1
|
Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu JK, Maharachchikumbura SSN. From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi. J Fungi (Basel) 2025; 11:25. [PMID: 39852444 PMCID: PMC11766330 DOI: 10.3390/jof11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: Pyricularia oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum, F. oxysporum, Blumeria graminis, Zymoseptoria tritici, and Colletotrichum spp. Also, we explore the mechanism used to understand evolutionary trends in these fungi. The studied pathogens have evolved in agroecosystems through either (1) introduction from elsewhere; or (2) local origins involving co-evolution with host plants, host shifts, or genetic variations within existing strains. Genetic variation, generated via sexual recombination and various asexual mechanisms, often drives pathogen evolution. While sexual recombination is rare and mainly occurs at the center of origin of the pathogen, asexual mechanisms such as mutations, parasexual recombination, horizontal gene or chromosome transfer, and chromosomal structural variations are predominant. Farming practices like mono-cropping resistant cultivars and prolonged use of fungicides with the same mode of action can drive the emergence of new pathotypes. Furthermore, host range does not necessarily impact pathogen adaptation and evolution. Although halting pathogen evolution is impractical, its pace can be slowed by managing selective pressures, optimizing farming practices, and enforcing quarantine regulations. The study of pathogen evolution has been transformed by advancements in molecular biology, genomics, and bioinformatics, utilizing methods like next-generation sequencing, comparative genomics, transcriptomics and population genomics. However, continuous research remains essential to monitor how pathogens evolve over time and to develop proactive strategies that mitigate their impact on agriculture.
Collapse
Affiliation(s)
- Asanka Madhushan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Dulan Bhanuka Weerasingha
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Evgeny Ilyukhin
- Laboratory of Plant Pathology, Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Amila Sandaruwan Ratnayake
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka;
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| |
Collapse
|
2
|
Lapalu N, Simon A, Lu A, Plaumann PL, Amselem J, Pigné S, Auger A, Koch C, Dallery JF, O'Connell RJ. Complete genome of the Medicago anthracnose fungus, Colletotrichum destructivum, reveals a mini-chromosome-like region within a core chromosome. Microb Genom 2024; 10:001283. [PMID: 39166978 PMCID: PMC11338638 DOI: 10.1099/mgen.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Colletotrichum destructivum (Cd) is a phytopathogenic fungus causing significant economic losses on forage legume crops (Medicago and Trifolium species) worldwide. To gain insights into the genetic basis of fungal virulence and host specificity, we sequenced the genome of an isolate from Medicago sativa using long-read (PacBio) technology. The resulting genome assembly has a total length of 51.7 Mb and comprises ten core chromosomes and two accessory chromosomes, all of which were sequenced from telomere to telomere. A total of 15, 631 gene models were predicted, including genes encoding potentially pathogenicity-related proteins such as candidate-secreted effectors (484), secondary metabolism key enzymes (110) and carbohydrate-active enzymes (619). Synteny analysis revealed extensive structural rearrangements in the genome of Cd relative to the closely related Brassicaceae pathogen, Colletotrichum higginsianum. In addition, a 1.2 Mb species-specific region was detected within the largest core chromosome of Cd that has all the characteristics of fungal accessory chromosomes (transposon-rich, gene-poor, distinct codon usage), providing evidence for exchange between these two genomic compartments. This region was also unique in having undergone extensive intra-chromosomal segmental duplications. Our findings provide insights into the evolution of accessory regions and possible mechanisms for generating genetic diversity in this asexual fungal pathogen.
Collapse
Affiliation(s)
- Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Adeline Simon
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Antoine Lu
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Peter-Louis Plaumann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Joëlle Amselem
- Université Paris-Saclay, INRAE, URGI, 78000 Versailles, France
| | - Sandrine Pigné
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Annie Auger
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Christian Koch
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | | |
Collapse
|
3
|
Richter F, Calonne-Salmon M, van der Heijden MGA, Declerck S, Stanley CE. AMF-SporeChip provides new insights into arbuscular mycorrhizal fungal asymbiotic hyphal growth dynamics at the cellular level. LAB ON A CHIP 2024; 24:1930-1946. [PMID: 38416560 PMCID: PMC10964749 DOI: 10.1039/d3lc00859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (i.e., physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the AMF-SporeChip - to visualise the foraging behaviour of germinating Rhizophagus and Gigaspora spores and confront asymbiotic hyphae with physical obstacles. In combination with timelapse microscopy, the fungi could be examined at the cellular level and in real-time. The AMF-SporeChip allowed us to acquire movies with unprecedented visual clarity and therefore identify various exploration strategies of AMF asymbiotic hyphae. We witnessed tip-to-tip and tip-to-side hyphal anastomosis formation. Anastomosis involved directed hyphal growth in a "stop-and-go" manner, yielding visual evidence of pre-anastomosis signalling and decision-making. Remarkably, we also revealed a so-far undescribed reversible cytoplasmic retraction, including the formation of up to 8 septa upon retraction, as part of a highly dynamic space navigation, probably evolved to optimise foraging efficiency. Our findings demonstrated how AMF employ an intricate mechanism of space searching, involving reversible cytoplasmic retraction, branching and directional changes. In turn, the AMF-SporeChip is expected to open many future frontiers for AMF research.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Marcel G A van der Heijden
- Agroecology and Environment Research Division, Agroscope, 8046 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Bucknell AH, McDonald MC. That's no moon, it's a Starship: Giant transposons driving fungal horizontal gene transfer. Mol Microbiol 2023; 120:555-563. [PMID: 37434470 DOI: 10.1111/mmi.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
To date, most reports of horizontal gene transfer (HGT) in fungi rely on genome sequence data and are therefore an indirect measure of HGT after the event has occurred. However, a novel group of class II-like transposons known as Starships may soon alter this status quo. Starships are giant transposable elements that carry dozens of genes, some of which are host-beneficial, and are linked to many recent HGT events in the fungal kingdom. These transposons remain active and mobile in many fungal genomes and their transposition has recently been shown to be driven by a conserved tyrosine-recombinase called 'Captain'. This perspective explores some of the remaining unanswered questions about how these Starship transposons move, both within a genome and between different species. We seek to outline several experimental approaches that can be used to identify the genes essential for Starship-mediated HGT and draw links to other recently discovered giant transposons outside of the fungal kingdom.
Collapse
Affiliation(s)
- Angus H Bucknell
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Megan C McDonald
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Liu X, Li B, Cai J, Shi T, Yang Y, Feng Y, Huang G. Whole genome resequencing reveal patterns of genetic variation within Colletotrichum acutatum species complex from rubber trees in China. Fungal Genet Biol 2023; 167:103801. [PMID: 37196569 DOI: 10.1016/j.fgb.2023.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
The Colletotrichum acutatum species complex possesses a diverse number of important traits, such as a wide host range and host preference, different modes of reproduction, and different strategies of host infection. Research using comparative genomics has attempted to find correlations between these traits. Here, we used multi-locus techniques and gene genealogical concordance analysis to investigate the phylogenetic relationships and taxonomic status of the Colletotrichum acutatum species complex using field isolates obtained from rubber trees. The results revealed that the dominant species was C. australisinense, followed by C. bannaense, while strain YNJH17109 was identified as C. laticiphilum. The taxonomic status of strains YNLC510 and YNLC511 was undetermined. Using whole-genome single nucleotide polymorphism data to analyze population structure, 18 strains of C. australisinense were subsequently divided into four populations, one of which was derived from an admixture of two populations. In addition, the strains LD1687, GD1628, and YNLC516, did not belong to any populations, and were considered to be admixtures of two or more populations. A split decomposition network analysis also provided evidence for genetic recombination within Colletotrichum acutatum species complex from rubber trees in China. Overall, a weak phylogeographic sub-structure was observed. Analysis also revealed significant differences in morphological characters and levels of virulence between populations.
Collapse
Affiliation(s)
- Xianbao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Tao Shi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Yanli Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China.
| |
Collapse
|
6
|
Liu X, Li B, Cai J, Yang Y, Feng Y, Huang G. Characterization and necrosis-inducing activity of necrosis- and ethylene-inducing peptide 1-like proteins from Colletotrichum australisinense, the causative agent of rubber tree anthracnose. Front Microbiol 2022; 13:969479. [PMID: 36110300 PMCID: PMC9468550 DOI: 10.3389/fmicb.2022.969479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Colletotrichum australisinense, a member of the Colletotrichum acutatum species complex, is an important pathogen causing rubber tree anthracnose. Genome-wide comparative analysis showed this species complex contains more genes encoding necrosis- and ethylene-inducing peptide 1-like proteins (NLPs) than other Colletotrichum species complexes, but little is known about their necrosis-inducing roles in host. The aim of this study was to analyze NLPs number and type in C. australisinense, and characterize their necrosis-inducing activity in host or non-host. According to phylogenetic relationship, conserved the cysteine residues and the heptapeptide motif (GHRHDWE), 11 NLPs were identified and classified into three types. Five of the eleven NLPs were evaluated for necrosis-inducing activity. CaNLP4 (type 1) could not induce necrosis in host or non-host plants. By contrast, both CaNLP5 and CaNLP9 (type 1) induced necrosis in host and non-host plants, and necrosis-inducing activity was strongest for CaNLP9. CaNLP10 (type 2) and CaNLP11 (type 3) induced necrosis in host but not non-host plants. Substitution of key amino acid residues essential for necrosis induction activity led to loss of CaNLP4 activity. Structural characterization of CaNLP5 and CaNLP9 may explain differences in necrosis-inducing activity. We evaluated the expression of genes coding CaNLP by reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) at different time-points after pathogen infection. It was found that genes encoding CaNLPs with different activities exhibited significantly different expression patterns. The results demonstrate that CaNLPs are functionally and spatially distinct, and may play different but important roles in C. australisinense pathogenesis.
Collapse
|
7
|
Hyphal Fusions Enable Efficient Nutrient Distribution in Colletotrichum graminicola Conidiation and Symptom Development on Maize. Microorganisms 2022; 10:microorganisms10061146. [PMID: 35744664 PMCID: PMC9231406 DOI: 10.3390/microorganisms10061146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hyphal and germling fusion is a common phenomenon in ascomycetous fungi. Due to the formed hyphal network, this process enables a coordinated development as well as an interaction with plant hosts and efficient nutrient distribution. Recently, our laboratory work demonstrated a positive correlation between germling fusion and the formation of penetrating hyphopodia on maize leaves outgoing from Colletotrichum graminicola oval conidia. To investigate the probable interconnectivity of these processes, we generated a deletion mutant in Cgso, in which homologs are essential for cellular fusion in other fungal species. However, hyphopodia development was not affected, indicating that both processes are not directly connected. Instead, we were able to link the cellular fusion defect in ∆Cgso to a decreased formation of asexual fruiting bodies of C. graminicola on the leaves. The monitoring of a fluorescent-labelled autophagy marker, eGFP-CgAtg8, revealed a high autophagy activity in the hyphae surrounding the acervuli. These results support the hypothesis that the efficient nutrient transport of degraded cellular material by hyphal fusions enables proper acervuli maturation and, therefore, symptom development on the leaves.
Collapse
|
8
|
A dialogue-like cell communication mechanism is conserved in filamentous ascomycete fungi and mediates interspecies interactions. Proc Natl Acad Sci U S A 2022; 119:e2112518119. [PMID: 35286209 PMCID: PMC8944665 DOI: 10.1073/pnas.2112518119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study reveals that a dialogue-like communication mechanism, which mediates cell–cell fusion in filamentous fungi, is a conserved complex trait. It allows the communication and behavioral coordination of cells of distantly related species and mediates their mutual attraction and subsequent physical contact, although interspecies fusion does not occur. Through the activation of this signaling machinery, one species can reprogram the developmental program of the other fungus. These data promote our understanding of microbial communication, illustrate the mechanism of repurposing of existing building blocks in cellular evolution, revive the hypothesis of vegetative fusion as an avenue of horizontal gene transfer in fungi, and establish the idea of developmental reprogramming as a tool for controlling fungi. In many filamentous fungi, germinating spores cooperate by fusing into supracellular structures, which develop into the mycelial colony. In the model fungus Neurospora crassa, this social behavior is mediated by an intriguing mode of communication, in which two fusing cells take turns in signal sending and receiving. Here we show that this dialogue-like cell communication mechanism is highly conserved in distantly related fungal species and mediates interspecies interactions. In mixed populations, cells of N. crassa and the phytopathogenic gray mold Botrytis cinerea coordinate their behavior over a spatial distance and establish physical contact. Subsequent cell–cell fusion is, however, restricted to germlings of the same species, indicating that species specificity of germling fusion has evolved not on the level of the signal/receptor but at subsequent levels of the fusion process. In B. cinerea, fusion and infectious growth are mutually exclusive cellular programs. Remarkably, the presence of N. crassa can reprogram this behavior and induce fusion of the gray mold on plant surfaces, potentially weakening its pathogenic potential. In a third fungal species, the nematode-trapping fungus Arthrobotrys flagrans, the conserved signaling mechanism mediates vegetative fusion within mycelial colonies but has also been repurposed for the formation of nematode-catching traps. In summary, this study identified the cell dialogue mechanism as a conserved complex trait and revealed that even distantly related fungi possess a common molecular language, which promotes cellular contact formation across species borders.
Collapse
|
9
|
Differential Physiological Prerequisites and Gene Expression Profiles of Conidial Anastomosis Tube and Germ Tube Formation in Colletotrichum gloeosporioides. J Fungi (Basel) 2021; 7:jof7070509. [PMID: 34202250 PMCID: PMC8306183 DOI: 10.3390/jof7070509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The conidia of a hemibiotrophic fungus, Colletotrichum gloeosporioides, can conventionally form a germ tube (GT) and develop into a fungal colony. Under certain conditions, they tend to get connected through a conidial anastomosis tube (CAT) to share the nutrients. CAT fusion is believed to be responsible for the generation of genetic variations in few asexual fungi, which appears problematic for effective fungal disease management. The physiological and molecular requirements underlying the GT formation versus CAT fusion remained underexplored. In the present study, we have deciphered the physiological prerequisites for GT formation versus CAT fusion in C. gloeosporioides. GT formation occurred at a high frequency in the presence of nutrients, while CAT fusion was found to be higher in the absence of nutrients. Younger conidia were found to form GT efficiently, while older conidia preferentially formed CAT. Whole transcriptome analysis of GT and CAT revealed highly differential gene expression profiles, wherein 11,050 and 9786 genes were differentially expressed during GT formation and CAT fusion, respectively. A total of 1567 effector candidates were identified; out of them, 102 and 100 were uniquely expressed during GT formation and CAT fusion, respectively. Genes coding for cell wall degrading enzymes, germination, hyphal growth, host-fungus interaction, and virulence were highly upregulated during GT formation. Meanwhile, genes involved in stress response, cell wall remodeling, membrane transport, cytoskeleton, cell cycle, and cell rescue were highly upregulated during CAT fusion. To conclude, the GT formation and CAT fusion were found to be mutually exclusive processes, requiring differential physiological conditions and sets of DEGs in C. gloeosporioides. This study will help in understanding the basic CAT biology in emerging fungal model species of the genus Colletotrichum.
Collapse
|
10
|
Ku YS, Wang Z, Duan S, Lam HM. Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe-Plant Interactions. BIOLOGY 2021; 10:biology10060477. [PMID: 34071379 PMCID: PMC8227670 DOI: 10.3390/biology10060477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Rhizosphere, where microbes and plants coexist, is a hotspot of mobile genetic element (MGE) transfers. It was suggested that ancient MGE transfers drove the evolution of both microbes and plants. On the other hand, recurrent MGE transfers regulate microbe-plant interaction and the adaptation of microbes and plants to the environment. The studies of MGE transfers in the rhizosphere provide useful information for the research on pathogenic/ beneficial microbe-plant interaction. In addition, MGE transfers between microbes and the influence by plant root exudates on such transfers provide useful information for the research on bioremediation. Abstract The transfer of mobile genetic elements (MGEs) has been known as a strategy adopted by organisms for survival and adaptation to the environment. The rhizosphere, where microbes and plants coexist, is a hotspot of MGE transfers. In this review, we discuss the classic mechanisms as well as novel mechanisms of MGE transfers in the rhizosphere. Both intra-kingdom and cross-kingdom MGE transfers will be addressed. MGE transfers could be ancient events which drove evolution or recurrent events which regulate adaptations. Recent findings on MGE transfers between plant and its interacting microbes suggest gene regulations brought forth by such transfers for symbiosis or defense mechanisms. In the natural environment, factors such as temperature and soil composition constantly influence the interactions among different parties in the rhizosphere. In this review, we will also address the effects of various environmental factors on MGE transfers in the rhizosphere. Besides environmental factors, plant root exudates also play a role in the regulation of MGE transfer among microbes in the rhizosphere. The potential use of microbes and plants for bioremediation will be discussed.
Collapse
|
11
|
Mehta N, Baghela A. Quorum sensing-mediated inter-specific conidial anastomosis tube fusion between Colletotrichum gloeosporioides and C. siamense. IMA Fungus 2021; 12:7. [PMID: 33789776 PMCID: PMC8015167 DOI: 10.1186/s43008-021-00058-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Many plant pathogenic filamentous fungi undergo fusion of conidia through conidial anastomosis tubes (CATs), which is believed to facilitate horizontal gene transfer between species. We discovered a remarkable inter-specific CAT fusion between two important plant fungal pathogens Colletotrichum gloeosporioides and C. siamense. In an invitro assay, under no selection pressure, the inter-specific CAT fusion was preferred with higher frequency (25% ± 5%) than intra-specific CAT fusion (11% ± 3.6%). Different stages of CAT fusion viz. CAT induction, homing, and fusion were observed during this inter-specific CAT fusion. The CAT fusion was found to be higher in absence of nutrients and under physiological stresses. This CAT fusion involved a quorum sensing phenomenon, wherein the CAT induction was dependent on conidial density and the putative quorum sensing molecule was extractable in chloroform. Movement of nuclei, mitochondria, and lipid droplets were observed during the CAT fusion. Post CAT fusion, the resulting conidia gave rise to putative heterokaryotic progenies with variable colony characteristics as compared to their parental strains. Few heterokaryons showed variable AFLP banding pattern compared to their parental strains, thereby suggesting a possible genetic exchange between the two species through CAT fusion. The heterokaryotic progenies exhibited varied fitness under different stress conditions. Our study illustrated a possible role of inter-specific CAT fusion in generation of genetic and phenotypic diversity in these fungal pathogens.
Collapse
Affiliation(s)
- Nikita Mehta
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India.,Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Baghela
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India. .,Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
12
|
Yuan BH, Li H, Liu L, Du XH. Successful induction and recognition of conidiation, conidial germination and chlamydospore formation in pure culture of Morchella. Fungal Biol 2020; 125:285-293. [PMID: 33766307 DOI: 10.1016/j.funbio.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Morels, fungi from the genus Morchella, are popular edible mushrooms. However, little knowledge of their asexual reproduction and inaccessible pure mitospores hamper illumination of their life cycle. Herein, we successfully induced conidiation, conidial germination and chlamydospore formation in pure culture of Morchella sextelata. Conidiation proceeded via four morphologically distinct stages: development of the conidiophore stalk, stalk branching, phialide differentiation, and conidium production. Terminal and intercalary chlamydospores were formed on conidial hyphae. The development of conidiophores occurred earlier, with more conidia produced, in cross-mating cultures than in single-spore cultures. Mature conidia were spherical and 2.5-8 μm in diameter, with a vast majority (nearly 99%) 2.5-5 μm in diameter. Each conidium contained one to three nuclei (80.2% conidia contained one nucleus, 19.1% contained two nuclei, and 0.7% contained three nuclei). The conidial nucleus diameter was 1-2 μm. The nuclear mitosis in detached conidia that was observed may benefit their colony initiation. Additionally, morel conidia formed conidial anastomosis tubes. Conidia (mitospores) likely not only function as spermatia, but also as reproductive propagules in Morchella. Further research is imperative to elucidate the relationship between the conidia and chlamydospores, and their unique function in the morel life cycle.
Collapse
Affiliation(s)
- Bin-Hong Yuan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Huan Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Lu Liu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
13
|
Francisco CS, Zwyssig MM, Palma-Guerrero J. The role of vegetative cell fusions in the development and asexual reproduction of the wheat fungal pathogen Zymoseptoria tritici. BMC Biol 2020; 18:99. [PMID: 32782023 PMCID: PMC7477884 DOI: 10.1186/s12915-020-00838-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability of fungal cells to undergo cell-to-cell communication and anastomosis, the process of vegetative hyphal fusion, allows them to maximize their overall fitness. Previous studies in a number of fungal species have identified the requirement of several signaling pathways for anastomosis, including the so far best characterized soft (So) gene, and the MAPK pathway components MAK-1 and MAK-2 of Neurospora crassa. Despite the observations of hyphal fusions' involvement in pathogenicity and host adhesion, the connection between cell fusion and fungal lifestyles is still unclear. Here, we address the role of anastomosis in fungal development and asexual reproduction in Zymoseptoria tritici, the most important fungal pathogen of wheat in Europe. RESULTS We show that Z. tritici undergoes self-fusion between distinct cellular structures, and its mechanism is dependent on the initial cell density. Contrary to other fungi, cell fusion in Z. tritici only resulted in cytoplasmic mixing but not in multinucleated cell formation. The deletion of the So orthologous ZtSof1 disrupted cell-to-cell communication affecting both hyphal and germling fusion. We show that Z. tritici mutants for MAPK-encoding ZtSlt2 (orthologous to MAK-1) and ZtFus3 (orthologous to MAK-2) genes also failed to undergo anastomosis, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSof1 mutant was severely impaired in melanization, suggesting that the So gene function is related to melanization. Finally, we demonstrated that anastomosis is dispensable for pathogenicity, but essential for the pycnidium development, and its absence abolishes the asexual reproduction of Z. tritici. CONCLUSIONS We demonstrate the role for ZtSof1, ZtSlt2, and ZtFus3 in cell fusions of Z. tritici. Cell fusions are essential for different aspects of the Z. tritici biology, and the ZtSof1 gene is a potential target to control septoria tritici blotch (STB) disease.
Collapse
Affiliation(s)
| | - Maria Manuela Zwyssig
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- New Address: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
14
|
Plaumann PL, Koch C. The Many Questions about Mini Chromosomes in Colletotrichum spp. PLANTS 2020; 9:plants9050641. [PMID: 32438596 PMCID: PMC7284448 DOI: 10.3390/plants9050641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Many fungal pathogens carry accessory regions in their genome, which are not required for vegetative fitness. Often, although not always, these regions occur as relatively small chromosomes in different species. Such mini chromosomes appear to be a typical feature of many filamentous plant pathogens. Since these regions often carry genes coding for effectors or toxin-producing enzymes, they may be directly related to virulence of the respective pathogen. In this review, we outline the situation of small accessory chromosomes in the genus Colletotrichum, which accounts for ecologically important plant diseases. We summarize which species carry accessory chromosomes, their gene content, and chromosomal makeup. We discuss the large variation in size and number even between different isolates of the same species, their potential roles in host range, and possible mechanisms for intra- and interspecies exchange of these interesting genetic elements.
Collapse
|
15
|
da Silva LL, Moreno HLA, Correia HLN, Santana MF, de Queiroz MV. Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl Microbiol Biotechnol 2020; 104:1891-1904. [PMID: 31932894 DOI: 10.1007/s00253-020-10363-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
The genus Colletotrichum comprises species with different lifestyles but is mainly known for phytopathogenic species that infect crops of agronomic relevance causing considerable losses. The fungi of the genus Colletotrichum are distributed in species complexes and within each complex some species have particularities regarding their lifestyle. The most commonly found and described lifestyles in Colletotrichum are endophytic and hemibiotrophic phytopathogenic. Several of these phytopathogenic species show wide genetic variability, which makes long-term maintenance of resistance in plants difficult. Different mechanisms may play an important role in the emergence of genetic variants but are not yet fully understood in this genus. These mechanisms include heterokaryosis, a parasexual cycle, sexual cycle, transposable element activity, and repeat-induced point mutations. This review provides an overview of the genus Colletotrichum, the species complexes described so far and the most common lifestyles in the genus, with a special emphasis on the mechanisms that may be responsible, at least in part, for the emergence of new genotypes under field conditions.
Collapse
Affiliation(s)
- Leandro Lopes da Silva
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hanna Lorena Alvarado Moreno
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilberty Lucas Nunes Correia
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Mateus Ferreira Santana
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
16
|
Turissini DA, Gomez OM, Teixeira MM, McEwen JG, Matute DR. Species boundaries in the human pathogen Paracoccidioides. Fungal Genet Biol 2017; 106:9-25. [PMID: 28602831 PMCID: PMC8335726 DOI: 10.1016/j.fgb.2017.05.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022]
Abstract
The use of molecular taxonomy for identifying recently diverged species has transformed the study of speciation in fungi. The pathogenic fungus Paracoccidioides spp has been hypothesized to be composed of five phylogenetic species, four of which compose the brasiliensis species complex. Nuclear gene genealogies support this divergence scenario, but mitochondrial loci do not; while all species from the brasiliensis complex are differentiated at nuclear coding loci, they are not at mitochondrial loci. We addressed the source of this incongruity using 11 previously published gene fragments, 10 newly-sequenced nuclear non-coding loci, and 10 microsatellites. We hypothesized and further demonstrated that the mito-nuclear incongruence in the brasiliensis species complex results from interspecific hybridization and mitochondrial introgression, a common phenomenon in eukaryotes. Additional population genetic analyses revealed possible nuclear introgression but much less than that seen in the mitochondrion. Our results are consistent with a divergence scenario of secondary contact and subsequent mitochondrial introgression despite the continued persistence of species boundaries. We also suggest that yeast morphology slightly-but significantly-differs across all five Paracoccidioides species and propose to elevate four of these phylogenetic species to formally described taxonomic species.
Collapse
Affiliation(s)
- David A Turissini
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Oscar M Gomez
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia; Biology Institute, Universidad de Antioquia, Medellín, Colombia
| | - Marcus M Teixeira
- Northern Arizona Center for Valley Fever Research, Flagstaff, AZ, USA
| | - Juan G McEwen
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia; School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Spring O, Zipper R. Asexual Recombinants of Plasmopara halstedii Pathotypes from Dual Infection of Sunflower. PLoS One 2016; 11:e0167015. [PMID: 27907026 PMCID: PMC5132302 DOI: 10.1371/journal.pone.0167015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
Genetically homogenous strains of Plasmopara halstedii differing in host specificity and fungicide tolerance were used to test the hypothesis that asexual genetic recombination occurs and may account for the high genotype diversity of this homothallic reproducing oomycete, which causes downy mildew in sunflower. Dual inoculation of sunflower seedlings with single zoospore strains of complementary infection characteristics caused sporulation under conditions where inoculation with each strain alone failed to infect. PCR-based investigation with strain-specific primers proved the presence of genetic traits from both progenitors in single sporangia collected from sporangiophores of such infections. Sister zoospores released from these sporangia revealed the genotype of the one or the other parental strain thus indicating heterokaryology of sporangia. Moreover, some zoospores showed amplification products of both parents, which suggests that the generally mononucleic spores derived from genetic recombination. The possibility of parasexual genetic exchange in the host-independent stage of infection and the evolutionary consequences are discussed.
Collapse
Affiliation(s)
- Otmar Spring
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| | - Reinhard Zipper
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
18
|
Fleißner A, Herzog S. Signal exchange and integration during self-fusion in filamentous fungi. Semin Cell Dev Biol 2016; 57:76-83. [DOI: 10.1016/j.semcdb.2016.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
|
19
|
Menat J, Armstrong-Cho C, Banniza S. Lack of evidence for sexual reproduction in field populations of Colletotrichum lentis. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
|
21
|
Gonzaga LL, Costa LEO, Santos TT, Araújo EF, Queiroz MV. Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 2014; 118:485-96. [PMID: 25410007 DOI: 10.1111/jam.12696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/04/2014] [Accepted: 11/10/2014] [Indexed: 01/18/2023]
Abstract
AIMS To evaluate the diversity of endophytic fungi from the leaves of the common bean and the genetic diversity of endophytic fungi from the genus Colletotrichum using IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism) analyses. METHODS AND RESULTS The fungi were isolated by tissue fragmentation and identified by analysing the morphological features and sequencing the internal transcribed spacer (ITS) regions and the rDNA large subunit (LSU). Twenty-seven different taxa were identified. Colletotrichum was the most commonly isolated genera from the common bean (32.69% and 24.29% of the total isolates from the Ouro Negro and Talismã varieties, respectively). The IRAP and REMAP analyses revealed a high genetic diversity in the Colletotrichum endophytic isolates and were able to discriminate these isolates from the phytopathogen Colletotrichum lindemuthianum. CONCLUSIONS Fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris endophytic community, and the IRAP and REMAP markers can be used to rapidly distinguish between C. lindemuthianum and other Colletotrichum members that are frequently found as endophytes. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the diversity of endophytic fungi present in the common bean and the use of IRAP and REMAP markers to assess the genetic diversity of endophytic fungi from the genus Colletotrichum.
Collapse
Affiliation(s)
- L L Gonzaga
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
22
|
Ugalde U, Rodriguez-Urra AB. The Mycelium Blueprint: insights into the cues that shape the filamentous fungal colony. Appl Microbiol Biotechnol 2014; 98:8809-19. [PMID: 25172134 DOI: 10.1007/s00253-014-6019-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
The mycelium is an organised cellular network that develops according to a functionally coherent plan. As it expands, the mycelium is capable of modulating the relative abundance of different cell types to suit the prevailing environmental conditions. This versatile pattern of multicellular development involves sophisticated environmental sensing and intercellular communication systems that have barely been recognised. This review describes an insight into our current understanding of the signalling molecules and mechanisms that take part in the ordered and timely emergence of various cell types and their biological significance. The prospects that this emerging knowledge may offer for the sustainable control of fungal colonisation or dispersal will also be considered.
Collapse
Affiliation(s)
- Unai Ugalde
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, Manuel Lardizabal Ibilbidea, 3 20018, Donostia-San Sebastian, Spain,
| | | |
Collapse
|
23
|
Barcelos QL, Pinto JMA, Vaillancourt LJ, Souza EA. Characterization of Glomerella strains recovered from anthracnose lesions on common bean plants in Brazil. PLoS One 2014; 9:e90910. [PMID: 24633173 PMCID: PMC3954623 DOI: 10.1371/journal.pone.0090910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Anthracnose caused by Colletotrichum lindemuthianum is an important disease of common bean, resulting in major economic losses worldwide. Genetic diversity of the C. lindemuthianum population contributes to its ability to adapt rapidly to new sources of host resistance. The origin of this diversity is unknown, but sexual recombination, via the Glomerella teleomorph, is one possibility. This study tested the hypothesis that Glomerella strains that are frequently recovered from bean anthracnose lesions represent the teleomorph of C. lindemuthianum. A large collection of Glomerella isolates could be separated into two groups based on phylogenetic analysis, morphology, and pathogenicity to beans. Both groups were unrelated to C. lindemuthianum. One group clustered with the C. gloeosporioides species complex and produced mild symptoms on bean tissues. The other group, which belonged to a clade that included the cucurbit anthracnose pathogen C. magna, caused no symptoms. Individual ascospores recovered from Glomerella perithecia gave rise to either fertile (perithecial) or infertile (conidial) colonies. Some pairings of perithecial and conidial strains resulted in induced homothallism in the conidial partner, while others led to apparent heterothallic matings. Pairings involving two perithecial, or two conidial, colonies produced neither outcome. Conidia efficiently formed conidial anastomosis tubes (CATs), but ascospores never formed CATs. The Glomerella strains formed appressoria and hyphae on the plant surface, but did not penetrate or form infection structures within the tissues. Their behavior was similar whether the beans were susceptible or resistant to anthracnose. These same Glomerella strains produced thick intracellular hyphae, and eventually acervuli, if host cell death was induced. When Glomerella was co-inoculated with C. lindemuthianum, it readily invaded anthracnose lesions. Thus, the hypothesis was not supported: Glomerella strains from anthracnose lesions do not represent the teleomorphic phase of C. lindemuthianum, and instead appear to be bean epiphytes that opportunistically invade and sporulate in the lesions.
Collapse
Affiliation(s)
- Quélen L. Barcelos
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Joyce M. A. Pinto
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Sinop, Mato Grosso, Brazil
| | - Lisa J. Vaillancourt
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Elaine A. Souza
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
24
|
Abstract
Gene transfer has been identified as a prevalent and pervasive phenomenon and an important source of genomic innovation in bacteria. The role of gene transfer in microbial eukaryotes seems to be of a reduced magnitude but in some cases can drive important evolutionary innovations, such as new functions that underpin the colonization of different niches. The aim of this review is to summarize published cases that support the hypothesis that horizontal gene transfer (HGT) has played a role in the evolution of phytopathogenic traits in fungi and oomycetes. Our survey of the literature identifies 46 proposed cases of transfer of genes that have a putative or experimentally demonstrable phytopathogenic function. When considering the life-cycle steps through which a pathogen must progress, the majority of the HGTs identified are associated with invading, degrading, and manipulating the host. Taken together, these data suggest HGT has played a role in shaping how fungi and oomycetes colonize plant hosts.
Collapse
Affiliation(s)
- Darren Soanes
- Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom;
| | | |
Collapse
|
25
|
Genetic structure of Pyrenophora teres net and spot populations as revealed by microsatellite analysis. Fungal Biol 2013; 118:180-92. [PMID: 24528640 DOI: 10.1016/j.funbio.2013.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 11/22/2022]
Abstract
The population structure of the fungal pathogen Pyrenophora teres, collected mainly from different regions of the Czech and Slovak Republics, was examined using a microsatellite analyses (SSR). Among 305 P. teres f. teres (PTT) and 82 P. teres f. maculata (PTM) isolates that were collected, the overall gene diversity was similar (ĥ = 0.12 and ĥ = 0.13, respectively). A high level of genetic differentiation (FST = 0.46; P < 0.001) indicated the existence of population structure. Nine clusters that were found using a Bayesian approach represent the genetic structure of the studied P. teres populations. Two clusters consisted of PTM populations; PTT populations formed another seven clusters. An exact test of population differentiation confirmed the results that were generated by Structure. There was no difference between naturally infected populations over time, and genetic distance did not correlate with geographical distance. The facts that all individuals had unique multilocus genotypes and that the hypothesis of random mating could not be rejected in several populations or subpopulations serve as evidence that a mixed mating system plays a role in the P. teres life cycle. Despite the fact that the genetic differentiation value between PTT and PTM (FST = 0.30; P < 0.001) is lower than it is between the populations within each form (FST = 0.40 (PTT); FST = 0.35 (PTM); P < 0.001) and that individuals with mixed PTT and PTM genomes were found, the two forms of P. teres form genetically separate populations. Therefore, it can be assumed that these populations have most likely undergone speciation.
Collapse
|
26
|
Abstract
Botrytis cinerea (gray mold) is one of the most widespread and destructive fungal diseases of horticultural crops. Propagation and dispersal is usually by asexual conidia but the sexual stage (Botryotinia fuckeliana (de Bary) Whetzel) also occurs in nature. DsRNAs, indicative of virus infection, are common in B. cinerea, but only four viruses (Botrytis virus F (BVF), Botrytis virus X (BVX), Botrytis cinerea mitovirus 1 (BcMV1), and Botrytis porri RNA virus) have been sequenced. BVF and BVX are unusual mycoviruses being ssRNA flexous rods and have been designated the type species of the genera Mycoflexivirus and Botrexvirus (family Betaflexivirdae), respectively. The reported effects of viruses on Botrytis range from negligible to severe, with Botrytis cinerea mitovirus 1 causing hypovirulence. Little is currently known about the effects of viruses on Botrytis metabolism but recent complete sequencing of the B. cinerea genome now provides an opportunity to investigate the host-pathogen interactions at the molecular level. There is interest in the possible use of mycoviruses as biological controls for Botrytis because of the common problem of fungicide resistance. Unfortunately, hyphal anastomosis is the only known mechanism of horizontal virus transmission and the large number of vegetative incompatibility groups in Botrytis is a potential constraint on the spread of an introduced virus. Although some Botrytis viruses, such as BVF and BVX, are known to have international distribution, there is a distinct lack of epidemiological data and the means of spread are unknown.
Collapse
Affiliation(s)
- Michael N Pearson
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
27
|
Burmester A, Karimi S, Wetzel J, Wöstemeyer J. Complementation of a stable Met2-1 mutant of the zygomycete Absidia glauca by the corresponding wild-type allele of the mycoparasite Parasitella parasitica, transferred during infection. Microbiology (Reading) 2013; 159:1639-1648. [DOI: 10.1099/mic.0.066910-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Anke Burmester
- General Microbiology and Microbe Genetics, Friedrich-Schiller University Jena, Neugasse 24, D-07743 Jena, Germany
| | - Sedighe Karimi
- General Microbiology and Microbe Genetics, Friedrich-Schiller University Jena, Neugasse 24, D-07743 Jena, Germany
| | - Jana Wetzel
- General Microbiology and Microbe Genetics, Friedrich-Schiller University Jena, Neugasse 24, D-07743 Jena, Germany
| | - Johannes Wöstemeyer
- General Microbiology and Microbe Genetics, Friedrich-Schiller University Jena, Neugasse 24, D-07743 Jena, Germany
| |
Collapse
|
28
|
Pinto JMA, Pereira R, Mota SF, Ishikawa FH, Souza EA. Investigating phenotypic variability in Colletotrichum lindemuthianum populations. PHYTOPATHOLOGY 2012; 102:490-497. [PMID: 22250759 DOI: 10.1094/phyto-06-11-0179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Colletotrichum lindemuthianum, causal agent of anthracnose in the common bean, has wide genetic variability. Differential bean cultivars and morphological and physiological characteristics were used to analyze 74 isolates of C. lindemuthianum collected in two counties in the state of Minas Gerais, Brazil. Six different races were found, with a predominance of race 65 at both locations. Isolates were classified according to their sensitivities to the fungicide thiophanate-methyl, normally used in the control of common bean anthracnose. In all, ≈10% of isolates were resistant to the fungicide in vitro. Characteristics such as indexes of mycelia growth rate, colony diameter, sporulation capacity, and percentage of germination demonstrated the high genetic variability of C. lindemuthianum. We also observed variation in conidial cytology. The conidia of most isolates showed septa formation after germination, in contrast to septa absence, previously reported in the literature. Sexual and asexual reproduction were evaluated for mechanisms that may contribute in the generation of variability in C. lindemuthianum. Conidial anastomosis tubes were commonly found, indicating that asexual reproduction can help increase variability in this species. Information from this study confirmed high variability in C. lindemuthianum and will guide future studies in basic knowledge and applied technologies.
Collapse
Affiliation(s)
- J M A Pinto
- Department of Biology, Universidade Federal de Lavras, Lavras, Brazil
| | | | | | | | | |
Collapse
|
29
|
Read ND, Goryachev AB, Lichius A. The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. FUNGAL BIOL REV 2012. [DOI: 10.1016/j.fbr.2012.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Ishikawa FH, Souza EA, Shoji JY, Connolly L, Freitag M, Read ND, Roca MG. Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. PLoS One 2012; 7:e31175. [PMID: 22319613 PMCID: PMC3271119 DOI: 10.1371/journal.pone.0031175] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/03/2012] [Indexed: 01/25/2023] Open
Abstract
It has been hypothesized that horizontal gene/chromosome transfer and parasexual recombination following hyphal fusion between different strains may contribute to the emergence of wide genetic variability in plant pathogenic and other fungi. However, the significance of vegetative (heterokaryon) incompatibility responses, which commonly result in cell death, in preventing these processes is not known. In this study, we have assessed this issue following different types of hyphal fusion during colony initiation and in the mature colony. We used vegetatively compatible and incompatible strains of the common bean pathogen Colletotrichum lindemuthianum in which nuclei were labelled with either a green or red fluorescent protein in order to microscopically monitor the fates of nuclei and heterokaryotic cells following hyphal fusion. As opposed to fusion of hyphae in mature colonies that resulted in cell death within 3 h, fusions by conidial anastomosis tubes (CAT) between two incompatible strains during colony initiation did not induce the vegetative incompatibility response. Instead, fused conidia and germlings survived and formed heterokaryotic colonies that in turn produced uninucleate conidia that germinated to form colonies with phenotypic features different to those of either parental strain. Our results demonstrate that the vegetative incompatibility response is suppressed during colony initiation in C. lindemuthianum. Thus, CAT fusion may allow asexual fungi to increase their genetic diversity, and to acquire new pathogenic traits.
Collapse
Affiliation(s)
- Francine H. Ishikawa
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine A. Souza
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- * E-mail:
| | - Jun-ya Shoji
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lanelle Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Nick D. Read
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - M. Gabriela Roca
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Fitzpatrick DA. Horizontal gene transfer in fungi. FEMS Microbiol Lett 2011; 329:1-8. [DOI: 10.1111/j.1574-6968.2011.02465.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/11/2023] Open
Affiliation(s)
- David A. Fitzpatrick
- Genome Evolution Laboratory; Department of Biology; The National University of Ireland Maynooth; Maynooth; Ireland
| |
Collapse
|
32
|
Development of new molecular markers for the Colletotrichum genus using RetroCl1 sequences. World J Microbiol Biotechnol 2011; 28:1087-95. [PMID: 22805830 DOI: 10.1007/s11274-011-0909-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
A nonautonomous element of 624 bp, called RetroCl1 (Retroelement Colletotrichum lindemuthianum 1), was identified in the plant pathogenic fungus Colletotrichum lindemuthianum. RetroCl1 contains terminal direct repeats (223 bp) that are surrounded by CTAGT sequences. It has a short internal domain of 178 bp and shows characteristics of terminal-repeat retrotransposon in miniature (TRIM) family. We used RetroCl1 sequence to develop molecular markers for the Colletotrichum genus. IRAP (Inter-Retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism) markers were used to analyze the genetic diversity of C. lindemuthianum. Fifty-four isolates belonging to different races were used. A total of 45 loci were amplified. The Nei index showed significant differences among the populations divided according to race, indicating that they are structured according to pathotype. No clear correlation between IRAP and REMAP markers with pathogenic characterization was found. C. lindemuthianum has high genetic diversity, and the analysis of molecular variance showed that 51% of variability is found among the populations of different races. The markers were also tested in different Colletotrichum species. In every case, multiple bands were amplified, indicating that these markers can be successfully used in different species belonging to the Colletotrichum genus.
Collapse
|
33
|
Leeder AC, Palma-Guerrero J, Glass NL. The social network: deciphering fungal language. Nat Rev Microbiol 2011; 9:440-51. [PMID: 21572459 DOI: 10.1038/nrmicro2580] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been estimated that up to one quarter of the world's biomass is of fungal origin, comprising approximately 1.5 million species. In order to interact with one another and respond to environmental cues, fungi communicate with their own chemical languages using a sophisticated series of extracellular signals and cellular responses. A new appreciation for the linkage between these chemical languages and developmental processes in fungi has renewed interest in these signalling molecules, which can now be studied using post-genomic resources. In this Review, we focus on the molecules that are secreted by the largest phylum of fungi, the Ascomycota, and the quest to understand their biological function.
Collapse
Affiliation(s)
- Abigail C Leeder
- Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
34
|
Manners JM, He C. Slow-growing heterokaryons as potential intermediates in supernumerary chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mycol Prog 2011. [DOI: 10.1007/s11557-011-0749-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Barcelos QL, Souza EA, Damasceno e Silva KJ. Vegetative compatibility and genetic analysis of Colletotrichum lindemuthianum isolates from Brazil. GENETICS AND MOLECULAR RESEARCH 2011; 10:230-42. [PMID: 21341215 DOI: 10.4238/vol10-1gmr907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The causal agent of common bean anthracnose, Colletotrichum lindemuthianum, has considerable genetic and pathogenic variability, which makes the development of resistant cultivars difficult. We examined variability within and between Brazilian pathotypes of C. lindemuthianum through the identification of vegetative compatibility groups (VCGs) and by RAPD analysis. Two hundred and ninety-five nit mutants were obtained from 47 isolates of various pathotypes of the fungus collected from different regions, host cultivars and years. In complementation tests, 45 VCGs were identified. Eighteen RAPD primers were employed in the molecular analyses, producing 111 polymorphic bands. Estimates of genetic similarities, determined from the Sorence-Dice coefficient, ranged from 0.42 to 0.97; the dendrogram obtained by cluster analysis revealed 18 groups of isolates. RAPD and VCG markers presented high genotypic diversity. The number of significant associations (P=0.05) between RAPD, VCG and pathogenicity markers ranged from 0 (VCG) to 80% (pathogenicity). The test of multilocus association (rd) for RAPD markers was significantly different from zero (P<0.001), suggesting linkage disequilibrium. However, the results for VCG markers show the presence of recombination mechanisms. In conclusion, RAPD markers and VCGs were useful for detecting genetic variability among isolates of C. lindemuthianum. We found considerable diversity among isolates from the same geographic origin within a short interval; this suggests rapid evolution. There is a need for further studies to elucidate the population structure of this pathogen in agro-ecosystems.
Collapse
Affiliation(s)
- Q L Barcelos
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brasil
| | | | | |
Collapse
|
36
|
Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M'barek S, Gohari AM, Jashni MK, Stergiopoulos I, Kema GHJ, de Wit PJGM. Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev 2011; 35:542-54. [PMID: 21223323 DOI: 10.1111/j.1574-6976.2010.00263.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Plant pathogenic fungi adapt quickly to changing environments including overcoming plant disease resistance genes. This is usually achieved by mutations in single effector genes of the pathogens, enabling them to avoid recognition by the host plant. In addition, horizontal gene transfer (HGT) and horizontal chromosome transfer (HCT) provide a means for pathogens to broaden their host range. Recently, several reports have appeared in the literature on HGT, HCT and hybridization between plant pathogenic fungi that affect their host range, including species of Stagonospora/Pyrenophora, Fusarium and Alternaria. Evidence is given that HGT of the ToxA gene from Stagonospora nodorum to Pyrenophora tritici-repentis enabled the latter fungus to cause a serious disease in wheat. A nonpathogenic Fusarium species can become pathogenic on tomato by HCT of a pathogenicity chromosome from Fusarium oxysporum f.sp lycopersici, a well-known pathogen of tomato. Similarly, Alternaria species can broaden their host range by HCT of a single chromosome carrying a cluster of genes encoding host-specific toxins that enabled them to become pathogenic on new hosts such as apple, Japanese pear, strawberry and tomato, respectively. The mechanisms HGT and HCT and their impact on potential emergence of fungal plant pathogens adapted to new host plants will be discussed.
Collapse
Affiliation(s)
- Rahim Mehrabi
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum. Fungal Biol 2009; 114:2-9. [PMID: 20965055 DOI: 10.1016/j.funbio.2009.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/11/2009] [Accepted: 11/30/2009] [Indexed: 01/13/2023]
Abstract
Fusion of conidia and conidial germlings by means of conidial anastomosis tubes (CATs) is a common phenomenon in filamentous fungi, including many plant pathogens. It has a number of different roles, and has been speculated to facilitate parasexual recombination and horizontal gene transfer between species. The bean pathogen Colletotrichum lindemuthianum naturally undergoes CAT fusion on the host surface and within asexual fruiting bodies in anthracnose lesions on its host. It has not been previously possible to analyze the whole process of CAT fusion in this or any other pathogen using live-cell imaging techniques. Here we report the development of a robust protocol for doing this with C. lindemuthianum in vitro. The percentage of conidial germination and CAT fusion was found to be dependent on culture age, media and the fungal strain used. Increased CAT fusion was correlated with reduced germ tube formation. We show time-lapse imaging of the whole process of CAT fusion in C. lindemuthianum for the first time and monitored nuclear migration through fused CATs using nuclei labelled with GFP. CAT fusion in this pathogen was found to exhibit significant differences to that in the model system Neurospora crassa. In contrast to N. crassa, CAT fusion in C. lindemuthianum is inhibited by nutrients (it only occurs in water) and the process takes considerably longer.
Collapse
|
38
|
Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR. Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. THE NEW PHYTOLOGIST 2009; 181:924-937. [PMID: 19140939 DOI: 10.1111/j.1469-8137.2008.02726.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants and form extensive underground hyphal networks simultaneously connecting the roots of different plant species. No empirical evidence exists for either anastomosis between genetically different AMF or genetic exchange.Five isolates of one population of Glomus intraradices were used to study anastomosis between hyphae of germinating spores. We show that genetically distinct AMF, from the same field, anastomose, resulting in viable cytoplasmic connections through which genetic exchange could potentially occur.Pairs of genetically different isolates were then co-cultured in an in vitro system.Freshly produced spores were individually germinated to establish new cultures.Using several molecular tools, we show that genetic exchange occurred between genetically different AMF. Specific genetic markers from each parent were transmitted to the progeny. The progeny were viable, forming symbioses with plant roots. The phenotypes of some of the progeny were significantly different from either parent.Our results indicate that considerable promiscuity could occur in these fungi because nine out of 10 combinations of different isolates anastomosed. The ability to perform genetic crosses between AMF experimentally lays a foundation for understanding the genetics and evolutionary biology of these important plants symbionts.
Collapse
Affiliation(s)
- Daniel Croll
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Manuela Giovannetti
- Department of Crop Plant Biology, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alexander M Koch
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Cristiana Sbrana
- Institute of Biology and Plant Biotechnology, UO Pisa, CNR, Via del Borghetto 80, 5 6124 Pisa, Italy
| | - Martine Ehinger
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Peter J Lammers
- Department of Chemistry and Biochemistry, New Mexico State University, PO Box 30001, MSC 3C, Las Cruces, NM 88003 USA
| | - Ian R Sanders
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Marcelino J, Giordano R, Gouli S, Gouli V, Parker BL, Skinner M, TeBeest D, Cesnik R. Colletotrichum acutatum var. fioriniae (teleomorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect. Mycologia 2008; 100:353-74. [PMID: 18751543 DOI: 10.3852/07-174r] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An epizootic has been reported in Fiorinia externa populations in New York, Connecticut, Pennsylvania and NewJersey. Infected insects have profuse sclerotial masses enclosing their bodies. The most commonly isolated microorganism from infected F. externa was Colletotrichum sp. A morphological and molecular characterization of this fungus indicated that it is closely related to phytopathogenic C. acutatum isolates. Isolates of Colletotrichum sp. from F. externa in areas of the epizootic were similar genetically and were named Colletotrichum acutatum var. fioriniae var. nov, based on our findings. In vitro and in planta mating observed between isolates of C. acutatum var. fioriniae could serve as a possible source of genetic variation and might give rise to new biotypes with a propensity to infect insects. Only one other strain, C. gloeosporioides f. sp. ortheziidae, has been reported to show entomopathogenic activity.
Collapse
Affiliation(s)
- Jose Marcelino
- Department of Plant and Soil Science, Entomology Research Laboratory, University of Vermont, 661 Spear Street, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Genetic variability within isolates of Colletotrichum lindemuthianum belonging to race 65 from the state of Minas Gerais, Brazil. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0039-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Talamini V, Souza EA, Pozza EA, Silva GF, Ishikawa FH, Camargo Júnior OA. Genetic divergence among and within Colletotrichum lindemuthianum races assessed by RAPD. ACTA ACUST UNITED AC 2006. [DOI: 10.1590/s0100-41582006000600002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genetic divergence within and among races of Colletotrichum lindemuthianum was determined using RAPD markers. In addition to the different races of the fungus three isolates of the sexual stage of Colletotrichum lindemuthianum (Glomerella cingulata f.sp. phaseoli) were included in this study. The band patterns generated using 11 primers produced 133 polymorphic bands. The polymorphic bands were used to determine genetic divergence among and within the pathogen races. The isolates analyzed were divided into six groups with 0.75 relative similarity. Group VI, formed by three isolates of the sexual phase of Colletotrichum lindemuthianum, was the most divergent. Races previously determined using differential cultivars did not correlate with the results obtained using RAPD markers.
Collapse
|
42
|
Gabriela Roca M, Read ND, Wheals AE. Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 2005; 249:191-8. [PMID: 16040203 DOI: 10.1016/j.femsle.2005.06.048] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 06/23/2005] [Accepted: 06/25/2005] [Indexed: 10/25/2022] Open
Abstract
Conidial anastomosis tubes (CATs) can be recognized in 73 species of filamentous fungi covering 21 genera, and develop in culture and in host-pathogen systems. They have been shown to be morphologically and physiologically distinct from germ tubes in Colletotrichum and Neurospora, and under separate genetic control in Neurospora. CATs are short, thin, usually unbranched and arise from conidia or germ tubes. Their formation is conidium-density dependent, and CATs grow towards each other. MAP kinase mutants of Neurospora are blocked in CAT induction. Nuclei pass through fused CATs and are potential agents of gene exchange between individuals of the same and different species. CAT fusion may also serve to improve the chances of colony establishment.
Collapse
Affiliation(s)
- M Gabriela Roca
- Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh EH9 3JH, UK
| | | | | |
Collapse
|
43
|
Roca MG, Arlt J, Jeffree CE, Read ND. Cell biology of conidial anastomosis tubes in Neurospora crassa. EUKARYOTIC CELL 2005; 4:911-9. [PMID: 15879525 PMCID: PMC1140100 DOI: 10.1128/ec.4.5.911-919.2005] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 02/04/2005] [Indexed: 02/06/2023]
Abstract
Although hyphal fusion has been well documented in mature colonies of filamentous fungi, it has been little studied during colony establishment. Here we show that specialized hyphae, called conidial anastomosis tubes (CATs), are produced by all types of conidia and by conidial germ tubes of Neurospora crassa. The CAT is shown to be a cellular element that is morphologically and physiologically distinct from a germ tube and under separate genetic control. In contrast to germ tubes, CATs are thinner, shorter, lack branches, exhibit determinate growth, and home toward each other. Evidence for an extracellular CAT inducer derived from conidia was obtained because CAT formation was reduced at low conidial concentrations. A cr-1 mutant lacking cyclic AMP (cAMP) produced CATs, indicating that the inducer is not cAMP. Evidence that the transduction of the CAT inducer signal involves a putative transmembrane protein (HAM-2) and the MAK-2 and NRC-1 proteins of a mitogen-activated protein kinase signaling pathway was obtained because ham-2, mak-2, and nrc-1 mutants lacked CATs. Optical tweezers were used in a novel experimental assay to micromanipulate whole conidia and germlings to analyze chemoattraction between CATs during homing. Strains of the same and opposite mating type were shown to home toward each other. The cr-1 mutant also underwent normal homing, indicating that cAMP is not the chemoattractant. ham-2, mak-2, and nrc-1 macroconidia did not attract CATs of the wild type. Fusion between CATs of opposite mating types was partially inhibited, providing evidence of non-self-recognition prior to fusion. Microtubules and nuclei passed through fused CATs.
Collapse
Affiliation(s)
- M Gabriela Roca
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, Edinburgh EH9 3JH, United Kingdom
| | | | | | | |
Collapse
|