1
|
Dou RX, Zhang YM, Hu XJ, Gao FL, Zhang LL, Liang YH, Zhang YY, Yao YP, Yin L, Zhang Y, Gu C. Aβ 1-42 promotes microglial activation and apoptosis in the progression of AD by binding to TLR4. Redox Biol 2024; 78:103428. [PMID: 39550828 PMCID: PMC11615585 DOI: 10.1016/j.redox.2024.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative diseases and the most devastating form of senile dementia. It has a complex mechanism and no effective treatment. Exploring the pathogenesis of AD and providing ideas for treatment can effectively improve the prognosis of AD. Microglia were incubated with β-amyloid protein 1-42 (Aβ1-42) to construct an AD cell model. After microglia were activated, cell morphology changed, the expression level of inflammatory factors increased, cell apoptosis was promoted, and the expression of microtubule-associated protein (Tau protein) and related proteins increased. By up-regulating and down-regulating Toll-like receptor 4 (TLR4), the cells were divided into TLR4 knockdown negative control group(Lv-NC group), TLR4 knockdown group(Lv-TLR4 group), TLR4 overexpression negative control group(Sh-NC group), and TLR4 overexpression group(Sh-TLR4 group). The expression of inflammatory factors was detected again. It was found that compared with the Lv-NC group, the expression of various inflammatory factors in the Lv-TLR4 group decreased, cell apoptosis was inhibited, and the expression of Tau protein and related proteins decreased. Compared with the Sh-NC group, the expression of inflammatory factors in the Sh-TLR4 group increased, cell apoptosis was promoted, and the expression of Tau protein and related proteins increased. These results indicate that Aβ1-42 may promote microglial activation and apoptosis by binding to TLR4. Reducing the expression of TLR4 can reduce the occurrence of inflammatory response in AD cells and slow down cell apoptosis. Therefore, TLR4 is expected to become a new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Rui-Xia Dou
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China; Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China.
| | - Ya-Min Zhang
- Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Xiao-Juan Hu
- Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Fu-Lin Gao
- Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Lu-Lu Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China; Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Yun-Hua Liang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China; Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Yin-Ying Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China; Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Yu-Ping Yao
- Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Li Yin
- Western Medical District of Chinese PLA General Hospital, Haidian District, 100097, Beijing, China
| | - Yi Zhang
- Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Cheng Gu
- Department of Neurology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Garg A, Bandyopadhyay S. Role of an interdependent Wnt, GSK3-β/β-catenin and HB-EGF/EGFR mechanism in arsenic-induced hippocampal neurotoxicity in adult mice. CHEMOSPHERE 2024; 352:141375. [PMID: 38325618 DOI: 10.1016/j.chemosphere.2024.141375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
We previously reported the neurotoxic effects of arsenic in the hippocampus. Here, we explored the involvement of Wnt pathway, which contributes to neuronal functions. Administering environmentally relevant arsenic concentrations to postnatal day-60 (PND60) mice demonstrated a dose-dependent increase in hippocampal Wnt3a and its components, Frizzled, phospho-LRP6, Dishevelled and Axin1 at PND90 and PND120. However, p-GSK3-β(Ser9) and β-catenin levels although elevated at PND90, decreased at PND120. Additionally, treatment with Wnt-inhibitor, rDkk1, reduced p-GSK3-β(Ser9) and β-catenin at PND90, but failed to affect their levels at PND120, indicating a time-dependent link with Wnt. To explore other underlying factors, we assessed epidermal growth factor receptor (EGFR) pathway, which interacts with GSK3-β and appears relevant to neuronal functions. We primarily found that arsenic reduced hippocampal phosphorylated-EGFR and its ligand, Heparin-binding EGF-like growth factor (HB-EGF), at both PND90 and PND120. Moreover, treatment with HB-EGF rescued p-GSK3-β(Ser9) and β-catenin levels at PND120, suggesting their HB-EGF/EGFR-dependent regulation at this time point. Additionally, rDkk1, LiCl (GSK3-β-activity inhibitor), or β-catenin protein treatments induced a time-dependent recovery in HB-EGF, indicating potential inter-dependent mechanism between hippocampal Wnt/β-catenin and HB-EGF/EGFR following arsenic exposure. Fluorescence immunolabeling then validated these findings in hippocampal neurons. Further exploration of hippocampal neuronal survival and apoptosis demonstrated that treatment with rDkk1, LiCl, β-catenin and HB-EGF improved Nissl staining and NeuN levels, and reduced cleaved-caspase-3 levels in arsenic-treated mice. Supportively, we detected improved Y-Maze and Passive Avoidance performances for learning-memory functions in these mice. Overall, our study provides novel insights into Wnt/β-catenin and HB-EGF/EGFR pathway interaction in arsenic-induced hippocampal neurotoxicity.
Collapse
Affiliation(s)
- Asmita Garg
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanghamitra Bandyopadhyay
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Sanajou S, Yirün A, Demirel G, Çakir DA, Şahin G, Erkekoğlu P, Baydar T. Antioxidant dihydrolipolic acid protects against in vitro aluminum-induced toxicity. J Appl Toxicol 2023; 43:1793-1805. [PMID: 37409350 DOI: 10.1002/jat.4513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Dihydrolipoic acid (DHLA) is a natural antioxidant known for its ability to counteract metal toxicity and oxidative stress. It has shown the potential to safeguard cells from harmful environmental substances. It may hold therapeutic benefits in treating neurodegenerative disorders by defending against oxidative damage and chronic inflammation. Thus, this study aimed to explore the potential neuroprotective effects of DHLA against aluminum (Al)-induced toxicity using an Alzheimer's disease (AD) model in vitro. The study focused on two important pathways: GSK-3β and the Wnt signaling pathways. The SH-SY5Y cell line was differentiated to establish AD, and the study group were as follows: control, Al, DHLA, Al-DHLA, AD, AD-Al, AD-DHLA, and AD-Al-DHLA. The impact of DHLA on parameters related to oxidative stress was assessed. The activity of the GSK-3β pathway was measured by evaluating the levels of PPP1CA, PP2A, GSK-3β, and Akt. The Wnt signaling pathway was assessed by measuring Wnt/β-catenin in the different study groups. Exposure to DHLA significantly reduced oxidative stress by effectively decreasing the levels of reactive oxygen species, thereby protecting against protein oxidation and limiting the production of malonaldehyde. Moreover, the DHLA-treated groups exhibited a remarkable increase in the total antioxidant capacity. Furthermore, the study observed an upregulation of the Wnt signaling pathway and a downregulation of the GSK-3β pathway in the groups treated with DHLA. In summary, the neuroprotective effects of DHLA, primarily achieved by reducing oxidative stress and modulating critical imbalanced pathways associated with AD, indicate its potential as a promising addition to the treatment regimens of AD patients.
Collapse
Affiliation(s)
- Sonia Sanajou
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Anil Yirün
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Cukurova University, Adana, Turkey
| | - Göksun Demirel
- Faculty of Pharmacy, Department of Toxicology, Cukurova University, Adana, Turkey
| | - Deniz Arca Çakir
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara, Turkey
| | - Gönül Şahin
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoğlu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara, Turkey
| | - Terken Baydar
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Xue Z, Ye L, Ge J, Lan Z, Zou X, Mao C, Bao X, Yu L, Xu Y, Zhu X. Wwl70-induced ABHD6 inhibition attenuates memory deficits and pathological phenotypes in APPswe/PS1dE9 mice. Pharmacol Res 2023; 194:106864. [PMID: 37480972 DOI: 10.1016/j.phrs.2023.106864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Synaptic dysfunction plays a crucial role in the pathogenesis of Alzheimer's disease (AD). α/β-hydrolase domain-containing 6 (ABHD6) contributes to synaptic dysfunctions, and ABHD6 inhibition has shown potential therapeutic value in neurological disorders. However, the role of ABHD6 in AD has not been fully defined. In this study, we demonstrated that adeno-associated virus (AAV) mediated shRNA targeting ABHD6 in hippocampal neurons attenuated synaptic dysfunction and memory impairment of APPswe/PS1dE9 (APP/PS1) mice, while it didn't affect the amyloid-beta (Aβ) levels and neuroinflammation in the brains. In addition, intraperitoneal injection of wwl70, a specific inhibitor of ABHD6, improved synaptic plasticity and memory function in APP/PS1 mice, which might attribute to the activation of endogenous cannabinoid signaling. Furthermore, wwl70 significantly decreased the Aβ levels and neuroinflammation in the hippocampus of AD mice, and enhanced Aβ phagocytized by microglia. In conclusion, for the first time our data have shown that ABHD6 inhibition might be a promising strategy for AD treatment, and wwl70 is a potential candidate for AD drug development pipeline.
Collapse
Affiliation(s)
- Zhiwei Xue
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Lei Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Jianwei Ge
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Zhen Lan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinxin Zou
- Department of Neurology, Drum Tower Hospital of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Linjie Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurology, Drum Tower Hospital of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 2023:10.1007/s10495-023-01848-y. [PMID: 37186274 DOI: 10.1007/s10495-023-01848-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of hyperphosphorylated tau and amyloid-β (Aβ) protein resulting in synaptic loss and apoptosis. Aβ and tau deposition trigger apoptotic pathways that result in neuronal death. Apoptosis is considered to be responsible for manifestations associated with AD under pathological conditions. It regulates via extrinsic and intrinsic pathways. It activates various proteins including Bcl-2 family proteins like Bax, Bad, Bid, Bcl-XS, Bcl-XL and caspases comprising of initiator, effector and inflammatory caspases carried out through a cascade of events that finally lead to cell disintegration. The apoptotic elements interact with trophic factors, signaling molecules including Ras-ERK, JNK, GSK-3β, BDNF/TrkB/CREB and PI3K/AKT/mTOR. Ras-ERK signaling is involved in the progression of cell cycle and apoptosis. JNK pathway is also upregulated in AD which results in decreased expression of anti-apoptotic proteins. JAK-STAT triggers caspase-3 mediated apoptosis leading to neurodegeneration. The imbalance between autophagy and apoptosis is regulated by PI3K/Akt/mTOR pathway. GSK-3β is involved in the stimulation of pro-apoptotic factors resulting in dysregulation of apoptosis. Drugs like filgrastim, epigallocatechin gallate, curcumin, nicergoline and minocycline are under development which target these pathways and modulate the disease condition. This study sheds light on apoptotic pathways that are cardinal for neuronal survival and perform crucial role in the occurrence of AD along with the trends in therapeutics targeting apoptosis induced AD. To develop prospective treatments for AD, it is desirable to elucidate potential targets including restoration apoptotic balance, regulation of caspases, Bcl-2 and other crucial proteins involved in apoptosis mediated AD.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishna Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
6
|
Xiong WP, Yao WQ, Wang B, Liu K. BMSCs-exosomes containing GDF-15 alleviated SH-SY5Y cell injury model of Alzheimer's disease via AKT/GSK-3β/β-catenin. Brain Res Bull 2021; 177:92-102. [PMID: 34536520 DOI: 10.1016/j.brainresbull.2021.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/27/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) therapy has great potential for Alzheimer's disease (AD) treatment. Here, we investigated the roles of BMSCs-exosomes containing growth differentiation factor-15 (GDF-15) in regulating SH-SY5Y cell injury in AD. METHODS The SH-SY5Y cell injury model was constructed by treating SH-SY5Y cells with 10 μM Aβ42. GDF-15 expression was assessed using qRT-PCR and western blot. CCK8 assay and flow cytometry assay were employed to elevate cell proliferation and apoptosis, respectively. The expression levels of inflammatory factors (IL-6, IL-1β, TNFα and IL-8) and Aβ42 were detected using ELISA. Besides, the levels of apoptosis-related proteins and AKT pathway-related proteins were determined using western blot. RESULTS Our results displayed that BMSCs-EVs treatment elevated cell viability, while suppressed cell apoptosis and inflammation in Aβ42-treated SH-SY5Y cells. Exosomes secreted by BMSCs after GDF-15 silence lost the ability to restore Aβ42-induced SH-SY5Y cell damage. GDF-15 treatment restored Aβ42-induced SH-SY5Y cell damage, while it was eliminated by AKT pathway inhibition. BMSCs-exosomes containing GDF-15 upregulated NEP and IDE via activation of AKT/GSK-3β/β-catenin pathway, thereby degrading Aβ42 protein to relieve SH-SY5Y cell damage. CONCLUSION BMSCs-exosomes containing GDF-15 alleviated SH-SY5Y cell damage via AKT/GSK-3β/β-catenin. Our work confers a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Wen-Ping Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, East Lake Road, Wuhan 430071, Hubei Province, PR China
| | - Wei-Qi Yao
- Department of Hematology, Union Hospital, Huazhong University of Science and Technology, Hubei Engineering Research Center for Human Stem Cell Preparation and Application and Resource Conservation, Wuhan 430071, Hubei Province, PR China
| | - Bei Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, East Lake Road, Wuhan 430071, Hubei Province, PR China
| | - Kui Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, East Lake Road, Wuhan 430071, Hubei Province, PR China.
| |
Collapse
|
7
|
Tao W, Yu L, Shu S, Liu Y, Zhuang Z, Xu S, Bao X, Gu Y, Cai F, Song W, Xu Y, Zhu X. miR-204-3p/Nox4 Mediates Memory Deficits in a Mouse Model of Alzheimer's Disease. Mol Ther 2021; 29:396-408. [PMID: 32950103 PMCID: PMC7791017 DOI: 10.1016/j.ymthe.2020.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/25/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly, and the mechanisms of AD are not fully defined. MicroRNAs (miRNAs) have been shown to contribute to memory deficits in AD. In this study, we identified that miR-204-3p was downregulated in the hippocampus and plasma of 6-month-old APPswe/PS1dE9 (APP/PS1) mice. miR-204-3p overexpression attenuated memory and synaptic deficits in APP/PS1 mice. The amyloid levels and oxidative stress were decreased in the hippocampus of APP/PS1 mice after miR-204-3p overexpression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) was a target of miR-204-3p, and Nox4 inhibition by GLX351322 protected neuronal cells against Aβ1-42-induced neurotoxicity. Furthermore, GLX351322 treatment rescued synaptic and memory deficits, and decreased oxidative stress and amyloid levels in the hippocampus of APP/PS1 mice. These results revealed that miR-204-3p attenuated memory deficits and oxidative stress in APP/PS1 mice by targeting Nox4, and miR-204-3p overexpression and/or Nox4 inhibition might be a potential therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Wenyuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Ying Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Zi Zhuang
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Siyi Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
8
|
Tao WY, Yu LJ, Jiang S, Cao X, Chen J, Bao XY, Li F, Xu Y, Zhu XL. Neuroprotective effects of ZL006 in Aβ 1-42-treated neuronal cells. Neural Regen Res 2020; 15:2296-2305. [PMID: 32594052 PMCID: PMC7749460 DOI: 10.4103/1673-5374.285006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ)-induced neurotoxicity and oxidative stress plays an important role in the pathogenesis of Alzheimer’s disease (AD). ZL006 is shown to reduce over-produced nitric oxide and oxidative stress in ischemic stroke by interrupting the interaction of neuronal nitric oxide synthase and postsynaptic density protein 95. However, few studies are reported on the role of ZL006 in AD. To investigate whether ZL006 exerted neuroprotective effects in AD, we used Aβ1–42 to treat primary cortical neurons and N2a neuroblastoma cells as an in vitro model of AD. Cortical neurons were incubated with ZL006 or dimethyl sulfoxide for 2 hours and treated with Aβ1–42 or NH3•H2O for another 24 hours. The results of cell counting Kit-8 (CCK-8) assay and calcein-acetoxymethylester/propidium iodide staining showed that ZL006 pretreatment rescued the neuronal death induced by Aβ1–42. Fluorescence and western blot assay were used to detect oxidative stress and apoptosis-related proteins in each group of cells. Results showed that ZL006 pretreatment decreased neuronal apoptosis and oxidative stress induced by Aβ1–42. The results of CCK8 assay showed that inhibition of Akt or NF-E2-related factor 2 (Nrf2) in cortical neurons abolished the protective effects of ZL006. Moreover, similar results were also observed in N2a neuroblastoma cells. ZL006 inhibited N2a cell death and oxidative stress induced by Aβ1–42, while inhibition of Akt or Nrf2 abolished the protective effect of ZL006. These results demonstrated that ZL006 reduced Aβ1–42-induced neuronal damage and oxidative stress, and the mechanisms might be associated with the activation of Akt/Nrf2/heme oxygenase-1 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Su Jiang
- Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
9
|
Chen Y, Wu Z, Zhu X, Zhang M, Zang X, Li X, Xu Y. OCT4B-190 protects against ischemic stroke by modulating GSK-3β/HDAC6. Exp Neurol 2019; 316:52-62. [DOI: 10.1016/j.expneurol.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
|
10
|
Zhan L, Liu D, Wen H, Hu J, Pang T, Sun W, Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J 2019; 33:9291-9307. [PMID: 31120770 DOI: 10.1096/fj.201802633r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wingless/Int (Wnt)/β-catenin pathway plays an essential role in cell survival. Although postconditioning with 8% oxygen can alleviate transient global cerebral ischemia (tGCI)-induced neuronal damage in hippocampal CA1 subregion in adult rats as demonstrated by our previous studies, little is understood about the role of Wnt/β-catenin pathway in hypoxic postconditioning (HPC)-induced neuroprotection. This study tried to investigate the involvement of Wnt/β-catenin pathway in HPC-induced neuroprotection against tGCI and explore the underlying molecular mechanism thereof. We observed that HPC elevated nuclear β-catenin level as well as increased Wnt3a and decreased Dickkopf-1 (Dkk1) expression in CA1 after tGCI. Accordingly, HPC enhanced the expression of survivin and reduced the ratio of B-cell lymphoma/lewkmia-2 (Bcl-2)-associated X protein (Bax) to Bcl-2 following reperfusion. Moreover, our study has shown that these effects of HPC were abolished by lentivirus-mediated overexpression of Dkk1, and that the overexpression of Dkk1 completely reversed HPC-induced neuroprotection. Furthermore, HPC suppressed the activity of glycogen synthase kinase-3β (GSK-3β) in CA1 after tGCI, and the inhibition of GSK-3β activity with SB216763 increased the nuclear accumulation of β-catenin, up-regulated the expression of survivin, and reduced the ratio of Bax to Bcl-2, thus preventing the delayed neuronal death after tGCI. Finally, the administration of LY294002, an inhibitor of PI3K, increased GSK-3β activity and blocked nuclear β-catenin accumulation, thereby decreasing survivin expression and elevating the Bax-to-Bcl-2 ratio after HPC. These results suggest that activation of the Wnt/β-catenin pathway through Dkk1 inhibition and PI3K/protein kinase B pathway-mediated GSK-3β inactivation contributes to the neuroprotection of HPC against tGCI.-Zhan, L., Liu, D., Wen, H., Hu, J., Pang, T., Sun, W., Xu, E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3β inactivation.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Haixia Wen
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jiaoyue Hu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Taoyan Pang
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
11
|
Yu L, Liu Y, Jin Y, Cao X, Chen J, Jin J, Gu Y, Bao X, Ren Z, Xu Y, Zhu X. Lentivirus-Mediated HDAC3 Inhibition Attenuates Oxidative Stress in APPswe/PS1dE9 Mice. J Alzheimers Dis 2019; 61:1411-1424. [PMID: 29376873 DOI: 10.3233/jad-170844] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyloid-β (Aβ) induces a burst of oxidative stress and plays a critical role in the pathogenesis of Alzheimer's disease (AD). Our previous results have shown that histone deacetylase 3 (HDAC3) inhibition ameliorates spatial memory deficits and decreases the Aβ burden in the brains of 9-month-old APPswe/PS1dE9 (APP/PS1) mice. In this study, we investigated the role of HDAC3 inhibition in oxidative stress in vivo and in vitro models of AD. HDAC3 was detected mainly in the neurons, and HDAC3 inhibition significantly decreased reactive oxygen species generation and improved primary cortical neuron viability. In addition, HDAC3 inhibition attenuated spatial memory dysfunction in 6-month-old APP/PS1 mice, and decreased the apoptotic rate in the hippocampi as demonstrated by TUNEL staining. HDAC3 inhibition also reduced markers of lipid peroxidation, protein oxidation, and DNA/RNA oxidation in the hippocampi of APP/PS1 mice. Moreover, HDAC3 inhibition inactivated the c-Abl/MST1/YAP signaling pathway in the hippocampi of APP/PS1 mice. In conclusion, our data show that HDAC3 inhibition can attenuate spatial memory deficits and inhibit oxidative stress in APP/PS1 mice; these results indicate a potential strategy for AD treatment.
Collapse
Affiliation(s)
- Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Zhuoying Ren
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| |
Collapse
|
12
|
Yu L, Liu Y, Yang H, Zhu X, Cao X, Gao J, Zhao H, Xu Y. PSD-93 Attenuates Amyloid-β-Mediated Cognitive Dysfunction by Promoting the Catabolism of Amyloid-β. J Alzheimers Dis 2018; 59:913-927. [PMID: 28697571 DOI: 10.3233/jad-170320] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyloid-β (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Postsynaptic density protein 93 (PSD-93) is a key scaffolding protein enriched at postsynaptic sites. The aim of the present study was to examine whether PSD-93 overexpression could alleviate Aβ-induced cognitive dysfunction in APPswe/PS1dE9 (APP/PS1) mice by reducing Aβ levels in the brain. The level of PSD-93 was significantly decreased in the hippocampus of 6-month-old APP/PS1 mice compared with that in wild-type mice. Following lentivirus-mediated PSD-93 overexpression, cognitive function, synaptic function, and amyloid burden were investigated. The open field test, Morris water maze test, and fear condition test revealed that PSD-93 overexpression ameliorated spatial memory deficits in APP/PS1 mice. The facilitation of long-term potentiation induction was observed in APP/PS1 mice after PSD-93 overexpression. The expression of somatostatin receptor 4 (SSTR4) and neprilysin was increased, while the amyloid plaque load and Aβ levels were decreased in the brains of APP/PS1 mice. Moreover, PSD-93 interacted with SSTR4 and affected the level of SSTR4 on cell membrane, which was associated with the ubiquitination. Together, these findings suggest that PSD-93 attenuates spatial memory deficits and decreases amyloid levels in APP/PS1 mice, which might be associated with Aβ catabolism, and overexpression of PSD-93 might be a potential therapy for AD.
Collapse
Affiliation(s)
- Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China
| | - Hui Yang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, P. R. China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
13
|
Zhong L, Wang Z, Wang D, Wang Z, Martens YA, Wu L, Xu Y, Wang K, Li J, Huang R, Can D, Xu H, Bu G, Chen XF. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol Neurodegener 2018; 13:15. [PMID: 29587871 PMCID: PMC5870375 DOI: 10.1186/s13024-018-0247-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND TREM2 is an innate immune receptor specifically expressed in microglia. Coding variations in TREM2 have been reported to increase the risk for Alzheimer's disease (AD) and other neurodegenerative diseases. While multiple studies support a role for TREM2 in microglial recruitment to amyloid plaques, the chemoattractant factor modulating TREM2-dependent microglial responses has not been defined. METHODS Potential binding of oligomeric amyloid-β 1-42 (oAβ1-42) to TREM2 was tested by complementary approaches including solid phase binding, surface plasmon resonance and immunoprecipitation assays. The ability of oAβ1-42 to activate TREM2 signaling pathways was examined by analyzing the phosphorylation of Syk and Akt in primary microglia as well as TREM2-mediated signaling in a reporter cell system. Lastly, the functional outcome of oAβ1-42-TREM2 interaction was tested by examining impacts on microglial migration in vitro and clustering around oAβ1-42-bearing brain areas in vivo. RESULTS We found that oAβ1-42 bound to TREM2 with high affinity and activated TREM2-dependent signaling pathway. Neither monomeric nor scrambled Aβ bound to TREM2 supporting a specific interaction between oAβ and TREM2. The disease-associated mutations of TREM2 reduced its binding affinity to oAβ1-42. Furthermore, we identified several positively charged amino acids within residues 31-91 of TREM2 that were crucial for its interaction with oAβ1-42. Importantly, oAβ1-42 promoted microglial migration in vitro and clustering in vivo in a TREM2-dependent manner. CONCLUSIONS Our data establish a critical link between oAβ1-42, a major pathological component of AD, and TREM2, a strong genetic risk factor for AD expressed in microglia, and suggest that such interaction contributes to the pathogenic events in AD by modulating microglial responses.
Collapse
Affiliation(s)
- Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Zongqi Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Daxin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Zhe Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Linbei Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Ying Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Kai Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Jianguo Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Ruizhi Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518063, China.
| |
Collapse
|
14
|
Induced effect of Ca 2+ on dalesconols A and B biosynthesis in the culture of Daldinia eschscholzii via calcium/calmodulin signaling. J Biosci Bioeng 2018; 125:205-210. [DOI: 10.1016/j.jbiosc.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/19/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
|
15
|
Zhu X, Wang S, Yu L, Jin J, Ye X, Liu Y, Xu Y. HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer's disease. Aging Cell 2017; 16:1073-1082. [PMID: 28771976 PMCID: PMC5595690 DOI: 10.1111/acel.12642] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of beta-amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6- and 9-month-old APPswe/PS1dE9 (APP/PS1) mice compared with that in age-matched wild-type C57BL/6 (B6) mice. Lentivirus -mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9-month-old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6-month-old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.
Collapse
Affiliation(s)
- Xiaolei Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
- Jiangsu Key Laboratory for Molecular Medicine; Medical School of Nanjing University; Nanjing China
- Nanjing Neuropsychiatry Clinic Medical Center; Nanjing China
| | - Sulei Wang
- Department of Neurology; Nanjing Hospital of Traditional Chinese Medicine; Nanjing China
| | - Linjie Yu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Jiali Jin
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Xing Ye
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Yi Liu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Neurology; Medical School; Drum Tower Hospital; Nanjing University; Nanjing China
- Jiangsu Key Laboratory for Molecular Medicine; Medical School of Nanjing University; Nanjing China
- Nanjing Neuropsychiatry Clinic Medical Center; Nanjing China
| |
Collapse
|
16
|
Esculentoside A exerts anti-inflammatory activity in microglial cells. Int Immunopharmacol 2017; 51:148-157. [DOI: 10.1016/j.intimp.2017.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023]
|
17
|
Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, Jeong GS, Choi DY. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2017; 125:396-407. [PMID: 28807678 DOI: 10.1016/j.neuropharm.2017.08.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
In spite of the massive research for the identification of neurorestorative or neuroprotective intervention for curing Parkinson's disease (PD), there is still lack of clinically proven neuroprotective agents. Metformin, a common anti-hyperglycemic drug has been known to possess neuroprotective properties. However, specific mechanisms by which metformin protects neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity remain to be elucidated. In this study, we assessed the neuroprotective effects of metformin in the subchronic MPTP model of PD, and explored its feasible mechanisms for neuroprotection. Animals received saline or MPTP injection (30 mg/kg/day) for the first 7 days, and then saline or metformin (200 mg/kg/day) for the next 7 days. Immunohistochemical stainings showed that metformin rescued the tyrosine hydroxylase-positive neurons and attenuated astroglial activation in the nigrostriatal pathway. In parallel, metformin restored dopamine depletion and behavioral impairments exerted by MPTP. Western blot analysis revealed that metformin ameliorated MPTP-induced α-synuclein phosphorylation which was accompanied by increased methylation of protein phosphatase 2A (PP2A), a phosphatase related to α-synuclein dephosphorylation. Moreover, the metformin regimen significantly increased the level of brain derived neurotrophic factor in the substantia nigra, and activated signaling pathways related to cell survival. Proof of concept study revealed that inhibition of PP2A or tropomyosin receptor kinase B reversed neuroprotective property of metformin in SH-SY5Y cells. Our results indicate that metformin provides neuroprotection against MPTP neurotoxicity, which might be mediated by inhibition of α-synuclein phosphorylation and induction of neurotrophic factors.
Collapse
Affiliation(s)
- Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sina Shadfar
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Srivastav
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sabita Neupane
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Uttam Ojha
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
18
|
Synthesis and neuroprotective activity of novel 1,2,4-triazine derivatives with ethyl acetate moiety against H 2 O2 and Aβ-induced neurotoxicity. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Yang S, Chen Z, Cao M, Li R, Wang Z, Zhang M. Pioglitazone ameliorates Aβ42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3β activation. Mol Med Rep 2017; 15:2588-2594. [PMID: 28447730 PMCID: PMC5428924 DOI: 10.3892/mmr.2017.6342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 01/26/2017] [Indexed: 01/22/2023] Open
Abstract
Pioglitazone may have potential benefits as an alternative therapeutic treatment for patients with Alzheimer's disease (AD), particularly in individuals that also have comorbid diabetes; however, the mechanisms of action remain unclear. The present study aimed to explore the effects of pioglitazone on amyloid β, isoform 42 (Aβ42) deposition in rats with diet‑induced insulin resistance (IR). Diet‑induced IR model rats were established in the presence or absence of pioglitazone. Plasma glucose and insulin levels, and cerebrospinal fluid insulin levels were measured; in addition, hippocampal tissues were collected for immunohistochemical analysis of Aβ42 expression. The levels of insulin‑degrading enzyme (IDE) and peroxisome proliferator‑activated receptor γ (PPARγ) mRNA and protein expression were analyzed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In addition, the activation of glycogen synthase kinase 3β (GSK3β) induced by phosphatidylinositol 3‑kinase (PI3K) /protein kinase B (AKT) signaling was detected by western blotting. Results from the present study demonstrated that pioglitazone may enhance peripheral and brain insulin sensitivity in diet‑induced IR model rats. Treatment with pioglitazone ameliorated Aβ42 deposition in the hippocampus by increasing IDE and PPARγ expression. Notably, activation of the PI3K/AKT/GSK3β pathway was also demonstrated to serve a role in pioglitazone‑induced Aβ42 degradation, which was abrogated by the PPARγ antagonist GW9662. Results from the present study indicated that pioglitazone may improve insulin sensitivity and ameliorate Aβ42 accumulation in rats with diet‑induced IR by regulating AKT/GSK3β activation, suggesting that pioglitazone may be a promising drug for AD treatment.
Collapse
Affiliation(s)
- Sisi Yang
- Department of Geriatrics, Tongji Hospital Affiliated to The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital Affiliated to The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ming Cao
- Department of Geriatrics, Tongji Hospital Affiliated to The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Renjie Li
- Department of Emergency, Tongji Hospital Affiliated to The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhigang Wang
- Department of Pathogen Biology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Muxun Zhang
- Department of Endocrinology, Tongji Hospital Affiliated to The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
20
|
Zhong L, Chen XF, Wang T, Wang Z, Liao C, Wang Z, Huang R, Wang D, Li X, Wu L, Jia L, Zheng H, Painter M, Atagi Y, Liu CC, Zhang YW, Fryer JD, Xu H, Bu G. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med 2017; 214:597-607. [PMID: 28209725 PMCID: PMC5339672 DOI: 10.1084/jem.20160844] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/25/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Zhong et al. describe two novel roles for soluble TREM2 (sTREM2) in regulation of proinflammatory responses and prevention of cellular apoptosis in microglia. Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed in microglia in the brain. A soluble form of TREM2 (sTREM2) derived from proteolytic cleavage of the cell surface receptor is increased in the preclinical stages of AD and positively correlates with the amounts of total and phosphorylated tau in the cerebrospinal fluid. However, the physiological and pathological functions of sTREM2 remain unknown. Here, we show that sTREM2 promotes microglial survival in a PI3K/Akt-dependent manner and stimulates the production of inflammatory cytokines depending on NF-κB. Variants of sTREM2 carrying AD risk-associated mutations were less potent in both suppressing apoptosis and triggering inflammatory responses. Importantly, sTREM2 delivered to the hippocampi of both wild-type and Trem2-knockout mice elevated the expression of inflammatory cytokines and induced morphological changes of microglia. Collectively, these data indicate that sTREM2 triggers microglial activation inducing inflammatory responses and promoting survival. This study has implications for the pathogenesis of AD and provides insights into targeting sTREM2 pathway for AD therapy.
Collapse
Affiliation(s)
- Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China .,Shenzhen Research Institute of Xiamen University, Shenzhen 518063, China
| | - Tingting Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Zhe Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Zongqi Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Ruizhi Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Daxin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Xinxiu Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Linbei Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Lin Jia
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Meghan Painter
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224.,Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL 32224
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China.,Neuroscience and Aging Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China .,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224.,Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL 32224
| |
Collapse
|
21
|
Wu K, Gao X, Shi B, Chen S, Zhou X, Li Z, Gan Y, Cui L, Kang JX, Li W, Huang R. Enriched endogenous n-3 polyunsaturated fatty acids alleviate cognitive and behavioral deficits in a mice model of Alzheimer's disease. Neuroscience 2016; 333:345-55. [PMID: 27474225 DOI: 10.1016/j.neuroscience.2016.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accompanied by memory deficits and neuropsychiatric dysfunction. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have seemly therapeutic potential in AD, but the benefit of n-3 PUFAs is still in debates. Here, we employed a transgenic mice carry fat-1 gene to encode n-3 desaturase from Caenorhabditis elegans, which increase endogenous n-3 PUFAs by converting n-6 PUFAs to n-3 PUFAs crossed with amyloid precursor protein (APP) Tg mice to evaluate the protective effects of endogenous n-3 PUFAs on cognitive and behavioral deficits of APP Tg mice. We fed APP, APP/fat-1 and fat-1 mice with n-6 PUFAs rich diet. Brain tissues were collected at 3, 9 and 12 months for fatty acid and gene expression analysis, histology and protein assays. Morris Water Maze Test, open field test and elevated plus maze test were performed to measure the behavior capability. From the results, the expression of fat-1 transgene increased cortical n-3: n-6 PUFAs ratio and n-3 PUFAs concentrations, and sensorimotor dysfunction and cognitive deficits in AD were significantly less severe in APP/fat-1 mice with endogenous n-3 PUFAs than in APP mice controls. The protection against disturbance of spontaneous motor activity and cognitive deficits in AD was strongly correlated with increased n-3: n-6 PUFAs ratio and endogenous n-3 PUFAs, reduced APP generation, inhibited amyloid β peptide aggregation, suppressed nuclear factor-kappa B and astroglia activation, and reduced death of neurons in the cortex of APP/fat-1 mice compared with APP mice controls. In conclusion, our study demonstrates that an available medication with the maintenance of enriched n-3 PUFAs in the brain could slow down cognitive decline and prevent neuropsychological disorder in AD.
Collapse
Affiliation(s)
- Kefeng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Baoyan Shi
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang, Guangdong, China; Guangdong Key laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shiyu Chen
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang, Guangdong, China; Guangdong Key laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xin Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhidong Li
- Department of Pharmacology, Guangdong Medical College, Zhanjiang, Guangdong 524023, China
| | - Yuhong Gan
- Department of Pharmacology, Guangdong Medical College, Zhanjiang, Guangdong 524023, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang, Guangdong, China; Department of Pharmacology, Guangdong Medical College, Zhanjiang, Guangdong 524023, China
| | - Jing Xuan Kang
- The Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Boston 02114, USA
| | - Wende Li
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang, Guangdong, China; Guangdong Key laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| | - Ren Huang
- Guangdong Key laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| |
Collapse
|
22
|
Wang S, Yu L, Yang H, Li C, Hui Z, Xu Y, Zhu X. Oridonin Attenuates Synaptic Loss and Cognitive Deficits in an Aβ1-42-Induced Mouse Model of Alzheimer's Disease. PLoS One 2016; 11:e0151397. [PMID: 26974541 PMCID: PMC4790895 DOI: 10.1371/journal.pone.0151397] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Synaptic loss induced by beta-amyloid (Aβ) plays a critical role in the pathophysiology of Alzheimer’s disease (AD), but the mechanisms underlying this process remain unknown. In this study, we found that oridonin (Ori) rescued synaptic loss induced by Aβ1–42in vivo and in vitro and attenuated the alterations in dendritic structure and spine density observed in the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice. Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and increased the number of platform crosses in AD mice. These data suggest that Ori might prevent synaptic loss and improve behavioral symptoms in Aβ1–42-induced AD mice.
Collapse
Affiliation(s)
- Sulei Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Hui Yang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Chaosheng Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zhen Hui
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- Jiangsu Stroke Research Collaborative Group, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- * E-mail: (YX); (XLZ)
| | - Xiaolei Zhu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- * E-mail: (YX); (XLZ)
| |
Collapse
|
23
|
Machhi J, Sinha A, Patel P, Kanhed AM, Upadhyay P, Tripathi A, Parikh ZS, Chruvattil R, Pillai PP, Gupta S, Patel K, Giridhar R, Yadav MR. Neuroprotective Potential of Novel Multi-Targeted Isoalloxazine Derivatives in Rodent Models of Alzheimer's Disease Through Activation of Canonical Wnt/β-Catenin Signalling Pathway. Neurotox Res 2016; 29:495-513. [PMID: 26797524 DOI: 10.1007/s12640-016-9598-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/04/2023]
Abstract
Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aβ aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aβ1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aβ1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/β-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aβ1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aβ1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aβ1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/β-catenin pathway as evidenced by increased p-GSK-3, β-catenin, and neuroD1 levels in Aβ1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD.
Collapse
Affiliation(s)
- Jatin Machhi
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pratik Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashish M Kanhed
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pragnesh Upadhyay
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Zalak S Parikh
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ragitha Chruvattil
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Sarita Gupta
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kirti Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Rajani Giridhar
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India.
| |
Collapse
|
24
|
Chang CP, Liu YF, Lin HJ, Hsu CC, Cheng BC, Liu WP, Lin MT, Hsu SF, Chang LS, Lin KC. Beneficial Effect of Astragaloside on Alzheimer's Disease Condition Using Cultured Primary Cortical Cells Under β-amyloid Exposure. Mol Neurobiol 2015; 53:7329-7340. [PMID: 26696494 DOI: 10.1007/s12035-015-9623-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/08/2015] [Indexed: 01/27/2023]
Abstract
β-amyloid (Aβ)-mediated neuronal apoptosis contributes to the pathogenesis of Alzheimer's disease (AD). This study aimed to investigate whether astragalosides (AST) could inhibit Aβ-induced apoptosis in vivo and in vitro and to explore the underlying mechanisms. Amyloid β-protein fragment 25-35 (Aβ25-35) was administered to cerebral lateral ventricle of rats to make the AD models in vivo. AST was able to attenuate both cortical cell degeneration and memory deficits in the AD rats. AST also inhibited Aβ25-35-induced cytotoxicity (e.g., decreased cell viability); apoptosis (e.g., increased caspase-3 expression, increased DNA fragmentation, and Tau hyperphosphorylation); synaptotoxicity (e.g., increased loss of both a dendritic marker, microtubule-associated protein 2 (MAP-2) and synaptic proteins, synaptophysins); and mitochondrial dysfunction (e.g., increased mitochondrial membrane potential) in cultured primary rat cortical cells. The beneficial effect of AST in reducing Aβ-induced cytotoxicity, apoptosis, and mitochondrial dysfunction in cortical cells were blocked by inhibition of phosphoinositide 3-kinase (PI3K)-dependent protein kinase B (PKB, as known as AKT) activation with LY294002. In addition, inhibition of extracellular protein kinase (ERK) with U0126 shared with the AST the same beneficial effects in reducing Aβ-induced apoptosis. Our data suggest that the cortical PI3K/AKT and MAPK (or ERK) pathways as appealing therapeutic targets in treating AD, and AST may have a positive impact on AD treatment via modulation of both PI3K/AKT and ERK pathways.
Collapse
Affiliation(s)
- Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Fan Liu
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Hung-Jung Lin
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Chien-Chin Hsu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Bor-Chih Cheng
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Wen-Pin Liu
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Mao-Tsun Lin
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Shu-Fen Hsu
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Li-Sheng Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Kao-Chang Lin
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan.
- Department of Neurology, Chi Mei Medical Center, Tainan, 710, Taiwan.
| |
Collapse
|
25
|
Pan ZH, Jiao RH, Lu YH, Tan RX. Enhancement of dalesconols A and B production via upregulation of laccase activity by medium optimization and inducer supplementation in submerged fermentation of Daldinia eschscholzii. BIORESOURCE TECHNOLOGY 2015; 192:346-353. [PMID: 26056775 DOI: 10.1016/j.biortech.2015.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Dalesconols (dalesconols A and B) are novel polyketides with strong immunosuppressive activity produced by Daldinia eschscholzii. In this work, the effects of different media (M1, M2, and M3) on fungus growth and dalesconols biosynthesis were firstly tested and compared. Intermediates and enzyme analysis indicated that laccase had the major contribution to dalesconols biosynthesis. The key role of laccase on dalesconols biosynthesis was further experimentally confirmed, which suggested that the modified M2 was more favored for laccase and dalesconols production. Thereafter, the medium composition was optimized by RSM with a fermentation titer of 36.66 mg/L obtained. Furthermore, Ca(2+) induction was employed to up-regulate of laccase activity and further enhanced dalesconols production (76.90 mg/L), which was 308% higher than that in M2. In addition, dalesconols production reached 63.42 mg/L in scale-up experiments. This work indicated great potential of laccase as a key enzyme on regulation of dalesconols production.
Collapse
Affiliation(s)
- Zheng-Hua Pan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Rui-Hua Jiao
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Yan-Hua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Ren-Xiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| |
Collapse
|
26
|
Zeng GF, Zong SH, Zhang ZY, Fu SW, Li KK, Fang Y, Lu L, Xiao DQ. The Role of 6-Gingerol on Inhibiting Amyloid β Protein-Induced Apoptosis in PC12 Cells. Rejuvenation Res 2015; 18:413-21. [PMID: 25811848 DOI: 10.1089/rej.2014.1657] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our previous study suggests that ginger root extract can reverse behavioral dysfunction and prevent Alzheimer's disease (AD)-like symptoms induced by the amyloid-β protein (Aβ) in a rat model. 6-Gingerol is the major gingerol in ginger rhizomes, but its effect on the treatment of AD remains unclear. In this study, we aimed to determine if 6-gingerol had a protective effect on Aβ1-42-induced damage and apoptotic death in rat pheochromocytoma cells (PC12 cells) and to investigate the underlying mechanisms by which 6-gingerol may exert its neuroprotective effects. Our results indicated that pre-treatment with 6-gingerol significantly increased cell viability and reduced cell apoptosis in Aβ1-42-treated cells. Moreover, 6-gingerol pretreatment markedly reduced the level of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), the production of nitric oxide (NO), and the leakage of lactate dehydrogenase (LDH) and increased superoxide dismutase (SOD) activity compared with the Aβ1-42 treatment group. In addition, 6-gingerol pretreatment also significantly enhanced the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β (p-GSK-3β). Overall, these results indicate that 6-gingerol exhibited protective effects on apoptosis induced by Aβ1-42 in cultured PC12 cells by reducing oxidative stress and inflammatory responses, suppressing the activation of GSK-3β and enhancing the activation of Akt, thereby exerting neuroprotective effects. Therefore, 6-gingerol may be useful in the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Gao-feng Zeng
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Shao-hui Zong
- 2 Department of Osteopathia, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Zhi-yong Zhang
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Song-wen Fu
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Ke-ke Li
- 3 Graduate School of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Ye Fang
- 3 Graduate School of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Li Lu
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - De-Qiang Xiao
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| |
Collapse
|
27
|
Yang H, Wang S, Yu L, Zhu X, Xu Y. Esculentoside A suppresses Aβ1–42-induced neuroinflammation by down-regulating MAPKs pathwaysin vivo. Neurol Res 2015; 37:859-66. [DOI: 10.1179/1743132815y.0000000066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice. Behav Brain Res 2015; 288:1-10. [PMID: 25869780 DOI: 10.1016/j.bbr.2015.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 02/07/2023]
Abstract
Chronic restraint stress (CRS) causes hippocampal neurodegeneration and hippocampus-dependent cognitive deficits. Flupirtine represents neuroprotective effects and we have previously shown that flupirtine can protect against memory impairment induced by acute stress. The present study aimed to investigate whether flupirtine could alleviate spatial learning and memory impairment and hippocampal apoptosis induced by CRS. CRS mice were restrained in well-ventilated Plexiglass tubes for 6h daily beginning from 10:00 to 16:00 for 21 consecutive days. Mice were injected with flupirtine (10mg/kg and 25mg/kg) or vehicle (10% DMSO) 30min before restraint stress for 21 days. After stressor cessation, the spatial learning and memory, dendritic spine density, injured neurons and the levels of Bcl-2, Bax, p-Akt, p-GSK-3β, p-Erk1/2 and synaptophysin of hippocampal tissues were examined. Our results showed that flupirtine significantly prevented spatial learning and memory impairment induced by CRS in the Morris water maze. In addition, flupirtine (10mg/kg and 25mg/kg) treatment alleviated neuronal apoptosis and the reduction of dendritic spine density and synaptophysin expression in the hippocampal CA1 region of CRS mice. Furthermore, flupirtine (10mg/kg and 25mg/kg) treatment significantly decreased the expression of Bax and increased the p-Akt and p-GSK-3β, and flupirtine (25mg/kg) treatment up-regulated the p-Erk1/2 in the hippocampus of CRS mice. These results suggested that flupirtine exerted protective effects on the CRS-induced cognitive impairment and hippocampal neuronal apoptosis, which is possibly associated with the activation of Akt/GSK-3β and Erk1/2 signaling pathways.
Collapse
|
29
|
Zhang K, Song H, Yang P, Dai X, Li Y, Wang L, Du J, Pan K, Zhang T. Silencing dishevelled-1 sensitizes paclitaxel-resistant human ovarian cancer cells via AKT/GSK-3β/β-catenin signalling. Cell Prolif 2015; 48:249-58. [PMID: 25643607 DOI: 10.1111/cpr.12161] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Expression of dishevelled-1 (DVL1) has recently been linked to cancer progression, however, its role in resistance to cancer therapy is unclear. In this study, we aimed to explore the function of DVL1 in paclitaxel-resistant human ovarian cancer cells. MATERIALS AND METHODS The MTT assay was used to assess effects of DVL1 silencing on sensitivity of cells that were otherwise resistant to paclitaxel (Taxol). Western blotting and immunofluorescence staining were used to examine effects of DVL1 on AKT/GSK-3β/β-catenin signalling. RESULTS Dishevelled-1 was found to be over-expressed in a paclitaxel-resistant cell line derived from human ovarian cancer cell line A2780 (A2780/Taxol line) as well as parental A2780 cells. Down-regulation of DVL1 (using the inhibitor 3289-8625 or siRNA (siDVL1) against DVL1) sensitized A2780/Taxol cells to paclitaxel. Over-expression of DVL1 in A2780 cells increased protein levels of P-gp, BCRP and Bcl-2, which are known targets of β-catenin. Silencing DVL1 in A2780/Taxol cells also reduced levels of these proteins, and led to accumulation of β-catenin. In addition, DVL1 aberrantly activated AKT/GSK-3β/β-catenin signalling. Inactivation of AKT signalling attenuated DVL1-mediated inhibition of GSK-3β and accumulation of β-catenin, in both A2780 and A2780/Taxol cells. CONCLUSIONS Taken together, these results suggest that silencing DVL1 sensitized A2780/Taxol cells to paclitaxel, by down-regulating AKT/GSK-3β/β-catenin signalling, providing a novel strategy for chemosensitization of ovarian cancer to paclitaxel-induced cytotoxicity.
Collapse
Affiliation(s)
- Kun Zhang
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, 610500, China
| | | | | | | | | | | | | | | | | |
Collapse
|