Breen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - Wolfgang Leitner
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - B Fenton Hall
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| |
Collapse
|
10
|
Loiseau C, Cooper MM, Doolan DL. Deciphering host immunity to malaria using systems immunology. Immunol Rev 2019; 293:115-143. [PMID: 31608461 DOI: 10.1111/imr.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| |
Collapse
|
11
|
Abstract
Malaria vaccine development has rapidly advanced in the past decade. The very first phase 3 clinical trial of the RTS,S vaccine was completed with over 15,000 African infants and children, and pilot implementation studies are underway. Next-generation candidate vaccines using novel antigens, platforms, or approaches targeting different and/or multiple stages of the Plasmodium life cycle are being tested. Many candidates, in various stages of development, promise enhanced efficacy of long duration and broad protection against genetically diverse malaria strains, with a few studies under way in target populations in endemic areas. Malaria vaccines together with other interventions promise interruption and eventual elimination of malaria in endemic areas.
Collapse
Affiliation(s)
- Matthew B Laurens
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore 21201, Maryland, USA; .,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore 21201, Maryland, USA
| |
Collapse
|
12
|
Yap XZ, Hustin LSP, Sauerwein RW. T H1-Polarized T FH Cells Delay Naturally-Acquired Immunity to Malaria. Front Immunol 2019; 10:1096. [PMID: 31156642 PMCID: PMC6533880 DOI: 10.3389/fimmu.2019.01096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 11/15/2022] Open
Abstract
Humoral immunity is a critical effector arm for protection against malaria but develops only slowly after repeated infections. T cell-mediated regulatory dynamics affect the development of antibody responses to Plasmodium parasites. Here, we hypothesize that T follicular helper cell (TFH) polarization generated by repeated Plasmodium asexual blood-stage infections delays the onset of protective humoral responses. IFN-γ production promotes polarization toward TFH1 and increased generation of regulatory follicular helper cells (TFR). Delineating the mechanisms that drive TH1 polarization will provide clues for appropriate induction of lasting, protective immunity against malaria.
Collapse
Affiliation(s)
- Xi Zen Yap
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| | - Lucie S P Hustin
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands.,Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Robert W Sauerwein
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| |
Collapse
|
13
|
Moormann AM, Nixon CE, Forconi CS. Immune effector mechanisms in malaria: An update focusing on human immunity. Parasite Immunol 2019; 41:e12628. [PMID: 30972776 DOI: 10.1111/pim.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed dramatic decreases in malaria-associated mortality and morbidity around the world. This progress has largely been due to intensified malaria control measures, implementation of rapid diagnostics and establishing a network to anticipate and mitigate antimalarial drug resistance. However, the ultimate tool for malaria prevention is the development and implementation of an effective vaccine. To date, malaria vaccine efforts have focused on determining which of the thousands of antigens expressed by Plasmodium falciparum are instrumental targets of protective immunity. The antigenic variation and antigenic polymorphisms arising in parasite genes under immune selection present a daunting challenge for target antigen selection and prioritization, and is a given caveat when interpreting immune recall responses or results from monovalent vaccine trials. Other immune evasion strategies executed by the parasite highlight the myriad of ways in which it can become a recurrent infection. This review provides an update on immune effector mechanisms in malaria and focuses on our improved ability to interrogate the complexity of human immune system, accelerated by recent methodological advances. Appreciating how the human immune landscape influences the effectiveness and longevity of antimalarial immunity will help explain which conditions are necessary for immune effector mechanisms to prevail.
Collapse
Affiliation(s)
- Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christina E Nixon
- Department of Pathology and Lab Medicine, Brown University, Providence, Rhode Island
| | - Catherine S Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
14
|
Heide J, Vaughan KC, Sette A, Jacobs T, Schulze Zur Wiesch J. Comprehensive Review of Human Plasmodium falciparum-Specific CD8+ T Cell Epitopes. Front Immunol 2019; 10:397. [PMID: 30949162 PMCID: PMC6438266 DOI: 10.3389/fimmu.2019.00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Control of malaria is an important global health issue and there is still an urgent need for the development of an effective prophylactic vaccine. Multiple studies have provided strong evidence that Plasmodium falciparum-specific MHC class I-restricted CD8+ T cells are important for sterile protection against Plasmodium falciparum infection. Here, we present an interactive epitope map of all P. falciparum-specific CD8+ T cell epitopes published to date, based on a comprehensive data base (IEDB), and literature search. The majority of the described P. falciparum-specific CD8+ T cells were directed against the antigens CSP, TRAP, AMA1, and LSA1. Notably, most of the epitopes were discovered in vaccine trials conducted with malaria-naïve volunteers. Only few immunological studies of P. falciparum-specific CD8+ T cell epitopes detected in patients suffering from acute malaria or in people living in malaria endemic areas have been published. Further detailed immunological mappings of P. falciparum-specific epitopes of a broader range of P. falciparum proteins in different settings and with different disease status are needed to gain a more comprehensive understanding of the role of CD8+ T cell responses for protection, and to better guide vaccine design and to study their efficacy.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Kerrie C Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
15
|
Cooper MM, Loiseau C, McCarthy JS, Doolan DL. Human challenge models: tools to accelerate the development of malaria vaccines. Expert Rev Vaccines 2019; 18:241-251. [PMID: 30732492 DOI: 10.1080/14760584.2019.1580577] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Malaria challenge models, where healthy human volunteers are intentionally infected with Plasmodium species parasites under controlled conditions, can be undertaken in several well-defined ways. These challenge models enable evaluation of the kinetics of parasite growth and clearance, host-pathogen interactions and the host immune response. They can facilitate discovery of candidate diagnostic biomarkers and novel vaccine targets. As translational tools they can facilitate testing of candidate vaccines and drugs and evaluation of diagnostic tests. AREAS COVERED Until recently, malaria human challenge models have been limited to only a few Plasmodium falciparum strains and used exclusively in malaria-naïve volunteers in non-endemic regions. Several recent advances include the use of alternate P. falciparum strains and other species of Plasmodia, as well as strains attenuated by chemical, radiation or genetic modification, and the conduct of studies in pre-exposed individuals. Herein, we discuss how this diversification is enabling more thorough vaccine efficacy testing and informing rational vaccine development. EXPERT OPINION The ability to comprehensively evaluate vaccine efficacy in controlled settings will continue to accelerate the translation of candidate malaria vaccines to the clinic, and inform the development and optimisation of potential vaccines that would be effective against multiple strains in geographically and demographically diverse settings.
Collapse
Affiliation(s)
- Martha M Cooper
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Claire Loiseau
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - James S McCarthy
- b Infectious Diseases Programme , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Denise L Doolan
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| |
Collapse
|
16
|
Yman V, White MT, Asghar M, Sundling C, Sondén K, Draper SJ, Osier FHA, Färnert A. Antibody responses to merozoite antigens after natural Plasmodium falciparum infection: kinetics and longevity in absence of re-exposure. BMC Med 2019; 17:22. [PMID: 30696449 PMCID: PMC6352425 DOI: 10.1186/s12916-019-1255-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibodies against merozoite antigens are key components of malaria immunity. The naturally acquired antibody response to these antigens is generally considered short-lived; however, the underlying mechanisms remain unclear. Prospective studies of travellers with different levels of prior exposure, returning to malaria-free countries with Plasmodium infection, offer a unique opportunity to investigate the kinetics and composition of the antibody response after natural infection. METHODS Adults diagnosed with P. falciparum malaria in Stockholm, Sweden (20 likely malaria naïve and 41 with repeated previous exposure during residency in sub-Saharan Africa) were sampled at diagnosis and 10 days and 1, 3, 6, and 12 months after treatment. Total and subclass-specific IgG responses to P. falciparum merozoite antigens (AMA-1, MSP-119, MSP-2, MSP-3, and RH5) and tetanus toxoid were measured by multiplex bead-based immunoassays and ELISA. Mathematical modelling was used to estimate the exposure-dependent longevity of antibodies and antibody-secreting cells (ASCs). RESULTS A majority of individuals mounted detectable antibody responses towards P. falciparum merozoite antigens at diagnosis; however, the magnitude and breadth were greater in individuals with prior exposure. In both exposure groups, antibody levels increased rapidly for 2 weeks and decayed thereafter. Previously exposed individuals maintained two- to ninefold greater antibody levels throughout the 1-year follow-up. The half-lives of malaria-specific long-lived ASCs, responsible for maintaining circulating antibodies, ranged from 1.8 to 3.7 years for merozoite antigens and were considerably short compared to tetanus-specific ASCs. Primary infected individuals did acquire a long-lived component of the antibody response; however, the total proportion of long-lived ASCs generated in response to infection was estimated not to exceed 10%. In contrast, previously exposed individuals maintained substantially larger numbers of long-lived ASCs (10-56% of total ASCs). CONCLUSION The short-lived nature of the naturally acquired antibody response, to all tested merozoite antigens, following primary malaria infection can be attributed to a combination of a poor acquisition and short half-life of long-lived ASCs. Greater longevity is acquired with repeated infections and can be explained by the maintenance of larger numbers of long-lived ASCs. These insights advance our understanding of naturally acquired malaria immunity and will guide strategies for further development of both vaccines and serological tools to monitor exposure.
Collapse
Affiliation(s)
- Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Michael T White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Faith H A Osier
- Kenya Medical Research Institute - Wellcome Trust Research Program, Centre for Geographic Medicine Research-Coast, PO Box 230-80108, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
17
|
van den Hoogen LL, Walk J, Oulton T, Reuling IJ, Reiling L, Beeson JG, Coppel RL, Singh SK, Draper SJ, Bousema T, Drakeley C, Sauerwein R, Tetteh KKA. Antibody Responses to Antigenic Targets of Recent Exposure Are Associated With Low-Density Parasitemia in Controlled Human Plasmodium falciparum Infections. Front Microbiol 2019; 9:3300. [PMID: 30700984 PMCID: PMC6343524 DOI: 10.3389/fmicb.2018.03300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 12/05/2022] Open
Abstract
The majority of malaria infections in low transmission settings remain undetectable by conventional diagnostics. A powerful model to identify antibody responses that allow accurate detection of recent exposure to low-density infections is controlled human malaria infection (CHMI) studies in which healthy volunteers are infected with the Plasmodium parasite. We aimed to evaluate antibody responses in malaria-naïve volunteers exposed to a single CHMI using a custom-made protein microarray. All participants developed a blood-stage infection with peak parasite densities up to 100 parasites/μl in the majority of participants (50/54), while the remaining four participants had peak densities between 100 and 200 parasites/μl. There was a strong correlation between parasite density and antibody responses associated with the most reactive blood-stage targets 1 month after CHMI (Etramp 5, GLURP-R2, MSP4 and MSP1-19; Spearman’s ρ = 0.82, p < 0.001). Most volunteers developed antibodies against a potential marker of recent exposure: Etramp 5 (37/45, 82%). Our findings justify validation in endemic populations to define a minimum set of antigens needed to detect exposure to natural low-density infections.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jona Walk
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Susheel K Singh
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kevin K A Tetteh
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Lee HJ, Georgiadou A, Walther M, Nwakanma D, Stewart LB, Levin M, Otto TD, Conway DJ, Coin LJ, Cunnington AJ. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci Transl Med 2018; 10:eaar3619. [PMID: 29950443 PMCID: PMC6326353 DOI: 10.1126/scitranslmed.aar3619] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
The pathogenesis of infectious diseases depends on the interaction of host and pathogen. In Plasmodium falciparum malaria, host and parasite processes can be assessed by dual RNA sequencing of blood from infected patients. We performed dual transcriptome analyses on samples from 46 malaria-infected Gambian children to reveal mechanisms driving the systemic pathophysiology of severe malaria. Integrating these transcriptomic data with estimates of parasite load and detailed clinical information allowed consideration of potentially confounding effects due to differing leukocyte proportions in blood, parasite developmental stage, and whole-body pathogen load. We report hundreds of human and parasite genes differentially expressed between severe and uncomplicated malaria, with distinct profiles associated with coma, hyperlactatemia, and thrombocytopenia. High expression of neutrophil granule-related genes was consistently associated with all severe malaria phenotypes. We observed severity-associated variation in the expression of parasite genes, which determine cytoadhesion to vascular endothelium, rigidity of infected erythrocytes, and parasite growth rate. Up to 99% of human differential gene expression in severe malaria was driven by differences in parasite load, whereas parasite gene expression showed little association with parasite load. Coexpression analyses revealed interactions between human and P. falciparum, with prominent co-regulation of translation genes in severe malaria between host and parasite. Multivariate analyses suggested that increased expression of granulopoiesis and interferon-γ-related genes, together with inadequate suppression of type 1 interferon signaling, best explained severity of infection. These findings provide a framework for understanding the contributions of host and parasite to the pathogenesis of severe malaria and identifying new treatments.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael Walther
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Lindsay B Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael Levin
- Section of Paediatrics, Imperial College, London W2 1PG, UK
| | - Thomas D Otto
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
19
|
Draheim M, Wlodarczyk MF, Crozat K, Saliou JM, Alayi TD, Tomavo S, Hassan A, Salvioni A, Demarta-Gatsi C, Sidney J, Sette A, Dalod M, Berry A, Silvie O, Blanchard N. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells. EMBO Mol Med 2018; 9:1605-1621. [PMID: 28935714 PMCID: PMC5666312 DOI: 10.15252/emmm.201708123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In malaria, CD4 Th1 and T follicular helper (TFH) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T‐cell subsets are critical to hamper pathology. Yet the antigen‐presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood‐stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP‐specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α+ dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite‐specific Th1 cells and inhibit the development of IL‐10+CD4 T cells. This work profiles the P. berghei blood‐stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria‐specific CD4 T‐cell responses.
Collapse
Affiliation(s)
- Marion Draheim
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Myriam F Wlodarczyk
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Karine Crozat
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Jean-Michel Saliou
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Tchilabalo Dilezitoko Alayi
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Stanislas Tomavo
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Ali Hassan
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Anna Salvioni
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Claudia Demarta-Gatsi
- CNRS, INSERM, Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Marc Dalod
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Antoine Berry
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC University of Paris 06, Paris, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
20
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
21
|
Mpina M, Maurice NJ, Yajima M, Slichter CK, Miller HW, Dutta M, McElrath MJ, Stuart KD, De Rosa SC, McNevin JP, Linsley PS, Abdulla S, Tanner M, Hoffman SL, Gottardo R, Daubenberger CA, Prlic M. Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations. THE JOURNAL OF IMMUNOLOGY 2017; 199:107-118. [PMID: 28576979 DOI: 10.4049/jimmunol.1601989] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αβ-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design.
Collapse
Affiliation(s)
- Maxmillian Mpina
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | - Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Masanao Yajima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Chloe K Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Hannah W Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Mukta Dutta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - John P McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania; and
| | - Marcel Tanner
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | | | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Claudia A Daubenberger
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; .,University of Basel, Basel, 4001 Switzerland
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
22
|
Early Immune Regulatory Changes in a Primary Controlled Human Plasmodium vivax Infection: CD1c + Myeloid Dendritic Cell Maturation Arrest, Induction of the Kynurenine Pathway, and Regulatory T Cell Activation. Infect Immun 2017; 85:IAI.00986-16. [PMID: 28320838 DOI: 10.1128/iai.00986-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/15/2017] [Indexed: 01/03/2023] Open
Abstract
Plasmodium vivax malaria remains a major public health problem. The requirements for acquisition of protective immunity to the species are not clear. Dendritic cells (DC) are essential for immune cell priming but also perform immune regulatory functions, along with regulatory T cells (Treg). An important function of DC involves activation of the kynurenine pathway via indoleamine 2,3-dioxygenase (IDO). Using a controlled human experimental infection study with blood-stage P. vivax, we characterized plasmacytoid DC (pDC) and myeloid DC (mDC) subset maturation, CD4+ CD25+ CD127lo Treg activation, and IDO activity. Blood samples were collected from six healthy adults preinoculation, at peak parasitemia (day 14; ∼31,400 parasites/ml), and 24 and 48 h after antimalarial treatment. CD1c+ and CD141+ mDC and pDC numbers markedly declined at peak parasitemia, while CD16+ mDC numbers appeared less affected. HLA-DR expression was selectively reduced on CD1c+ mDC, increased on CD16+ mDC, and was unaltered on pDC. Plasma IFN-γ increased significantly and was correlated with an increased kynurenine/tryptophan (KT) ratio, a measure of IDO activity. At peak parasitemia, Treg presented an activated CD4+ CD25+ CD127lo CD45RA- phenotype and upregulated TNFR2 expression. In a mixed-effects model, the KT ratio was positively associated with an increase in activated Treg. Our data demonstrate that a primary P. vivax infection exerts immune modulatory effects by impairing HLA-DR expression on CD1c+ mDC while activating CD16+ mDC. Induction of the kynurenine pathway and increased Treg activation, together with skewed mDC maturation, suggest P. vivax promotes an immunosuppressive environment, likely impairing the development of a protective host immune response.
Collapse
|
23
|
Del Prete S, De Luca V, De Simone G, Supuran CT, Capasso C. Cloning, expression and purification of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. J Enzyme Inhib Med Chem 2016; 31:54-59. [PMID: 27615265 DOI: 10.1080/14756366.2016.1217856] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The antimalarial drugs are of fundamental importance in the control of malaria, especially for the lack of efficient treatments and acquired resistance to the existing drugs. For this reason, there is a continuous work in identifying novel, less toxic and effective chemotherapies as well as new therapeutic targets against the causative agents of malaria. In this context, a superfamily of metalloenzymes named carbonic anhydrases (CAs, EC 4.2.1.1) has aroused a great interest as druggable enzymes to limit the development of Plasmodium falciparum gametocytes. CAs catalyze a common reaction in all life domains, the carbon dioxide hydration to bicarbonate and protons (CO2 + H2O ⇔ HCO3- + H+). P. falciparum synthesizes pyrimidines de novo starting from HCO3-, which is generated from CO2 through the action of the η-CA identified in the genome of the protozoan. Here, we propose a procedure for the preparation of a wider portion of the protozoan η-CA, named PfCAdom (358 amino acid residues), with respect to the truncated form prepared by Krungkrai et al. (PfCA1, 235 amino acid residues). The results evidenced that the recombinant PfCAdom, produced as a His-tag fusion protein, was 2.7 times more active with respect the truncated form PfCA1.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy.,b Istituto di Biostrutture e Bioimmagini, CNR , Napoli , Italy , and
| | | | | | - Claudiu T Supuran
- c Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze , Florence , Italy
| | | |
Collapse
|
24
|
Long CA, Zavala F. Malaria vaccines and human immune responses. Curr Opin Microbiol 2016; 32:96-102. [PMID: 27262417 PMCID: PMC4983510 DOI: 10.1016/j.mib.2016.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
Abstract
Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission.
Collapse
Affiliation(s)
- Carole A. Long
- Laboratory of Malaria and Vector Research, 12735 Twinbrook Parkway, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, Phone 301-761-5058, FAX 301-443-5778,
| | - Fidel Zavala
- Dept. of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, Phone 443-287-1769, FAX 410-955-0105,
| |
Collapse
|
25
|
Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. Bioorg Med Chem Lett 2016; 26:4184-90. [PMID: 27485387 DOI: 10.1016/j.bmcl.2016.07.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
We report the cloning, purification and characterization of the full domain of carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, which incorporates 358 amino acid residues (from 181 to 538, in the sequence of this 600 amino acid long protein), called PfCAdom. The enzyme, which belongs to the η-CA class showed the following kinetic parameters: kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), being 13.3 times more effective as a catalyst compared to the truncated form PfCA. PfCAdom is more effective than the human (h) isoform hCA I, being around 50% less effective compared to hCA II, one of the most catalytically efficient enzymes known so far. Intriguingly, the sulfonamides CA inhibitors generally showed much weaker inhibitory activity against PfCAdom compared to PfCA, prompting us to hypothesize that the 69 amino acid residues insertion present in the active site of this η-CA is crucial for the active site architecture. The best sulfonamide inhibitors for PfCAdom were acetazolamide, methazolamide, metanilamide and sulfanilamide, with KIs in the range of 366-808nM.
Collapse
|
26
|
Del Prete S, Vullo D, De Luca V, Carginale V, di Fonzo P, Osman SM, AlOthman Z, Supuran CT, Capasso C. Anion inhibition profiles of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. Bioorg Med Chem 2016; 24:4410-4414. [PMID: 27480028 DOI: 10.1016/j.bmc.2016.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/16/2016] [Indexed: 01/08/2023]
Abstract
We have cloned, purified and investigated the catalytic activity and anion inhibition profiles of a full catalytic domain (358 amino acid residues) carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, PfCAdom, an enzyme belonging to the η-CA class and identified in the genome of the malaria-producing protozoa. A truncated such enzyme, PfCA1, containing 235 residues was investigated earlier for its catalytic and inhibition profiles. The two enzymes were efficient catalysts for CO2 hydration: PfCAdom showed a kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), whereas PfCA showed a lower activity compared to PfCAdom, with a kcat of 1.4×10(5)s(-1) and kcat/Km of 5.4×10(6)M(-1)×s(-1). PfCAdom was generally less inhibited by most anions and small molecules compared to PfCA1. The best PfCAdom inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 9-68μM, followed by bicarbonate, hydrogensulfide, stannate and N,N-diethyldithiocarbamate, which were submillimolar inhibitors, with KIs in the range of 0.53-0.97mM. Malaria parasites CA inhibition was proposed as a new strategy to develop antimalarial drugs, with a novel mechanism of action.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy; Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Pietro di Fonzo
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.
| |
Collapse
|
27
|
Pinna RA, Silva-Dos-Santos D, Perce-da-Silva DS, Oliveira-Ferreira J, Villa-Verde DMS, De Luca PM, Banic DM. Malaria-Cutaneous Leishmaniasis Co-infection: Influence on Disease Outcomes and Immune Response. Front Microbiol 2016; 7:982. [PMID: 27446022 PMCID: PMC4921482 DOI: 10.3389/fmicb.2016.00982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022] Open
Abstract
Malaria and Cutaneous Leishmaniasis (CL) are co-endemic throughout large regions in tropical countries and co-infection may impact the evolution of host-parasite interactions. In the present study, we evaluate Malaria/Leishmaniasis disease outcome, Th1/Th2 cytokine levels and the CD4 and CD8 T-cell profiles in a co-infection murine model (BALB/c) of Plasmodium yoelii 17XNL (Py) and Leishmania amazonensis (La) or L. braziliensis (Lb). Malaria parasitaemia was assessed through blood strains stained with Giemsa. Leishmania lesions were monitored with a digital caliper and parasite loads determined by limiting-dilution assay. Serum levels of IFN-γ, TNF, IL-2, IL-4, IL-6, IL-10, and IL-17 were determined using multiplexed bead assay and expression of CD3, CD4, and CD8 T-cells markers were determined by Flow Cytometry in the thymus, spleens and lymph nodes. Parasitaemia in Lb+Py co-infected group was lower than in Py single-infected group, suggesting a protective effect of Lb co-infection in Malaria progression. In contrast, La+Py co-infection increased parasitaemia, patent infection and induced mortality in non-lethal Malaria infection. Regarding Leishmaniasis, Lb+Py co-infected group presented smaller lesions and less ulceration than Lb single-infected animals. In contrast, La+Py co-infected group presented only a transitory delay on the development of lesions when compared to La single-infected mice. Decreased levels of IFN-γ, TNF, IL-6, and IL-10 were observed in the serum of co-infected groups, demonstrating a modulation of Malaria immune response by Leishmania co-infections. We observed an intense thymic atrophy in Py single-infected and co-infected groups, which recovered earlier in co-infected animals. The CD4 and CD8 T cell profiles in thymus, spleens and lymph nodes did not differ between Py single and co-infected groups, except for a decrease in CD4+CD8+ T cells which also increased faster in co-infected mice. Our results suggest that Py and Leishmania co-infection may change disease outcome. Interestingly Malaria outcome can be altered according to the Leishmania specie involved. Alternatively Malaria infection reduced the severity or delayed the onset of leishmanial lesions. These alterations in Malaria and CL development seem to be closely related with changes in the immune response as demonstrated by alteration in serum cytokine levels and thymus/spleens T cell phenotypes dynamics during infection.
Collapse
Affiliation(s)
- Raquel A Pinna
- Laboratory of Simulids, Onchocerciasis and Sympatric Diseases: Mansonelliasis and Malaria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Danielle Silva-Dos-Santos
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Daiana S Perce-da-Silva
- Laboratory of Simulids, Onchocerciasis and Sympatric Diseases: Mansonelliasis and Malaria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Dea M S Villa-Verde
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Paula M De Luca
- Laboratory of Immunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Dalma M Banic
- Laboratory of Simulids, Onchocerciasis and Sympatric Diseases: Mansonelliasis and Malaria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| |
Collapse
|