1
|
Al-Dekah AM, Sweileh W. Role of artificial intelligence in early identification and risk evaluation of non-communicable diseases: a bibliometric analysis of global research trends. BMJ Open 2025; 15:e101169. [PMID: 40316361 DOI: 10.1136/bmjopen-2025-101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
OBJECTIVE This study aims to shed light on the transformative potential of artificial intelligence (AI) in the early detection and risk assessment of non-communicable diseases (NCDs). STUDY DESIGN Bibliometric analysis. SETTING Articles related to AI in early identification and risk evaluation of NCDs from 2000 to 2024 were retrieved from the Scopus database. METHODS This comprehensive bibliometric study focuses on a single database, Scopus and employs narrative synthesis for concise yet informative summaries. Microsoft Excel V.365 and VOSviewer software (V.1.6.20) were used to summarise bibliometric features. RESULTS The study retrieved 1745 relevant articles, with a notable surge in research activity in recent years. Core journals included Scientific Reports and IEEE Access, and core institutions included the Harvard Medical School and the Ministry of Education of the People's Republic of China, while core countries comprised China, the USA, India, the UK and Saudi Arabia. Citation trends indicated substantial growth and recognition of AI's impact on NCDs management. Frequent author keywords identified key research hotspots, including specific NCDs like Alzheimer's disease and diabetes. Risk assessment studies demonstrated improved predictions for heart failure, cardiovascular risk, breast cancer, diabetes and inflammatory bowel disease. CONCLUSION Our findings highlight the increasing role of AI in early detection and risk prediction of NCDs, emphasising its widening research impact and future clinical potential.
Collapse
Affiliation(s)
- Arwa M Al-Dekah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology Faculty of Science and Art, Irbid, Jordan
| | - Waleed Sweileh
- Al-Najah National University, Nablus, Palestine, State of
| |
Collapse
|
2
|
Cao R, Zhang M, Qi M, Zhang Z, Morisseau C, Zhou C, Sun T, Zhuang J, Chen L, Xu C, Liu Z, Hammock BD, Chen G. Structure-Based Design and Optimization Lead to the Identification of a Novel Potent sEH Inhibitor with PPARγ Partial Agonist Activity against Inflammatory and Metabolic-Related Diseases. J Med Chem 2025; 68:8729-8767. [PMID: 40186327 DOI: 10.1021/acs.jmedchem.5c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
The peroxisome proliferator-activated receptor-γ (PPARγ) serves as a pivotal regulator of lipid balance, adipogenesis, and inflammatory processes. PPARγ full agonists display strong curative effects but also serious adverse effects. Here, we found a novel 4-(cyclohexyloxy)phenyl acetate scaffold with partial PPARγ agonist activity, and its structure-activity relationship was studied. We also describe the structure-guided lead optimization of orally bioavailable SP-C01 as a dual modulator of soluble epoxide hydrolase (sEH) and partial PPARγ, which can inhibit Ser273 phosphorylation. In mice, oral administration of SP-C01 at a dose of 5 g/kg resulted in excellent safety; a significant reduction in the negative consequences of lipid accumulation and water-sodium retention; and no gastrointestinal adverse effects, weight gain, or cardiotoxicity. In addition, SP-C01 has shown a better effect than pioglitazone (Pio.) in type 2 diabetes and nonalcoholic steatohepatitis. Additionally, SP-C01 has demonstrated potent anti-inflammatory and analgesic properties in models of both neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Ruolin Cao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Maoying Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Minggang Qi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhen Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis California 95616, United States
| | - Chunwei Zhou
- Shimadzu Enterprise Management (China) Co., Ltd, Shenyang 110016, People's Republic of China
| | - Tianqi Sun
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Junning Zhuang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis California 95616, United States
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
3
|
Xiong X, Lv G, King JJ, Li M, Yuan J, Lu ZK. Cost-effectiveness analysis of aducanumab versus placebo for patients with mild cognitive impairment and mild Alzheimer's disease. BMJ Open 2025; 15:e090403. [PMID: 40250880 PMCID: PMC12007052 DOI: 10.1136/bmjopen-2024-090403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/28/2025] [Indexed: 04/20/2025] Open
Abstract
OBJECTIVES To assess the cost-effectiveness of aducanumab at its updated price for treating patients with mild cognitive impairment (MCI) and mild Alzheimer's disease (AD). DESIGN Cost-effectiveness analysis. SETTINGS A five-state Markov model was constructed using 10 000 virtual patients to assess the cost-effectiveness of aducanumab from the perspective of the US healthcare system. The model employed a one-year cycle time and a lifetime time horizon. Transition probabilities and mortality rates were derived from a literature review. To address uncertainty and generalise the base case results, both one-way and probabilistic sensitivity analyses were conducted. PARTICIPANTS 10 000 virtual patients with MCI and mild AD. INTERVENTIONS The study group consisted of patients using aducanumab, while the control group consisted of those using a placebo. PRIMARY AND SECONDARY OUTCOME MEASURES Primary outcomes included costs and quality-adjusted life years (QALYs). In line with the healthcare system perspective, only direct medical costs were included. Drug costs were obtained from official records, while other medical costs were derived from literature reviews. Utilities used to calculate QALYs were also obtained from the literature. Incremental analysis was conducted to assess cost-effectiveness in the base case analysis by comparing the incremental cost-effectiveness ratio (ICER) against the willingness-to-pay (WTP) threshold. A discount rate of 3% was applied to both costs and effectiveness. RESULTS From the perspective of the US healthcare system, compared with the control group, the study group had an incremental cost of US$143 821.1 and an incremental QALY of 0.10. The ICER of patients using aducanumab compared with those using placebo was US$1 012 219.0 per QALY gained, which was much greater than the WTP threshold of US$50 000 to US$150 000, indicating that using aducanumab was not cost-effective. One-way sensitivity analysis showed the five most sensitive parameters were relative risk of progressing from MCI to mild AD, the utility of MCI, initial age, discount rate and the price of aducanumab. In the probabilistic sensitivity analysis, when the WTP was the WTP threshold of US$150 000, the probability of aducanumab being cost-effective was 0%. In addition, when the probability of aducanumab being cost-effective was 50%, the WTP was US$1 180 000, and when the probability of aducanumab being cost-effective was 95%, the WTP was US$1 906 000. CONCLUSIONS Even with the updated price being half of the original, aducanumab is still not cost-effective, underscoring the need for affordable, evidence-based AD treatments.
Collapse
Affiliation(s)
- Xiaomo Xiong
- Division of Pharmacy Practice and Administrative Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, USA
| | - Gang Lv
- Department of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing, China
| | - Jacob Jordan King
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Minghui Li
- The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jing Yuan
- Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Z Kevin Lu
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Liu W, Xu H, Wang C, Geng G, Yang Y, Chen G. Osthole's capacity to prevent tau aggregation, a key protein in tauopathy and Alzheimer's disease. Int J Biol Macromol 2025; 311:143235. [PMID: 40246112 DOI: 10.1016/j.ijbiomac.2025.143235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Aggregated forms of protein arising from misfolded variants under physiological conditions can lead to the development of disorders related to proteinopathy, including Alzheimer's disease (AD). Some small molecules derived from plants can enhance the process of protein disaggregation via various pathways. Among the different bioactive substances, osthole-a natural coumarin compound-can be highly effective against protein aggregation and associated proteinopathies. In this research, we investigated osthole's capacity to prevent tau aggregation, a key protein in tauopathy and AD. Osthole was discovered to impede amyloid fibril formation by modulating the kinetics of fibril assembly. In addition, osthole has the potential to enhance the α-helix percentage of tau, while the fractions of β-sheet and random coil were reduced, suggesting that osthole can proficiently stabilize tau structure. Osthole hindered the structural shift from random coil to β-sheet and the creation of hydrophobic areas. Fluorescence spectroscopy and docking analysis indicated that nonpolar and intermolecular energies play a greater role in forming the osthole-tau complex than polar energy, and hydrophobic residues LEU344, ILE354, and PHE346 participating in the strong interaction (logKb values ranging from 5.09 to 5.41 across the studied temperature range). Osthole effectively reduced amyloid-induced neurotoxicity in SH-SY5Y cells by inhibiting ROS production and caspase-3 mRNA expression and activity. In summary, we suggest that osthole could serve as a small molecule for treating different tauopathy-related disorders, justifying additional research moving forward.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China; Department of Neurology, Xuzhou Central Hospital, Southeast University, Xuzhou, Jiangsu 221009, China
| | - Hui Xu
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China; Department of Neurology, Xuzhou Central Hospital, Southeast University, Xuzhou, Jiangsu 221009, China
| | - Chen Wang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China; Department of Neurology, Xuzhou Central Hospital, Southeast University, Xuzhou, Jiangsu 221009, China
| | - Geng Geng
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China; Department of Neurology, Xuzhou Central Hospital, Southeast University, Xuzhou, Jiangsu 221009, China
| | - Yuying Yang
- Department of Pain, Yantai Hospital of Traditional Chinese Medicine, Shandong Province, China.
| | - Guofang Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China; Department of Neurology, Xuzhou Central Hospital, Southeast University, Xuzhou, Jiangsu 221009, China.
| |
Collapse
|
5
|
Pu Z, Huang H, Li M, Li H, Shen X, Du L, Wu Q, Fang X, Meng X, Ni Q, Li G, Cui D. Screening tools for subjective cognitive decline and mild cognitive impairment based on task-state prefrontal functional connectivity: a functional near-infrared spectroscopy study. Neuroimage 2025; 310:121130. [PMID: 40058532 DOI: 10.1016/j.neuroimage.2025.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) carry the risk of progression to dementia, and accurate screening methods for these conditions are urgently needed. Studies have suggested the potential ability of functional near-infrared spectroscopy (fNIRS) to identify MCI and SCD. The present fNIRS study aimed to develop an early screening method for SCD and MCI based on activated prefrontal functional connectivity (FC) during the performance of cognitive scales and subject-wise cross-validation via machine learning. METHODS Activated prefrontal FC data measured by fNIRS were collected from 55 normal controls, 80 SCD patients, and 111 MCI patients. Differences in FC were analyzed among the groups, and FC strength and cognitive scale performance were extracted as features to build classification and predictive models through machine learning. Model performance was assessed based on accuracy, specificity, sensitivity, and area under the curve (AUC) with 95 % confidence interval (CI) values. RESULTS Statistical analysis revealed a trend toward more impaired prefrontal FC with declining cognitive function. Prediction models were built by combining features of prefrontal FC and cognitive scale performance and applying machine learning models, The models showed generally satisfactory abilities to differentiate among the three groups, especially those employing linear discriminant analysis, logistic regression, and support vector machine. Accuracies of 92.0 % for MCI vs. NC, 80.0 % for MCI vs. SCD, and 76.1 % for SCD vs. NC were achieved, and the highest AUC values were 97.0 % (95 % CI: 94.6 %-99.3 %) for MCI vs. NC, 87.0 % (95 % CI: 81.5 %-92.5 %) for MCI vs. SCD, and 79.2 % (95 % CI: 71.0 %-87.3 %) for SCD vs. NC. CONCLUSION The developed screening method based on fNIRS and machine learning has the potential to predict early-stage cognitive impairment based on prefrontal FC data collected during cognitive scale-induced activation.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, PR China; Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Hongna Huang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, PR China
| | - Man Li
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Hongyan Li
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Xiaoyan Shen
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Lizhao Du
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, PR China
| | - Qingfeng Wu
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Xiaomei Fang
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Xiang Meng
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Qin Ni
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China
| | - Guorong Li
- Department of Psychogeriatrics, Kangci Hospital of Jiaxissng, Tongxiang 314500, Zhejiang, PR China.
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, PR China.
| |
Collapse
|
6
|
Bosire EN, Blackmon K, Kamau LW, Udeh-Momoh C, Sokhi D, Shah J, Mbugua S, Muchungi K, Meier I, Narayan V, Nesic O, Merali Z. Healthcare providers perspectives and perceptions of dementia diagnosis and management at the Aga Khan University Hospital, Nairobi, Kenya. J Alzheimers Dis 2025; 104:862-874. [PMID: 40025713 DOI: 10.1177/13872877251320411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
BackgroundThe rising number of older people, including those living with Alzheimer's disease and related dementias (AD/ADRD) in sub-Saharan Africa (SSA) highlights the need for an improved clinical diagnosis and management of the diseases.ObjectiveTo understand and describe healthcare providers' perceptions and practices regarding AD/ADRD diagnosis and care in Kenya, not previously reported.MethodsThis was an ethnographic study involving observations and semi-structured interviews with healthcare providers working at the Aga Khan University Hospital, Nairobi (AKUHN) Kenya. Twenty-one healthcare providers were purposively recruited and interviewed in English, with the data transcribed verbatim and thematically analysed using Nvivo version 14.ResultsOur findings reveal that AKUHN's dementia diagnostic pathway aligns with universal best practice models and involves multidisciplinary care. Yet, healthcare providers noted that this level of care is not representative of most public hospitals in Kenya, where a lack of diagnostic equipment and trained staff severely limits patient access to timely dementia care. In addition, new medications that can slow AD/ADRD progression, are not readily available in Africa, including Kenya. We also identified barriers to timely diagnosis and care such as: lack of dementia policy and guidelines, limited expertise of healthcare providers, high cost of care, and sociocultural factors, including stigma.ConclusionsWe emphasize the need for the Kenyan government and relevant stakeholders to develop social and healthcare policies and allocate resources to raise awareness about dementia and combat stigma; train healthcare providers; improve early detection and service delivery through access to diagnostic tools, and establish clear guidelines/protocols for AD/ADRD care.
Collapse
Affiliation(s)
- Edna N Bosire
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Karen Blackmon
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Lucy W Kamau
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Chinedu Udeh-Momoh
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Dilraj Sokhi
- Neurology Department, Aga Khan University Hospital, Nairobi, Kenya
| | - Jasmit Shah
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Sylvia Mbugua
- Neurology Department, Aga Khan University Hospital, Nairobi, Kenya
| | - Kendi Muchungi
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Irene Meier
- Davos Alzheimer's Collaborative, Wayne, USA & Genève, Switzerland
| | - Vaibhav Narayan
- Davos Alzheimer's Collaborative, Wayne, USA & Genève, Switzerland
| | - Olivera Nesic
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Zul Merali
- Brain & Mind Institute, Aga Khan University, Nairobi, Kenya
| |
Collapse
|
7
|
Zhao C, Qi W, Lv X, Gao X, Liu C, Zheng S. Elucidating the Role of Trem2 in Lipid Metabolism and Neuroinflammation. CNS Neurosci Ther 2025; 31:e70338. [PMID: 40205810 PMCID: PMC11982525 DOI: 10.1111/cns.70338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and neuroinflammation. Astrocytes play a key role in the neuroinflammatory environment of AD, especially through lipid metabolism regulation. However, the mechanisms by which astrocytes, particularly through the triggering receptor expressed on myeloid cells 2 (Trem2) receptor, contribute to lipid dysregulation and neuroinflammation in AD remain inadequately understood. METHODS We employed an AD mouse model and integrated single-cell RNA sequencing (scRNA-seq), transcriptomics, and high-throughput metabolomics to analyze lipid metabolism and inflammatory profiles in astrocytes. Differential gene expression was further validated with the GEO database, and in vitro and in vivo experiments were conducted to assess the impact of Trem2 modulation on astrocytic inflammation and lipid composition. RESULTS Our findings demonstrate that Trem2 modulates lipid metabolism in astrocytes, affecting fatty acid and phospholipid pathways. In the AD model, Trem2 expression was suppressed, enhancing nuclear factor-κB (NF-κB) signaling and promoting the secretion of pro-inflammatory factors such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Trem2 overexpression reduced astrocytic inflammation and altered lipid composition, attenuating neuroinflammation both in vitro and in vivo. These results underscore Trem2's regulatory role in lipid metabolism and its significant impact on neuroinflammation in AD. CONCLUSIONS This study identifies Trem2 as a pivotal regulator of astrocytic lipid metabolism and neuroinflammation in AD, providing potential molecular targets for early intervention and therapeutic strategies aimed at mitigating AD progression.
Collapse
Affiliation(s)
- Chenhui Zhao
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- Heilongjiang Key Laboratory of Laboratory Animals and Comparative MedicineHarbinChina
| | - Wei Qi
- Suzhou Frontage New Drug Development Co., Ltd.SuzhouChina
| | - Xiaoping Lv
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- Heilongjiang Key Laboratory of Laboratory Animals and Comparative MedicineHarbinChina
| | - Xueli Gao
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- Heilongjiang Key Laboratory of Laboratory Animals and Comparative MedicineHarbinChina
| | - Chaonan Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- Heilongjiang Key Laboratory of Laboratory Animals and Comparative MedicineHarbinChina
| | - Shimin Zheng
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- Heilongjiang Key Laboratory of Laboratory Animals and Comparative MedicineHarbinChina
| |
Collapse
|
8
|
Shukla R, Mishra K, Singh S. Exploring therapeutic potential of Bacopa monnieri bioactive compounds against Alzheimer's and Parkinson's diseases. 3 Biotech 2025; 15:61. [PMID: 39959708 PMCID: PMC11828772 DOI: 10.1007/s13205-025-04224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) consist of progressive illnesses of central nervous system that primarily affect the elderly and are characterized by movement symptoms, memory decline, and cognitive impairment. A number of variables, including the lack of a novel treatment, a steady rise in the patient population, and the high expense of care and treatment, have contributed to the growing significance of these diseases. In recent decades, we have gained a better understanding of the causes of diseases, but complex mechanisms of neuronal loss, combined with physiological factors that are incompatible, pose challenges in describing the pathogenic processes and devising effective treatments. Currently, there are no known treatments for most of these diseases, rendering them incurable. Therefore, there is a pressing need for therapeutic interventions that have the potential to effectively treat neurodegeneration. This study aimed to evaluate the efficacy of the ayurvedic herb Bacopa monnieri bioactive components against the therapeutic targets HTR1A, HTR1B, HTR2A, HTR2C, HTR7, alpha-synuclein, amyloid beta, and tau protein of Alzheimer's and Parkinson's illnesses. The docking analysis revealed the promising binding affinity with Quercetin, Apigenin, and Luteolin and Molecular mechanics/generalized Born surface area (MM/GBSA) further confirmed the stability of the complexes. In vitro investigation indicated that Quercetin is the most effective for treating AD and PD due to its considerable inhibition of alpha-synuclein production, whereas Luteolin is the favorable one for preventing both diseases by mitigating effects during Rotenone treatment. The future implications and constraints of the current study suggest that further validation in Invivo models of Alzheimer's and Parkinson's diseases is necessary to investigate the effects of Quercetin and Apigenin in the treatment of these conditions, as well as Luteolin and Quercetin for their prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04224-6.
Collapse
Affiliation(s)
- Richa Shukla
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa, Prayagraj, U.P. 211015 India
| | - Krishna Mishra
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa, Prayagraj, U.P. 211015 India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa, Prayagraj, U.P. 211015 India
| |
Collapse
|
9
|
Chen Z, Zheng N, Wang F, Zhou Q, Chen Z, Xie L, Sun Q, Li L, Li B. The role of ferritinophagy and ferroptosis in Alzheimer's disease. Brain Res 2025; 1850:149340. [PMID: 39586368 DOI: 10.1016/j.brainres.2024.149340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
Iron is a crucial mineral element within human cells, serving as a pivotal cofactor for diverse biological enzymes. Ferritin plays a crucial role in maintaining iron homeostasis within the body through its ability to sequester and release iron. Ferritinophagy is a selective autophagic process in cells that specifically facilitates the degradation of ferritin and subsequent release of free iron, thereby regulating intracellular iron homeostasis. The nuclear receptor coactivator 4 (NCOA4) serves as a pivotal regulator in the entire process of ferritinophagy, facilitating its binding to ferritin and subsequent delivering to lysosomes for degradation, thereby enabling the release of free iron. The free iron ions within the cell undergo catalysis through the Fenton reaction, resulting in a substantial generation of reactive oxygen species (ROS). This process induces lipid peroxidation, thereby stimulating a cascade leading to cellular tissue damage and subsequent initiation of ferroptosis. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of emotional memory and cognitive function, accompanied by mental and behavioral aberrations. The pathology of the disease is characterized by aberrant deposition of amyloid β-protein (Aβ) and hyperphosphorylated tau protein. It has been observed that evident iron metabolism disorders and accumulation of lipid peroxides occur in AD, indicating a significant impact of ferritinophagy and ferroptosis on the pathogenesis and progression of AD. This article elucidates the process and mechanism of ferritinophagy and ferroptosis, investigating their implications in AD to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
10
|
Zheng G, Xu M, Dong Z, Abdelrahman Z, Wang X. Meta-analysis reveals an inverse relationship between Alzheimer's disease and cancer. Behav Brain Res 2025; 478:115327. [PMID: 39521145 DOI: 10.1016/j.bbr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent reports have suggested an inverse relationship between Alzheimer's disease (AD) and cancer, although the underlying mechanism remains unclear. We performed an epidemiological meta-analysis to assess cancer likelihood in AD patients and vice versa and explored the role of APOE in tumor immunity across 33 The Cancer Genome Atlas (TCGA) cancer types. Our analysis revealed that people with AD are epidemiologically less likely to develop cancer than individuals without AD (RR: 0.53), and cancer patients are less likely to develop AD than non-cancer patients (RR: 0.61). Notably, APOE expression was positively associated with anti-tumor immune signatures and prevalent in early-stage tumors. This research reveals that AD patients are less likely to develop cancer and vice versa, pinpoints APOE gene as a risk factor for AD with anti-tumor activity, and provides new insight into the epidemiologically observed inverse relationship between both diseases.
Collapse
Affiliation(s)
- Gui Zheng
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mengli Xu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zeinab Abdelrahman
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Lindberg M, Hu J, Sparr E, Linse S. Reduced protein solubility - cause or consequence in amyloid disease? QRB DISCOVERY 2025; 6:e8. [PMID: 40070848 PMCID: PMC11894405 DOI: 10.1017/qrd.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 03/14/2025] Open
Abstract
In this perspective, we ask the question whether the apparently lower solubility of specific proteins in amyloid disease is a cause or consequence of the protein deposition seen in such diseases. We focus on Alzheimer's disease and start by reviewing the experimental evidence of disease-associated reduction in the measured concentration of amyloid β peptide, Aβ42, in cerebrospinal fluid. We propose a series of possible physicochemical explanations for these observations. These include a reduced solubility, a reduced apparent solubility, as well as a long-lived metastable state manifested in healthy individuals as a free concentration of Aβ42 in the solution phase above the solubility limit. For each scenario, we discuss whether it is most likely a cause or a consequence of the observed protein deposition in the disease.
Collapse
Affiliation(s)
- Max Lindberg
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Jing Hu
- Division for Physical Chemistry, Lund University, Lund, Sweden
| | - Emma Sparr
- Division for Physical Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Meng T, Zhang Y, Ye Y, Li H, He Y. Bioinformatics insights into mitochondrial and immune gene regulation in Alzheimer's disease. Eur J Med Res 2025; 30:89. [PMID: 39920860 PMCID: PMC11806906 DOI: 10.1186/s40001-025-02297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND There is growing evidence that the pathogenesis of Alzheimer's disease is closely linked to the resident innate immune cells of the central nervous system, including microglia and astrocytes. Mitochondrial dysfunction in microglia has also been reported to play an essential role in the pathogenesis of AD and other neurological diseases. Therefore, finding the mitochondrial and immune-related gene (MIRG) signatures in AD can be significant in diagnosing and treating AD. METHODS In this study, the intersection of the differentially expressed genes (DEGs) from the GSE109887 cohort, immune-related genes (IRGs) obtained from WGCNA analysis, and mitochondria-related genes (MRGs) was taken to identify mitochondria-immune-related genes (MIRGs). Then, using machine learning algorithms, biomarkers with good diagnostic value were selected, and a nomogram was constructed. Subsequently, we further analyzed the signaling pathways and potential biological mechanisms of the biomarkers through gene set enrichment analysis, prediction of transcription factors (TFs), miRNAs, and drug prediction. RESULTS Using machine learning algorithms, five biomarkers (TSPO, HIGD1A, NDUFAB1, NT5DC3, and MRPS30) were successfully identified, and a nomogram model with strong diagnostic ability and accuracy (AUC > 0.9) was constructed. In addition, single-gene enrichment analysis revealed that NDUFAB1 was significantly enriched in pathways associated with diseases, such as Alzheimer's and Parkinson's, providing valuable insights for future clinical research on Alzheimer's in the context of mitochondrial-immune interactions. Interestingly, brain tissue pathology showed neuronal atrophy and demyelination in AD mice, along with a reduction in Nissl bodies. Furthermore, the escape latency of AD mice was significantly longer than that of the control group. After platform removal, there was a notable increase in the path complexity and time required to reach the target quadrant, suggesting a reduction in spatial memory capacity in AD mice. Moreover, qRT-PCR validation confirmed that the mRNA expression of the five biomarkers was consistent with bioinformatics results. In AD mice, TSPO expression was increased, while HIGD1A, NDUFAB1, NT5DC3, and MRPS30 expressions were decreased. However, peripheral blood samples did not show expression of HIGD1A or MRPS30. These findings provide new insights for research on Alzheimer's disease in the context of mitochondrial-immune interactions, further exploring the pathogenesis of Alzheimer's disease and offering new perspectives for the clinical development of novel drugs. CONCLUSIONS Five mitochondrial and immune biomarkers, i.e., TSPO, HIGD1A, NDUFAB1, NT5DC3, and MRPS30, with diagnostic value in Alzheimer's disease, were screened by machine-learning algorithmic models, which will be a guide for future clinical research of Alzheimer's disease in the mitochondria-immunity-related direction.
Collapse
Affiliation(s)
- Tian Meng
- Yunnan Yunke Institute of Biotechnology, No. 871 Longquan Rd, Kunming, 650500, China
| | - Yazhou Zhang
- Department of Geriatrics, The Second People's Hospital of Kunming, No. 338Guangming Rd, Kunming, 650233, Yunnan, China
| | - Yuan Ye
- Department of Geriatrics, The Second People's Hospital of Kunming, No. 338Guangming Rd, Kunming, 650233, Yunnan, China
| | - Hui Li
- Yunnan Labreal Biotechnology Co., LTD, No. 871 Longquan Rd, Kunming, 650500, China
| | - Yongsheng He
- Yunnan Yunke Institute of Biotechnology, No. 871 Longquan Rd, Kunming, 650500, China.
- Yunnan Labreal Biotechnology Co., LTD, No. 871 Longquan Rd, Kunming, 650500, China.
| |
Collapse
|
13
|
Niu Y, Qin P, Lin P. Advances of deep Neural Networks (DNNs) in the development of peptide drugs. Future Med Chem 2025; 17:485-499. [PMID: 39935356 PMCID: PMC11834456 DOI: 10.1080/17568919.2025.2463319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Peptides are able to bind to difficult disease targets with high potency and specificity, providing great opportunities to meet unmet medical requirements. Nevertheless, the unique features of peptides, such as their small size, high structural flexibility, and scarce data availability, bring extra challenges to the design process. Firstly, this review sums up the application of peptide drugs in treating diseases. Then, the review probes into the advantages of Deep Neural Networks (DNNs) in predicting and designing peptide structures. DNNs have demonstrated remarkable capabilities in structural prediction, enabling accurate three-dimensional modeling of peptide drugs through models like AlphaFold and its successors. Finally, the review deliberates on the challenges and coping strategies of DNNs in the development of peptide drugs, along with future research directions. Future research directions focus on further improving the accuracy and efficiency of DNN-based peptide drug design, exploring novel applications of peptide drugs, and accelerating their clinical translation. With continuous advancements in technology and data accumulation, DNNs are poised to play an increasingly crucial role in the field of peptide drug development.
Collapse
Affiliation(s)
- Yuzhen Niu
- College of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, China
| | - Pingyang Qin
- College of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, China
| | - Ping Lin
- College of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, China
| |
Collapse
|
14
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
15
|
Godos J, Giampieri F, Frias-Toral E, Zambrano-Villacres R, Vistorte AOR, Yélamos Torres V, Battino M, Galvano F, Castellano S, Grosso G. Nut Consumption Is Associated with Cognitive Status in Southern Italian Adults. Nutrients 2025; 17:521. [PMID: 39940379 PMCID: PMC11820291 DOI: 10.3390/nu17030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Nut consumption has been considered a potential protective factor against cognitive decline. The aim of this study was to test whether higher total and specific nut intake was associated with better cognitive status in a sample of older Italian adults. METHODS A cross-sectional analysis on 883 older adults (>50 y) was conducted. A 110-item food frequency questionnaire was used to collect information on the consumption of various types of nuts. The Short Portable Mental Status Questionnaire was used to assess cognitive status. Multivariate logistic regression analyses were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between nut intake and cognitive status after adjusting for potential confounding factors. RESULTS The median intake of total nuts was 11.7 g/day and served as a cut-off to categorize low and high consumers (mean intake 4.3 g/day vs. 39.7 g/day, respectively). Higher total nut intake was significantly associated with a lower prevalence of impaired cognitive status among older individuals (OR = 0.35, CI 95%: 0.15, 0.84) after adjusting for potential confounding factors. Notably, this association remained significant after additional adjustment for adherence to the Mediterranean dietary pattern as an indicator of diet quality, (OR = 0.32, CI 95%: 0.13, 0.77). No significant associations were found between cognitive status and specific types of nuts. CONCLUSIONS Habitual nut intake is associated with better cognitive status in older adults.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China at Polytechnic University of Marche, 60130 Ancona, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica de Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | | | - Angel Olider Rojas Vistorte
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Universidad Internacional do Cuanza, Cuito EN250, Bié, Angola
| | - Vanessa Yélamos Torres
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad Internacional Iberoamericana, Campeche 24560, México
- Universidad de La Romana, La Romana 22000, Dominican Republic
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China at Polytechnic University of Marche, 60130 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
16
|
Scribano Parada MDLP, González Palau F, Valladares Rodríguez S, Rincon M, Rico Barroeta MJ, García Rodriguez M, Bueno Aguado Y, Herrero Blanco A, Díaz-López E, Bachiller Mayoral M, Losada Durán R. Preclinical Cognitive Markers of Alzheimer Disease and Early Diagnosis Using Virtual Reality and Artificial Intelligence: Literature Review. JMIR Med Inform 2025; 13:e62914. [PMID: 39881486 PMCID: PMC11793867 DOI: 10.2196/62914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025] Open
Abstract
Background This review explores the potential of virtual reality (VR) and artificial intelligence (AI) to identify preclinical cognitive markers of Alzheimer disease (AD). By synthesizing recent studies, it aims to advance early diagnostic methods to detect AD before significant symptoms occur. Objective Research emphasizes the significance of early detection in AD during the preclinical phase, which does not involve cognitive impairment but nevertheless requires reliable biomarkers. Current biomarkers face challenges, prompting the exploration of cognitive behavior indicators beyond episodic memory. Methods Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we searched Scopus, PubMed, and Google Scholar for studies on neuropsychiatric disorders utilizing conversational data. Results Following an analysis of 38 selected articles, we highlight verbal episodic memory as a sensitive preclinical AD marker, with supporting evidence from neuroimaging and genetic profiling. Executive functions precede memory decline, while processing speed is a significant correlate. The potential of VR remains underexplored, and AI algorithms offer a multidimensional approach to early neurocognitive disorder diagnosis. Conclusions Emerging technologies like VR and AI show promise for preclinical diagnostics, but thorough validation and regulation for clinical safety and efficacy are necessary. Continued technological advancements are expected to enhance early detection and management of AD.
Collapse
Affiliation(s)
- María de la Paz Scribano Parada
- Centro de Neurorrehabilitación González Palau, Córdoba, Argentina
- Secretarìa de Investigación, Vicerrectorado de Investigación, Innovación y Posgrado, Universidad Siglo 21, Cordoba, Argentina
- Cátedras de Física BIomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fátima González Palau
- Centro de Neurorrehabilitación González Palau, Córdoba, Argentina
- Fundación INTRAS,Valladolid, Spain
- Instituto de Neurociencias y Bienestar, Insight 21, Universidad Siglo 21, Cordoba, Argentina
| | - Sonia Valladares Rodríguez
- Department of Electronics and Computing, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Artificial Intelligence, National University of Distance Education, Madrid, Spain
| | - Mariano Rincon
- Department of Artificial Intelligence, National University of Distance Education, Madrid, Spain
| | | | | | | | | | - Estela Díaz-López
- Department of Artificial Intelligence, National University of Distance Education, Madrid, Spain
| | | | | |
Collapse
|
17
|
Ateya NH, Al-Taie SF, Jasim SA, Uthirapathy S, Chaudhary K, Rani P, Kundlas M, Naidu KS, Amer NA, Ahmed JK. Histone Deacetylation in Alzheimer's Diseases (AD); Hope or Hype. Cell Biochem Biophys 2025:10.1007/s12013-025-01670-0. [PMID: 39825060 DOI: 10.1007/s12013-025-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning. Histone deacetylases (HDACs), "writing" enzymes (HATs), and "reading" enzymes with bromodomains that identify and localize to acetylated lysine residues are responsible for maintaining histone acetylation. By giving animals HDAC inhibitors (HDACis), it is possible to intentionally control the ratios of "writer" and "eraser" activity, which will change the acetylation of histones. In addition to making the chromatin more accessible, these histone acetylation alterations re-allocate the targeting of "readers," including the transcriptional co-activators, cAMP response element-binding protein (CBP), and bromodomain-containing protein 4 (Brd4) in the CNS. Conclusive evidence has shown that HDACs slow down the progression of Alzheimer's disease (AD) by reducing the amount of histone acetylation, decreasing the activity of genes linked to memory, supporting cognitive decline and Amyloid beta (Aβ) protein accumulation, influencing aberrant tau phosphorylation, and promoting the emergence of neurofibrillary tangles (NFTs). In this review, we have covered the therapeutic targets and functions of HDACs that might be useful in treating AD.
Collapse
Affiliation(s)
- Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Sarah F Al-Taie
- University of Baghdad, College of Science, Department of Biotechnology, Baghdad, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Ramadi, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University Erbil, Kurdistan Region, Erbil, Iraq
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Nevin Adel Amer
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
- Medical Surgical Nursing Department, Faculty of Nursing, Menofia University, Shibin el Kom, Saudi Arabia
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
18
|
Zhang N, Chai S, Wang J. Assessing and projecting the global impacts of Alzheimer's disease. Front Public Health 2025; 12:1453489. [PMID: 39882109 PMCID: PMC11775756 DOI: 10.3389/fpubh.2024.1453489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Background This study aims to assess the global burden of Alzheimer's disease (AD) from 1990 to 2030, with a focus on incidence, mortality, and disability-adjusted life years (DALY). Methods Data on the incidence rates, DALY rates, and death rates of AD across various geographic populations from 1990 to 2021 were obtained from the Global Burden of Disease (GBD) 2021 study. Generalized Additive Models (GAMs) were employed to forecast the disease burden from 2022 to 2030. Results The projected global burden of Alzheimer's disease from 2022 to 2030 indicates a decrease in DALYs, with an Estimated Annual Percentage Change (EAPC) of -1.44 (95% CI: -1.45, -1.42). Similarly, death rates and incidence rates also show a decline, with EAPCs of -1.80 (95% CI: -1.83, -1.77) and -1.27 (95% CI: -1.29, -1.26) respectively. Gender-specific analysis reveals that the projected global incidence EAPC from 2022 to 2030 is estimated at -1.73 (95% CI: -1.75, -1.70) for males and -1.03 (95% CI: -1.04, -1.02) for females. Regionally, Andean Latin America and the Caribbean exhibit the highest positive EAPCs for DALYs at 0.94 (95% CI: 0.93, 0.94) and 0.59 (95% CI: 0.59, 0.60) respectively, while Eastern Europe shows the lowest EAPC at -16.31 (95% CI: -18.60, -13.95). Country-specific projections highlight Cyprus and Serbia with the highest positive EAPCs for DALYs at 12.55 (95% CI: 11.21, 13.91) and 9.6416 (95% CI: 8.86, 10.4333) respectively. On the other hand, Bahrain and Armenia exhibit significant negative EAPCs at -87.28 (95% CI: -94.66, -69.70) and -85.41 (95% CI: -92.80, -70.41). An analysis based on the Socio-Demographic Index (SDI) reveals that regions with higher SDI values have greater burdens of AD, with countries having SDI ≥ 0.8 showing significantly higher age-standardized Incidence Rates (ASIR), age-standardized Death Rates (ASDR), and age-standardized DALY rates compared to those with SDI < 0.8. Conclusion From 1990 to 2030, global burden of AD is projected to decrease, with significant gender and regional disparities. Regions with higher SDI show higher disease burdens, underscoring the necessity for targeted interventions and customized public health strategies to effectively address AD in varied socio-economic settings.
Collapse
Affiliation(s)
- Nanlong Zhang
- Department of Emergency, Ningbo Traditional Chinese Medicine Hospital, Ningbo, China
| | - Shuren Chai
- Department of Emergency, Ningbo Traditional Chinese Medicine Hospital, Ningbo, China
| | - Jixing Wang
- Department of Internal Medicine-Neurology, Ningbo Traditional Chinese Medicine Hospital, Ningbo, China
| |
Collapse
|
19
|
Zarovniaeva V, Anwar S, Kazmi S, Cortez Perez K, Sandhu S, Mohammed L. The Role of PET Detection of Biomarkers in Early Diagnosis, Progression, and Prognosis of Alzheimer's Disease: A Systematic Review. Cureus 2025; 17:e77781. [PMID: 39981456 PMCID: PMC11841692 DOI: 10.7759/cureus.77781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Alzheimer's disease (AD) is a chronic neurologic disease characterized by the deposition of Aβ amyloid and tau protein in the neural tissue, which leads to gradual and irreversible deterioration of memory. Positron emission tomography (PET) showed high potential in diagnosing AD. It provided a unique opportunity to assess cerebral amyloid plaques and tau neurofibrillary tangle deposits in the brain tissue without invasive procedures in vivo. Many studies have been focused on PET diagnosis of AD in recent years, which has significantly improved diagnosis and treatment strategies. This review study aims to summarize the role and emphasize the benefits of PET detection of AD biomarkers in early stages, clinical and histological progression assessment, and predicting AD outcomes. Relevant articles published in the last five years, from September 1, 2019, to October 30, 2024, were searched through authentic databases such as PubMed, PubMed Central, Europe PubMed Central, Science Direct, Cochrane Library, and Google Scholar. In this systematic review, we included articles published in English, with available full text, based on human trials, with relevant information regarding participants who underwent PET of the brain to diagnose AD biomarkers. The study strictly followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and recommendations. The Joanna Briggs Institute (JBI) critical appraisal methods were used to evaluate all selected cross-sectional research, and the Newcastle-Ottawa Scale (NOS) was used to assess the cohort and longitudinal studies. Eleven relevant articles were included in this systematic review, and 2,203 males and females participated. The study revealed that the detection of beta-amyloid PET showed high-precious results in early diagnosis of AD. The detection of tau protein showed a high potential for estimation of the clinical and histological progression and prognosis of AD in longitudinal studies. Identifying amyloid and tau protein accumulation and glucose metabolism alterations is highly predictive of neurodegeneration in preclinical and mild cognitive impairment stages.
Collapse
Affiliation(s)
- Viktoriia Zarovniaeva
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Summayya Anwar
- Biosciences, COMSATS University Islamabad, Islamabad, PAK
| | - Saba Kazmi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kimberly Cortez Perez
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sehej Sandhu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
20
|
Moon WJ. [Preface for Special Issue on Alzheimer's Disease: New Diagnostic Criteria, Treatment, and the Role of Neuroimaging]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2025; 86:4-5. [PMID: 39958500 PMCID: PMC11822280 DOI: 10.3348/jksr.2025.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
|
21
|
Samal M, Srivastava V, Khan M, Insaf A, Penumallu NR, Alam A, Parveen B, Ansari SH, Ahmad S. Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review. Phytother Res 2025; 39:25-50. [PMID: 39496498 DOI: 10.1002/ptr.8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
Collapse
Affiliation(s)
- Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shahid Hussain Ansari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
22
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Singh M, Ali H, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Siva Prasad GV, Pramanik A, Hassan Almalki W, Imran M. Tau proteins and senescent Cells: Targeting aging pathways in Alzheimer's disease. Brain Res 2024; 1844:149165. [PMID: 39155034 DOI: 10.1016/j.brainres.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs NMIMS University, Shirpur campus, Maharastra India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
24
|
Alexandre-Silva V, Soares-Silva B, Pereira GC, Custódio-Silva AC, Carvalhinho-Lopes PS, Taliano LO, Lambertucci RH, Cavalcante MD, de Souza Araújo AA, Quintans-Júnior L, Dos Santos JR, Ribeiro AM. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin exerts a neuroprotective effect in an Alzheimer's disease animal model induced by Streptozotocin. Metab Brain Dis 2024; 40:40. [PMID: 39579243 DOI: 10.1007/s11011-024-01484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Alzheimer's Disease (AD) is physiopathologically marked by an accumulation of beta-amyloid peptide (Aβ), hyperphosphorylation of tau protein, inflammation, and oxidative stress in the brain tissue. While new drugs for AD have been approved, novel treatments are still needed. Eplingiella fruticosa (EF) has demonstrated anti-inflammatory and antioxidant properties, which may be beneficial against AD. This study aimed to evaluate the effects of EF leaf essential oil complexed with β-cyclodextrin in a sporadic AD model induced by streptozotocin (STZ). Male Wistar rats (5-6 months old) received an intracerebroventricular STZ injection (3 mg/kg) or vehicle, and were orally treated with vehicle, EF (5 mg/kg), or donepezil (5 mg/kg) for 14 days. Behavioral tests included olfactory discrimination, open field, novel object recognition, sucrose preference, and spontaneous alternation. Upon completion, rats were euthanatized, and their brains were analyzed for Aβ, tau, and IL-1β via immunohistochemistry, and for oxidative stress markers. STZ-treated rats showed memory deficits and anhedonia, accompanied by increased Aβ, tau, and IL-1β immunoreactivity in the olfactory bulb, cortex, hippocampus, and increased TBARS levels in the hippocampus. On the other hand, EF treatment improved short-term and working memory (p < 0.001), and reduced depressive-like behavior (p = 0.02). Additionally, EF treatment decreased Aβ, tau, and IL-1β immunoreactivity in the olfactory bulb, hippocampus and cortex (p < 0.05), and reduced TBARS levels (p = 0.04) and total oxidant status in the hippocampus (p = 0.03), and increased total antioxidant status in the cortex (p = 0.04). These findings suggest EF has neuroprotective effects against STZ-induced damage, indicating its potential as a novel compound for AD treatment.
Collapse
Affiliation(s)
- Vanessa Alexandre-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
- Department of Gerontology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Beatriz Soares-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chowdhury MR, Karamveer K, Tiwary BK, Nampoothiri NK, Erva RR, Deepa VS. Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer's disease treatment. Metab Brain Dis 2024; 40:8. [PMID: 39556154 DOI: 10.1007/s11011-024-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) poses a longstanding health challenge, prompting a century-long exploration into its etiology and progression. Despite significant advancements in medical science, current AD treatments provide only symptomatic relief, urging a shift towards innovative paradigms. This study, departing from the amyloid hypothesis, integrates Systems Pharmacology, Molecular Docking and Molecular Dynamic Simulations to investigate a polyherbal phytoformulation (US 7,273,626 B2) rooted in Ayurveda for AD, consisting of Bacopa monnieri, Hippophae rhamnoides, and Dioscorea bulbifera (BHD). Diosgenin emerges as a crucial compound, aligning with previous studies, yet recognizing its limitations in explaining BHD's mechanism, this research delves into the intricate network of interactions. Protein-Protein Interaction (PPI) network analysis identifies hub genes (ALOX5, GSK3B, ACHE, SRC, AKT1, EGFR, PIK3R1, ESR1 and APP), suggesting a systems-level modulation of AD. Enrichment analyses unveil 370 AD-associated genes and key terms like "Cellular Response to Chemical Stimulus" and "Regulation of Biological Quality." KEGG pathway analysis underscores BHD's potential in Alzheimer's disease pathway (hsa05010), Endocrine resistance (hsa01522), and PI3K-Akt signaling (hsa04151). Molecular docking, carefully selecting compounds (Kaempferol, Quercetin, Myricetin, Isorhamnetin, Beta-Sitosterol, Stigmasterol, Emodin and Diosgenin) and top modulated targets, validates interactions with high dock scores, providing promising therapeutic avenues. Two core targets, Acetylcholinesterase (AChE) and Estrogen Receptor 1 (ESR1), were identified for further investigation due to their critical roles in Alzheimer's disease. To validate the molecular docking results, Molecular Dynamics (MD) simulations were performed on the AChE complexes with Myricetin, Beta-Sitosterol, and Stigmasterol, as well as the ESR1 complexes with Emodin, Diosgenin, and Beta-Sitosterol. These simulations were then compared to the interactions observed with the marketed drugs Donepezil and Estradiol, which are commonly used in Alzheimer's treatment. The MD simulations provided detailed insights into the stability and behavior of these complexes over time. The findings indicated that Myricetin and Emodin not only maintained stable interactions with AChE and ESR1 but also exhibited greater stability than Donepezil and Estradiol at specific time points and protein regions, as demonstrated by lower RMSD and RMSF values. These results suggest that natural compounds hold promise as potential therapeutic agents in the treatment of Alzheimer's disease, offering new avenues for drug development, while the formulation BHD shows potential as an adjuvant in integrative medicine alongside standard Alzheimer's treatments, effectively targeting related pathways and genes.
Collapse
Affiliation(s)
- Mayank Roy Chowdhury
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | - Karamveer Karamveer
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Navaneeth K Nampoothiri
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | - Rajeswara Reddy Erva
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | | |
Collapse
|
26
|
Zivko C, Sagar R, Xydia A, Lopez-Montes A, Mintzer J, Rosenberg PB, Shade DM, Porsteinsson AP, Lyketsos CG, Mahairaki V. iPSC-derived hindbrain organoids to evaluate escitalopram oxalate treatment responses targeting neuropsychiatric symptoms in Alzheimer's disease. Mol Psychiatry 2024; 29:3644-3652. [PMID: 38840027 PMCID: PMC11541203 DOI: 10.1038/s41380-024-02629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and the gradual deterioration of brain function eventually leads to death. Almost all AD patients suffer from neuropsychiatric symptoms (NPS), the emergence of which correlates with dysfunctional serotonergic systems. Our aim is to generate hindbrain organoids containing serotonergic neurons using human induced Pluripotent Stem Cells (iPSCs). Work presented here is laying the groundwork for the application of hindbrain organoids to evaluate individual differences in disease progression, NPS development, and pharmacological treatment response. Human peripheral blood mononuclear cells (PBMCs) from healthy volunteers (n = 3), an AD patient without NPS (n = 1), and AD patients with NPS (n = 2) were reprogrammed into iPSCs and subsequently differentiated into hindbrain organoids. The presence of serotonergic neurons was confirmed by quantitative reverse transcription PCR, flow cytometry, immunocytochemistry, and detection of released serotonin (5-HT). We successfully reprogrammed PBMCs into 6 iPSC lines, and subsequently generated hindbrain organoids from 6 individuals to study inter-patient variability using a precision medicine approach. To assess patient-specific treatment effects, organoids were treated with different concentrations of escitalopram oxalate, commonly prescribed for NPS. Changes in 5-HT levels before and after treatment with escitalopram were dose-dependent and variable across patients. Organoids from different people responded differently to the application of escitalopram in vitro. We propose that this 3D platform might be effectively used for drug screening purposes to predict patients with NPS most likely to respond to treatment in vivo and to understand the heterogeneity of treatment responses.
Collapse
Affiliation(s)
- Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Ram Sagar
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Ariadni Xydia
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Alejandro Lopez-Montes
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
| | - Jacobo Mintzer
- Department of Health Sciences, Medical University of South Carolina, 29425, Charleston, SC, USA
- Ralph H. Johnson VA Healthcare System, 29401, Charleston, SC, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - David M Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, MD, USA
| | - Anton P Porsteinsson
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, 14642, Rochester, NY, USA
| | - Constantine G Lyketsos
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
- Johns Hopkins Alzheimer's Disease Research Center, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA.
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA.
| |
Collapse
|
27
|
Wang Z, Xu X, Yang X, Wang SS, Zhou Y, Li Y. Effects of multicomponent exercise on cognitive function in persons with mild cognitive impairment: A systematic review and meta-analysis. Int J Nurs Stud 2024; 158:104843. [PMID: 39116586 DOI: 10.1016/j.ijnurstu.2024.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Multicomponent exercise has the potential to improve cognitive function in people with mild cognitive impairment. However, the effects of multicomponent exercise on specific cognitive subdomains in mild cognitive impairment and the optimal combination of exercise components remain unclear. OBJECTIVE This systematic review aimed to (a) investigate the effects of multicomponent exercise on different cognitive subdomains in people with mild cognitive impairment and (b) investigate the effects of different combinations of multicomponent exercise on global cognition in people with mild cognitive impairment. DESIGN A systematic review and meta-analysis. METHODS Six electronic databases, including PubMed, Medline, EMBASE, Web of Science, Cochrane Library, and CINAHL were systematically searched from inception to January 1st, 2023. Randomized controlled trials assessing the effect of multicomponent exercise interventions on cognitive function in people with mild cognitive impairment were included. The risk of bias was assessed using the Cochrane collaborative bias assessment tool. A random-effects model was used to calculate standardized mean difference. Subgroup analyses, meta-regression, and sensitive analysis were performed. If a meta-analysis was not feasible, studies were synthesized narratively. RESULTS Twenty studies were identified for systematic review and meta-analysis. Multicomponent exercise significantly improved global cognition [SMD = 1.04; 95 % confidence interval (CI): 0.53, 1.55], cognitive flexibility (SMD = -1.04; 95 % CI: -1.81, -0.27), processing speed (SMD = 0.43; 95 % CI: 0.04, 0.82), verbal fluency (SMD = 0.38; 95 % CI: 0.13, 0.63), attention (SMD = -0.90; 95 % CI: -1.68, -0.12) and memory (SMD = 0.36; 95 % CI: 0.04, 0.69) in mild cognitive impairment. The multicomponent exercise including cardiovascular (exercise that promotes cardiovascular health, such as endurance training or aerobic exercise) and motor (exercises that improve physical abilities, such as balance, coordination, agility, flexibility, etc.) components positively affected global cognition in people with mild cognitive impairment (SMD = 1.06; 95 % CI: 0.55, 1.57). CONCLUSIONS The findings of this study suggest that multicomponent exercise has a positive impact on various cognitive domains, including global cognition, cognitive flexibility, processing speed, verbal fluency, attention and memory in mild cognitive impairment. Specifically, the combination of exercises including cardiovascular and motor components was found to be effective in improving global cognition. However, further research is needed to investigate the optimal frequency and intensity of the multicomponent exercise intervention, and more detail about exercise combinations of the motor component (not classified in this study) for individuals with mild cognitive impairment. REGISTRATION The protocol was registered on PROSPERO (CRD42023400302).
Collapse
Affiliation(s)
- Zihan Wang
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xinyi Xu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xinxin Yang
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Shan Shan Wang
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yi Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yan Li
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China.
| |
Collapse
|
28
|
Sahu B, Nookala S, Floden AM, Ambhore NS, Sathish V, Klug MG, Combs CK. House dust mite-induced asthma exacerbates Alzheimer's disease changes in the brain of the App NL-G-F mouse model of disease. Brain Behav Immun 2024; 121:365-383. [PMID: 39084541 PMCID: PMC11442016 DOI: 10.1016/j.bbi.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and neuronal death. Besides aging, various comorbidities increase the risk of AD, including obesity, diabetes, and allergic asthma. Epidemiological studies have reported a 2.17-fold higher risk of dementia in asthmatic patients. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown. This study was designed to explore house dust mite (HDM)-induced asthma effects on AD-related brain changes using the AppNL-G-F transgenic mouse model of disease. Male and female 8-9 months old C57BL/6J wild type and AppNL-G-F mice were exposed to no treatment, saline sham, or HDM extract every alternate day for 16 weeks for comparison across genotypes and treatment. Mice were euthanized at the end of the experiment, and broncho-alveolar lavage fluid (BALF), blood, lungs, and brains were collected. BALF was used to quantify immune cell phenotype, cytokine levels, total protein content, lactate dehydrogenase (LDH) activity, and total IgE. Lungs were sectioned and stained with hematoxylin and eosin, Alcian blue, and Masson's trichrome. Serum levels of cytokines and soluble Aβ1-40/42 were quantified. Brains were sectioned and immunostained for Aβ, GFAP, CD68, and collagen IV. Finally, frozen hippocampi and temporal cortices were used to perform Aβ ELISAs and cytokine arrays, respectively. HDM exposure led to increased levels of inflammatory cells, cytokines, total protein content, LDH activity, and total IgE in the BALF, as well as increased pulmonary mucus and collagen staining in both sexes and genotypes. Levels of serum cytokines increased in all HDM-exposed groups. Serum from the AppNL-G-F HDM-induced asthma group also had significantly increased soluble Aβ1-42 levels in both sexes. In agreement with this peripheral change, hippocampi from asthma-induced male and female AppNL-G-F mice demonstrated elevated Aβ plaque load and increased soluble Aβ 1-40/42 and insoluble Aβ 1-40 levels. HDM exposure also increased astrogliosis and microgliosis in both sexes of AppNL-G-F mice, as indicated by GFAP and CD68 immunoreactivity, respectively. Additionally, HDM exposure elevated cortical levels of several cytokines in both sexes and genotypes. Finally, HDM-exposed groups also showed a disturbed blood-brain-barrier (BBB) integrity in the hippocampus of AppNL-G-F mice, as indicated by decreased collagen IV immunoreactivity. HDM exposure was responsible for an asthma-like condition in the lungs that exacerbated Aβ pathology, astrogliosis, microgliosis, and cytokine changes in the brains of male and female AppNL-G-F mice that correlated with reduced BBB integrity. Defining mechanisms of asthma effects on the brain may identify novel therapeutic targets for asthma and AD.
Collapse
Affiliation(s)
- Bijayani Sahu
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Angela M Floden
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Nilesh S Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Marilyn G Klug
- Department of Population health, School of Medicine and Health Sciences, USA
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
29
|
Rouhi N, Chakeri Z, Ghorbani Nejad B, Rahimzadegan M, Rafi Khezri M, Kamali H, Nosrati R. A comprehensive review of advanced focused ultrasound (FUS) microbubbles-mediated treatment of Alzheimer's disease. Heliyon 2024; 10:e37533. [PMID: 39309880 PMCID: PMC11416559 DOI: 10.1016/j.heliyon.2024.e37533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, memory loss, and cognitive impairment leading to dementia and death. The blood-brain barrier (BBB) prevents the delivery of drugs into the brain, which can limit their therapeutic potential in the treatment of AD. Therefore, there is a need to develop new approaches to bypass the BBB for appropriate treatment of AD. Recently, focused ultrasound (FUS) has been shown to disrupt the BBB, allowing therapeutic agents to penetrate the brain. In addition, microbubbles (MBs) as lipophilic carriers can penetrate across the BBB and deliver the active drug into the brain tissue. Therefore, combined with FUS, the drug-encapsulated MBs can pass through the ultrasound-disrupted zone of the BBB and diffuse into the brain tissue. This review provides clear and concise statements on the recent advances of the various FUS-mediated MBs-based carriers developed for delivering AD-related drugs. In addition, the sonogenetics-based FUS/MBs approaches for the treatment of AD are highlighted. The future perspectives and challenges of ultrasound-based MBs drug delivery in AD are then discussed.
Collapse
Affiliation(s)
- Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zahra Chakeri
- Cardiothoracic Imaging Section, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Behnam Ghorbani Nejad
- Department of Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
30
|
Gallo LH, Akanda N, Autar K, Patel A, Cox I, Powell HA, Grillo M, Barakat N, Morgan D, Guo X, Hickman JJ. A functional aged human iPSC-cortical neuron model recapitulates Alzheimer's disease, senescence, and the response to therapeutics. Alzheimers Dement 2024; 20:5940-5960. [PMID: 39077965 PMCID: PMC11633364 DOI: 10.1002/alz.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The degeneration of cortical layers is associated with cognitive decline in Alzheimer's disease (AD). Current therapies for AD are not disease-modifying, and, despite substantial efforts, research and development for AD has faced formidable challenges. In addition, cellular senescence has emerged as a significant contributor to therapy resistance. METHODS Human iPSC-derived cortical neurons were cultured on microelectrode arrays to measure long-term potentiation (LTP) noninvasively. Neurons were treated with pathogenic amyloid-β (Aβ) to analyze senescence and response to therapeutic molecules. RESULTS Microphysiological recordings revealed Aβ dampened cortical LTP activity and accelerated neuronal senescence. Aging neurons secreted inflammatory factors previously detected in brain, plasma, and cerebral spinal fluid of AD patients, in which drugs modulated senescence-related factors. DISCUSSION This platform measures and records neuronal LTP activity in response to Aβ and therapeutic molecules in real-time. Efficacy data from similar platforms have been accepted by the FDA for neurodegenerative diseases, expediting regulatory submissions. HIGHLIGHTS This work developed a progerontic model of amyloid-β (Aβ)-driven cortical degeneration. This work measured neuronal LTP and correlated function with aging biomarkers. Aβ is a driver of neuronal senescence and cortical degeneration. Molecules rescued neuronal function but did not halt Aβ-driven senescence. Therapeutic molecules modulated secretion of inflammatory factors by aging neurons.
Collapse
Affiliation(s)
- Leandro H. Gallo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Nesar Akanda
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Kaveena Autar
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Aakash Patel
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Ian Cox
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Haley A. Powell
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Marcella Grillo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Natali Barakat
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Dave Morgan
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand Rapids Research CenterGrand RapidsMichiganUSA
| | - Xiufang Guo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - James J. Hickman
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| |
Collapse
|
31
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
32
|
Mroziak M, Kozłowski G, Kołodziejczyk W, Pszczołowska M, Walczak K, Beszłej JA, Leszek J. Dendrimers-Novel Therapeutic Approaches for Alzheimer's Disease. Biomedicines 2024; 12:1899. [PMID: 39200363 PMCID: PMC11351976 DOI: 10.3390/biomedicines12081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer's disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated as a drug-delivery system or as a drug per se. With their ability to inhibit amyloid formation and their anti-tau properties, they are a promising therapeutic option for AD patients. Studies have shown that dendrimers may inhibit amyloid formation in at least two ways: by blocking fibril growth and by breaking already existing fibrils. Neurofibrillary tangles (NFTs) are abnormal filaments built by tau proteins that can be accumulated in the cell, which leads to the loss of cytoskeletal microtubules and tubulin-associated proteins. Cationic phosphorus dendrimers, with their anti-tau properties, can induce the aggregation of tau into amorphous structures. Drug delivery to mitochondria is difficult due to poor transport across biological barriers, such as the inner mitochondrial membrane, which is highly negatively polarized. Dendrimers may be potential nanocarriers and increase mitochondria targeting. Another considered use of dendrimers in AD treatment is as a drug-delivery system, for example, carbamazepine (CBZ) or tacrine. They can also be used to transport siRNA into neuronal tissue and to carry antioxidants and anti-inflammatory drugs to act protectively on the nervous system.
Collapse
Affiliation(s)
- Magdalena Mroziak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Gracjan Kozłowski
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | | | | | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jan Aleksander Beszłej
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
33
|
Odenkirk MT, Zheng X, Kyle JE, Stratton KG, Nicora CD, Bloodsworth KJ, Mclean CA, Masters CL, Monroe ME, Doecke JD, Smith RD, Burnum-Johnson KE, Roberts BR, Baker ES. Deciphering ApoE Genotype-Driven Proteomic and Lipidomic Alterations in Alzheimer's Disease Across Distinct Brain Regions. J Proteome Res 2024; 23:2970-2985. [PMID: 38236019 PMCID: PMC11255128 DOI: 10.1021/acs.jproteome.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Catriona A Mclean
- Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - James D Doecke
- CSIRO Health and Biosecurity, Herston, Queensland 4029, Australia
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States of America
- Department of Neurology, Emory University, Atlanta, Georgia 30322, United States of America
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States of America
| |
Collapse
|
34
|
Hossain MR, Tareq MMI, Biswas P, Tauhida SJ, Bibi S, Zilani MNH, Albadrani GM, Al‐Ghadi MQ, Abdel‐Daim MM, Hasan MN. Identification of molecular targets and small drug candidates for Huntington's disease via bioinformatics and a network-based screening approach. J Cell Mol Med 2024; 28:e18588. [PMID: 39153206 PMCID: PMC11330274 DOI: 10.1111/jcmm.18588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Huntington's disease (HD) is a gradually severe neurodegenerative ailment characterised by an increase of a specific trinucleotide repeat sequence (cytosine-adenine-guanine, CAG). It is passed down as a dominant characteristic that worsens over time, creating a significant risk. Despite being monogenetic, the underlying mechanisms as well as biomarkers remain poorly understood. Furthermore, early detection of HD is challenging, and the available diagnostic procedures have low precision and accuracy. The research was conducted to provide knowledge of the biomarkers, pathways and therapeutic targets involved in the molecular processes of HD using informatic based analysis and applying network-based systems biology approaches. The gene expression profile datasets GSE97100 and GSE74201 relevant to HD were studied. As a consequence, 46 differentially expressed genes (DEGs) were identified. 10 hub genes (TPM1, EIF2S3, CCN2, ACTN1, ACTG2, CCN1, CSRP1, EIF1AX, BEX2 and TCEAL5) were further differentiated in the protein-protein interaction (PPI) network. These hub genes were typically down-regulated. Additionally, DEGs-transcription factors (TFs) connections (e.g. GATA2, YY1 and FOXC1), DEG-microRNA (miRNA) interactions (e.g. hsa-miR-124-3p and has-miR-26b-5p) were also comprehensively forecast. Additionally, related gene ontology concepts (e.g. sequence-specific DNA binding and TF activity) connected to DEGs in HD were identified using gene set enrichment analysis (GSEA). Finally, in silico drug design was employed to find candidate drugs for the treatment HD, and while the possible modest therapeutic compounds (e.g. cortistatin A, 13,16-Epoxy-25-hydroxy-17-cheilanthen-19,25-olide, Hecogenin) against HD were expected. Consequently, the results from this study may give researchers useful resources for the experimental validation of Huntington's diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Shabana Bibi
- Department of BiosciencesShifa Tameer‐e‐Millat UniversityIslamabadPakistan
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | | | - Ghadeer M. Albadrani
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Muath Q. Al‐Ghadi
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
- Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| |
Collapse
|
35
|
Hernández-Contreras KA, Martínez-Díaz JA, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Chi-Castañeda LD, García-Hernández LI, Aranda-Abreu GE. Alterations of mRNAs and Non-coding RNAs Associated with Neuroinflammation in Alzheimer's Disease. Mol Neurobiol 2024; 61:5826-5840. [PMID: 38236345 DOI: 10.1007/s12035-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease is a neurodegenerative pathology whose pathognomonic hallmarks are increased generation of β-amyloid (Aβ) peptide, production of hyperphosphorylated (pTau), and neuroinflammation. The last is an alteration closely related to the progression of AD and although it is present in multiple neurodegenerative diseases, the pathophysiological events that characterize neuroinflammatory processes vary depending on the disease. In this article, we focus on mRNA and non-coding RNA alterations as part of the pathophysiological events characteristic of neuroinflammation in AD and the influence of these alterations on the course of the disease through interaction with multiple RNAs related to the generation of Aβ, pTau, and neuroinflammation itself.
Collapse
Affiliation(s)
- Karla Aketzalli Hernández-Contreras
- Doctorado en Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Jorge Antonio Martínez-Díaz
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Lizbeth Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Luis Isauro García-Hernández
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
36
|
Halder D, Das S, Joseph A. An insight into structure-activity relationship of naturally derived biological macromolecules for the treatment of Alzheimer's disease: a review. J Biomol Struct Dyn 2024; 42:6455-6471. [PMID: 37378526 DOI: 10.1080/07391102.2023.2230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects millions of people worldwide. There are currently no cures for AD, although various drugs are used to manage the symptoms and reduce the disease's progression. AChE inhibitors such as rivastigmine, donepezil, galantamine, and the NMDA glutamate receptor antagonist memantine are currently FDA-approved drugs used in the treatment of AD. Recently, naturally derived biological macromolecules have shown promising results in the treatment of AD. Several biological macromolecules derived from natural sources are in various stages of preclinical and clinical trials. During the literature search, it was observed that there is a lack of a comprehensive review that particularly focuses on the role of naturally derived biological macromolecules (protein, carbohydrates, lipids, and nucleic acids) in the treatment of AD and the structure-activity relationship (SAR) approach for understanding the medicinal chemistry perspective. This review focuses on the SAR and probable mechanisms of action of biological macromolecules derived from natural sources for the treatment of AD, including peptides, proteins, enzymes, and polysaccharides. The paper further addresses the therapeutic possibilities of monoclonal antibodies, enzymes, and vaccines for the treatment of AD. Overall, the review provides insight into the SAR of naturally derived biological macromolecules in the treatment of AD. The ongoing research in this field holds great promise for the future development of AD treatment and provides hope for individuals affected by this devastating disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
37
|
Pan Q, Hu X, Guo K. Beta -amyloid protein regulates miR -15a and activates Bag5 to influence neuronal apoptosis in Alzheimer 's disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1109-1119. [PMID: 39788499 PMCID: PMC11495979 DOI: 10.11817/j.issn.1672-7347.2024.230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/12/2025]
Abstract
OBJECTIVES The prevalence of Alzheimer's disease (AD) is increasing globally, however its pathogenesis is still unclear. The evidence showed that the progression of AD was closely related to the apoptosis of nerve cells. This study amis to explore the role and specific mechanism of miR-15a and Bag5 in the apoptosis of nerve cells induced by beta-amyloid protein (Aβ) in AD. METHODS The AD rat model was constructed by injecting Aβ42 into SD rat brain and the AD cell model was constructed by treating SH-SY5Y cells with Aβ42. The learning and memory ability of rats was detected by Morris Water Maze. Hematoxylin and eosin (HE) staining was used to detect the pathological changes of brain tissues. Nissl staining was used to detect the changes of cell morphology and number in brain tissues. The upstream miRNA that interacted with Bag5 were screened by bioinformatics analysis. Methyl thiazolyl tetrazolium (MTT) assay was used to detect cell proliferation. Flow cytometry was used to detect the apoptosis rate of cells. Real-time reverse transcription PCR (real-time RT-PCR) was used to detect the mRNA levels of miR-15a and Bag5. Western blotting was used to detect the protein expression levels of Bag5, Bax and Caspase-3. MiR-15a knockdown or overexpression vectors or Bag5 knockdown vectors were transfected into AD rat model and AD cell models, respectively. Luciferase reporter assay was used to verify the binding relationship between miR-15a and Bag5. RESULTS Morris Water Maze, HE staining and Nissl staining showed that the rat model of AD was established successfully, and Aβ could induce neuronal apoptosis and inhibit the expression of miR-15a in AD rats. Compared with normal cells, Aβ treatment significantly increased apoptosis rate and Bag5 expression, and weakened cell proliferation and miR-15a (all P<0.01). Overexpression of miR-15a further enhanced the effect of Aβ on cell proliferation and apoptosis, while knockdown of miR-15a expression had the opposite effect (all P<0.01). Luciferase reporter assay confirmed that there was a negative targeting relationship between miR-15a and Bag5. Compared with Bag5 knockdown alone, the co-transfection of miR-15a inhibitor and si-Bag5 significantly increased the cell proliferation ability and mRNA and protein levels of Bag5, and significantly reduced the cell apoptosis rate and the expression of Bax and Caspase-3, animal studies have also shown consistent results (all P<0.01). CONCLUSIONS Aβ can inhibit the expression of miR-15a, thereby inducing the expression of Bag5 and activating the protective mechanism of Bag5 against Aβ induced apoptosis.
Collapse
Affiliation(s)
- Qiong Pan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Xinyu Hu
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Ke Guo
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
38
|
Wang J, Feng Y, Sun Y. ACOT7, a candidate and novel serum biomarker of Alzheimer's disease. Front Aging Neurosci 2024; 16:1345668. [PMID: 39026992 PMCID: PMC11254632 DOI: 10.3389/fnagi.2024.1345668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common fatal neurodegenerative disease among the elderly worldwide, characterized by memory and cognitive impairment. The identification of biomarkers for AD is crucial and urgent to facilitate the diagnosis and intervention. The aim of this study was to evaluate the diagnostic value of acyl-Coenzyme A thioesterase 7 (ACOT7) as a serum biomarker for the prediction of AD. In our study, we observed a significant increase in ACOT7 expression in patients (n = 366) with AD and animal (n = 8-12) models of AD, compared to the control group. A significant negative correlation was found between ACOT7 levels and Mini-Mental State Examination (MMSE) scores (r = -0.85; p < 0.001). The analysis of the receiver operating characteristic curve (ROC) showed that the area under the curve (AUC) for ACOT7 was 0.83 (95% confidence intervals: 0.80-0.86). The optimal cut-off point of 62.5 pg./mL was selected with the highest sum of sensitivity and specificity. The diagnostic accuracy of serum ACOT7 for AD was 77% (95% confidence intervals: 72-82%), with a sensitivity of 80% (95% confidence intervals: 75-84%) and a specificity of 74% (95% confidence intervals: 69-79%). Moreover, the ROC analysis showed that the AUC of Aβ42/40 ratio is 0.70, and the diagnostic accuracy was 72%, with 69% sensitivity and 76% specificity. Compared with the AD traditional marker Aβ42/40 ratio, ACOT7 shows better superiority as a new serum candidate biomarker of AD. By suppressing the ACOT7 gene, our study provides evidence of the involvement of ACOT7 in the metabolism of amyloid precursor protein (APP), resulting in alterations in the expression levels of Aβ42, BACE1 and βCTF. ACOT7 has the ability to modulate the amyloidogenic pathway of APP metabolism, while it does not have an impact on the non-amyloidogenic pathway. In conclusion, the findings of our study suggest that serum ACOT7 may serve as a promising and non-invasive biomarker for AD.
Collapse
Affiliation(s)
- Jintao Wang
- Department of Pharmacy, First People’s Hospital of Wenling, Wenling, China
| | - Yong Feng
- Department of Medical Research, Qingdao Huangdao People’s Hospital, Qingdao, China
| | - Yingni Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
- Beijing Handian Pharmaceutical Co, Ltd., Beijing, China
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
39
|
Cha J, Yun JH, Choi JH, Lee JH, Choi BT, Shin HK. Preclinical Evidence and Underlying Mechanisms of Polygonum multiflorum and Its Chemical Constituents Against Cognitive Impairments and Alzheimer's Disease. J Pharmacopuncture 2024; 27:70-81. [PMID: 38948308 PMCID: PMC11194523 DOI: 10.3831/kpi.2024.27.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Cognitive impairments, ranging from mild to severe, adversely affect daily functioning, quality of life, and work capacity. Despite significant efforts in the past decade, more than 200 promising drug candidates have failed in clinical trials. Herbal remedies are gaining interest as potential treatments for dementia due to their long history and safety, making them valuable for drug development. This review aimed to examine the mechanisms behind the effect of Polygonum multiflorum on cognitive function. Methods This study focused primarily on the effects of Polygonum multiflorum and its chemical constituents on cognitive behavioral outcomes including the Morris water maze, the passive avoidance test, and the Y maze, as well as pathogenic targets of cognitive impairment and Alzheimer's disease (AD) like amyloid deposition, amyloid precursor protein, tau hyperphosphorylation, and cognitive decline. Additionally, a thorough evaluation of the mechanisms behind Polygonum multiflorum's impact on cognitive function was conducted. We reviewed the most recent data from preclinical research done on experimental models, particularly looking at Polygonum multiflorum's effects on cognitive decline and AD. Results According to recent research, Poligonum multiflorum and its bioactive components, stilbene, and emodin, influence cognitive behavioral results and regulate the pathological target of cognitive impairment and AD. Their mechanisms of action include reducing oxidative and mitochondrial damage, regulating neuroinflammation, halting apoptosis, and promoting increased neurogenesis and synaptogenesis. Conclusion This review serves as a comprehensive compilation of current experiments on AD and other cognitive impairment models related to the therapeutic effects of Polygonum multiflorum. We believe that these findings can serve as a basis for future clinical trials and have potential applications in the treatment of human neurological disorders.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hwan Yun
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hye Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jae Ho Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
40
|
Valles-Salgado M, Gil-Moreno MJ, Curiel Cid RE, Delgado-Álvarez A, Ortega-Madueño I, Delgado-Alonso C, Palacios-Sarmiento M, López-Carbonero JI, Cárdenas MC, Matías-Guiu J, Díez-Cirarda M, Loewenstein DA, Matias-Guiu JA. Detection of cerebrospinal fluid biomarkers changes of Alzheimer's disease using a cognitive stress test in persons with subjective cognitive decline and mild cognitive impairment. Front Psychol 2024; 15:1373541. [PMID: 38988382 PMCID: PMC11233766 DOI: 10.3389/fpsyg.2024.1373541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Timely and accurate diagnosis of the earliest manifestations of Alzheimer's disease (AD) is critically important. Cognitive challenge tests such as the Loewenstein Acevedo Scales for Semantic Interference and Learning (LASSI-L) have shown favorable diagnostic properties in a number of previous investigations using amyloid or FDG PET. However, no studies have examined LASSI-L performance against cerebrospinal fluid biomarkers of AD, which can be affected before the distribution of fibrillar amyloid and other changes that can be observed in brain neuroimaging. Therefore, we aimed to evaluate the relationship between LASSI-L scores and CSF biomarkers and the capacity of the cognitive challenge test to detect the presence of amyloid and tau deposition in patients with subjective cognitive decline and amnestic mild cognitive impairment (MCI). Methods One hundred and seventy-nine patients consulting for memory loss without functional impairment were enrolled. Patients were examined using comprehensive neuropsychological assessment, the LASSI-L, and cerebrospinal fluid (CSF) biomarkers (Aβ1-42/Aβ1-40 and ptau181). Means comparisons, correlations, effect sizes, and ROC curves were calculated. Results LASSI-L scores were significantly associated with CSF biomarkers Aβ1-42/Aβ1-40 in patients diagnosed with MCI and subjective cognitive decline, especially those scores evaluating the capacity to recover from proactive semantic interference effects and delayed recall. A logistic regression model for the entire sample including LASSI-L and age showed an accuracy of 0.749 and an area under the curve of 0.785 to detect abnormal amyloid deposition. Conclusion Our study supports the biological validity of the LASSI-L and its semantic interference paradigm in the context of the early stages of AD. These findings emphasize the utility and the convenience of including sensitive cognitive challenge tests in the assessment of patients with suspicion of early stages of AD.
Collapse
Affiliation(s)
- Maria Valles-Salgado
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - María José Gil-Moreno
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Rosie E Curiel Cid
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alfonso Delgado-Álvarez
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Ortega-Madueño
- Department of Clinical Analysis, Institute of Laboratory, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Palacios-Sarmiento
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Juan I López-Carbonero
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Cruz Cárdenas
- Department of Clinical Analysis, Institute of Laboratory, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Díez-Cirarda
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - David A Loewenstein
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Doshi V, Joshi G, Sharma S, Choudhary D. Gene therapy: an alternative to treat Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3675-3693. [PMID: 38078920 DOI: 10.1007/s00210-023-02873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Alzheimer's disease (AD), a neuro-degenerative disease that primarily affects the elderly, is a worldwide phenomenon. Loss of memory, cognitive decline, behavioural changes, and many other signs are used to classify it. Various hypotheses that may contribute to Alzheimer's disease have been found during decades of survey, including tau theory, the amyloid theory, the cholinergic hypothesis, and the oxidative stress hypothesis. According to some theories, the two leading causes of AD are the accumulation of amyloid beta plaque and development of NFTs in the brain. The hippocampus and cerebral cortex are the primary sites where amyloid beta plaques gather in the body. NFT formation in the brain impairs the brain's neurons' potential of signalling. According to the age at which it manifests in a person, there are two subtypes of AD: 'LOAD (Late Onset Alzheimer's Disease)' and 'EOAD (Early Onset Alzheimer's Disease)'. Long-term research into AD treatment has resulted in the introduction of some medications that provided symptomatic relief to patients but did not alter the disease's pathophysiology, like cholinesterase inhibitors, inhibitors of tau aggregation, and monoclonal antibodies to Aβ aggregation. Even though the medications did not halt the progression of AD, researchers did not discontinue their work, which lead to the introduction of gene therapy - a recently created cutting-edge method of delivering genes to target sites where they can express the intended functionalities. Viral or non-viral vectors could be used to deliver the gene, each with advantages and limitations of their own. Gene therapy is proven to be a potential disease-modifying treatment for AD. This article discusses about gene therapy, its merits and demerits and the various ways of gene delivery. Additionally, it focuses on AD as the target for treatment through gene therapy, the pathophysiology of AD, and the multiple targets for gene therapy in the treatment of AD.
Collapse
Affiliation(s)
- Vanshika Doshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, Maharashtra, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
42
|
Du J, Yang L, Duan Y, Cui Y, Qi Q, Liu Z, Liu H. Association between drinking water sources and cognitive functioning in Chinese older adults residing in rural areas. Int J Geriatr Psychiatry 2024; 39:e6110. [PMID: 38831201 DOI: 10.1002/gps.6110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES To explore the association between drinking water sources and cognitive functioning among older adults residing in rural China. METHODS Data were extracted from the 2008-2018 Chinese Longitudinal Healthy Longevity Survey. Drinking water sources were categorized according to whether purification measures were employed. The Chinese version of the Mini-Mental State Examination was used for cognitive functioning assessment, and the score of <24 was considered as having cognitive dysfunction. Cox regression analyses were conducted to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the effects of various drinking water sources, changes in such sources, and its interaction with exercise on cognition dysfunction. RESULTS We included 2304 respondents aged 79.67 ± 10.02 years; of them, 1084 (44.49%) were men. Our adjusted model revealed that respondents consistently drinking tap water were 21% less likely to experience cognitive dysfunction compared with those drinking untreated water (HR = 0.79, 95% CI: 0.70-0.90). Respondents transitioning from natural to tap water showed were 33% less likely to experience cognitive dysfunction (HR = 0.67, 95% CI: 0.58-0.78). Moreover, the HR (95% CI) for the interaction between drinking tap water and exercising was 0.86 (0.75-1.00) when compared with that between drinking untreated water and not exercising. All results adjusted for age, occupation, exercise, and body mass index. CONCLUSIONS Prolonged tap water consumption and switching from untreated water to tap water were associated with a decreased risk of cognitive dysfunction in older individuals. Additionally, exercising and drinking tap water was synergistically associated with the low incidence of cognitive dysfunction. These findings demonstrate the importance of prioritizing drinking water health in rural areas, indicating that purified tap water can enhance cognitive function among older adults.
Collapse
Affiliation(s)
- Jing Du
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Ling Yang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Ying Duan
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Yan Cui
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Qi Qi
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Zihao Liu
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Huaqing Liu
- School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
43
|
Ding Y, Peng YY, Li S, Tang C, Gao J, Wang HY, Long ZY, Lu XM, Wang YT. Single-Cell Sequencing Technology and Its Application in the Study of Central Nervous System Diseases. Cell Biochem Biophys 2024; 82:329-342. [PMID: 38133792 DOI: 10.1007/s12013-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The mammalian central nervous system consists of a large number of cells, which contain not only different types of neurons, but also a large number of glial cells, such as astrocytes, oligodendrocytes, and microglia. These cells are capable of performing highly refined electrophysiological activities and providing the brain with functions such as nutritional support, information transmission and pathogen defense. The diversity of cell types and individual differences between cells have brought inspiration to the study of the mechanism of central nervous system diseases. In order to explore the role of different cells, a new technology, single-cell sequencing technology has emerged to perform specific analysis of high-throughput cell populations, and has been continuously developed. Single-cell sequencing technology can accurately analyze single-cell expression in mixed-cell populations and collect cells from different spatial locations, time stages and types. By using single-cell sequencing technology to compare gene expression profiles of normal and diseased cells, it is possible to discover cell subsets associated with specific diseases and their associated genes. Therefore, scientists can understand the development process, related functions and disease state of the nervous system from an unprecedented depth. In conclusion, single-cell sequencing technology provides a powerful technology for the discovery of novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
44
|
Carles A, Hoffmann M, Scheiner M, Crouzier L, Bertrand-Gaday C, Chatonnet A, Decker M, Maurice T. The selective butyrylcholinesterase inhibitor UW-MD-95 shows symptomatic and neuroprotective effects in a pharmacological mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14814. [PMID: 38887858 PMCID: PMC11183908 DOI: 10.1111/cns.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-β (Aβ) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD. METHODS We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aβ25-35 peptide using behavioral, biochemical, and immunohistochemical approaches. RESULTS When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aβ25-35-treated mice. When injected once a day over 7 days, it prevented Aβ25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aβ25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aβ1-42 level in the hippocampus induced by Aβ25-35. CONCLUSION UW-MD-95 appeared as a potent neuroprotective compound in the Aβ25-35 model of AD, with potentially an impact on Aβ1-42 accumulation that could suggest a novel mechanism of neuroprotection.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | - Matthias Hoffmann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Matthias Scheiner
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lucie Crouzier
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| |
Collapse
|
45
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
46
|
Li Q, Sun J, Ran Q, Liu Z, Chen J. The protective effects of Chromofungin in oligomeric amyloid β 42 (Aβ 42)-induced toxicity in neurons in Alzheimer's disease. Aging (Albany NY) 2024; 16:9216-9227. [PMID: 38795392 PMCID: PMC11164494 DOI: 10.18632/aging.205865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 05/27/2024]
Abstract
Oligomeric Aβ42 is considered to play a harmful role in the pathophysiology of Alzheimer's disease (AD). Prolonged exposure to oligomeric Aβ42 could induce neuronal damage including cellular senescence. Amelioration of Aβ42-induced cellular senescence has been considered as a promising strategy for the treatment of AD. Chromofungin, a chromogranin A-derived peptide, has displayed various biological functions in different types of cells and tissues. However, the effects of Chromofungin on oligomeric Aβ42-induced cellular senescence have not been previously reported. In the current study, we report a novel function of Chromofungin by showing that treatment with Chromofungin could ameliorate Aβ42-induced neurotoxicity in M17 neuronal cells. The Cell Counting Kit-8 (CCK-8) assay and the lactate dehydrogenase (LDH) release experiments revealed that 0.5 and 1 mM are the optimal concentrations of Chromofungin for cell culture in M17 cells. Challenging with oligomeric Aβ42 (5 μM) for 7 and 14 days led to a significant decrease in telomerase activity, which was rescued by Chromofungin dose-dependently. Additionally, the senescence-associated β-galactosidase (SA-β-gal) staining assay demonstrated that Chromofungin mitigated oligomeric Aβ42-induced cellular senescence. Correspondingly, treatment with Chromofungin reversed the gene expression of human telomerase reverse transcriptase (hTERT), telomeric repeat-binding factor 2 (TERF2), and p21 against oligomeric Aβ42 in M17 neurons. Interestingly, Chromofungin attenuated oligomeric Aβ42-induced oxidative stress (OS) in M17 cells by reducing the production of intracellular reactive oxygen species (ROS) but increasing the levels of intracellular superoxide dismutase (SOD). Importantly, the presence of Chromofungin reduced the expression of cyclooxygenase2 (COX-2) as well as the generation of prostaglandin E2 (PGE2). Transduction with Ad-COX-2 impaired the effects of Chromofungin on telomerase activity and the profile of cellular senescence. Our findings suggest that Chromofungin might act as a potential agent for the treatment of AD.
Collapse
Affiliation(s)
- Qingwei Li
- Department of Psychiatry, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ji Sun
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Qin Ran
- Department of Psychiatry, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ziming Liu
- Department of Psychiatry, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinmei Chen
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
47
|
Hossain R, Noonong K, Nuinoon M, Lao-On U, Norris CM, Sompol P, Rahman MA, Majima HJ, Tangpong J. Alzheimer's diseases in America, Europe, and Asian regions: a global genetic variation. PeerJ 2024; 12:e17339. [PMID: 38756443 PMCID: PMC11097964 DOI: 10.7717/peerj.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Alzheimer's disease (AD) is one of the multifaceted neurodegenerative diseases influenced by many genetic and epigenetic factors. Genetic factors are merely not responsible for developing AD in the whole population. The studies of genetic variants can provide significant insights into the molecular basis of Alzheimer's disease. Our research aimed to show how genetic variants interact with environmental influences in different parts of the world. Methodology We searched PubMed and Google Scholar for articles exploring the relationship between genetic variations and global regions such as America, Europe, and Asia. We aimed to identify common genetic variations susceptible to AD and have no significant heterogeneity. To achieve this, we analyzed 35 single-nucleotide polymorphisms (SNPs) from 17 genes (ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, TOMM40, MS4A6A, ARID5B, SORL1, APOC1, MTHFD1L, BDNF, TFAM, and PICALM) from different regions based on previous genomic studies of AD. It has been reported that rs3865444, CD33, is the most common polymorphism in the American and European populations. From TOMM40 and APOE rs2075650, rs429358, and rs6656401, CR1 is the common investigational polymorphism in the Asian population. Conclusion The results of all the research conducted on AD have consistently shown a correlation between genetic variations and the incidence of AD in the populations of each region. This review is expected to be of immense value in future genetic research and precision medicine on AD, as it provides a comprehensive understanding of the genetic factors contributing to the development of this debilitating disease.
Collapse
Affiliation(s)
- Rahni Hossain
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kunwadee Noonong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Manit Nuinoon
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
| | - Udom Lao-On
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Christopher M. Norris
- Department of Pharmacology & Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Pradoldej Sompol
- Department of Pharmacology & Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Md. Atiar Rahman
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Hideyuki J. Majima
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
48
|
Yaqoob N, Khan MA, Masood S, Albarakati HM, Hamza A, Alhayan F, Jamel L, Masood A. Prediction of Alzheimer's disease stages based on ResNet-Self-attention architecture with Bayesian optimization and best features selection. Front Comput Neurosci 2024; 18:1393849. [PMID: 38725868 PMCID: PMC11081001 DOI: 10.3389/fncom.2024.1393849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness that impairs cognition, function, and behavior by causing irreversible damage to multiple brain areas, including the hippocampus. The suffering of the patients and their family members will be lessened with an early diagnosis of AD. The automatic diagnosis technique is widely required due to the shortage of medical experts and eases the burden of medical staff. The automatic artificial intelligence (AI)-based computerized method can help experts achieve better diagnosis accuracy and precision rates. This study proposes a new automated framework for AD stage prediction based on the ResNet-Self architecture and Fuzzy Entropy-controlled Path-Finding Algorithm (FEcPFA). A data augmentation technique has been utilized to resolve the dataset imbalance issue. In the next step, we proposed a new deep-learning model based on the self-attention module. A ResNet-50 architecture is modified and connected with a self-attention block for important information extraction. The hyperparameters were optimized using Bayesian optimization (BO) and then utilized to train the model, which was subsequently employed for feature extraction. The self-attention extracted features were optimized using the proposed FEcPFA. The best features were selected using FEcPFA and passed to the machine learning classifiers for the final classification. The experimental process utilized a publicly available MRI dataset and achieved an improved accuracy of 99.9%. The results were compared with state-of-the-art (SOTA) techniques, demonstrating the improvement of the proposed framework in terms of accuracy and time efficiency.
Collapse
Affiliation(s)
- Nabeela Yaqoob
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Muhammad Attique Khan
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Saleha Masood
- IRC for Finance and Digital Economy, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Hussain Mobarak Albarakati
- Department of Computer and Network Engineering, College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ameer Hamza
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Fatimah Alhayan
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Leila Jamel
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Anum Masood
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Okafor M, Champomier O, Raibaut L, Ozkan S, El Kholti N, Ory S, Chasserot-Golaz S, Gasman S, Hureau C, Faller P, Vitale N. Restoring cellular copper homeostasis in Alzheimer disease: a novel peptide shuttle is internalized by an ATP-dependent endocytosis pathway involving Rab5- and Rab14-endosomes. Front Mol Biosci 2024; 11:1355963. [PMID: 38645276 PMCID: PMC11026709 DOI: 10.3389/fmolb.2024.1355963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
CPPs, or Cell-Penetrating Peptides, offer invaluable utility in disease treatment due to their ability to transport various therapeutic molecules across cellular membranes. Their unique characteristics, such as biocompatibility and low immunogenicity, make them ideal candidates for delivering drugs, genes, or imaging agents directly into cells. This targeted delivery enhances treatment efficacy while minimizing systemic side effects. CPPs exhibit versatility, crossing biological barriers and reaching intracellular targets that conventional drugs struggle to access. This capability holds promise in treating a wide array of diseases, including cancer, neurodegenerative disorders, and infectious diseases, offering a potent avenue for innovative and targeted therapies, yet their precise mechanism of cell entry is far from being fully understood. In order to correct Cu dysregulation found in various pathologies such as Alzheimer disease, we have recently conceived a peptide Cu(II) shuttle, based on the αR5W4 CPP, which, when bound to Cu(II), is able to readily enter a neurosecretory cell model, and release bioavailable Cu in cells. Furthermore, this shuttle has the capacity to protect cells in culture against oxidative stress-induced damage which occurs when Cu binds to the Aβ peptide. The aim of this study was therefore to characterize the cell entry route used by this shuttle and determine in which compartment Cu is released. Pharmacological treatments, siRNA silencing and colocalization experiments with GFP-Rab fusion proteins, indicate that the shuttle is internalized by an ATP-dependent endocytosis pathway involving both Rab5 and Rab14 endosomes route and suggest an early release of Cu from the shuttle.
Collapse
Affiliation(s)
- Michael Okafor
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Olivia Champomier
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Laurent Raibaut
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Sebahat Ozkan
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Naima El Kholti
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Christelle Hureau
- Laboratoire de Chimie de Coordination, Centre National de la Recherche Scientifique UPR8241, Université de Toulouse, Toulouse, France
| | - Peter Faller
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
50
|
Ma H, Wang Y, Hao Z, Yu Y, Jia X, Li M, Chen L. Classification of Alzheimer's disease: application of a transfer learning deep Q-network method. Eur J Neurosci 2024; 59:2118-2127. [PMID: 38282277 DOI: 10.1111/ejn.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Early diagnosis is crucial to slowing the progression of Alzheimer's disease (AD), so it is urgent to find an effective diagnostic method for AD. This study intended to investigate whether the transfer learning approach of deep Q-network (DQN) could effectively distinguish AD patients using local metrics of resting-state functional magnetic resonance imaging (rs-fMRI) as features. This study included 1310 subjects from the Consortium for Reliability and Reproducibility (CoRR) and 50 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) GO/2. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF) and percent amplitude of fluctuation (PerAF) were extracted as features using the Power 264 atlas. Based on gender bias in AD, we searched for transferable similar parts between the CoRR feature matrix and the ADNI feature matrix, resulting in the CoRR similar feature matrix served as the source domain and the ADNI similar feature matrix served as the target domain. A DQN classifier was pre-trained in the source domain and transferred to the target domain. Finally, the transferred DQN classifier was used to classify AD and healthy controls (HC). A permutation test was performed. The DQN transfer learning achieved a classification accuracy of 86.66% (p < 0.01), recall of 83.33% and precision of 83.33%. The findings suggested that the transfer learning approach using DQN could be an effective way to distinguish AD from HC. It also revealed the potential value of local brain activity in AD clinical diagnosis.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
- Key Laboratory of Autonomous Intelligence and Information Processing in Heilongjiang Province, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
- Key Laboratory of Autonomous Intelligence and Information Processing in Heilongjiang Province, Jiamusi, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Yang Yu
- Department of Psychiatry, the second affiliated hospital of Zhejiang University school of Medicine, Zhejiang, China
| | - Xize Jia
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Lanfen Chen
- School of Medical Imaging, Weifang Medical University, Weifang, China
| |
Collapse
|