1
|
Kane Y, Nalikka B, Tendu A, Omondi V, Bienes KM, Padane A, Duong V, Berthet N, Wong G. Genetic Diversity and Geographic Spread of Henipaviruses. Emerg Infect Dis 2025; 31:427-437. [PMID: 40023785 PMCID: PMC11878329 DOI: 10.3201/eid3103.241134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
Henipaviruses, such as Hendra and Nipah viruses, are major zoonotic pathogens that cause encephalitis and respiratory infections in humans and animals. The recent emergence of Langya virus in China highlights the need to understand henipavirus host diversity and geographic spread to prevent future outbreaks. Our analysis of the National Center for Biotechnology Information Virus and VIRION databases revealed ≈1,117 henipavirus sequences and 142 complete genomes. Bats (64.7%) and shrews (11.7%) dominated the host species record, and the genera Pteropus and Crocidura contained key henipavirus hosts in Asia, Australia, and Africa. Henipaviruses found in the Eidolon bat genus exhibited the highest within-host genetic distance. Phylogenetic analysis revealed batborne and rodent- or shrew-derived henipaviruses diverged ≈11,000 years ago and the first known lineage originating in Eidolon genus bats ≈9,900 years ago. Pathogenic henipaviruses diverged from their ancestors 2,800-1,200 years ago. Including atypical hosts and regions in future investigations is necessary to control future outbreaks.
Collapse
|
2
|
Melville DW, Meyer M, Risely A, Wilhelm K, Baldwin HJ, Badu EK, Nkrumah EE, Oppong SK, Schwensow N, Tschapka M, Vallo P, Corman VM, Drosten C, Sommer S. Hibecovirus (genus Betacoronavirus) infection linked to gut microbial dysbiosis in bats. ISME COMMUNICATIONS 2025; 5:ycae154. [PMID: 40134608 PMCID: PMC11936109 DOI: 10.1093/ismeco/ycae154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 03/27/2025]
Abstract
Little is known about how zoonotic virus infections manifest in wildlife reservoirs. However, a common health consequence of enteric virus infections is gastrointestinal diseases following a shift in gut microbial composition. The sub-Saharan hipposiderid bat complex has recently emerged to host at least three coronaviruses (CoVs), with Hipposideros caffer D appearing particularly susceptible to Hibecovirus CoV-2B infection. In this study, we complement body condition and infection status data with information about the gut microbial community to understand the health impact of CoV infections in a wild bat population. Of the three CoVs, only infections with the distantly SARS-related Hibecovirus CoV-2B were associated with lower body condition and altered the gut microbial diversity and composition. The gut microbial community of infected bats became progressively less diverse and more dissimilar with infection intensity, arguing for dysbiosis as per the Anna Karenina principle. Putatively beneficial bacteria, such as Alistipes and Christensenella, decreased with infection intensity, while potentially pathogenic bacteria, namely Mycoplasma and Staphylococcus, increased. Infections with enterically replicating viruses may therefore cause changes in body condition and gut dysbiosis with potential negative health consequences even in virus reservoirs. We argue that high-resolution data on multiple health markers, ideally including microbiome information, will provide a more nuanced picture of bat disease ecology.
Collapse
Affiliation(s)
- Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Alice Risely
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Science, Engineering, and the Environment, Salford University, Salford M5 4NT, UK
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2113, Australia
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 675 02, Czech Republic
| | - Victor M Corman
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Christian Drosten
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| |
Collapse
|
3
|
Juman MM, Gibson L, Suu‐Ire RD, Languon S, Quaye O, Fleischer G, Asumah S, Jolma ER, Gautam A, Sterling SL, Yan L, Broder CC, Laing ED, Wood JLN, Cunningham AA, Restif O. Ecological and Reproductive Cycles Drive Henipavirus Seroprevalence in the African Straw-Coloured Fruit Bat ( Eidolon helvum). Ecol Evol 2024; 14:e70555. [PMID: 39530036 PMCID: PMC11554383 DOI: 10.1002/ece3.70555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Bats are known to host zoonotic viruses, including henipaviruses that cause high fatality rates in humans (Nipah virus and Hendra virus). However, the determinants of zoonotic spillover are generally unknown, as the ecological and demographic drivers of viral circulation in bats are difficult to ascertain without longitudinal data. Here we analyse serological data collected from African straw-coloured fruit bats (Eidolon helvum) in Ghana over the course of 2 years and across four sites, comprising three wild roosts and one captive colony. We focus on antibody affinity to five henipavirus antigens: Ghanaian bat henipavirus (GhV), Nipah virus (NiV), Hendra virus (HeV), Mojiang virus (MojV) and Cedar virus (CedV). In the wild roosts, we detected seasonal variations in henipavirus antibody binding, possibly associated with bat life-history cycles and migration patterns. In the captive colony, we identified increases in antibody affinity levels among pregnant bats, suggesting possible shifts in the immune system during pregnancy. These bats then pass maternal antibodies to their pups, which wane before antibody affinity levels rise later in life following initial infections and/or reactivation of latent infections. These results improve our understanding of the links between bat ecology and viral circulation, including for GhV, a locally-circulating African henipavirus.
Collapse
Affiliation(s)
- Maya M. Juman
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Louise Gibson
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Richard D. Suu‐Ire
- School of Veterinary Medicine, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Grace Fleischer
- School of Veterinary Medicine, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | | | - E. Rosa Jolma
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchYersekeThe Netherlands
- Department of Population Health Sciences, Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Avinita Gautam
- DST‐CIMS, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
| | - Spencer L. Sterling
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Lianying Yan
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | | | - Eric D. Laing
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - James L. N. Wood
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Olivier Restif
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
4
|
Baranowski K, Bharti N. Native and non-native winter foraging resources do not explain Pteropus alecto winter roost occupancy in Queensland, Australia. Front Ecol Evol 2024; 12:1483865. [PMID: 39697612 PMCID: PMC11654838 DOI: 10.3389/fevo.2024.1483865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Anthropogenic land use change concurrent with introductions of non-native species alters the abundance and distribution of foraging resources for wildlife. This is particularly concerning when resource bottlenecks for wildlife are linked to spillover of infectious diseases to humans. Hendra virus is a bat-borne pathogen in eastern Australia. Spillovers align with winter food shortages for flying foxes and flying foxes foraging in agriculture or peri-urban lands, as opposed to native forests. It is believed the increased abundance and spatiotemporal reliability of non-native species planted in anthropogenically modified areas compared to native, ephemeral diet species may be a key draw for flying foxes into urban and peri-urban areas. We investigate the explanatory power of environmental factors on the winter roost occupancy of the reservoir for Hendra virus, the black flying fox Pteropus alecto, from 2007-2020 in Queensland, Australia. We measured the extent, spatial aggregation, and annual reliability of typical (i.e. native) and atypical (i.e. non-native) winter habitat species in 20km foraging areas around roosts surveyed by the National Flying Fox Monitoring Program. We find that neither the extent nor the spatial distribution of winter habitats explained black flying fox winter roost presence. Although the establishment of roosts was associated with high reliability for typical winter diet species, the reliability of frequently listed winter diet species surrounding surveyed roosts was not different between roosts that were occupied versus unoccupied in the winter. Significant interactions between lagged weather conditions and winter habitats identified by the best model did not reflect observable differences in patterns of occupancy upon scrutiny. Static measures of winter habitat and weather conditions poorly explained the winter roost occupancy of black flying foxes. Understanding the drivers of flying fox movement and presence requires further investigation before they can be thoughtfully integrated into Hendra spillover prevention efforts and flying fox management.
Collapse
Affiliation(s)
- Kelsee Baranowski
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
6
|
Linnegar B, Kerlin DH, Eby P, Kemsley P, McCallum H, Peel AJ. Horse populations are severely underestimated in a region at risk of Hendra virus spillover. Aust Vet J 2024; 102:342-352. [PMID: 38567676 DOI: 10.1111/avj.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To identify the size and distribution of the horse population in the Northern Rivers Region of NSW, including changes from 2007 to 2021, to better understand populations at risk of Hendra virus transmission. METHODS Census data from the 2007 Equine Influenza (EI) outbreak were compared with data collected annually by New South Wales Local Land Services (LLS) (2011-2021), and with field observations via road line transects (2021). RESULTS The horse populations reported to LLS in 2011 (3000 horses; 0.77 horses/km2) was 145% larger than that reported during the EI outbreak in 2007 (1225 horses; 0.32 horses/km2). This was inconsistent with the 6% increase in horses recorded from 2011 to 2020 within the longitudinal LLS dataset. Linear modelling suggested the true horse population of this region in 2007 was at least double that reported at the time. Distance sampling in 2021 estimated the region's population at 10,185 horses (3.89 per km2; 95% CI = 4854-21,372). Field sampling and modelling identified higher horse densities in rural cropland, with the percentage of conservation land, modified grazing, and rural residential land identified as the best predictors of horse densities. CONCLUSIONS Data from the 2007 EI outbreak no longer correlates to the current horse population in size or distribution and was likely not a true representation at the time. Current LLS data also likely underestimates horse populations. Ongoing efforts to further quantify and map horse populations in Australia are important for estimating and managing the risk of equine zoonoses.
Collapse
Affiliation(s)
- B Linnegar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - D H Kerlin
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - P Eby
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Large Landscape Conservation, Bozeman, Montana, USA
| | - P Kemsley
- North Coast Local Land Services, Wollongbar, New South Wales, Australia
| | - H McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - A J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
7
|
Sánchez CA, Phelps KL, Frank HK, Geldenhuys M, Griffiths ME, Jones DN, Kettenburg G, Lunn TJ, Moreno KR, Mortlock M, Vicente-Santos A, Víquez-R LR, Kading RC, Markotter W, Reeder DM, Olival KJ. Advances in understanding bat infection dynamics across biological scales. Proc Biol Sci 2024; 291:20232823. [PMID: 38444339 PMCID: PMC10915549 DOI: 10.1098/rspb.2023.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Collapse
Affiliation(s)
| | | | - Hannah K. Frank
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Devin N. Jones
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Kelsey R. Moreno
- Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Luis R. Víquez-R
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
8
|
Castellanos FX, Moreno-Santillán D, Hughes GM, Paulat NS, Sipperly N, Brown AM, Martin KR, Poterewicz GM, Lim MCW, Russell AL, Moore MS, Johnson MG, Corthals AP, Ray DA, Dávalos LM. The evolution of antimicrobial peptides in Chiroptera. Front Immunol 2023; 14:1250229. [PMID: 37822944 PMCID: PMC10562630 DOI: 10.3389/fimmu.2023.1250229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
High viral tolerance coupled with an extraordinary regulation of the immune response makes bats a great model to study host-pathogen evolution. Although many immune-related gene gains and losses have been previously reported in bats, important gene families such as antimicrobial peptides (AMPs) remain understudied. We built an exhaustive bioinformatic pipeline targeting the major gene families of defensins and cathelicidins to explore AMP diversity and analyze their evolution and distribution across six bat families. A combination of manual and automated procedures identified 29 AMP families across queried species, with α-, β-defensins, and cathelicidins representing around 10% of AMP diversity. Gene duplications were inferred in both α-defensins, which were absent in five species, and three β-defensin gene subfamilies, but cathelicidins did not show significant shifts in gene family size and were absent in Anoura caudifer and the pteropodids. Based on lineage-specific gains and losses, we propose diet and diet-related microbiome evolution may determine the evolution of α- and β-defensins gene families and subfamilies. These results highlight the importance of building species-specific libraries for genome annotation in non-model organisms and shed light on possible drivers responsible for the rapid evolution of AMPs. By focusing on these understudied defenses, we provide a robust framework for explaining bat responses to pathogens.
Collapse
Affiliation(s)
| | - Diana Moreno-Santillán
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nicolette Sipperly
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Alexis M. Brown
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Katherine R. Martin
- Department of Biology, University of Central Florida, Orlando, FL, United States
| | - Gregory M. Poterewicz
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Marisa C. W. Lim
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Amy L. Russell
- Department of Biology, Grand Valley State University, Allendale, MI, United States
| | - Marianne S. Moore
- College of Science and Mathematics, University of the Virgin Islands, St. Thomas, VI, United States
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Angelique P. Corthals
- Department of Sciences, John Jay College of Criminal Justice, New York, NY, United States
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
9
|
Ruhs EC, Chia WN, Foo R, Peel AJ, Li Y, Larman HB, Irving AT, Wang L, Brook CE. Applications of VirScan to broad serological profiling of bat reservoirs for emerging zoonoses. Front Public Health 2023; 11:1212018. [PMID: 37808979 PMCID: PMC10559906 DOI: 10.3389/fpubh.2023.1212018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.
Collapse
Affiliation(s)
- Emily Cornelius Ruhs
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL, United States
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- CoV Biotechnology Pte Ltd., Singapore, Singapore
| | - Randy Foo
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisband, QLD, Australia
| | - Yimei Li
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Quantitative and Computational Biology, Princeton University, Princeton, NJ, United States
| | - H. Benjamin Larman
- HBL – Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron T. Irving
- Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Haining, Zhejiang, China
- BIMET - Biomedical and Translational Research Centre of Zhejiang Province, Zhejiang Province, China
| | - Linfa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Kropich-Grant JN, Wiley KE, Manyweathers J, Thompson KR, Brookes VJ. Communication Interventions and Assessment of Drivers for Hendra Virus Vaccination Uptake. Vaccines (Basel) 2023; 11:vaccines11050936. [PMID: 37243040 DOI: 10.3390/vaccines11050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hendra virus disease (HeVD) is an emerging zoonosis in Australia, resulting from the transmission of Hendra virus (HeV) to horses from Pteropus bats. Vaccine uptake for horses is low despite the high case fatality rate of HeVD in both horses and people. We reviewed evidence-based communication interventions to promote and improve HeV vaccine uptake for horses by horse owners and conducted a preliminary evaluation of potential drivers for HeV vaccine uptake using the Behavioural and Social Drivers of Vaccination (BeSD) framework developed by the World Health Organization. Six records were eligible for review following a comprehensive search and review strategy of peer-reviewed literature, but evidence-based communication interventions to promote and improve HeV vaccine uptake for horses were lacking. An evaluation of potential drivers for HeV vaccine uptake using the BeSD framework indicated that horse owners' perceptions, beliefs, social processes, and practical issues are similar to those experienced by parents making decisions about childhood vaccines, although the overall motivation to vaccinate is lower amongst horse owners. Some aspects of HeV vaccine uptake are not accounted for in the BeSD framework (for example, alternative mitigation strategies such as covered feeding stations or the zoonotic risk of HeV). Overall, problems associated with HeV vaccine uptake appear well-documented. We, therefore, propose to move from a problems-focused to a solutions-focused approach to reduce the risk of HeV for humans and horses. Following our findings, we suggest that the BeSD framework could be modified and used to develop and evaluate communication interventions to promote and improve HeV vaccine uptake by horse owners, which could have a global application to promote vaccine uptake for other zoonotic diseases in animals, such as rabies.
Collapse
Affiliation(s)
- Jessica N Kropich-Grant
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown 2006, Australia
| | - Kerrie E Wiley
- Sydney School of Public Health, The University of Sydney, Camperdown 2006, Australia
| | - Jennifer Manyweathers
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga 2678, Australia
| | - Kirrilly R Thompson
- College of Health, Medicine and Well-Being, University of Newcastle, Callaghan 2308, Australia
- Hunter New England Local Health District, Wallsend 2287, Australia
| | - Victoria J Brookes
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
11
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
12
|
Eby P, Peel AJ, Hoegh A, Madden W, Giles JR, Hudson PJ, Plowright RK. Pathogen spillover driven by rapid changes in bat ecology. Nature 2023; 613:340-344. [PMID: 36384167 PMCID: PMC9768785 DOI: 10.1038/s41586-022-05506-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behaviour and viral dynamics. We present 25 years of data on land-use change, bat behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviours that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of the 25 years. Our long-term study identifies the mechanistic connections between habitat loss, climate and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics.
Collapse
Affiliation(s)
- Peggy Eby
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
- Center for Large Landscape Conservation, Bozeman, MT, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - Andrew Hoegh
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Wyatt Madden
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John R Giles
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Becker DJ, Eby P, Madden W, Peel AJ, Plowright RK. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecol Lett 2023; 26:23-36. [PMID: 36310377 DOI: 10.1111/ele.14007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The ecological conditions experienced by wildlife reservoirs affect infection dynamics and thus the distribution of pathogen excreted into the environment. This spatial and temporal distribution of shed pathogen has been hypothesised to shape risks of zoonotic spillover. However, few systems have data on both long-term ecological conditions and pathogen excretion to advance mechanistic understanding and test environmental drivers of spillover risk. We here analyse three years of Hendra virus data from nine Australian flying fox roosts with covariates derived from long-term studies of bat ecology. We show that the magnitude of winter pulses of viral excretion, previously considered idiosyncratic, are most pronounced after recent food shortages and in bat populations displaced to novel habitats. We further show that cumulative pathogen excretion over time is shaped by bat ecology and positively predicts spillover frequency. Our work emphasises the role of reservoir host ecology in shaping pathogen excretion and provides a new approach to estimate spillover risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.,Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Peggy Eby
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.,Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Wyatt Madden
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
14
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
15
|
Ch’ng L, Tsang SM, Ong ZA, Low DH, Wiantoro S, Smith IL, Simmons NB, Su YC, Lohman DJ, Smith GJ, Mendenhall IH. Co-circulation of alpha- and beta-coronaviruses in Pteropus vampyrus flying foxes from Indonesia. Transbound Emerg Dis 2022; 69:3917-3925. [PMID: 36382687 PMCID: PMC9898127 DOI: 10.1111/tbed.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Bats are important reservoirs for alpha- and beta-coronaviruses. Coronaviruses (CoV) have been detected in pteropodid bats from several Southeast Asian countries, but little is known about coronaviruses in the Indonesian archipelago in proportion to its mammalian biodiversity. In this study, we screened pooled faecal samples from the Indonesian colonies of Pteropus vampyrus with unbiased next-generation sequencing. Bat CoVs related to Rousettus leschenaultii CoV HKU9 and Eidolon helvum CoV were detected. The 121 faecal samples were further screened using a conventional hemi-nested pan-coronavirus PCR assay. Three positive samples were successfully sequenced, and phylogenetic reconstruction revealed the presence of alpha- and beta-coronaviruses. CoVs belonging to the subgenera Nobecovirus, Decacovirus and Pedacovirus were detected in a single P. vampyrus roost. This study expands current knowledge of coronavirus diversity in Indonesian flying foxes, highlighting the need for longitudinal surveillance of colonies as continuing urbanization and deforestation heighten the risk of spillover events.
Collapse
Affiliation(s)
- Lena Ch’ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Susan M. Tsang
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Zoe A. Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dolyce H.W. Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, West Java 16911, Indonesia
| | - Ina L. Smith
- Health and Biosecurity, The Commonwealth Scientific and Industrial Research Organization, Black Mountain, ACT 2601, Australia
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Yvonne C.F. Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Gavin J.D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
| |
Collapse
|
16
|
Landscape and age dynamics of immune cells in the Egyptian rousette bat. Cell Rep 2022; 40:111305. [PMID: 36070695 DOI: 10.1016/j.celrep.2022.111305] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/20/2022] [Accepted: 08/10/2022] [Indexed: 01/04/2023] Open
Abstract
Bats harbor high-impact zoonotic viruses often in the absence of disease manifestation. This restriction and disease tolerance possibly rely on specific immunological features. In-depth molecular characterization of cellular immunity and imprinting of age on leukocyte compartments remained unexplored in bats. We employ single-cell RNA sequencing (scRNA-seq) and establish immunostaining panels to characterize the immune cell landscape in juvenile, subadult, and adult Egyptian rousette bats (ERBs). Transcriptomic and flow cytometry data reveal conserved subsets and substantial enrichments of CD79a+ B cells and CD11b+ T cells in juvenile animals, whereas neutrophils, CD206+ myeloid cells, and CD3+ T cells dominate as bats reach adulthood. Despite differing frequencies, phagocytosis of circulating and tissue-resident myeloid cells and proliferation of peripheral and splenic lymphocytes are analogous in juvenile and adult ERBs. We provide a comprehensive map of the immune landscape in ERBs and show age-imprinted resilience progression and find that variability in cellular immunity only partly recapitulates mammalian archetypes.
Collapse
|
17
|
Pulscher LA, Peel AJ, Rose K, Welbergen JA, Baker ML, Boyd V, Low‐Choy S, Edson D, Todd C, Dorrestein A, Hall J, Todd S, Broder CC, Yan L, Xu K, Peck GR, Phalen DN. Serological evidence of a pararubulavirus and a betacoronavirus in the geographically isolated Christmas Island flying-fox (Pteropus natalis). Transbound Emerg Dis 2022; 69:e2366-e2377. [PMID: 35491954 PMCID: PMC9529767 DOI: 10.1111/tbed.14579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/27/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022]
Abstract
Due to their geographical isolation and small populations, insular bats may not be able to maintain acute immunizing viruses that rely on a large population for viral maintenance. Instead, endemic transmission may rely on viruses establishing persistent infections within hosts or inducing only short-lived neutralizing immunity. Therefore, studies on insular populations are valuable for developing broader understanding of viral maintenance in bats. The Christmas Island flying-fox (CIFF; Pteropus natalis) is endemic on Christmas Island, a remote Australian territory, and is an ideal model species to understand viral maintenance in small, geographically isolated bat populations. Serum or plasma (n = 190), oral swabs (n = 199), faeces (n = 31), urine (n = 32) and urine swabs (n = 25) were collected from 228 CIFFs. Samples were tested using multiplex serological and molecular assays, and attempts at virus isolation to determine the presence of paramyxoviruses, betacoronaviruses and Australian bat lyssavirus. Analysis of serological data provides evidence that the species is maintaining a pararubulavirus and a betacoronavirus. There was little serological evidence supporting the presence of active circulation of the other viruses assessed in the present study. No viral nucleic acid was detected and no viruses were isolated. Age-seropositivity results support the hypothesis that geographically isolated bat populations can maintain some paramyxoviruses and coronaviruses. Further studies are required to elucidate infection dynamics and characterize viruses in the CIFF. Lastly, apparent absence of some pathogens could have implications for the conservation of the CIFF if a novel disease were introduced into the population through human carriage or an invasive species. Adopting increased biosecurity protocols for ships porting on Christmas Island and for researchers and bat carers working with flying-foxes are recommended to decrease the risk of pathogen introduction and contribute to the health and conservation of the species.
Collapse
Affiliation(s)
- Laura A. Pulscher
- Faculty of ScienceSydney School of Veterinary ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Alison J. Peel
- Centre for Planetary Health and Food SecurityGriffith UniversityNathanQueenslandAustralia
| | - Karrie Rose
- Australian Registry of Wildlife HealthTaronga Conservation Society AustraliaMosmanNew South WalesAustralia
| | - Justin A. Welbergen
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Michelle L. Baker
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | - Victoria Boyd
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | - Samantha Low‐Choy
- Centre for Planetary Health and Food SecurityGriffith UniversityNathanQueenslandAustralia
- Office of the Vice ChancellorArts/Education/LawGriffith UniversityBrisbaneQueenslandAustralia
| | - Dan Edson
- Department of AgricultureWater and the EnvironmentCanberraAustralian Capital TerritoryAustralia
| | - Christopher Todd
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Annabel Dorrestein
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Jane Hall
- Australian Registry of Wildlife HealthTaronga Conservation Society AustraliaMosmanNew South WalesAustralia
| | - Shawn Todd
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | | | - Lianying Yan
- Department of MicrobiologyUniformed Services UniversityBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Kai Xu
- Department of Veterinary BiosciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Grantley R. Peck
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | - David N. Phalen
- Faculty of ScienceSydney School of Veterinary ScienceUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
18
|
Hansen D, Hunt BE, Falvo CA, Ruiz-Aravena M, Kessler MK, Hall J, Thompson P, Rose K, Jones DN, Lunn TJ, Dale AS, Peel AJ, Plowright RK. Morphological and quantitative analysis of leukocytes in free-living Australian black flying foxes (Pteropus alecto). PLoS One 2022; 17:e0268549. [PMID: 35613104 PMCID: PMC9132326 DOI: 10.1371/journal.pone.0268549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/02/2022] [Indexed: 01/12/2023] Open
Abstract
The black flying fox (Pteropus alecto) is a natural reservoir for Hendra virus, a paramyxovirus that causes fatal infections in humans and horses in Australia. Increased excretion of Hendra virus by flying foxes has been hypothesized to be associated with physiological or energetic stress in the reservoir hosts. The objective of this study was to explore the leukocyte profiles of wild-caught P. alecto, with a focus on describing the morphology of each cell type to facilitate identification for clinical purposes and future virus spillover research. To this end, we have created an atlas of images displaying the commonly observed morphological variations across each cell type. We provide quantitative and morphological information regarding the leukocyte profiles in bats captured at two roost sites located in Redcliffe and Toowoomba, Queensland, Australia, over the course of two years. We examined the morphology of leukocytes, platelets, and erythrocytes of P. alecto using cytochemical staining and characterization of blood films through light microscopy. Leukocyte profiles were broadly consistent with previous studies of P. alecto and other Pteropus species. A small proportion of individual samples presented evidence of hemoparasitic infection or leukocyte morphological traits that are relevant for future research on bat health, including unique large granular lymphocytes. Considering hematology is done by visual inspection of blood smears, examples of the varied cell morphologies are included as a visual guide. To the best of our knowledge, this study provides the first qualitative assessment of P. alecto leukocytes, as well as the first set of published hematology reference images for this species.
Collapse
Affiliation(s)
- Dale Hansen
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
- * E-mail:
| | - Brooklin E. Hunt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Caylee A. Falvo
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Manuel Ruiz-Aravena
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Maureen K. Kessler
- Department of Ecology, Montana State University, Bozeman, MT, United States of America
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Sydney, NSW, Australia
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Paul Thompson
- Taronga Wildlife Hospital, Taronga Conservation Society Australia, Taronga Zoo, Sydney, NSW, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Sydney, NSW, Australia
| | - Devin N. Jones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Tamika J. Lunn
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Adrienne S. Dale
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Raina K. Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | | |
Collapse
|
19
|
Latinne A, Morand S. Climate Anomalies and Spillover of Bat-Borne Viral Diseases in the Asia-Pacific Region and the Arabian Peninsula. Viruses 2022; 14:1100. [PMID: 35632842 PMCID: PMC9145311 DOI: 10.3390/v14051100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Climate variability and anomalies are known drivers of the emergence and outbreaks of infectious diseases. In this study, we investigated the potential association between climate factors and anomalies, including El Niño Southern Oscillation (ENSO) and land surface temperature anomalies, as well as the emergence and spillover events of bat-borne viral diseases in humans and livestock in the Asia-Pacific region and the Arabian Peninsula. Our findings from time series analyses, logistic regression models, and structural equation modelling revealed that the spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were differently impacted by climate variability and with different time lags. We also used event coincidence analysis to show that the emergence events of most bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula were statistically associated with ENSO climate anomalies. Spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were also significantly associated with these events, although the pattern and co-influence of other climate factors differed. Our results suggest that climate factors and anomalies may create opportunities for virus spillover from bats to livestock and humans. Ongoing climate change and the future intensification of El Niño events will therefore potentially increase the emergence and spillover of bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula.
Collapse
Affiliation(s)
- Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi 100000, Vietnam
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY 10460, USA
- MIVEGEC, CNRS—IRD—Montpellier Université, 911 Avenue Agropolis, BP 6450, 34394 Montpellier, France;
- Faculty of Veterinary Technology, University of Kasetsart, Bangkok 10900, Thailand
| | - Serge Morand
- MIVEGEC, CNRS—IRD—Montpellier Université, 911 Avenue Agropolis, BP 6450, 34394 Montpellier, France;
- Faculty of Veterinary Technology, University of Kasetsart, Bangkok 10900, Thailand
- Faculty of Tropical Medicine, University of Mahidol, Bangkok 10400, Thailand
| |
Collapse
|
20
|
Annand EJ, Horsburgh BA, Xu K, Reid PA, Poole B, de Kantzow MC, Brown N, Tweedie A, Michie M, Grewar JD, Jackson AE, Singanallur NB, Plain KM, Kim K, Tachedjian M, van der Heide B, Crameri S, Williams DT, Secombe C, Laing ED, Sterling S, Yan L, Jackson L, Jones C, Plowright RK, Peel AJ, Breed AC, Diallo I, Dhand NK, Britton PN, Broder CC, Smith I, Eden JS. Novel Hendra Virus Variant Detected by Sentinel Surveillance of Horses in Australia. Emerg Infect Dis 2022; 28:693-704. [PMID: 35202527 PMCID: PMC8888208 DOI: 10.3201/eid2803.211245] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.4 used for postexposure prophylaxis and current equine vaccine will be effective against this variant. An updated quantitative PCR developed for routine surveillance resulted in subsequent case detection. Genetic sequence consistency with virus detected in grey-headed flying foxes suggests the variant circulates at least among this species. Studies are needed to determine infection kinetics, pathogenicity, reservoir-species associations, viral-host coevolution, and spillover dynamics for this virus. Surveillance and biosecurity practices should be updated to acknowledge HeV spillover risk across all regions frequented by flying foxes.
Collapse
|
21
|
Joffrin L, Hoarau AOG, Lagadec E, Torrontegi O, Köster M, Le Minter G, Dietrich M, Mavingui P, Lebarbenchon C. Seasonality of coronavirus shedding in tropical bats. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211600. [PMID: 35154796 PMCID: PMC8825989 DOI: 10.1098/rsos.211600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Anticipating cross-species transmission of zoonotic diseases requires an understanding of pathogen infection dynamics within natural reservoir hosts. Although bats might be a source of coronaviruses (CoVs) for humans, the drivers of infection dynamics in bat populations have received limited attention. We conducted a fine-scale 2-year longitudinal study of CoV infection dynamics in the largest colony of Reunion free-tailed bats (Mormopterus francoismoutoui), a tropical insectivorous species. Real-time PCR screening of 1080 fresh individual faeces samples collected during the two consecutive years revealed an extreme variation of the detection rate of bats shedding viruses over the birthing season (from 0% to 80%). Shedding pulses were repeatedly observed and occurred both during late pregnancy and within two months after parturition. An additional shedding pulse at the end of the second year suggests some inter-annual variations. We also detected viral RNA in bat guano up to three months after bats had left the cave. Our results highlight the importance of fine-scale longitudinal studies to capture the rapid change of bat CoV infection over months, and that CoV shedding pulses in bats may increase spillover risk.
Collapse
Affiliation(s)
- Léa Joffrin
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Axel O. G. Hoarau
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Erwan Lagadec
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Olalla Torrontegi
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Marie Köster
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Gildas Le Minter
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Muriel Dietrich
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| |
Collapse
|
22
|
McNabb L, Andiani A, Bulavaite A, Zvirbliene A, Sasnauskas K, Lunt R. Development and validation of an IgM antibody capture ELISA for early detection of Hendra virus. J Virol Methods 2021; 298:114296. [PMID: 34560109 DOI: 10.1016/j.jviromet.2021.114296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Zoonotic transmission of Hendra virus (HeV) from primary hosts (pteropid bats) to horses, and, occasionally, onward adventitious spread to humans, is associated with high mortality rates in both affected secondary species. The introduction of an effective recombinant G protein vaccine for use in horses has been a major advance for the suppression of disease risk. However, equine HeV vaccination induces neutralising antibody that is indistinguishable from a post infection immune response when using most first line serology assays (eg. VNT and some ELISAs). We have constructed and evaluated an IgM antibody capture (MAC) ELISA which employs yeast expressed HeV nucleoprotein (N). All other serology tests use the G protein which does not detect early infection and is present in the current Hendra virus vaccine and may cause ambiguity in interpretation of results. Thus, this is the first test developed using a N protein which can successfully detect a recent (primarily within the last four weeks) infection of horses with HeV and is not affected by vaccination induced antibody. Testing a limited panel (21 samples) of post infection sera, a normal serum panel (288 samples) and a post vaccination panel (163 samples), we have estimated DSe to be 100 % (95 % CI, 83.9-100.0 %) and DSp to be 98.4 % (95 % CI, 96.8-99.4 %) relative to assigned serology results (VNT, ELISA and Luminex) for the test panels. The HeV IgM MAC ELISA is intended to supplement other molecular and serology test results, with selective use, and is the only serology test which can provide an indication for recent infection which is otherwise not available.
Collapse
Affiliation(s)
- Leanne McNabb
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia.
| | - Alicia Andiani
- University of Melbourne, Werribee Veterinary Clinic, VIC, Australia
| | - Aiste Bulavaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kestutis Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ross Lunt
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
23
|
Giles JR, Peel AJ, Wells K, Plowright RK, McCallum H, Restif O. Optimizing noninvasive sampling of a zoonotic bat virus. Ecol Evol 2021; 11:12307-12321. [PMID: 34594501 PMCID: PMC8462156 DOI: 10.1002/ece3.7830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of infectious viruses resulting from spillover events from bats have brought much attention to bat-borne zoonoses, which has motivated increased ecological and epidemiological studies on bat populations. Field sampling methods often collect pooled samples of bat excreta from plastic sheets placed under-roosts. However, positive bias is introduced because multiple individuals may contribute to pooled samples, making studies of viral dynamics difficult. Here, we explore the general issue of bias in spatial sample pooling using Hendra virus in Australian bats as a case study. We assessed the accuracy of different under-roost sampling designs using generalized additive models and field data from individually captured bats and pooled urine samples. We then used theoretical simulation models of bat density and under-roost sampling to understand the mechanistic drivers of bias. The most commonly used sampling design estimated viral prevalence 3.2 times higher than individual-level data, with positive bias 5-7 times higher than other designs due to spatial autocorrelation among sampling sheets and clustering of bats in roosts. Simulation results indicate using a stratified random design to collect 30-40 pooled urine samples from 80 to 100 sheets, each with an area of 0.75-1 m2, and would allow estimation of true prevalence with minimum sampling bias and false negatives. These results show that widely used under-roost sampling techniques are highly sensitive to viral presence, but lack specificity, providing limited information regarding viral dynamics. Improved estimation of true prevalence can be attained with minor changes to existing designs such as reducing sheet size, increasing sheet number, and spreading sheets out within the roost area. Our findings provide insight into how spatial sample pooling is vulnerable to bias for a wide range of systems in disease ecology, where optimal sampling design is influenced by pathogen prevalence, host population density, and patterns of aggregation.
Collapse
Affiliation(s)
- John R. Giles
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Alison J. Peel
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Hamish McCallum
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Olivier Restif
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
24
|
Lunn TJ, Peel AJ, McCallum H, Eby P, Kessler MK, Plowright RK, Restif O. Spatial dynamics of pathogen transmission in communally roosting species: Impacts of changing habitats on bat-virus dynamics. J Anim Ecol 2021; 90:2609-2622. [PMID: 34192345 PMCID: PMC8441687 DOI: 10.1111/1365-2656.13566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
The spatial organization of populations determines their pathogen dynamics. This is particularly important for communally roosting species, whose aggregations are often driven by the spatial structure of their environment. We develop a spatially explicit model for virus transmission within roosts of Australian tree‐dwelling bats (Pteropus spp.), parameterized to reflect Hendra virus. The spatial structure of roosts mirrors three study sites, and viral transmission between groups of bats in trees was modelled as a function of distance between roost trees. Using three levels of tree density to reflect anthropogenic changes in bat habitats, we investigate the potential effects of recent ecological shifts in Australia on the dynamics of zoonotic viruses in reservoir hosts. We show that simulated infection dynamics in spatially structured roosts differ from that of mean‐field models for equivalently sized populations, highlighting the importance of spatial structure in disease models of gregarious taxa. Under contrasting scenarios of flying‐fox roosting structures, sparse stand structures (with fewer trees but more bats per tree) generate higher probabilities of successful outbreaks, larger and faster epidemics, and shorter virus extinction times, compared to intermediate and dense stand structures with more trees but fewer bats per tree. These observations are consistent with the greater force of infection generated by structured populations with less numerous but larger infected groups, and may flag an increased risk of pathogen spillover from these increasingly abundant roost types. Outputs from our models contribute insights into the spread of viruses in structured animal populations, like communally roosting species, as well as specific insights into Hendra virus infection dynamics and spillover risk in a situation of changing host ecology. These insights will be relevant for modelling other zoonotic viruses in wildlife reservoir hosts in response to habitat modification and changing populations, including coronaviruses like SARS‐CoV‐2.
Collapse
Affiliation(s)
- Tamika J Lunn
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Qld, Australia.,School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Qld, Australia
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Qld, Australia.,School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Peggy Eby
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Qld, Australia.,School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Maureen K Kessler
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Reaser JK, Witt A, Tabor GM, Hudson PJ, Plowright RK. Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative. Restor Ecol 2021; 29:e13357. [PMID: 33785998 PMCID: PMC7995086 DOI: 10.1111/rec.13357] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Ecological restoration should be regarded as a public health service. Unfortunately, the lack of quantitative linkages between environmental and human health has limited recognition of this principle. The advent of the COVID-19 pandemic provides the impetus for further discussion. We propose ecological countermeasures as highly targeted, landscape-based interventions to arrest the drivers of land use-induced zoonotic spillover. We provide examples of ecological restoration activities that reduce zoonotic disease risk and a five-point action plan at the human-ecosystem health nexus. In conclusion, we make the case that ecological countermeasures are a tenet of restoration ecology with human health goals.
Collapse
Affiliation(s)
- Jamie K. Reaser
- Center for Large Landscape ConservationP.O. Box 1587BozemanMT59715U.S.A.
- George Mason UniversityDepartment of Environmental Science and Policy4400 University DriveFairfaxVA22030U.S.A.
- University of Rhode IslandDepartment of Natural Resource Science1 Greenhouse RoadKingstonRI02881U.S.A.
| | - Arne Witt
- CABICanary Bird 673, Limuru RoadNairobiKenya
| | - Gary M. Tabor
- Center for Large Landscape ConservationP.O. Box 1587BozemanMT59715U.S.A.
| | - Peter J. Hudson
- Department of BiologyPennsylvania State University208 Curtin Road, State CollegePA16801U.S.A.
| | - Raina K. Plowright
- Montana State UniversityDepartment of Microbiology and ImmunologyP.O. Box 173520BozemanMT59717U.S.A.
| |
Collapse
|
26
|
Low DHW, Hitch AT, Skiles MM, Borthwick SA, Neves ES, Lim ZX, Lee BPYH, Su YCF, Smith GJD, Mendenhall IH. Host specificity of Hepatocystis infection in short-nosed fruit bats ( Cynopterus brachyotis) in Singapore. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:35-42. [PMID: 33948432 PMCID: PMC8081878 DOI: 10.1016/j.ijppaw.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022]
Abstract
Haemosporidians infect a wide diversity of bat genera and species, yet little is known about their transmission cycles or epidemiology. Though several recent studies have focused on the genus Hepatocystis, an Old World parasite primarily infecting bats, monkeys, and squirrels, this group is still understudied with little known about its transmission and molecular ecology. These parasites lack an asexual erythrocytic stage, making them unique from the Plasmodium vertebrate life cycle. In this study, we detected a prevalence of 31% of Hepatocystis in short-nosed fruit bats (Cynopterus brachyotis) in Singapore. Phylogenetic reconstruction with a partial cytochrome b sequence revealed a monophyletic group of Hepatocystis from C. brachyotis in Malaysia, Singapore, and Thailand. There was no relationship with infection and bat age, sex, location, body condition or monsoon season. The absence of this parasite in the five other bat species sampled in Singapore indicates this Hepatocystis species may be host restricted. A bat haemosporidian (Hepatocystis) was detected in short nose fruit bats (Cynopterus brachyotis) in Singapore. Infection was not associated with bat age, sex, sample location, body condition or monsoon season. Infection was detected in only one bat species, indicating this Hepatocystis species may be host specific.
Collapse
Affiliation(s)
- Dolyce H W Low
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore
| | - Alan T Hitch
- Department of Wildlife, Fish and Conservation Biology, Museum of Wildlife and Fish Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Maggie M Skiles
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27606, USA
| | - Sophie A Borthwick
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Erica S Neves
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Zong Xian Lim
- Department of Biological Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore
| | - Benjamin P Y-H Lee
- Wildlife Management Division, National Parks Board, 1 Cluny Rd, 259569, Singapore
| | - Yvonne C F Su
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Gavin J D Smith
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore.,Duke Global Health Institute, Duke University, Durham, NC, 27710, USA.,SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Ian H Mendenhall
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore.,SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| |
Collapse
|
27
|
Yuen KY, Fraser NS, Henning J, Halpin K, Gibson JS, Betzien L, Stewart AJ. Hendra virus: Epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health 2020; 12:100207. [PMID: 33363250 PMCID: PMC7750128 DOI: 10.1016/j.onehlt.2020.100207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022] Open
Abstract
Hendra virus (HeV) continues to pose a serious public health concern as spillover events occur sporadically. Terminally ill horses can exhibit a range of clinical signs including frothy nasal discharge, ataxia or forebrain signs. Early signs, if detected, can include depression, inappetence, colic or mild respiratory signs. All unvaccinated ill horses in areas where flying foxes exist, may potentially be infected with HeV, posing a significant risk to the veterinary community. Equivac® HeV vaccine has been fully registered in Australia since 2015 (and under an Australian Pesticides and Veterinary Medicines Authority special permit since 2012) for immunization of horses against HeV and is the most effective and direct solution to prevent disease transmission to horses and protect humans. No HeV vaccinated horse has tested positive for HeV infection. There is no registered vaccine to prevent, or therapeutics to treat, HeV infection in humans. Previous equine HeV outbreaks tended to cluster in winter overlapping with the foaling season (August to December), when veterinarians and horse owners have frequent close contact with horses and their bodily fluids, increasing the chance of zoonotic disease transmission. The most southerly case was detected in 2019 in the Upper Hunter region in New South Wales, which is Australia's Thoroughbred horse breeding capital. Future spillover events are predicted to move further south and inland in Queensland and New South Wales, aligning with the moving distribution of the main reservoir hosts. Here we (1) review HeV epidemiology and climate change predicted infection dynamics, (2) present a biosecurity protocol for veterinary clinics and hospitals to adopt, and (3) describe diagnostic tests currently available and those under development. Major knowledge and research gaps have been identified, including evaluation of vaccine efficacy in foals to assess current vaccination protocol recommendations. Hendra virus (HeV) continues to pose a serious public health threat to the equine and veterinary industries. HeV cases are likely to expand further south and inland due to climate change. Strict HeV specific biosecurity protocols should be implemented to protect veterinary staff. Research into HeV vaccination protocols in foals is required for evidence-based recommendations. Point-of-care and other diagnostic tests for HeV are currently under development.
Collapse
Key Words
- Biosecurity
- Climate change
- HeV, Hendra virus
- Infectious disease
- LAMP, Loop-mediated isothermal amplification
- MFI, Median fluorescent intensity
- NSW, New South Wales
- NiV, Nipah virus
- OIE, World Organization for Animal Health
- One health
- PC, Physical containment
- PPE, Personal protective equipment
- QLD, Queensland
- RNA, Ribonucleic acid
- SNT, Serum neutralization test
- Se, Sensitivity
- Sp, Specificity
- Vaccine
- Zoonosis
- iELISA, Indirect enzyme-linked immunosorbent assay
- qRT-PCR, Real-time reverse transcription polymerase chain reaction
- sG, Soluble G
Collapse
Affiliation(s)
- Ka Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Natalie S Fraser
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Kim Halpin
- Australian Centre for Disease Preparedness, Commonwealth Science and Industry Research Organization (CSIRO), Geelong, VIC 3219, Australia
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Lily Betzien
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Allison J Stewart
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
28
|
Welbergen JA, Meade J, Field HE, Edson D, McMichael L, Shoo LP, Praszczalek J, Smith C, Martin JM. Extreme mobility of the world's largest flying mammals creates key challenges for management and conservation. BMC Biol 2020; 18:101. [PMID: 32819385 PMCID: PMC7440933 DOI: 10.1186/s12915-020-00829-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Effective conservation management of highly mobile species depends upon detailed knowledge of movements of individuals across their range; yet, data are rarely available at appropriate spatiotemporal scales. Flying-foxes (Pteropus spp.) are large bats that forage by night on floral resources and rest by day in arboreal roosts that may contain colonies of many thousands of individuals. They are the largest mammals capable of powered flight, and are highly mobile, which makes them key seed and pollen dispersers in forest ecosystems. However, their mobility also facilitates transmission of zoonotic diseases and brings them in conflict with humans, and so they require a precarious balancing of conservation and management concerns throughout their Old World range. Here, we analyze the Australia-wide movements of 201 satellite-tracked individuals, providing unprecedented detail on the inter-roost movements of three flying-fox species: Pteropus alecto, P. poliocephalus, and P. scapulatus across jurisdictions over up to 5 years. RESULTS Individuals were estimated to travel long distances annually among a network of 755 roosts (P. alecto, 1427-1887 km; P. poliocephalus, 2268-2564 km; and P. scapulatus, 3782-6073 km), but with little uniformity among their directions of travel. This indicates that flying-fox populations are composed of extremely mobile individuals that move nomadically and at species-specific rates. Individuals of all three species exhibited very low fidelity to roosts locally, resulting in very high estimated daily colony turnover rates (P. alecto, 11.9 ± 1.3%; P. poliocephalus, 17.5 ± 1.3%; and P. scapulatus, 36.4 ± 6.5%). This indicates that flying-fox roosts form nodes in a vast continental network of highly dynamic "staging posts" through which extremely mobile individuals travel far and wide across their species ranges. CONCLUSIONS The extreme inter-roost mobility reported here demonstrates the extent of the ecological linkages that nomadic flying-foxes provide across Australia's contemporary fragmented landscape, with profound implications for the ecosystem services and zoonotic dynamics of flying-fox populations. In addition, the extreme mobility means that impacts from local management actions can readily reverberate across jurisdictions throughout the species ranges; therefore, local management actions need to be assessed with reference to actions elsewhere and hence require national coordination. These findings underscore the need for sound understanding of animal movement dynamics to support evidence-based, transboundary conservation and management policy, tailored to the unique movement ecologies of species.
Collapse
Affiliation(s)
- Justin A Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| | - Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Hume E Field
- Department of Agriculture and Fisheries, Queensland Centre for Emerging Infectious Diseases, Brisbane, QLD, 4001, Australia
- Ecohealth Alliance, New York, NY, 10001, USA
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Daniel Edson
- Department of Agriculture and Fisheries, Queensland Centre for Emerging Infectious Diseases, Brisbane, QLD, 4001, Australia
- Department of Agriculture, Water and the Environment, Canberra, ACT, 2601, Australia
| | - Lee McMichael
- Department of Agriculture and Fisheries, Queensland Centre for Emerging Infectious Diseases, Brisbane, QLD, 4001, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Luke P Shoo
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jenny Praszczalek
- Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
| | - Craig Smith
- Department of Agriculture and Fisheries, Queensland Centre for Emerging Infectious Diseases, Brisbane, QLD, 4001, Australia
| | - John M Martin
- Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Institute for Science and Learning, Taronga Conservation Society Australia, Mosman, NSW, 2088, Australia
| |
Collapse
|
29
|
Seroprevalence of three paramyxoviruses; Hendra virus, Tioman virus, Cedar virus and a rhabdovirus, Australian bat lyssavirus, in a range expanding fruit bat, the Grey-headed flying fox (Pteropus poliocephalus). PLoS One 2020; 15:e0232339. [PMID: 32374743 PMCID: PMC7202650 DOI: 10.1371/journal.pone.0232339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/13/2020] [Indexed: 12/23/2022] Open
Abstract
Habitat-mediated global change is driving shifts in species’ distributions which can alter the spatial risks associated with emerging zoonotic pathogens. Many emerging infectious pathogens are transmitted by highly mobile species, including bats, which can act as spill-over hosts for pathogenic viruses. Over three years, we investigated the seroepidemiology of paramyxoviruses and Australian bat lyssavirus in a range-expanding fruit bat, the Grey-headed flying fox (Pteropus poliocephalus), in a new camp in Adelaide, South Australia. Over six, biannual, sampling sessions, we quantified median florescent intensity (MFI) antibody levels for four viruses for a total of 297 individual bats using a multiplex Luminex binding assay. Where appropriate, florescence thresholds were determined using finite mixture modelling to classify bats’ serological status. Overall, apparent seroprevalence of antibodies directed at Hendra, Cedar and Tioman virus antigens was 43.2%, 26.6% and 95.7%, respectively. We used hurdle models to explore correlates of seropositivity and antibody levels when seropositive. Increased body condition was significantly associated with Hendra seropositivity (Odds ratio = 3.67; p = 0.002) and Hendra virus levels were significantly higher in pregnant females (p = 0.002). While most bats were seropositive for Tioman virus, antibody levels for this virus were significantly higher in adults (p < 0.001). Unexpectedly, all sera were negative for Australian bat lyssavirus. Temporal variation in antibody levels suggests that antibodies to Hendra virus and Tioman virus may wax and wane on a seasonal basis. These findings suggest a common exposure to Hendra virus and other paramyxoviruses in this flying fox camp in South Australia.
Collapse
|
30
|
Peel AJ, Field HE, Aravena MR, Edson D, McCallum H, Plowright RK, Prada D. Coronaviruses and Australian bats: a review in the midst of a pandemic. AUST J ZOOL 2019. [DOI: 10.1071/zo20046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Australia’s 81 bat species play vital ecological and economic roles via suppression of insect pests and maintenance of native forests through pollination and seed dispersal. Bats also host a wide diversity of coronaviruses globally, including several viral species that are closely related to SARS-CoV-2 and other emergent human respiratory coronaviruses. Although there are hundreds of studies of bat coronaviruses globally, there are only three studies of bat coronaviruses in Australian bat species, and no systematic studies of drivers of shedding. These limited studies have identified two betacoronaviruses and seven alphacoronaviruses, but less than half of Australian species are included in these studies and further research is therefore needed. There is no current evidence of spillover of coronaviruses from bats to humans in Australia, either directly or indirectly via intermediate hosts. The limited available data are inadequate to determine whether this lack of evidence indicates that spillover does not occur or occurs but is undetected. Conversely, multiple international agencies have flagged the potential transmission of human coronaviruses (including SARS CoV-2) from humans to bats, and the consequent threat to bat conservation and human health. Australia has a long history of bat research across a broad range of ecological and associated disciplines, as well as expertise in viral spillover from bats. This strong foundation is an ideal platform for developing integrative approaches to understanding bat health and sustainable protection of human health.
Collapse
|