1
|
Anderson DC, Peterson MS, Lapp SA, Galinski MR. Proteomes of plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes. J Proteomics 2024; 302:105197. [PMID: 38759952 PMCID: PMC11357705 DOI: 10.1016/j.jprot.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.
Collapse
Affiliation(s)
- D C Anderson
- Biosciences Division, SRI International, Harrisonburg, VA 22802, USA.
| | - Mariko S Peterson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Stacey A Lapp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Wang T, Zhang Z, Feng Y, Xiao L. Analytic Approaches in Genomic Epidemiological Studies of Parasitic Protozoa. Transbound Emerg Dis 2024; 2024:7679727. [PMID: 40303014 PMCID: PMC12017464 DOI: 10.1155/2024/7679727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 05/02/2025]
Abstract
Whole genome sequencing (WGS) plays an important role in the advanced characterization of pathogen transmission and is widely used in studies of major bacterial and viral diseases. Although protozoan parasites cause serious diseases in humans and animals, WGS data on them are relatively scarce due to the large genomes and lack of cultivation techniques for some. In this review, we have illustrated bioinformatic analyses of WGS data and their applications in studies of the genomic epidemiology of apicomplexan parasites. WGS has been used in outbreak detection and investigation, studies of pathogen transmission and evolution, and drug resistance surveillance and tracking. However, comparative analysis of parasite WGS data is still in its infancy, and available WGS data are mainly from a few genera of major public health importance, such as Plasmodium, Toxoplasma, and Cryptosporidium. In addition, the utility of third-generation sequencing technology for complete genome assembly at the chromosome level, studies of the biological significance of structural genomic variation, and molecular surveillance of pathogens has not been fully exploited. These issues require large-scale WGS of various protozoan parasites of public health and veterinary importance using both second- and third-generation sequencing technologies.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguan512005China
| | - Ziding Zhang
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| |
Collapse
|
3
|
Lesack KJ, Wasmuth JD. The impact of FASTQ and alignment read order on structural variant calling from long-read sequencing data. PeerJ 2024; 12:e17101. [PMID: 38500526 PMCID: PMC10946394 DOI: 10.7717/peerj.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Background Structural variant (SV) calling from DNA sequencing data has been challenging due to several factors, including the ambiguity of short-read alignments, multiple complex SVs in the same genomic region, and the lack of "truth" datasets for benchmarking. Additionally, caller choice, parameter settings, and alignment method are known to affect SV calling. However, the impact of FASTQ read order on SV calling has not been explored for long-read data. Results Here, we used PacBio DNA sequencing data from 15 Caenorhabditis elegans strains and four Arabidopsis thaliana ecotypes to evaluate the sensitivity of different SV callers on FASTQ read order. Comparisons of variant call format files generated from the original and permutated FASTQ files demonstrated that the order of input data affected the SVs predicted by each caller. In particular, pbsv was highly sensitive to the order of the input data, especially at the highest depths where over 70% of the SV calls generated from pairs of differently ordered FASTQ files were in disagreement. These demonstrate that read order sensitivity is a complex, multifactorial process, as the differences observed both within and between species varied considerably according to the specific combination of aligner, SV caller, and sequencing depth. In addition to the SV callers being sensitive to the input data order, the SAMtools alignment sorting algorithm was identified as a source of variability following read order randomization. Conclusion The results of this study highlight the sensitivity of SV calling on the order of reads encoded in FASTQ files, which has not been recognized in long-read approaches. These findings have implications for the replication of SV studies and the development of consistent SV calling protocols. Our study suggests that researchers should pay attention to the input order sensitivity of read alignment sorting methods when analyzing long-read sequencing data for SV calling, as mitigating a source of variability could facilitate future replication work. These results also raise important questions surrounding the relationship between SV caller read order sensitivity and tool performance. Therefore, tool developers should also consider input order sensitivity as a potential source of variability during the development and benchmarking of new and improved methods for SV calling.
Collapse
Affiliation(s)
- Kyle J. Lesack
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Cepeda AS, Mello B, Pacheco MA, Luo Z, Sullivan SA, Carlton JM, Escalante AA. The Genome of Plasmodium gonderi: Insights into the Evolution of Human Malaria Parasites. Genome Biol Evol 2024; 16:evae027. [PMID: 38376987 PMCID: PMC10901558 DOI: 10.1093/gbe/evae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.
Collapse
Affiliation(s)
- Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Beatriz Mello
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Zunping Luo
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Steven A Sullivan
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| |
Collapse
|
5
|
Li K, Xu P, Wang J, Yi X, Jiao Y. Identification of errors in draft genome assemblies at single-nucleotide resolution for quality assessment and improvement. Nat Commun 2023; 14:6556. [PMID: 37848433 PMCID: PMC10582259 DOI: 10.1038/s41467-023-42336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Assembly of a high-quality genome is important for downstream comparative and functional genomic studies. However, most tools for genome assembly assessment only give qualitative reports, which do not pinpoint assembly errors at specific regions. Here, we develop a new reference-free tool, Clipping information for Revealing Assembly Quality (CRAQ), which maps raw reads back to assembled sequences to identify regional and structural assembly errors based on effective clipped alignment information. Error counts are transformed into corresponding assembly evaluation indexes to reflect the assembly quality at single-nucleotide resolution. Notably, CRAQ distinguishes assembly errors from heterozygous sites or structural differences between haplotypes. This tool can clearly indicate low-quality regions and potential structural error breakpoints; thus, it can identify misjoined regions that should be split for further scaffold building and improvement of the assembly. We have benchmarked CRAQ on multiple genomes assembled using different strategies, and demonstrated the misjoin correction for improving the constructed pseudomolecules.
Collapse
Affiliation(s)
- Kunpeng Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
6
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
7
|
Bajic M, Ravishankar S, Sheth M, Rowe LA, Pacheco MA, Patel DS, Batra D, Loparev V, Olsen C, Escalante AA, Vannberg F, Udhayakumar V, Barnwell JW, Talundzic E. The first complete genome of the simian malaria parasite Plasmodium brasilianum. Sci Rep 2022; 12:19802. [PMID: 36396703 PMCID: PMC9671904 DOI: 10.1038/s41598-022-20706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species.
Collapse
Affiliation(s)
- Marko Bajic
- grid.422961.a0000 0001 0029 6188Association of Public Health Laboratories, Silver Spring, MD USA ,grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | - Mili Sheth
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Lori A. Rowe
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA ,grid.265219.b0000 0001 2217 8588Virus Characterization Isolation Production and Sequencing Core, Tulane National Primate Research Center, Covington, LA USA
| | - M. Andreina Pacheco
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Dhruviben S. Patel
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Dhwani Batra
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Vladimir Loparev
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Christian Olsen
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Ananias A. Escalante
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Fredrik Vannberg
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics at Georgia Tech, Georgia Institute of Technology, Atlanta, GA USA
| | - Venkatachalam Udhayakumar
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - John W. Barnwell
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Eldin Talundzic
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
8
|
Brashear AM, Cui L. Population genomics in neglected malaria parasites. Front Microbiol 2022; 13:984394. [PMID: 36160257 PMCID: PMC9493318 DOI: 10.3389/fmicb.2022.984394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria elimination includes neglected human malaria parasites Plasmodium vivax, Plasmodium ovale spp., and Plasmodium malariae. Biological features such as association with low-density infection and the formation of hypnozoites responsible for relapse make their elimination challenging. Studies on these parasites rely primarily on clinical samples due to the lack of long-term culture techniques. With improved methods to enrich parasite DNA from clinical samples, whole-genome sequencing of the neglected malaria parasites has gained increasing popularity. Population genomics of more than 2200 P. vivax global isolates has improved our knowledge of parasite biology and host-parasite interactions, identified vaccine targets and potential drug resistance markers, and provided a new way to track parasite migration and introduction and monitor the evolutionary response of local populations to elimination efforts. Here, we review advances in population genomics for neglected malaria parasites, discuss how the rich genomic information is being used to understand parasite biology and epidemiology, and explore opportunities for the applications of malaria genomic data in malaria elimination practice.
Collapse
|
9
|
Chuang H, Sakaguchi M, Lucky AB, Yamagishi J, Katakai Y, Kawai S, Kaneko O. SICA-mediated cytoadhesion of Plasmodium knowlesi-infected red blood cells to human umbilical vein endothelial cells. Sci Rep 2022; 12:14942. [PMID: 36056126 PMCID: PMC9440145 DOI: 10.1038/s41598-022-19199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Zoonotic malaria due to Plasmodium knowlesi infection in Southeast Asia is sometimes life-threatening. Post-mortem examination of human knowlesi malaria cases showed sequestration of P. knowlesi-infected red blood cells (iRBCs) in blood vessels, which has been proposed to be linked to disease severity. This sequestration is likely mediated by the cytoadhesion of parasite-iRBCs to vascular endothelial cells; however, the responsible parasite ligands remain undetermined. This study selected P. knowlesi lines with increased iRBC cytoadhesion activity by repeated panning against human umbilical vein endothelial cells (HUVECs). Transcriptome analysis revealed that the transcript level of one gene, encoding a Schizont Infected Cell Agglutination (SICA) protein, herein termed SICA-HUVEC, was more than 100-fold increased after the panning. Transcripts of other P. knowlesi proteins were also significantly increased, such as PIR proteins exported to the iRBC cytosol, suggesting their potential role in increasing cytoadhesion activity. Transgenic P. knowlesi parasites expressing Myc-fused SICA-HUVEC increased cytoadhesion activity following infection of monkey as well as human RBCs, confirming that SICA-HUVEC conveys activity to bind to HUVECs.
Collapse
Affiliation(s)
- Huai Chuang
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Amuza Byaruhanga Lucky
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Junya Yamagishi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
10
|
Peterson MS, Joyner CJ, Lapp SA, Brady JA, Wood JS, Cabrera-Mora M, Saney CL, Fonseca LL, Cheng WT, Jiang J, Soderberg SR, Nural MV, Hankus A, Machiah D, Karpuzoglu E, DeBarry JD, Tirouvanziam R, Kissinger JC, Moreno A, Gumber S, Voit EO, Gutierrez JB, Cordy RJ, Galinski MR. Plasmodium knowlesi Cytoadhesion Involves SICA Variant Proteins. Front Cell Infect Microbiol 2022; 12:888496. [PMID: 35811680 PMCID: PMC9260704 DOI: 10.3389/fcimb.2022.888496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium knowlesi poses a health threat throughout Southeast Asian communities and currently causes most cases of malaria in Malaysia. This zoonotic parasite species has been studied in Macaca mulatta (rhesus monkeys) as a model for severe malarial infections, chronicity, and antigenic variation. The phenomenon of Plasmodium antigenic variation was first recognized during rhesus monkey infections. Plasmodium-encoded variant proteins were first discovered in this species and found to be expressed at the surface of infected erythrocytes, and then named the Schizont-Infected Cell Agglutination (SICA) antigens. SICA expression was shown to be spleen dependent, as SICA expression is lost after P. knowlesi is passaged in splenectomized rhesus. Here we present data from longitudinal P. knowlesi infections in rhesus with the most comprehensive analysis to date of clinical parameters and infected red blood cell sequestration in the vasculature of tissues from 22 organs. Based on the histopathological analysis of 22 tissue types from 11 rhesus monkeys, we show a comparative distribution of parasitized erythrocytes and the degree of margination of the infected erythrocytes with the endothelium. Interestingly, there was a significantly higher burden of parasites in the gastrointestinal tissues, and extensive margination of the parasites along the endothelium, which may help explain gastrointestinal symptoms frequently reported by patients with P. knowlesi malarial infections. Moreover, this margination was not observed in splenectomized rhesus that were infected with parasites not expressing the SICA proteins. This work provides data that directly supports the view that a subpopulation of P. knowlesi parasites cytoadheres and sequesters, likely via SICA variant antigens acting as ligands. This process is akin to the cytoadhesive function of the related variant antigen proteins, namely Erythrocyte Membrane Protein-1, expressed by Plasmodium falciparum.
Collapse
Affiliation(s)
- Mariko S. Peterson
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica A. Brady
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
| | - Jennifer S. Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Celia L. Saney
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Luis L. Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Wayne T. Cheng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Jianlin Jiang
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Stephanie R. Soderberg
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Allison Hankus
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Ebru Karpuzoglu
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Alberto Moreno
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Juan B. Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, United States
| | - Regina Joice Cordy
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Oresegun DR, Thorpe P, Benavente ED, Campino S, Muh F, Moon RW, Clark TG, Cox-Singh J. De Novo Assembly of Plasmodium knowlesi Genomes From Clinical Samples Explains the Counterintuitive Intrachromosomal Organization of Variant SICAvar and kir Multiple Gene Family Members. Front Genet 2022; 13:855052. [PMID: 35677565 PMCID: PMC9169567 DOI: 10.3389/fgene.2022.855052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Plasmodium knowlesi, a malaria parasite of Old World macaque monkeys, is used extensively to model Plasmodium biology. Recently, P. knowlesi was found in the human population of Southeast Asia, particularly Malaysia. P. knowlesi causes uncomplicated to severe and fatal malaria in the human host with features in common with the more prevalent and virulent malaria caused by Plasmodium falciparum. As such, P. knowlesi presents a unique opportunity to develop experimental translational model systems for malaria pathophysiology informed by clinical data from same-species human infections. Experimental lines of P. knowlesi represent well-characterized genetically stable parasites, and to maximize their utility as a backdrop for understanding malaria pathophysiology, genetically diverse contemporary clinical isolates, essentially wild-type, require comparable characterization. The Oxford Nanopore PCR-free long-read sequencing platform was used to sequence and de novo assemble P. knowlesi genomes from frozen clinical samples. The sequencing platform and assembly pipelines were designed to facilitate capturing data and describing, for the first time, P. knowlesi schizont-infected cell agglutination (SICA) var and Knowlesi-Interspersed Repeats (kir) multiple gene families in parasites acquired from nature. The SICAvar gene family members code for antigenically variant proteins analogous to the virulence-associated P. falciparum erythrocyte membrane protein (PfEMP1) multiple var gene family. Evidence presented here suggests that the SICAvar family members have arisen through a process of gene duplication, selection pressure, and variation. Highly evolving genes including PfEMP1family members tend to be restricted to relatively unstable sub-telomeric regions that drive change with core genes protected in genetically stable intrachromosomal locations. The comparable SICAvar and kir gene family members are counter-intuitively located across chromosomes. Here, we demonstrate that, in contrast to conserved core genes, SICAvar and kir genes occupy otherwise gene-sparse chromosomal locations that accommodate rapid evolution and change. The novel methods presented here offer the malaria research community not only new tools to generate comprehensive genome sequence data from small clinical samples but also new insight into the complexity of clinically important real-world parasites.
Collapse
Affiliation(s)
- Damilola R. Oresegun
- Division of Infection and Global Health, School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Peter Thorpe
- Division of Infection and Global Health, School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Fauzi Muh
- Division of Infection and Global Health, School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Robert William Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane Gregory Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Janet Cox-Singh
- Division of Infection and Global Health, School of Medicine, University of St Andrews, Scotland, United Kingdom
| |
Collapse
|
13
|
Gupta A, Galinski MR, Voit EO. Dynamic Control Balancing Cell Proliferation and Inflammation is Crucial for an Effective Immune Response to Malaria. Front Mol Biosci 2022; 8:800721. [PMID: 35242812 PMCID: PMC8886244 DOI: 10.3389/fmolb.2021.800721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria has a complex pathology with varying manifestations and symptoms, effects on host tissues, and different degrees of severity and ultimate outcome, depending on the causative Plasmodium pathogen and host species. Previously, we compared the peripheral blood transcriptomes of two macaque species (Macaca mulatta and Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi. Although these two species are very closely related, the infection in M. mulatta is fatal, unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable infection in the blood. As a reason for this stark difference, our analysis suggests delayed pathogen detection in M. mulatta followed by extended inflammation that eventually overwhelms this monkey’s immune response. By contrast, the natural host M. fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M. fascicularis limits cell proliferation pathways during the log phase of infection, presumably in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-mediated adaptive immune response. Here, we focus on molecular mechanisms underlying the key differences in the host and parasite responses and their coordination. SICAvar Type 1 surface antigens are highly correlated with pattern recognition receptor signaling and important inflammatory genes for both hosts. Analysis of pathogen detection pathways reveals a similar signaling mechanism, but with important differences in the glutamate G-protein coupled receptor (GPCR) signaling pathway. Furthermore, differences in inflammasome assembly processes suggests an important role of S100 proteins in balancing inflammation and cell proliferation. Both differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic modeling provides a functional method for evaluating these changes and understanding downstream changes in NAD metabolism and aryl hydrocarbon receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be established due to complicated regulatory feedback mechanisms associated with the AhR repressor (AhRR). A complete understanding of the exact dynamics of the immune response is difficult to achieve. Nonetheless, our comparative analysis provides clear suggestions of processes that underlie an effective immune response. Thus, our study identifies multiple points of intervention that are apparently responsible for a balanced and effective immune response and thereby paves the way toward future immune strategies for treating malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Eberhard O. Voit,
| |
Collapse
|
14
|
Chahine Z, Le Roch KG. Decrypting the complexity of the human malaria parasite biology through systems biology approaches. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:940321. [PMID: 37200864 PMCID: PMC10191146 DOI: 10.3389/fsysb.2022.940321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, is a unicellular protozoan responsible for over half a million deaths annually. With a complex life cycle alternating between human and invertebrate hosts, this apicomplexan is notoriously adept at evading host immune responses and developing resistance to all clinically administered treatments. Advances in omics-based technologies, increased sensitivity of sequencing platforms and enhanced CRISPR based gene editing tools, have given researchers access to more in-depth and untapped information about this enigmatic micro-organism, a feat thought to be infeasible in the past decade. Here we discuss some of the most important scientific achievements made over the past few years with a focus on novel technologies and platforms that set the stage for subsequent discoveries. We also describe some of the systems-based methods applied to uncover gaps of knowledge left through single-omics applications with the hope that we will soon be able to overcome the spread of this life-threatening disease.
Collapse
|
15
|
Zhang X, Deitsch KW, Dzikowski R. CRISPR-Cas9 Editing of the Plasmodium falciparum Genome: Special Applications. Methods Mol Biol 2022; 2470:241-253. [PMID: 35881350 DOI: 10.1007/978-1-0716-2189-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The virulence of Plasmodium falciparum has been attributed in large part to the expression on the surface of infected red blood cells of the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Different forms of this protein are encoded by individual members of the multicopy gene family called var. Two attributes of the var gene family are key to the pathogenesis of malaria caused by P. falciparum; the hyperrecombinogenic nature of the var gene family that continuously generates antigenic diversity within parasite populations, and the ability of parasites to express only a single var gene at a time and to switch which gene is expressed over the course of an infection. The unique attributes of CRISPR-Cas9 have been applied to help decipher the molecular mechanisms underlying these unusual properties of the var gene family, both as a source of the DNA double strand breaks that initiate var gene recombination and as a way to recruit molecular probes to specific regions of the genome. In this chapter, we describe these somewhat unusual applications of the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Kirk William Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
16
|
Peterson MS, Joyner CJ, Brady JA, Wood JS, Cabrera-Mora M, Saney CL, Fonseca LL, Cheng WT, Jiang J, Lapp SA, Soderberg SR, Nural MV, Humphrey JC, Hankus A, Machiah D, Karpuzoglu E, DeBarry JD, Tirouvanziam R, Kissinger JC, Moreno A, Gumber S, Voit EO, Gutiérrez JB, Cordy RJ, Galinski MR. Clinical recovery of Macaca fascicularis infected with Plasmodium knowlesi. Malar J 2021; 20:486. [PMID: 34969401 PMCID: PMC8719393 DOI: 10.1186/s12936-021-03925-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. METHODS Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. RESULTS As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. CONCLUSIONS Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3-5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.
Collapse
Affiliation(s)
- Mariko S Peterson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Chester J Joyner
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jessica A Brady
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jennifer S Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Monica Cabrera-Mora
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Celia L Saney
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wayne T Cheng
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jianlin Jiang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Stacey A Lapp
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Stephanie R Soderberg
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | - Mustafa V Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jay C Humphrey
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Allison Hankus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- The MITRE Corporation, Atlanta, GA, USA
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Ebru Karpuzoglu
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jeremy D DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for Topical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Jessica C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Alberto Moreno
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
- Pathology, Drug Safety, and DMPK, Boehringer Ingelheim Animal Health USA, Inc., Athens, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Juan B Gutiérrez
- Department of Mathematics, University of Georgia, Athens, GA, USA
- Department of Mathematics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Regina Joice Cordy
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Mary R Galinski
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Molecular epidemiology and population genomics of Plasmodium knowlesi. ADVANCES IN PARASITOLOGY 2021; 113:191-223. [PMID: 34620383 DOI: 10.1016/bs.apar.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular epidemiology has been central to uncovering P. knowlesi as an important cause of human malaria in Southeast Asia, and to understanding the complex nature of this zoonosis. Species-specific parasite detection and characterization of sequences were vital to show that P. knowlesi was distinct from the human parasite species that had been presumed to cause all malaria. With established sensitive and specific molecular detection tools, surveys subsequently indicated the distribution of P. knowlesi infections in humans, wild primate reservoir host species, and mosquito vector species. The importance of studying P. knowlesi genetic polymorphism was indicated initially by analysing a few nuclear gene loci as well as the mitochondrial genome, and subsequently by multi-locus microsatellite analyses and whole-genome sequencing. Different human infections generally have unrelated P. knowlesi genotypes, acquired from the diverse local parasite reservoirs in macaques. However, individual human infections are usually less genetically complex than those of wild macaques which experience more frequent superinfection with different P. knowlesi genotypes. Multi-locus analyses have revealed deep population subdivisions within P. knowlesi, which are structured both geographically and in relation to different macaque reservoir host species. Simplified genotypic discrimination assays now enable efficient large-scale surveillance of the sympatric P. knowlesi subpopulations within Malaysian Borneo. The whole-genome sequence analyses have also identified loci under recent positive natural selection in the P. knowlesi genome, with evidence that different loci are affected in different populations. These provide a foundation to understand recent adaptation of the zoonotic parasite populations, and to track and interpret future changes as they emerge.
Collapse
|
18
|
Gupta A, Styczynski MP, Galinski MR, Voit EO, Fonseca LL. Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections. Sci Rep 2021; 11:19519. [PMID: 34593836 PMCID: PMC8484567 DOI: 10.1038/s41598-021-98024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Hocking SE, Divis PCS, Kadir KA, Singh B, Conway DJ. Population Genomic Structure and Recent Evolution of Plasmodium knowlesi, Peninsular Malaysia. Emerg Infect Dis 2021; 26:1749-1758. [PMID: 32687018 PMCID: PMC7392424 DOI: 10.3201/eid2608.190864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most malaria in Malaysia is caused by Plasmodium knowlesi parasites through zoonotic infection from macaque reservoir hosts. We obtained genome sequences from 28 clinical infections in Peninsular Malaysia to clarify the emerging parasite population structure and test for evidence of recent adaptation. The parasites all belonged to a major genetic population of P. knowlesi (cluster 3) with high genomewide divergence from populations occurring in Borneo (clusters 1 and 2). We also observed unexpected local genetic subdivision; most parasites belonged to 2 subpopulations sharing a high level of diversity except at particular genomic regions, the largest being a region of chromosome 12, which showed evidence of recent directional selection. Surprisingly, we observed a third subpopulation comprising P. knowlesi infections that were almost identical to each other throughout much of the genome, indicating separately maintained transmission and recent genetic isolation. Each subpopulation could evolve and present a broader health challenge in Asia.
Collapse
|
20
|
Cunningham CH, Hennelly CM, Lin JT, Ubalee R, Boyce RM, Mulogo EM, Hathaway N, Thwai KL, Phanzu F, Kalonji A, Mwandagalirwa K, Tshefu A, Juliano JJ, Parr JB. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine 2021; 68:103415. [PMID: 34139428 PMCID: PMC8213918 DOI: 10.1016/j.ebiom.2021.103415] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR-based diagnostics are a new class of highly sensitive and specific assays with multiple applications in infectious disease diagnosis. SHERLOCK, or Specific High-Sensitivity Enzymatic Reporter UnLOCKing, is one such CRISPR-based diagnostic that combines recombinase polymerase pre-amplification, CRISPR-RNA base-pairing, and LwCas13a activity for nucleic acid detection. METHODS We developed SHERLOCK assays capable of detecting all Plasmodium species known to cause human malaria and species-specific detection of P. vivax and P. falciparum, the species responsible for the majority of malaria cases worldwide. We further tested these assays using a diverse panel of clinical samples from the Democratic Republic of the Congo, Uganda, and Thailand and pools of Anopheles mosquitoes from Thailand. In addition, we developed a prototype SHERLOCK assay capable of detecting the dihydropteroate synthetase (dhps) single nucleotide variant A581G associated with P. falciparum sulfadoxine resistance. FINDINGS The suite of Plasmodium assays achieved analytical sensitivities ranging from 2•5-18•8 parasites per reaction when tested against laboratory strain genomic DNA. When compared to real-time PCR, the P. falciparum assay achieved 94% sensitivity and 94% specificity during testing of 123 clinical samples. Compared to amplicon-based deep sequencing, the dhps SHERLOCK assay achieved 73% sensitivity and 100% specificity when applied to a panel of 43 clinical samples, with false-negative calls only at lower parasite densities. INTERPRETATION These novel SHERLOCK assays demonstrate the versatility of CRISPR-based diagnostics and their potential as a new generation of molecular tools for malaria diagnosis and surveillance. FUNDING National Institutes of Health (T32GM007092, R21AI148579, K24AI134990, R01AI121558, UL1TR002489, P30CA016086).
Collapse
Affiliation(s)
- Clark H Cunningham
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Jessica T Lin
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ratawan Ubalee
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Ross M Boyce
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Mbarara University of Science and Technology, Mbarara, Uganda
| | - Edgar M Mulogo
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Nicholas Hathaway
- University of Massachusetts School of Medicine, Worcester, MA, United States
| | - Kyaw L Thwai
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fernandine Phanzu
- SANRU ASBL (Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Albert Kalonji
- SANRU ASBL (Global Fund), Kinshasa, Democratic Republic of the Congo
| | | | - Antoinette Tshefu
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Jonathan J Juliano
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan B Parr
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
21
|
Xia J, Venkat A, Bainbridge RE, Reese ML, Le Roch KG, Ay F, Boyle JP. Third-generation sequencing revises the molecular karyotype for Toxoplasma gondii and identifies emerging copy number variants in sexual recombinants. Genome Res 2021; 31:834-851. [PMID: 33906962 PMCID: PMC8092015 DOI: 10.1101/gr.262816.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022]
Abstract
Toxoplasma gondii is a useful model for intracellular parasitism given its ease of culture in the laboratory and genomic resources. However, as for many other eukaryotes, the T. gondii genome contains hundreds of sequence gaps owing to repetitive and/or unclonable sequences that disrupt the assembly process. Here, we use the Oxford Nanopore Minion platform to generate near-complete de novo genome assemblies for multiple strains of T. gondii and its near relative, N. caninum. We significantly improved T. gondii genome contiguity (average N50 of ∼6.6 Mb) and added ∼2 Mb of newly assembled sequence. For all of the T. gondii strains that we sequenced (RH, ME49, CTG, II×III progeny clones CL13, S27, S21, S26, and D3X1), the largest contig ranged in size between 11.9 and 12.1 Mb in size, which is larger than any previously reported T. gondii chromosome, and found to be due to a consistent fusion of Chromosomes VIIb and VIII. These data were validated by mapping existing T. gondii ME49 Hi-C data to our assembly, providing parallel lines of evidence that the T. gondii karyotype consists of 13, rather than 14, chromosomes. By using this technology, we also resolved hundreds of tandem repeats of varying lengths, including in well-known host-targeting effector loci like rhoptry protein 5 (ROP5) and ROP38. Finally, when we compared T. gondii with N. caninum, we found that although the 13-chromosome karyotype was conserved, extensive, previously unappreciated chromosome-scale rearrangements had occurred in T. gondii and N. caninum since their most recent common ancestry.
Collapse
Affiliation(s)
- Jing Xia
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Aarthi Venkat
- Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA.,La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Rachel E Bainbridge
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, College of Agricultural and Life Sciences, University of California-Riverside, Riverside, California 92521, USA
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, California 92037, USA.,School of Medicine, University of California-San Diego, La Jolla, California 92093, USA
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
22
|
Oresegun DR, Daneshvar C, Cox-Singh J. Plasmodium knowlesi - Clinical Isolate Genome Sequencing to Inform Translational Same-Species Model System for Severe Malaria. Front Cell Infect Microbiol 2021; 11:607686. [PMID: 33738266 PMCID: PMC7960762 DOI: 10.3389/fcimb.2021.607686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/27/2021] [Indexed: 12/03/2022] Open
Abstract
Malaria is responsible for unacceptably high morbidity and mortality, especially in Sub-Saharan African Nations. Malaria is caused by member species' of the genus Plasmodium and despite concerted and at times valiant efforts, the underlying pathophysiological processes leading to severe disease are poorly understood. Here we describe zoonotic malaria caused by Plasmodium knowlesi and the utility of this parasite as a model system for severe malaria. We present a method to generate long-read third-generation Plasmodium genome sequence data from archived clinical samples using the MinION platform. The method and technology are accessible, affordable and data is generated in real-time. We propose that by widely adopting this methodology important information on clinically relevant parasite diversity, including multiple gene family members, from geographically distinct study sites will emerge. Our goal, over time, is to exploit the duality of P. knowlesi as a well-used laboratory model and human pathogen to develop a representative translational model system for severe malaria that is informed by clinically relevant parasite diversity.
Collapse
Affiliation(s)
| | | | - Janet Cox-Singh
- Division of Infection, School of Medicine, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
23
|
Galinski MR. Functional genomics of simian malaria parasites and host-parasite interactions. Brief Funct Genomics 2020; 18:270-280. [PMID: 31241151 PMCID: PMC6859816 DOI: 10.1093/bfgp/elz013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/21/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Two simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served for decades as sources of knowledge on the biology, genetics and evolution of Plasmodium, and the diverse ramifications and outcomes of malaria in their monkey hosts. Experimental analysis of these species can help to fill gaps in knowledge beyond what may be possible studying the human malaria parasites or rodent parasite species. The genome sequences for these simian malaria parasite species were reported during the last decade, and functional genomics research has since been pursued. Here research on the functional genomics analysis involving these species is summarized and their importance is stressed, particularly for understanding host–parasite interactions, and potentially testing novel interventions. Importantly, while Plasmodium falciparum and Plasmodium vivax can be studied in small New World monkeys, the simian malaria parasites can be studied more effectively in the larger Old World monkey macaque hosts, which are more closely related to humans. In addition to ex vivo analyses, experimental scenarios can include passage through Anopheline mosquito hosts and longitudinal infections in monkeys to study acute and chronic infections, as well as relapses, all in the context of the in vivo host environment. Such experiments provide opportunities for understanding functional genomic elements that govern host–parasite interactions, immunity and pathogenesis in-depth, addressing hypotheses not possible from in vitro cultures or cross-sectional clinical studies with humans.
Collapse
Affiliation(s)
- Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Cordy RJ, Patrapuvich R, Lili LN, Cabrera-Mora M, Chien JT, Tharp GK, Khadka M, Meyer EV, Lapp SA, Joyner CJ, Garcia A, Banton S, Tran V, Luvira V, Rungin S, Saeseu T, Rachaphaew N, Pakala SB, DeBarry JD, Kissinger JC, Ortlund EA, Bosinger SE, Barnwell JW, Jones DP, Uppal K, Li S, Sattabongkot J, Moreno A, Galinski MR. Distinct amino acid and lipid perturbations characterize acute versus chronic malaria. JCI Insight 2019; 4:125156. [PMID: 31045574 DOI: 10.1172/jci.insight.125156] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic malaria is a major public health problem and significant challenge for disease eradication efforts. Despite its importance, the biological factors underpinning chronic malaria are not fully understood. Recent studies have shown that host metabolic state can influence malaria pathogenesis and transmission, but its role in chronicity is not known. Here, with the goal of identifying distinct modifications in the metabolite profiles of acute versus chronic malaria, metabolomics was performed on plasma from Plasmodium-infected humans and nonhuman primates with a range of parasitemias and clinical signs. In rhesus macaques infected with Plasmodium coatneyi, significant alterations in amines, carnitines, and lipids were detected during a high parasitemic acute phase and many of these reverted to baseline levels once a low parasitemic chronic phase was established. Plasmodium gene expression, studied in parallel in the macaques, revealed transcriptional changes in amine, fatty acid, lipid and energy metabolism genes, as well as variant antigen genes. Furthermore, a common set of amines, carnitines, and lipids distinguished acute from chronic malaria in plasma from human Plasmodium falciparum cases. In summary, distinct host-parasite metabolic environments have been uncovered that characterize acute versus chronic malaria, providing insights into the underlying host-parasite biology of malaria disease progression.
Collapse
Affiliation(s)
- Regina Joice Cordy
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - Loukia N Lili
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Genetics and Genomic Sciences, Institute for Next Generation Healthcare, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Monica Cabrera-Mora
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jung-Ting Chien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Gregory K Tharp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Manoj Khadka
- Emory Integrated Lipidomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Esmeralda Vs Meyer
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Stacey A Lapp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Chester J Joyner
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - AnaPatricia Garcia
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sophia Banton
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Siriwan Rungin
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Teerawat Saeseu
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Jessica C Kissinger
- Institute of Bioinformatics.,Center for Tropical and Emerging Global Diseases, and.,Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Eric A Ortlund
- Emory Integrated Lipidomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - John W Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shuzhao Li
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Alberto Moreno
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mary R Galinski
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar J 2019; 18:66. [PMID: 30849978 PMCID: PMC6408765 DOI: 10.1186/s12936-019-2693-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
Collapse
Affiliation(s)
- Gael Davidson
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia. .,School of Population and Global Health, University of Western Australia, Perth, Australia.
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Peter Speldewinde
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
26
|
Abstract
The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.
Collapse
|
27
|
Videvall E. Genomic Advances in Avian Malaria Research. Trends Parasitol 2019; 35:254-266. [PMID: 30642725 DOI: 10.1016/j.pt.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
Haemosporidian parasites causing malaria-like diseases in birds are globally distributed and have been associated with reduced host fitness and mortality in susceptible bird species. This group of parasites has not only enabled a greater understanding of host specificity, virulence, and parasite dispersal, but has also been crucial in restructuring the evolutionary history of apicomplexans. Despite their importance, genomic resources of avian haemosporidians have proved difficult to obtain, and they have, as a result, been lagging behind the congeneric Plasmodium species infecting mammals. In this review, I discuss recent genomic advances in the field of avian malaria research, and outline outstanding questions that will become possible to investigate with the continued successful efforts to generate avian haemosporidian genomic data.
Collapse
Affiliation(s)
- Elin Videvall
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA.
| |
Collapse
|
28
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
29
|
Bunnik EM, Cook KB, Varoquaux N, Batugedara G, Prudhomme J, Cort A, Shi L, Andolina C, Ross LS, Brady D, Fidock DA, Nosten F, Tewari R, Sinnis P, Ay F, Vert JP, Noble WS, Le Roch KG. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat Commun 2018; 9:1910. [PMID: 29765020 PMCID: PMC5954139 DOI: 10.1038/s41467-018-04295-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
The development of malaria parasites throughout their various life cycle stages is coordinated by changes in gene expression. We previously showed that the three-dimensional organization of the Plasmodium falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyze genome organization in the P. falciparum and P. vivax transmission stages. Major changes occur in the localization and interactions of genes involved in pathogenesis and immune evasion, host cell invasion, sexual differentiation, and master regulation of gene expression. Furthermore, we observe reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Our results suggest that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycle.
Collapse
Affiliation(s)
- Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Kate B Cook
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Nelle Varoquaux
- Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA, 94720, USA
- Berkeley Institute for Data Science, 190 Doe Library, Berkeley, CA, 94720, USA
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 60 boulevard Saint-Michel, 75006, Paris, France
- Institut Curie, 75248, Paris, France
- U900, INSERM, Paris, 75248, France
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Anthony Cort
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Lirong Shi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, Baltimore, MD, 21205, USA
| | - Chiara Andolina
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, 63110, Thailand
| | - Leila S Ross
- Department of Microbiology and Immunology, Columbia University Medical Center, 701W. 168 St., HHSC 1208, New York, NY, 10032, USA
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, 701W. 168 St., HHSC 1208, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, 63110, Thailand
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, Baltimore, MD, 21205, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy & Immunology, 9420 Athena Cir, La Jolla, CA, 92037, USA
| | - Jean-Philippe Vert
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 60 boulevard Saint-Michel, 75006, Paris, France
- Institut Curie, 75248, Paris, France
- U900, INSERM, Paris, 75248, France
- Département de mathématiques et applications, École normale supérieure, CNRS, PSL Research University, Paris, 75005, France
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA.
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
30
|
Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, LE Roch KG, Fonseca LL, Voit EO. Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology 2018; 145:85-100. [PMID: 28712361 PMCID: PMC5798396 DOI: 10.1017/s0031182017001135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these variant antigen families are regulated. Importantly, the longitudinal dynamics and molecular mechanisms that govern variant antigen expression can be studied with P. knowlesi infection of its mammalian and vector hosts. Synchronous infections can be initiated with established clones and studied at multi-omic levels, with the benefit of computational tools from systems biology that permit the integration of datasets and the design of explanatory, predictive mathematical models. Here we provide an historical account of this topic, while highlighting the potential for maximizing the use of P. knowlesi - macaque model systems and summarizing exciting new progress in this area of research.
Collapse
Affiliation(s)
- M R Galinski
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - S A Lapp
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - M S Peterson
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - F Ay
- La Jolla Institute for Allergy and Immunology,La Jolla,CA 92037,USA
| | - C J Joyner
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - K G LE Roch
- Department of Cell Biology & Neuroscience,Center for Disease and Vector Research,Institute for Integrative Genome Biology,University of California Riverside,CA 92521,USA
| | - L L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| | - E O Voit
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| |
Collapse
|
31
|
|