1
|
Cribb TH, Barton DP, Blair D, Bott NJ, Bray RA, Corner RD, Cutmore SC, De Silva MLI, Duong B, Faltýnková A, Gonchar A, Hechinger RF, Herrmann KK, Huston DC, Johnson PTJ, Kremnev G, Kuchta R, Louvard C, Luus-Powell WJ, Martin SB, Miller TL, Pérez-Ponce de León G, Smit NJ, Tkach VV, Truter M, Waki T, Vermaak A, Wee NQX, Yong RQY, Achatz TJ. Challenges in the recognition of trematode species: Consideration of hypotheses in an inexact science. J Helminthol 2025; 99:e54. [PMID: 40260497 DOI: 10.1017/s0022149x25000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The description and delineation of trematode species is a major ongoing task. Across the field there has been, and currently still is, great variation in the standard of this work and in the sophistication of the proposal of taxonomic hypotheses. Although most species are relatively unambiguously distinct from their congeners, many are either morphologically very similar, including the major and rapidly growing component of cryptic species, or are highly variable morphologically despite little to no molecular variation for standard DNA markers. Here we review challenges in species delineation in the context provided to us by the historical literature, and the use of morphological, geographical, host, and molecular data. We observe that there are potential challenges associated with all these information sources. As a result, we encourage careful proposal of taxonomic hypotheses with consideration for underlying species concepts and frank acknowledgement of weaknesses or conflict in the data. It seems clear that there is no single source of data that provides a wholly reliable answer to our taxonomic challenges but that nuanced consideration of information from multiple sources (the 'integrated approach') provides the best possibility of developing hypotheses that will stand the test of time.
Collapse
Affiliation(s)
- T H Cribb
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - D P Barton
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales2658, Australia
| | - D Blair
- College of Science and Engineering, James Cook University, Australia
| | - N J Bott
- School of Science, RMIT University, PO Box 71, BundooraVIC 3083
| | - R A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
| | - R D Corner
- Department of Primary Industries, Ecosciences Precinct, Dutton Park, Queensland4102, Australia
| | - S C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - M L I De Silva
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Western Australia
| | - B Duong
- School of the Environment, The University of Queensland, 4072Australia
| | - A Faltýnková
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelská 3, Brno, 613 00, Czech Republic
| | - A Gonchar
- Department of Invertebrate Zoology, St Petersburg University, Universitetskaya emb. 7-9, Saint Petersburg199034, Russia
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya emb. 1, Saint Petersburg199034, Russia
| | - R F Hechinger
- Scripps Insitution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - K K Herrmann
- Tarleton State University, Stephenville, Texas, USA
| | - D C Huston
- Australian National Insect Collection, National Research Collections Australia, CSIRO, PO Box 1700, Canberra, ACT2601, Australia
| | - P T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309, USA
| | - G Kremnev
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya emb. 1, Saint Petersburg199034, Russia
| | - R Kuchta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05Ceské Budejovice, Czech Republic
| | - C Louvard
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - W J Luus-Powell
- DSI-NRF SARChI Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, 0727, South Africa
| | - S B Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| | - T L Miller
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - G Pérez-Ponce de León
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, C.P. 97357, Mexico
| | - N J Smit
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - V V Tkach
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - M Truter
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - T Waki
- Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - A Vermaak
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - N Q-X Wee
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - R Q-Y Yong
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - T J Achatz
- Department of Natural Sciences, Middle Georgia State University, Macon, Georgia, USA
| |
Collapse
|
2
|
Emery AM, Rabone M, Landeryou T, Allan F, Rollinson D. The research contribution of the Schistosomiasis Collection at the Natural History Museum (SCAN): highlights, challenges and future directions. Infect Dis Poverty 2025; 14:29. [PMID: 40251693 PMCID: PMC12007343 DOI: 10.1186/s40249-025-01302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND The Schistosomiasis Collection at the Natural History Museum (SCAN) is a repository of schistosomiasis-related specimens, the development of which was funded by the Wellcome Trust between 2011 and 2021. With a view to facilitating research by improving access to genetically diverse material, SCAN was built from legacy research collections of schistosomiasis-related specimens amassed over decades, with more recent collections made through partnership with large field-based projects. METHODS We identified the literature associated with SCAN from 2012 until 2024, using both database searches (search terms: SCAN, the schistosomiasis collection at the NHM and schistosomiasis) and citations of the publication which originally laid out the scope of the SCAN Collection. Studies were included if the SCAN publication was cited, and/or if the SCAN Collection was utilised in the work. Data extracted included year of publication, authors, whether and how SCAN was used in the work, and type of specimens used. RESULTS The literature includes 88 published works, demonstrating the utility of large field-based collections in supporting research. The collection comprises around half a million larval schistosomes originating from the field, with approximately 3000 specimen lots of lab-passaged adult parasites stored in liquid nitrogen. The Collection includes 11 schistosome species, the majority being the human pathogens Schistosoma haematobium and S. mansoni, while also including many livestock-associated species. Genome analysis of S. haematobium and S. guineensis samples indicate historical introgression or ongoing hybridisation. In order of representation, the collection includes S. haematobium (> 19,000 larval forms and eggs, and 550 specimen lots of laboratory passaged adult worms), S. mansoni, S. japonicum, S. bovis, S. curassoni, S. mattheei, S. rodhaini and S. guineensis, with S. intercalatum, S. margrebowiei and S. spindale represented only by laboratory-passaged isolates in liquid nitrogen. SCAN also includes around 210,000 snails, with the collection as a whole encompassing 27 countries. CONCLUSIONS Improvements in DNA sequencing techniques have allowed genome-level data to be accessed from archived larval schistosomes and allowed retrospective analysis of samples collected decades ago. SCAN has been of use in exploring schistosome diversity, particularly with reference to hybridisation and drug resistance. Multiple author nationalities demonstrate the collaborative nature of research using the Collection, although more may need to be done in future, both to promote work led by developing countries and to ensure effective collaboration and sample sharing.
Collapse
Affiliation(s)
- Aidan M Emery
- Natural History Museum, Cromwell Rd, London, SW7 5BD, UK.
| | - Muriel Rabone
- Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - Toby Landeryou
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland's Rural College, Inverness, IV2 5NA, UK
| | - Fiona Allan
- Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - David Rollinson
- Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
- Global Schistosomiasis Alliance, Ealing Cross, 85 Uxbridge Road, Ealing, London, W5 5BW, UK
| |
Collapse
|
3
|
Salas-Coronas J, Bargues MD, Fernández-Soto P, Soriano-Pérez MJ, Artigas P, Vázquez-Villegas J, Villarejo-Ordoñez A, Sánchez-Sánchez JC, Cabeza-Barrera MI, Febrer-Sendra B, De Elías-Escribano A, Crego-Vicente B, Fantozzi MC, Diego JGB, Castillo-Fernández N, Borrego-Jiménez J, Muro A, Luzón-García MP. Impact of species hybridization on the clinical management of schistosomiasis: A prospective study. Travel Med Infect Dis 2024; 61:102744. [PMID: 39053674 DOI: 10.1016/j.tmaid.2024.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Species hybridization represents a real concern in terms of parasite transmission, epidemiology and morbidity of schistosomiasis. It is greatly important to better understand the impact of species hybridization for the clinical management. METHODS A prospective observational study was carried out in sub-Saharan migrants who were diagnosed with confirmed genitourinary schistosomiasis. A tailored protocol was applied, including Schistosoma serology, a specific urine LAMP tests for schistosomiasis and an ultrasound examination before treatment with praziquantel. A scheduled follow-up was performed at 3, 6 and 12 months to monitor treatment response, comparing patients carriers of Schistosoma hybrids with carriers of only genetically pure forms. RESULTS A total of 31 male patients from West Africa were included in the study with a mean age of 26.5 years. Twelve (38.7 %) of the patients were carriers of Schistosoma hybrids. As compared with patients infected with S. haematobium alone, hybrid carriers had lower haemoglobin levels (13.8 g/dL [SD 1.8] vs 14.8 g/dL [SD 1.4], p = 0.04), a greater frequency of hematuria (100 % vs 52.6 %, p = 0.005), a higher ultrasound score (2.64, SD 2.20 vs 0.89, SD 0.99; p = 0.02). However, the presence of hybrids did not result in differences in clinical and analytical responses after treatment. CONCLUSIONS The presence of Schistosoma hybrids seems to cause increased morbidity in infected individuals. However, it does not appear to result in differences in diagnostic tests or in clinical and analytical responses after treatment.
Collapse
Affiliation(s)
- Joaquín Salas-Coronas
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain; Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Carretera Sacramento, S/n 04120 La Cañada de San Urbano, Almería, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - M Dolores Bargues
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Manuel J Soriano-Pérez
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - Patricio Artigas
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | | | | | - José C Sánchez-Sánchez
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - María I Cabeza-Barrera
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Alejandra De Elías-Escribano
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - María C Fantozzi
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | | | - Jaime Borrego-Jiménez
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - María P Luzón-García
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| |
Collapse
|
4
|
O'Ferrall AM, Musaya J, Stothard JR, Roberts AP. Aligning antimicrobial resistance surveillance with schistosomiasis research: an interlinked One Health approach. Trans R Soc Trop Med Hyg 2024; 118:498-504. [PMID: 38842743 PMCID: PMC11299544 DOI: 10.1093/trstmh/trae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.
Collapse
Affiliation(s)
- Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096 Chichiri, Blantyre 3, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
5
|
Ndiour CN, Senghor B, Thiam O, Niang S, Wotodjo AN, Faye BT, Ndiaye NA, Sow O, Sylla K, Ndiaye M, Gaye O, Faye B, Sokhna C, Doucouré S, Sow D. Prevalence and associated factors of schistosomiasis among pregnant women in northern Senegal. BMC Infect Dis 2024; 24:682. [PMID: 38982383 PMCID: PMC11232235 DOI: 10.1186/s12879-024-09443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Schistosomiasis remains a public health concern worldwide. It is responsible for more than 240 million cases in 78 countries, 40 million of whom are women of childbearing age. In the Senegal River basin, both Schistosoma haematobium and Schistosoma mansoni are very prevalent in school-age children. However, there is a lack of information on the burden of schistosomiasis in pregnant women, which can cause complications in the pregnancy outcome. This study aimed to determine the prevalence and associated factors of schistosomiasis in pregnant women. METHODS We conducted a prospective cross-sectional study of pregnant women attending antenatal clinics at the health center of the Senegalese Sugar Company and at the hospital of Richard Toll between August and December 2021. The urine and stool samples collected were examined using microscopy techniques and quantitative polymerase chain reaction (qPCR) to detect the presence of S. haematobium and S. mansoni. The urines were previously tested using urine reagent strips to detect hematuria and proteinuria. Socio-demographical, clinical, and diagnostically data were recorded by the midwife and the gynaecologist. The data were analyzed using a logistic regression model. RESULTS Among the 298 women examined for the infection by microscopic, 65 (21.81%) were infected with urogenital schistosomiasis, 10 (3.36%) with intestinal schistosomiasis, and 4 (1.34%) were co-infected with both types of schistosomiasis. Out of the 288 samples tested by qPCR, 146 (48.99%) were positive for S. haematobium, 49 (35.51%) for S. mansoni and 22 (15.94%) for both species (co-infection). Pregnant women having microscopic haematuria and proteinuria were significantly more infected (p < 0.05). CONCLUSION This study has revealed a high prevalence of schistosomiasis in pregnant women in Senegal. The qPCR allowed us to detect more cases compared to the microscopy. There is a need to conduct more studies to understand the real burden of the disease and to set up a surveillance system to prevent pregnancy-related complications.
Collapse
Affiliation(s)
- Coumba Nar Ndiour
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger, de Saint-Louis, Senegal
| | - Bruno Senghor
- EMR MINES: Maladies Infectieuses, Négligées et Émergentes au Sud, Institut de Recherche pour le Développement, Campus International Institut de Recherche pour le Développement-Université-Cheikh Anta Diop of Hann, BP 1386, Dakar, Sénégal
| | - Ousmane Thiam
- Service de Gynécologie-Obstétrique, UFR Sciences de la Santé, Université Gaston Berger, de Saint-Louis, Senegal
| | - Souleymane Niang
- Centre de Santé, Compagnie Sucrière Sénégalaise, Richard Toll, Richard Toll, Senegal
| | - Amélé Nyedzie Wotodjo
- EMR MINES: Maladies Infectieuses, Négligées et Émergentes au Sud, Institut de Recherche pour le Développement, Campus International Institut de Recherche pour le Développement-Université-Cheikh Anta Diop of Hann, BP 1386, Dakar, Sénégal
| | - Babacar Thiendella Faye
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger, de Saint-Louis, Senegal
| | - Ndeye Amy Ndiaye
- Direction de la Santé de la Mère et de l'Enfant, Ministère de la Santé et de l'Action Sociale, Dakar, Senegal
| | - Omar Sow
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger, de Saint-Louis, Senegal
| | - Khadime Sylla
- Service de Parasitologie-Mycologie, FMPO, Université Cheikh Anta Diop, de Dakar, Senegal
| | - Magatte Ndiaye
- Service de Parasitologie-Mycologie, FMPO, Université Cheikh Anta Diop, de Dakar, Senegal
| | - Oumar Gaye
- Service de Parasitologie-Mycologie, FMPO, Université Cheikh Anta Diop, de Dakar, Senegal
| | - Babacar Faye
- Service de Parasitologie-Mycologie, FMPO, Université Cheikh Anta Diop, de Dakar, Senegal
| | - Cheikh Sokhna
- EMR MINES: Maladies Infectieuses, Négligées et Émergentes au Sud, Institut de Recherche pour le Développement, Campus International Institut de Recherche pour le Développement-Université-Cheikh Anta Diop of Hann, BP 1386, Dakar, Sénégal
| | - Souleymane Doucouré
- EMR MINES: Maladies Infectieuses, Négligées et Émergentes au Sud, Institut de Recherche pour le Développement, Campus International Institut de Recherche pour le Développement-Université-Cheikh Anta Diop of Hann, BP 1386, Dakar, Sénégal
| | - Doudou Sow
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger, de Saint-Louis, Senegal.
- EMR MINES: Maladies Infectieuses, Négligées et Émergentes au Sud, Institut de Recherche pour le Développement, Campus International Institut de Recherche pour le Développement-Université-Cheikh Anta Diop of Hann, BP 1386, Dakar, Sénégal.
| |
Collapse
|
6
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
7
|
Agniwo P, Boissier J, Sidibé B, Dembélé L, Diakité A, Niaré DS, Akplogan A, Guindo H, Blin M, Dametto S, Ibikounlé M, Spangenberg T, Dabo A. Genetic profiles of Schistosoma haematobium parasites from Malian transmission hotspot areas. Parasit Vectors 2023; 16:263. [PMID: 37542265 PMCID: PMC10403946 DOI: 10.1186/s13071-023-05860-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Although schistosomiasis is a public health issue in Mali, little is known about the parasite genetic profile. The purpose of this study was to analyze the genetic profile of the schistosomes of Schistosoma haematobium group in school-aged children in various sites in Mali. METHODS Urine samples were collected from 7 to 21 November 2021 and subjected to a filtration method for the presence S. haematobium eggs. The study took place in two schistosomiasis endemic villages (Fangouné Bamanan and Diakalèl), qualified as hotspots according to the World Health Organization (WHO) definition. Molecular genotyping on both Cox1 and ITS2/18S was used for eggs' taxonomic assignation. RESULTS A total of 970 miracidia were individually collected from 63 school-aged children and stored on Whatman FTA cards for molecular analysis. After genotyping 42.0% (353/840) and 58.0% (487/840) of miracidia revealed Schistosoma bovis and S. haematobium Cox1 profiles, respectively; 95.7 (885/925) and 4.3% (40/925) revealed S. haematobium and S. haematobium/S. curassoni profiles for ITS/18S genes, respectively. There was a significant difference in the Cox1 and ITS2/18S profile distribution according to the village (P < 0.0001). Overall, 45.6% (360/789) were hybrids, of which 72.0% (322/447) were from Diakalèl. Three hybrids' profiles (Sb/Sc_ShxSc with 2.3%; Sb/Sc_ShxSh with 40.5%; Sh_ShxSc with 2.8%) and one pure profile (Sh_ShxSh with 54.4%) were identified. CONCLUSION Our findings show, for the first time to our knowledge, high prevalence of hybrid schistosomes in Mali. More studies are needed on population genetics of schistosomes at the human and animal interface to evaluate the parasite's gene flow and its consequences on epidemiology of the disease as well as the transmission to humans.
Collapse
Affiliation(s)
- Privat Agniwo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Jérôme Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Bakary Sidibé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Laurent Dembélé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Assitan Diakité
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Doumbo Safiatou Niaré
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Ahristode Akplogan
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Hassim Guindo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Manon Blin
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Sarah Dametto
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Moudachirou Ibikounlé
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Route de Crassier 1, 1262, Eysins, Switzerland
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali.
| |
Collapse
|
8
|
Calvo-Urbano B, Léger E, Gabain I, De Dood CJ, Diouf ND, Borlase A, Rudge JW, Corstjens PLAM, Sène M, Van Dam GJ, Walker M, Webster JP. Sensitivity and specificity of human point-of-care circulating cathodic antigen (POC-CCA) test in African livestock for rapid diagnosis of schistosomiasis: A Bayesian latent class analysis. PLoS Negl Trop Dis 2023; 17:e0010739. [PMID: 37216407 DOI: 10.1371/journal.pntd.0010739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease (NTD) affecting both humans and animals. The morbidity and mortality inflicted upon livestock in the Afrotropical region has been largely overlooked, in part due to a lack of validated sensitive and specific tests, which do not require specialist training or equipment to deliver and interpret. As stressed within the recent WHO NTD 2021-2030 Roadmap and Revised Guideline for schistosomiasis, inexpensive, non-invasive, and sensitive diagnostic tests for livestock-use would also facilitate both prevalence mapping and appropriate intervention programmes. The aim of this study was to assess the sensitivity and specificity of the currently available point-of-care circulating cathodic antigen test (POC-CCA), designed for Schistosoma mansoni detection in humans, for the detection of intestinal livestock schistosomiasis caused by Schistosoma bovis and Schistosoma curassoni. POC-CCA, together with the circulating anodic antigen (CAA) test, miracidial hatching technique (MHT) and organ and mesentery inspection (for animals from abattoirs only), were applied to samples collected from 195 animals (56 cattle and 139 small ruminants (goats and sheep) from abattoirs and living populations) from Senegal. POC-CCA sensitivity was greater in the S. curassoni-dominated Barkedji livestock, both for cattle (median 81%; 95% credible interval (CrI): 55%-98%) and small ruminants (49%; CrI: 29%-87%), than in S. bovis-dominated Richard Toll ruminants (cattle: 62%; CrI: 41%-84%; small ruminants: 12%, CrI: 1%-37%). Overall, sensitivity was greater in cattle than in small ruminants. Small ruminants POC-CCA specificity was similar in both locations (91%; CrI: 77%-99%), whilst cattle POC-CCA specificity could not be assessed owing to the low number of uninfected cattle surveyed. Our results indicate that, whilst the current POC-CCA does represent a potential diagnostic tool for cattle and possibly for predominantly S. curassoni-infected livestock, future work is needed to develop parasite- and/or livestock-specific affordable and field-applicable diagnostic tests to enable determination of the true extent of livestock schistosomiasis.
Collapse
Affiliation(s)
- Beatriz Calvo-Urbano
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Isobel Gabain
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Nicolas D Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | - Anna Borlase
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | | | - Martin Walker
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P Webster
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
9
|
Blin M, Dametto S, Agniwo P, Webster BL, Angora E, Dabo A, Boissier J. A duplex tetra-primer ARMS-PCR assay to discriminate three species of the Schistosoma haematobium group: Schistosoma curassoni, S. bovis, S. haematobium and their hybrids. Parasit Vectors 2023; 16:121. [PMID: 37029440 PMCID: PMC10082484 DOI: 10.1186/s13071-023-05754-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The use of applications involving single nucleotide polymorphisms (SNPs) has greatly increased since the beginning of the 2000s, with the number of associated techniques expanding rapidly in the field of molecular research. Tetra-primer amplification refractory mutation system-PCR (T-ARMS-PCR) is one such technique involving SNP genotyping. It has the advantage of amplifying multiple alleles in a single reaction with the inclusion of an internal molecular control. We report here the development of a rapid, reliable and cost-effective duplex T-ARMS-PCR assay to distinguish between three Schistosoma species, namely Schistosoma haematobium (human parasite), Schistosoma bovis and Schistosoma curassoni (animal parasites), and their hybrids. This technique will facilitate studies of population genetics and the evolution of introgression events. METHODS During the development of the technique we focused on one of the five inter-species internal transcribed spacer (ITS) SNPs and one of the inter-species 18S SNPs which, when combined, discriminate between all three Schistosoma species and their hybrid forms. We designed T-ARMS-PCR primers to amplify amplicons of specific lengths for each species, which in turn can then be visualized on an electrophoresis gel. This was further tested using laboratory and field-collected adult worms and field-collected larval stages (miracidia) from Spain, Egypt, Mali, Senegal and Ivory Coast. The combined duplex T-ARMS-PCR and ITS + 18S primer set was then used to differentiate the three species in a single reaction. RESULTS The T-ARMS-PCR assay was able to detect DNA from both species being analysed at the maximum and minimum levels in the DNA ratios (95/5) tested. The duplex T-ARMS-PCR assay was also able to detect all hybrids tested and was validated by sequencing the ITS and the 18S amplicons of 148 of the field samples included in the study. CONCLUSIONS The duplex tetra-primer ARMS-PCR assay described here can be applied to differentiate between Schistosoma species and their hybrid forms that infect humans and animals, thereby providing a method to investigate the epidemiology of these species in endemic areas. The addition of several markers in a single reaction saves considerable time and is of long-standing interest for investigating genetic populations.
Collapse
Affiliation(s)
- Manon Blin
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- SAS ParaDev®, 66860, Perpignan, France
| | - Sarah Dametto
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
| | - Privat Agniwo
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Science, Natural History Museum, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, W2 1PG, UK
| | - Etienne Angora
- Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jérôme Boissier
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France.
| |
Collapse
|
10
|
Senghor B, Mathieu-Begné E, Rey O, Doucouré S, Sow D, Diop B, Sène M, Boissier J, Sokhna C. Urogenital schistosomiasis in three different water access in the Senegal river basin: prevalence and monitoring praziquantel efficacy and re-infection levels. BMC Infect Dis 2022; 22:968. [PMID: 36581796 PMCID: PMC9801593 DOI: 10.1186/s12879-022-07813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Urogenital schistosomiasis is a neglected tropical disease most prevalent in sub-Saharan Africa. In the Senegal river basin, the construction of the Diama dam led to an increase and endemicity of schistosomiasis. Since 2009, praziquantel has frequently been used as preventive chemotherapy in the form of mass administration to Senegalese school-aged children without monitoring of the treatment efficacy and the prevalence after re-infection. This study aims to determine the current prevalence of urogenital schistosomiasis (caused by Schistosoma haematobium), the efficacy of praziquantel, and the re-infection rates in children from five villages with different water access. METHODS The baseline prevalence of S. haematobium was determined in August 2020 in 777 children between 5 and 11 years old and a single dose of praziquantel (40 mg/kg) was administered to those positive. The efficacy of praziquantel and the re-infection rates were monitored 4 weeks and 7 months after treatment, respectively, in 226 children with a high intensity of infection at baseline. RESULTS At the baseline, prevalence was low among children from the village of Mbane who live close to the Lac de Guiers (38%), moderate among those from the villages of Dioundou and Khodit, which neighbor the Doue river (46%), and very high at Khodit (90.6%) and Guia (91.2%) which mainly use an irrigation canal. After treatment, the observed cure rates confirmed the efficacy of praziquantel. The lowest cure rate (88.5%) was obtained in the village using the irrigation canal, while high cure rates were obtained in those using the lake (96.5%) and the river (98%). However, high egg reduction rates (between 96.7 and 99.7%) were obtained in all the villages. The re-infection was significantly higher in the village using the canal (42.5%) than in the villages accessing the Lac de Guiers (18.3%) and the Doue river (14.8%). CONCLUSION Praziquantel has an impact on reducing the prevalence and intensity of urogenital schistosomiasis. However, in the Senegal river basin, S. haematobium remains a real health problem for children living in the villages near the irrigation canals, despite regular treatment, while prevalence is declining from those frequenting the river and the Lac de Guiers. Trial registration ClinicalTrials.gov, NCT04635553. Registered 19 November 2020 retrospectively registered, https://www. CLINICALTRIALS gov/ct2/show/NCT04635553?cntry=SN&draw=2&rank=4.
Collapse
Affiliation(s)
- Bruno Senghor
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal
| | - Eglantine Mathieu-Begné
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Olivier Rey
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Souleymane Doucouré
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal
| | - Doudou Sow
- grid.442784.90000 0001 2295 6052Department of Parasitology-Mycology, UFR of Health Sciences, University Gaston Berger, 234, Saint-Louis, Senegal
| | - Bocar Diop
- grid.442784.90000 0001 2295 6052Laboratory of Biological and Agronomic Sciences and Modelling of Complex Systems, UFRS2ATA, Gaston Berger University of Saint-Louis, Saint-Louis, Senegal
| | - Mariama Sène
- National Schistosomiasis Control Program (NSCP), Ministry of Health, Dakar, Senegal
| | - Jérôme Boissier
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Cheikh Sokhna
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal ,grid.5399.60000 0001 2176 4817VITROME, IRD, SSA, AP-HM, IHU-Mediterranean Infection, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
11
|
Ajakaye OG, Dagona AG, Haladu AG, Ombugadu A, Lapang MP, Enabulele EE. Contrasting epidemiology of urogenital schistosomiasis among pastoral communities surrounding three Ramsar wetland in Nigeria. J Parasit Dis 2022; 46:637-642. [PMID: 36091292 PMCID: PMC9458808 DOI: 10.1007/s12639-022-01478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Suspected changes in the epidemiology of schistosomiasis due to several hybridization reports between human and livestock Schistosoma species in Africa calls for epidemiological investigations among potential high-risk groups and sites. Although the use of wetlands for pastoralism has been linked to schistosomiasis, there is limited information on the epidemiology of the disease among pastoralists in Nigeria. In this study, urine samples from 355 participants from pastoral communities settled around three Ramsar wetlands (Wetlands of International Importance) in Nigeria, (Dagona Sanctuary, Maladumba, and Pandam-Wase) were screened for the eggs of Schistosoma haematobium. Only participants in the Dagona Sanctuary were infected with 34.2% prevalence. Macrohematuria was however observed in some individuals at the Dagona Sanctuary wetland (2.5%) and Maladumba (2.8%). Regular praziquantel administration, functional health care facilities and awareness about schistosomiasis were contributory factors to the contrasting epidemiology of the disease among the study population. Schistosomiasis control requires the inclusion of pastoral and nomadic communities in mass drug administration of praziquantel based on a community-directed intervention strategy.
Collapse
Affiliation(s)
- O. G. Ajakaye
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Ondo State Nigeria
| | - A. G. Dagona
- Department of Biological Science, Federal University, Gashua, Yobe State Nigeria
| | - A. G. Haladu
- Department of Biological Sciences, Bauchi State University, Gadau, Bauchi State Nigeria
| | - A. Ombugadu
- Department of Zoology, Federal University of Lafia, Lafia, Nasarawa State Nigeria
| | - M. P. Lapang
- Department of Zoology, University of Jos, Jos, Plateau State Nigeria
| | - E. E. Enabulele
- Department of Animal and Environmental Biology, University of Benin, Benin, Edo State Nigeria
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX USA
| |
Collapse
|
12
|
Onyekwere AM, Rey O, Allienne JF, Nwanchor MC, Alo M, Uwa C, Boissier J. Population Genetic Structure and Hybridization of Schistosoma haematobium in Nigeria. Pathogens 2022; 11:425. [PMID: 35456103 PMCID: PMC9026724 DOI: 10.3390/pathogens11040425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s neighboring West African countries. No empirical studies have been carried out on the genomic diversity of Schistosoma haematobium in Nigeria. Here, we present novel data on the presence and prevalence of hybrids and the population genetic structure of S. haematobium. Methods: 165 Schistosoma-positive urine samples were obtained from 12 sampling sites in Nigeria. Schistosoma haematobium eggs from each sample were hatched and each individual miracidium was picked and preserved in Whatman® FTA cards for genomic analysis. Approximately 1364 parasites were molecularly characterized by rapid diagnostic multiplex polymerase chain reaction (RD-PCR) for mitochondrial DNA gene (Cox1 mtDNA) and a subset of 1136 miracidia were genotyped using a panel of 18 microsatellite markers. Results: No significant difference was observed in the population genetic diversity (p > 0.05), though a significant difference was observed in the allelic richness of the sites except sites 7, 8, and 9 (p < 0.05). Moreover, we observed two clusters of populations: west (populations 1−4) and east (populations 7−12). Of the 1364 miracidia genotyped, 1212 (89%) showed an S. bovis Cox1 profile and 152 (11%) showed an S. haematobium cox1 profile. All parasites showed an S. bovis Cox1 profile except for some at sites 3 and 4. Schistosoma miracidia full genotyping showed 59.3% of the S. bovis ITS2 allele. Conclusions: This study provides novel insight into hybridization and population genetic structure of S. haematobium in Nigeria. Our findings suggest that S. haematobium x S. bovis hybrids are common in Nigeria. More genomic studies on both human- and animal-infecting parasites are needed to ascertain the role of animals in schistosome transmission.
Collapse
Affiliation(s)
- Amos Mathias Onyekwere
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Olivier Rey
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Jean-François Allienne
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | | | - Moses Alo
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria;
| | - Clementina Uwa
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
| | - Jerome Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| |
Collapse
|
13
|
Hybridization increases genetic diversity in Schistosoma haematobium populations infecting humans in Cameroon. Infect Dis Poverty 2022; 11:37. [PMID: 35346375 PMCID: PMC8962594 DOI: 10.1186/s40249-022-00958-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hybrids between Schistosoma haematobium (Sh) and S. bovis (Sb) have been found in several African countries as well as in Europe. Since the consequences of this hybridization are still unknown, this study aims to verify the presence of such hybrids in Cameroonian humans, to describe the structure of S. haematobium populations on a large geographic scale, and to examine the impact of these hybrids on genetic diversity and structure of these populations.
Methods From January to April 2019, urine from infected children was collected in ten geographically distinct populations. Miracidia were collected from eggs in this urine. To detect the presence of hybrids among these miracidia we genotyped both Cox1 (RD-PCR) and ITS2 gene (PCR-RFLP). Population genetic diversity and structure was assessed by genotyping each miracidium with a panel of 14 microsatellite markers. Gene diversity was measured using both heterozygosity and allelic richness indexes, and genetic structure was analyzed using paired Fst, PCA and Bayesian approaches. Results Of the 1327 miracidia studied, 88.7% were identified as pure genotypes of S. haematobium (Sh_Sh/Sh) while the remaining 11.3% were hybrids (7.0% with Sh_Sh/Sb, 3.7% with Sb_Sb/Sh and 0.4% with Sb_Sh/Sb). No miracidium has been identified as a pure genotype of S. bovis. Allelic richness ranged from 5.55 (Loum population) to 7.73 (Matta-Barrage) and differed significantly between populations. Mean heterozygosity ranged from 53.7% (Loum) to 59% (Matta Barrage) with no significant difference. The overall genetic differentiation inferred either by a principal component analysis or by the Bayesian approach shows a partial structure. Southern populations (Loum and Matta Barrage) were clearly separated from other localities but genetic differentiation between northern localities was limited, certainly due to the geographic proximity between these sites. Conclusions Hybrids between S. haematobium and S. bovis were identified in 11.3% of miracidia that hatched from eggs present in the urine of Cameroonian schoolchildren. The percentages of these hybrids are correlated with the genetic diversity of the parasite, indicating that hybridization increases genetic diversity in our sampling sites. Hybridization is therefore a major biological process that shapes the genetic diversity of S. haematobium. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00958-0.
Collapse
|
14
|
Moser W, Batil AA, Ott R, Abderamane M, Clements R, Wampfler R, Poppert S, Steinmann P, Allan F, Greter H. High prevalence of urinary schistosomiasis in a desert population: results from an exploratory study around the Ounianga lakes in Chad. Infect Dis Poverty 2022; 11:5. [PMID: 34991728 PMCID: PMC8740043 DOI: 10.1186/s40249-021-00930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Researching a water-borne disease in the middle of the Sahara desert might not seem the most relevant concern. However, nomadic Sahelian pastoralists health concerns regarding their livestock and anecdotal reports about trematode infections of Fasciola spp. and Schistosoma spp. in desert-raised animals justified an exploratory study focusing on the lakes of Ounianga in Northern Chad. The aim was to test whether trematode parasites such as Schistosoma spp. occur in human populations living around the Sahara desert lakes of Ounianga Kebir and Ounianga Serir in northern Chad. METHODS The study was carried out in January 2019 and comprised of three components. First, a cross sectional survey based on a random sample drawn from the population to detect infections with S. haematobium and S. mansoni; second, focus group discussions exploring disease priorities, access to health and health seeking behaviour; and third, surveying water contact sites for intermediate host snails. Samples of trematode parasites and snails were confirmed on species level by molecular genetic methods. For parasitological and malacological surveys descriptive statistics were performed. Qualitative data analysis included the full review of all transcripts, followed by a descriptive and explorative thematic analysis. RESULTS Among 258 participants, the overall S. haematobium prevalence using urine filtration was 39.2% [95% confidence interval (CI): 33.5-45.1%], with 51.5% of the infected suffering from heavy infection. The intermediate host snail of S. haematobium (Bulinus truncatus) occurred at water contact sites near both study villages, revealing the potential for local transmission. Although a positive S. mansoni point-of-care circulating cathodic antigen (POC-CCA) test result was obtained from 8.6% (95% CI 5.7-12.8%) of the samples, no intermediate host snails of S. mansoni were found, and the relevance of S. mansoni remains uncertain. Qualitative findings underline the importance of morbidity caused by urinary schistosomiasis, and the lack of access to diagnostics and treatment as a major health concern. CONCLUSIONS This research revealed a high prevalence of urinary schistosomiasis in the population living around the lakes of Ounianga in the Sahara, a United Nations Educational, Scientific and Cultural Organization (UNESCO) world heritage site in Chad. Despite the high public health importance of the associated morbidity expressed by the population, there is no access to diagnostics and treatment. Further work is needed to develop and test a context-adapted intervention.
Collapse
Affiliation(s)
- Wendelin Moser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Rebekka Ott
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Ruth Clements
- Department of Life Sciences, Natural History Museum, London, UK
| | - Rahel Wampfler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, UK
| | - Helena Greter
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|
16
|
Landeryou T, Rabone M, Allan F, Maddren R, Rollinson D, Webster BL, Tchuem-Tchuenté LA, Anderson RM, Emery AM. Genome-wide insights into adaptive hybridisation across the Schistosoma haematobium group in West and Central Africa. PLoS Negl Trop Dis 2022; 16:e0010088. [PMID: 35100291 PMCID: PMC8803156 DOI: 10.1371/journal.pntd.0010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis remains a public health concern across sub-Saharan Africa; current control programmes rely on accurate mapping and high mass drug administration (MDA) coverage to attempt disease elimination. Inter-species hybridisation can occur between certain species, changing epidemiological dynamics within endemic regions, which has the potential to confound control interventions. The impact of hybridisation on disease dynamics is well illustrated in areas of Cameroon where urogenital schistosomiasis, primarily due to Schistosoma haematobium and hybrid infections, now predominate over intestinal schistosomiasis caused by Schistosoma guineensis. Genetic markers have shown the ability to identify hybrids, however the underlying genomic architecture of divergence and introgression between these species has yet to be established. In this study, restriction site associated DNA sequencing (RADseq) was used on archived adult worms initially identified as; Schistosoma bovis (n = 4), S. haematobium (n = 9), S. guineensis (n = 3) and S. guineensis x S. haematobium hybrids (n = 4) from Mali, Senegal, Niger, São Tomé and Cameroon. Genome-wide evidence supports the existence of S. guineensis and S. haematobium hybrid populations across Cameroon. The hybridisation of S. guineensis x S. haematobium has not been demonstrated on the island of São Tomé, where all samples showed no introgression with S. haematobium. Additionally, all S. haematobium isolates from Nigeria, Mali and Cameroon indicated signatures of genomic introgression from S. bovis. Adaptive loci across the S. haematobium group showed that voltage-gated calcium ion channels (Cav) could play a key role in the ability to increase the survivability of species, particularly in host systems. Where admixture has occurred between S. guineensis and S. haematobium, the excess introgressive influx of tegumental (outer helminth body) and antigenic genes from S. haematobium has increased the adaptive response in hybrids, leading to increased hybrid population fitness and viability.
Collapse
Affiliation(s)
- Toby Landeryou
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rosie Maddren
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David Rollinson
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Bonnie L. Webster
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Roy M. Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aidan M. Emery
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Hybridized Zoonotic Schistosoma Infections Result in Hybridized Morbidity Profiles: A Clinical Morbidity Study amongst Co-Infected Human Populations of Senegal. Microorganisms 2021; 9:microorganisms9081776. [PMID: 34442855 PMCID: PMC8401530 DOI: 10.3390/microorganisms9081776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Hybridization of infectious agents is a major emerging public and veterinary health concern at the interface of evolution, epidemiology, and control. Whilst evidence of the extent of hybridization amongst parasites is increasing, their impact on morbidity remains largely unknown. This may be predicted to be particularly pertinent where parasites of animals with contrasting pathogenicity viably hybridize with human parasites. Recent research has revealed that viable zoonotic hybrids between human urogenital Schistosoma haematobium with intestinal Schistosoma species of livestock, notably Schistosoma bovis, can be highly prevalent across Africa and beyond. Examining human populations in Senegal, we found increased hepatic but decreased urogenital morbidity, and reduced improvement following treatment with praziquantel, in those infected with zoonotic hybrids compared to non-hybrids. Our results have implications for effective monitoring and evaluation of control programmes, and demonstrate for the first time the potential impact of parasite hybridizations on host morbidity.
Collapse
|
18
|
Ojo JA, Adedokun SA, Akindele AA, Olorunfemi AB, Otutu OA, Ojurongbe TA, Thomas BN, Velavan TP, Ojurongbe O. Prevalence of urogenital and intestinal schistosomiasis among school children in South-west Nigeria. PLoS Negl Trop Dis 2021; 15:e0009628. [PMID: 34314428 PMCID: PMC8345861 DOI: 10.1371/journal.pntd.0009628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/06/2021] [Accepted: 07/05/2021] [Indexed: 01/25/2023] Open
Abstract
Background The risk of co-infection with Schistosoma haematobium and S. mansoni and the potential harmful effect on morbidity and control is enhanced by the overlapping distribution of both species in sub-Saharan Africa. Despite the reported high endemicity of both species in Nigeria, studies on the spread and effect of their mixed infection are limited. Therefore, a cross-sectional survey was conducted among school children in two communities in South-west Nigeria to investigate the prevalence of mixed human schistosome infection, intensity, and possible ectopic egg elimination. Methods Urine and stool samples were collected from consenting school children in Ilie and Ore communities of Osun State, Nigeria. Schistosoma haematobium eggs were detected in urine using the urine filtration technique, while S. mansoni eggs were detected in stool using the Kato–Katz thick smear technique. Results The study enrolled 466 primary and secondary school children (211; 45.3% males vs. 255; 54.7% females; mean age 11.6 ± 3.16 years). The overall prevalence of schistosomiasis was 40% (185/466), with 19% (89/466) recording single S. haematobium infection while 9% (41/465) had a single S. mansoni infection. The geometric mean egg count for S. haematobium was 189.4 egg/10ml urine; 95% CI: range 115.9–262.9, while for S. mansoni, it was 115.7 epg; 95% CI: range 78.4–152.9. The prevalence of ectopic S mansoni (S. mansoni eggs in urine) was 4.7%, while no ectopic S. haematobium (S. haematobium eggs in stool) was recorded. Mixed infection of S. haematobium/S. mansoni had a prevalence of 9.5% (44/466). More females (54.5%) presented with S. haematobium/S. mansoni co-infection. For both parasites, males had higher infection intensity, with a significant difference observed with S. haematobium (p = 0.0004). Hematuria was significant in individuals with single S. haematobium infection (p = 0.002), mixed ectopic S. haematobium/S. mansoni (p = 0.009) and mixed S. haematobium/S. mansoni/ectopic S. mansoni (p = 0.0003). Conclusions These findings suggest the probability of interspecific interactions between S. haematobium and S. mansoni. Scaling up of mass administration of praziquantel and control measures in the study areas is highly desirable. In sub-Saharan Africa, human schistosomiasis is a neglected disease of public health concern caused mostly by Schistosoma haematobium and Schistosoma mansoni. The overlapping range of both species in Africa considerably increases the chance of co-infection. School-aged children are the most vulnerable, as they participate in water contact activities that expose them to free-swimming cercariae released by infected snail species in freshwater. This study examined the probable mixed human Schistosoma infections and associated disease variables in school children in the communities of Ilie and Ore in southwest Nigeria. This study reveals a high prevalence of mixed S. haematobium and S. mansoni, and ectopic S. mansoni eggs (S. mansoni eggs in urine) elimination, highlighting the possible ongoing control challenges in this area. Furthermore, this study indicates that some form of inter-specific interaction exists between S. haematobium and S. mansoni, and may produce potentially significant consequences for developing morbidity in the study areas.
Collapse
Affiliation(s)
- Johnson A. Ojo
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Samuel A. Adedokun
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Akeem A. Akindele
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adedolapo B. Olorunfemi
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Olawumi A. Otutu
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Taiwo A. Ojurongbe
- Department of Mathematical Sciences, Osun State University, Osogbo, Nigeria
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester New York, United States of America
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Olusola Ojurongbe
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- * E-mail:
| |
Collapse
|
19
|
Panzner U, Boissier J. Natural Intra- and Interclade Human Hybrid Schistosomes in Africa with Considerations on Prevention through Vaccination. Microorganisms 2021; 9:microorganisms9071465. [PMID: 34361901 PMCID: PMC8305539 DOI: 10.3390/microorganisms9071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Causal agents of schistosomiasis are dioecious, digenean schistosomes affecting mankind in 76 countries. Preventive measures are manifold but need to be complemented by vaccination for long-term protection; vaccine candidates in advanced pre-clinical/clinical stages include Sm14, Sm-TSP-2/Sm-TSP-2Al®, Smp80/SchistoShield®, and Sh28GST/Bilhvax®. Natural and anthropogenic changes impact on breaking species isolation barriers favoring introgressive hybridization, i.e., allelic exchange among gene pools of sympatric, interbreeding species leading to instant large genetic diversity. Phylogenetic distance matters, thus the less species differ phylogenetically the more likely they hybridize. PubMed and Embase databases were searched for publications limited to hybridale confirmation by mitochondrial cytochrome c oxidase (COX) and/or nuclear ribosomal internal transcribed spacer (ITS). Human schistosomal hybrids are predominantly reported from West Africa with clustering in the Senegal River Basin, and scattering to Europe, Central and Eastern Africa. Noteworthy is the dominance of Schistosoma haematobium interbreeding with human and veterinary species leading due to hybrid vigor to extinction and homogenization as seen for S. guineensis in Cameroon and S. haematobium in Niger, respectively. Heterosis seems to advantage S. haematobium/S. bovis interbreeds with dominant S. haematobium-ITS/S. bovis-COX1 profile to spread from West to East Africa and reoccur in France. S. haematobium/S. mansoni interactions seen among Senegalese and Côte d’Ivoirian children are unexpected due to their high phylogenetic distance. Detecting pure S. bovis and S. bovis/S. curassoni crosses capable of infecting humans observed in Corsica and Côte d’Ivoire, and Niger, respectively, is worrisome. Taken together, species hybridization urges control and preventive measures targeting human and veterinary sectors in line with the One-Health concept to be complemented by vaccination protecting against transmission, infection, and disease recurrence. Functional and structural diversity of naturally occurring human schistosomal hybrids may impact current vaccine candidates requiring further research including natural history studies in endemic areas targeted for clinical trials.
Collapse
Affiliation(s)
- Ursula Panzner
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany
- Swiss Tropical and Public Health Institute, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +49-176-6657-2910
| | - Jerome Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan, 66860 Perpignan, France;
| |
Collapse
|
20
|
Gillardie ML, Babba O, Mahinc C, Duthel M, de Bengy C, Morineaud C, Rivollier E, Flori P. Molecular approach to the epidemiology of urinary schistosomiasis in France. PLoS Negl Trop Dis 2021; 15:e0009515. [PMID: 34228747 PMCID: PMC8284649 DOI: 10.1371/journal.pntd.0009515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/16/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The diagnosis of urogenital schistosomiasis is based on the complementarity of serological technique and microscopic examination (ME). Between 2015 and 2019, the number of urinary schistosomiasis tests received in our laboratory increased sharply from 300 to 900 per year. Therefore, we wanted to evaluate the reliability of urine microscopic examination (ME, reference and routine technique) from urine sample by comparing it to other techniques (antigenic technique and PCR). To this end, we optimized two real-time PCRs targeting respectively Schistosoma haematobium (Sh) and Schistosoma mansoni (Sm). METHODOLOGY/PRINCIPAL FINDINGS 914 urine samples from 846 patients suspected of urogenital schistosomiasis were prescribed and analyzed by PCR and also by antigenic technique for the first 143 samples. The antigenic technique evaluated was Schisto POC-CCA, Rapid Medical Diagnostics. These results (antigenic technique and PCR) were compared to ME which was performed from all urines. The percentage of 14% (128/914) positive cases with the PCR technique and the percentage of 6.0% (54/914) positive cases with ME is significantly different (Chi 2 test, p<0.001). These 128 positive PCRs correspond to 120 different patients, 88.3% (106/120) of them were young migrants and 11.7% (14/120) were French patients returning from travel. Among these migrants, more than 75% (80/106) came from French-speaking West Africa. In addition, the Schisto POC-CCA showed a specificity of 39% (46/117), too poor to be used as a screening tool in low or non-endemic areas. CONCLUSION/SIGNIFICANCE Targeted Sh and Sm PCRs in urine are reliable techniques compared to ME (reference technique). In view of our results, we decided to screen urinary schistosomiasis by direct ME always coupled by the PCR technique, which has shown better reliability criteria.
Collapse
Affiliation(s)
- Marie-Laure Gillardie
- University of Saint-Etienne, GIMAP-EA-3064, Saint Etienne, France
- Parasitology and Mycology, department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Oussama Babba
- University of Saint-Etienne, GIMAP-EA-3064, Saint Etienne, France
- Parasitology and Mycology, department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Caroline Mahinc
- Parasitology and Mycology, department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Maureen Duthel
- University of Saint-Etienne, GIMAP-EA-3064, Saint Etienne, France
- Parasitology and Mycology, department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Claire de Bengy
- University of Saint-Etienne, GIMAP-EA-3064, Saint Etienne, France
- Parasitology and Mycology, department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Clotilde Morineaud
- Department of Public Health, University Hospital of Poitiers, Poitiers, France
| | - Elisabeth Rivollier
- Department PASS, University Hospital of Saint-Etienne, Saint Etienne, France
| | - Pierre Flori
- University of Saint-Etienne, GIMAP-EA-3064, Saint Etienne, France
- Parasitology and Mycology, department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
21
|
Catalano S, Léger E, Fall CB, Borlase A, Diop SD, Berger D, Webster BL, Faye B, Diouf ND, Rollinson D, Sène M, Bâ K, Webster JP. Multihost Transmission of Schistosoma mansoni in Senegal, 2015-2018. Emerg Infect Dis 2021; 26:1234-1242. [PMID: 32441625 PMCID: PMC7258455 DOI: 10.3201/eid2606.200107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In West Africa, Schistosoma spp. are capable of infecting multiple definitive hosts, a lifecycle feature that may complicate schistosomiasis control. We characterized the evolutionary relationships among multiple Schistosoma mansoni isolates collected from snails (intermediate hosts), humans (definitive hosts), and rodents (definitive hosts) in Senegal. On a local scale, diagnosis of S. mansoni infection ranged 3.8%-44.8% in school-aged children, 1.7%-52.6% in Mastomys huberti mice, and 1.8%-7.1% in Biomphalaria pfeifferi snails. Our phylogenetic framework confirmed the presence of multiple S. mansoni lineages that could infect both humans and rodents; divergence times of these lineages varied (0.13-0.02 million years ago). We propose that extensive movement of persons across West Africa might have contributed to the establishment of these various multihost S. mansoni clades. High S. mansoni prevalence in rodents at transmission sites frequented by humans further highlights the implications that alternative hosts could have on future public health interventions.
Collapse
|
22
|
Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. Population genetics of African Schistosoma species. INFECTION GENETICS AND EVOLUTION 2021; 89:104727. [PMID: 33486128 DOI: 10.1016/j.meegid.2021.104727] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Blood flukes within the genus Schistosoma (schistosomes) are responsible for the major disease, schistosomiasis, in tropical and sub-tropical areas. This disease is predominantly present on the African continent with more than 85% of the human cases. Schistosomes are also parasites of veterinary importance infecting livestock and wildlife. Schistosoma population genetic structure and diversity are important characteristics that may reflect variations in selection pressures such as those induced by host (mammalian and snail) environments, habitat change, migration and also treatment/control interventions, all of which also shape speciation and evolution of the whole Schistosoma genus. Investigations into schistosome population genetic structure, diversity and evolution has been an area of important debate and research. Supported by advances in molecular techniques with capabilities for multi-locus genetic analyses for single larvae schistosome genetic investigations have greatly progressed in the last decade. This paper aims to review the genetic studies of both animal and human infecting schistosome. Population genetic structures are reviewed at different spatial scales: local, regional or continental (i.e. phylogeography). Within species genetic diversities are discussed compared and the compounding factors discussed, including the effect of mass drug administration. Finally, the ability for intra-species hybridisation questions species integrities and poses many questions in relation to the natural epidemiology of co-endemic species. Here we review molecularly confirmed hybridisation events (in relation to human disease) and discuss the possible impact for ongoing and future control and elimination.
Collapse
Affiliation(s)
- O Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - B L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - T Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - D Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - F Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts AL9 7TA, United Kingdom
| | - A Onyekwere
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - J Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France.
| |
Collapse
|
23
|
Léger E, Borlase A, Fall CB, Diouf ND, Diop SD, Yasenev L, Catalano S, Thiam CT, Ndiaye A, Emery A, Morrell A, Rabone M, Ndao M, Faye B, Rollinson D, Rudge JW, Sène M, Webster JP. Prevalence and distribution of schistosomiasis in human, livestock, and snail populations in northern Senegal: a One Health epidemiological study of a multi-host system. Lancet Planet Health 2020; 4:e330-e342. [PMID: 32800151 PMCID: PMC7443702 DOI: 10.1016/s2542-5196(20)30129-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease of global medical and veterinary importance. As efforts to eliminate schistosomiasis as a public health problem and interrupt transmission gather momentum, the potential zoonotic risk posed by livestock Schistosoma species via viable hybridisation in sub-Saharan Africa have been largely overlooked. We aimed to investigate the prevalence, distribution, and multi-host, multiparasite transmission cycle of Haematobium group schistosomiasis in Senegal, West Africa. METHODS In this epidemiological study, we carried out systematic surveys in definitive hosts (humans, cattle, sheep, and goats) and snail intermediate hosts, in 2016-18, in two areas of Northern Senegal: Richard Toll and Lac de Guiers, where transmission is perennial; and Barkedji and Linguère, where transmission is seasonal. The occurrence and distribution of Schistosoma species and hybrids were assessed by molecular analyses of parasitological specimens obtained from the different hosts. Children in the study villages aged 5-17 years and enrolled in school were selected from school registers. Adults (aged 18-78 years) were self-selecting volunteers. Livestock from the study villages in both areas were also randomly sampled, as were post-mortem samples from local abattoirs. Additionally, five malacological surveys of snail intermediate hosts were carried out at each site in open water sources used by the communities and their animals. FINDINGS In May to August, 2016, we surveyed 375 children and 20 adults from Richard Toll and Lac de Guiers, and 201 children and 107 adults from Barkedji and Linguère; in October, 2017, to January, 2018, we surveyed 386 children and 88 adults from Richard Toll and Lac de Guiers, and 323 children and 85 adults from Barkedji and Linguère. In Richard Toll and Lac de Guiers the prevalence of urogenital schistosomiasis in children was estimated to be 87% (95% CI 80-95) in 2016 and 88% (82-95) in 2017-18. An estimated 63% (in 2016) and 72% (in 2017-18) of infected children were shedding Schistosoma haematobium-Schistosoma bovis hybrids. In adults in Richard Toll and Lac de Guiers, the prevalence of urogenital schistosomiasis was estimated to be 79% (52-97) in 2016 and 41% (30-54) in 2017-18, with 88% of infected samples containing S haematobium-S bovis hybrids. In Barkedji and Linguère the prevalence of urogenital schistosomiasis in children was estimated to be 30% (23-38) in 2016 and 42% (35-49) in 2017-18, with the proportion of infected children found to be shedding S haematobium-S bovis hybrid miracidia much lower than in Richard Toll and Lac de Guiers (11% in 2016 and 9% in 2017-18). In adults in Barkedji and Linguère, the prevalence of urogenital schistosomiasis was estimated to be 26% (17-36) in 2016 and 47% (34-60) in 2017-18, with 10% of infected samples containing S haematobium-S bovis hybrids. The prevalence of S bovis in the sympatric cattle population of Richard Toll and the Lac de Guiers was 92% (80-99), with S bovis also found in sheep (estimated prevalence 14% [5-31]) and goats (15% [5-33]). In Barkedji and Linguère the main schistosome species in livestock was Schistosoma curassoni, with an estimated prevalence of 73% (48-93) in sheep, 84% (61-98) in goats and 8% (2-24) in cattle. S haematobium-S bovis hybrids were not found in livestock. In Richard Toll and Lac de Guiers 35% of infected Bulinus spp snail intermediate hosts were found to be shedding S haematobium-S bovis hybrids (68% shedding S haematobium; 17% shedding S bovis); however, no snails were found to be shedding S haematobium hybrids in Barkedji and Linguère (29% shedding S haematobium; 71% shedding S curassoni). INTERPRETATION Our findings suggest that hybrids originate in humans via zoonotic spillover from livestock populations, where schistosomiasis is co-endemic. Introgressive hybridisation, evolving host ranges, and wider ecosystem contexts could affect the transmission dynamics of schistosomiasis and other pathogens, demonstrating the need to consider control measures within a One Health framework. FUNDING Zoonoses and Emerging Livestock Systems programme (UK Biotechnology and Biological Sciences Research Council, UK Department for International Development, UK Economic and Social Research Council, UK Medical Research Council, UK Natural Environment Research Council, and UK Defence Science and Technology Laboratory).
Collapse
Affiliation(s)
- Elsa Léger
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK.
| | - Anna Borlase
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; NTD Modelling Consortium, Big Data Institute, University of Oxford, Oxford, UK
| | - Cheikh B Fall
- Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nicolas D Diouf
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal; Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Samba D Diop
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal
| | - Lucy Yasenev
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Stefano Catalano
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Cheikh T Thiam
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Alassane Ndiaye
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Aidan Emery
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - Alice Morrell
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Muriel Rabone
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Babacar Faye
- Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Communicable Diseases Policy Research Group, London School of Hygiene & Tropical Medicine, London, UK; Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
24
|
Stothard JR, Kayuni SA, Al-Harbi MH, Musaya J, Webster BL. Future schistosome hybridizations: Will all Schistosoma haematobium hybrids please stand-up! PLoS Negl Trop Dis 2020; 14:e0008201. [PMID: 32614820 PMCID: PMC7332241 DOI: 10.1371/journal.pntd.0008201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- J. Russell Stothard
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Sekeleghe A. Kayuni
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- MASM Medi Clinics Limited, Medical Society of Malawi (MASM), Blantyre, Malawi
| | - Mohammad H. Al-Harbi
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Ministry of Health, Qassim, Kingdom of Saudi Arabia
| | - Janelisa Musaya
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital College of Medicine, Blantyre, Malawi
| | - Bonnie L. Webster
- Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, United Kingdom
| |
Collapse
|
25
|
No barrier breakdown between human and cattle schistosome species in the Senegal River Basin in the face of hybridisation. Int J Parasitol 2019; 49:1039-1048. [PMID: 31734338 DOI: 10.1016/j.ijpara.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Schistosomiasis is widely distributed along the Senegal River Basin (SRB), affecting both the human population and their livestock. Damming of the Senegal River for irrigation purposes in the 1980s induced ecological changes that resulted in a large outbreak of Schistosoma mansoni, followed a few years later by an increase and spread of Schistosoma haematobium infections. The presence of hybrid crosses between the human and cattle schistosomes, S. haematobium and Schistosoma bovis, respectively, is adding complexity to the disease epidemiology in this area, and questions the strength of the species boundary between these two species. This study aimed to investigate the epidemiology of S. haematobium, S. bovis and their hybrids along the Senegal River basin using both microsatellite genetic markers and analysis of mitochondrial and nuclear DNA markers. Human schistosome populations with a S. haematobium cox1 mtDNA profile and those with a S. bovis cox1 mtDNA profile (the so-called hybrids) appear to belong to a single randomly mating population, strongly differentiated from the pure S. bovis found in cattle. These results suggest that, in northern Senegal, a strong species boundary persists between human and cattle schistosome species and there is no prolific admixing of the populations. In addition, we found that in the SRB S. haematobium was spatially more differentiated in comparison to S. mansoni. This may be related either to the presence and susceptibility of the intermediate snail hosts, or to the colonisation history of the parasite.
Collapse
|
26
|
Platt RN, McDew-White M, Le Clec’h W, Chevalier FD, Allan F, Emery AM, Garba A, Hamidou AA, Ame SM, Webster JP, Rollinson D, Webster BL, Anderson TJC. Ancient Hybridization and Adaptive Introgression of an Invadolysin Gene in Schistosome Parasites. Mol Biol Evol 2019; 36:2127-2142. [PMID: 31251352 PMCID: PMC6759076 DOI: 10.1093/molbev/msz154] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introgression among parasite species has the potential to transfer traits of biomedical importance across species boundaries. The parasitic blood fluke Schistosoma haematobium causes urogenital schistosomiasis in humans across sub-Saharan Africa. Hybridization with other schistosome species is assumed to occur commonly, because genetic crosses between S. haematobium and livestock schistosomes, including S. bovis, can be staged in the laboratory, and sequencing of mtDNA and rDNA amplified from microscopic miracidia larvae frequently reveals markers from different species. However, the frequency, direction, age, and genomic consequences of hybridization are unknown. We hatched miracidia from eggs and sequenced the exomes from 96 individual S. haematobium miracidia from infected patients from Niger and the Zanzibar archipelago. These data revealed no evidence for contemporary hybridization between S. bovis and S. haematobium in our samples. However, all Nigerien S. haematobium genomes sampled show hybrid ancestry, with 3.3-8.2% of their nuclear genomes derived from S. bovis, providing evidence of an ancient introgression event that occurred at least 108-613 generations ago. Some S. bovis-derived alleles have spread to high frequency or reached fixation and show strong signatures of directional selection; the strongest signal spans a single gene in the invadolysin gene family (Chr. 4). Our results suggest that S. bovis/S. haematobium hybridization occurs rarely but demonstrate profound consequences of ancient introgression from a livestock parasite into the genome of S. haematobium, the most prevalent schistosome species infecting humans.
Collapse
Affiliation(s)
- Roy N Platt
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Marina McDew-White
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Winka Le Clec’h
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Frédéric D Chevalier
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Fiona Allan
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Aidan M Emery
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Amadou Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Amina A Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Shaali M Ame
- Public Health Laboratory - Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Joanne P Webster
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Bonnie L Webster
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Timothy J C Anderson
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
27
|
Guegan H, Fillaux J, Charpentier E, Robert-Gangneux F, Chauvin P, Guemas E, Boissier J, Valentin A, Cassaing S, Gangneux JP, Berry A, Iriart X. Real-time PCR for diagnosis of imported schistosomiasis. PLoS Negl Trop Dis 2019; 13:e0007711. [PMID: 31509538 PMCID: PMC6756557 DOI: 10.1371/journal.pntd.0007711] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/23/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The diagnosis of schistosomiasis currently relies on microscopic detection of schistosome eggs in stool or urine samples and serological assays. The poor sensitivity of standard microscopic procedures performed in routine laboratories, makes molecular detection methods of increasing interest. The aim of the study was to evaluate two in-house real-time Schistosoma PCRs, targeting respectively S. mansoni [Sm] and S. haematobium [Sh] in excreta, biopsies and sera as potential tools to diagnose active infections and to monitor treatment efficacy. METHODS Schistosoma PCRs were performed on 412 samples (124 urine, 86 stools, 8 biopsies, 194 sera) from patients with suspected schistosomiasis, before anti-parasitic treatment. Results were compared to microscopic examination and serological assays (enzyme-linked immunosorbent assay (ELISA), indirect haemagglutination (HA) and Western Blot (WB) assay). RESULTS Compared to microscopy, PCRs significantly increased the sensitivity of diagnosis, from 4% to 10.5% and from 33.7% to 48.8%, for Sh in urine and Sm in stools, respectively. The overall sensitivity of PCR on serum samples was 72.7% and reached 94.1% in patients with positive excreta (microscopy). The specificity of serum PCR was 98.9%. After treatment, serum PCR positivity rates slowly declined from 93.8% at day 30 to 8.3% at day 360, whereas antibody detection remained positive after 1 year. CONCLUSION Schistosoma PCRs clearly outperform standard microscopy on stools and urine and could be part of reference methods combined with WB-based serology, which remains a gold standard for initial diagnosis. When serological assays are positive and microscopy is negative, serum PCRs provide species information to guide further clinical exploration. Biomarkers such as DNA and antibodies are of limited relevance for early treatment monitoring but serum PCR could be useful when performed at least 1 year after treatment to help confirm a cured infection.
Collapse
Affiliation(s)
- Hélène Guegan
- Univ Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) – UMR_S 1085, Rennes, France
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
| | - Judith Fillaux
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
| | - Eléna Charpentier
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Florence Robert-Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) – UMR_S 1085, Rennes, France
| | - Pamela Chauvin
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
| | - Emilie Guemas
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Alexis Valentin
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
| | - Sophie Cassaing
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) – UMR_S 1085, Rennes, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Xavier Iriart
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| |
Collapse
|
28
|
Advances and challenges in barcoding of microbes, parasites, and their vectors and reservoirs. Parasitology 2019; 145:537-542. [PMID: 29900810 DOI: 10.1017/s0031182018000884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA barcoding is now a common tool in parasitology and epidemiology, which require good methods for identification not only of parasites and pathogens but vectors and reservoirs. This special issue presents some advances and challenges in barcoding of microbes, parasites, and their vectors and reservoirs. DNA barcoding found new applications in disease ecology, conservation parasitology, environmental parasitology and in paleoparasitology. New technologies such as next-generation sequencing and matrix-assisted laser desorption-ionization time-of-flight have made it now possible to investigate large samples of specimens. By allowing the investigation of parasites at the interface between environment, biodiversity, animal and human health, barcoding and biobanking have important policy outcomes as well as ethics and legal implications. The special issue 'Advances and challenges in the barcoding of parasites, vectors and reservoirs' illustrates some recent advances and proposes new avenues for research in barcoding in parasitology.
Collapse
|
29
|
Depaquit J, Akhoundi M, Haouchine D, Mantelet S, Izri A. No limit in interspecific hybridization in schistosomes: observation from a case report. Parasite 2019; 26:10. [PMID: 30821247 PMCID: PMC6396650 DOI: 10.1051/parasite/2019010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/18/2019] [Indexed: 11/15/2022] Open
Abstract
Schistosomiasis is one of the most significant parasitic diseases of humans. The hybridization of closely related Schistosoma species has already been documented. However, hybridization between phylogenetically distant species is unusual. In the present study, we characterized the causative agent of schistosomiasis in a 14-year-old patient with hematuria from Côte d'Ivoire, using morphological and molecular approaches. A 24-hour parasitological examination of urine showed the presence of numerous eggs (150 μm long × 62 μm wide) with a lateral spine (25 μm), identified morphologically as Schistosoma mansoni. Examination of stools performed on the same day found no parasites. The urine and stool examinations of the patient's family members performed two weeks later showed neither parasites nor hematuria; but in contrast, many S. mansoni eggs were found again in the patient's urine, but never in his stools. Conventional PCRs were performed, using two primer pairs targeting 28S-rDNA and COI mtDNA. The 28S-rDNA sequence of these eggs, compared with two reference sequences from GenBank demonstrated a hybrid with 25 double peaks, indicating clearly hybrid positions (5.37%) between S. mansoni and S. haematobium. Similarly, we identified a unique S. mansoni COI sequence for the two eggs, with 99.1% homology with the S. mansoni reference sequence. Consequently, this case was the result of hybridization between an S. haematobium male and an S. mansoni female. This should be taken into consideration to explore the elimination of ectopic schistosome eggs in the future.
Collapse
Affiliation(s)
- Jérôme Depaquit
- EA7510 ESCAPE, USC ANSES “VECPAR”, UFR Pharmacie, Université de Reims Champagne-Ardenne France
- Laboratoire de Parasitologie-Mycologie, Hôpital Maison Blanche Reims France
| | - Mohammad Akhoundi
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
| | - Djamel Haouchine
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
| | - Stéphane Mantelet
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
| | - Arezki Izri
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
- Unité des Virus Emergents (Université Aix-Marseille– IRD 190 – Inserm 1207 – IHU Méditerranée infection) Marseille France
| |
Collapse
|
30
|
Urogenital schistosomiasis and hybridization between Schistosoma haematobium and Schistosoma bovis in adults living in Richard-Toll, Senegal. Parasitology 2018; 145:1723-1726. [PMID: 30185248 DOI: 10.1017/s0031182018001415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Since the construction of the Diama Dam (1985), the epidemiology of schistosomiasis along the Senegal River Basin (SRB) has been extremely dynamic with outbreaks of both intestinal and urogenital schistosomiasis. In the early 2000s, technicians reported cases of suspected urogenital schistosomiasis in adults from the local hospital in Richard-Toll, Lower SRB. The genetic analysis of schistosome miracidia isolated from 11 patients in 2012 from two neighbourhoods (Campement and Gaya) of Richard-Toll confirmed infection with Schistosoma haematobium but also S. haematobium/S. bovis hybrids. Thirty-seven per cent of the miracidia were S. bovis/S. haematobium hybrids and 63% were pure S. haematobium. The data are discussed in relation to the ongoing dynamic epidemiology of the schistosomes in Senegal and the need to treat non-target individuals.
Collapse
|