1
|
Xu H, Zuo K, Kuang Z, Chen S, Zhu X, Zhang H, Xie Q, Chen W. Insertion/deletion mutations within tva receptor gene confer chicken resistance to infection by avian leukosis virus subgroups A and K. Poult Sci 2025; 104:104949. [PMID: 40048979 PMCID: PMC11927733 DOI: 10.1016/j.psj.2025.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/24/2025] Open
Abstract
The classic subgroup A (ALV-A) and newly emerging subgroup K (ALV-K) of avian leukosis virus are two major pathogens responsible for avian leukemia in chickens, posing substantial threats to global poultry industry. Both viruses share a Tva protein encoded by the tva gene as a receptor to gain the entry into the host cells. In this study, we described the identifications of two alleles of the tva receptor gene in Qingyuan partridge chicken, which possesses an 11-nucleotide (GCTGCCCACCC) insertion and a 6-nucleotide (ACCTCC) deletion independently located in exon 1 of the tva receptor gene. The natural 11-nucleotide insertion causes a frameshift in the reading frame of the tva cDNA, which presumably blocks the expression of the normal tva allele and results resistance in chicken against infection by ALV-A and ALV-K. The natural 6-nucleotide deletion leads to a Tva receptor protein missing the amino acids residues T21 and S22, which appeared dysfunctional to mediate the viral entry. As a result, we observed that the deletion mutation in the tva receptor gene significantly reduced the susceptibility to infection by ALV-A and ALV-K in vitro and in vivo, and significantly reduced the binding capacity of the Tva receptor protein to the envelope glycoproteins of ALV-A and ALV-K in our subsequent analysis. Taken together, these findings not only provide evidence that the insertion and deletion mutations within the tva receptor gene confer chicken resistance to infection by ALV-A and ALV-K but also provide ideal targets for selective breeding of ALV-A and ALV-K resistance in chicken.
Collapse
Affiliation(s)
- Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Kejing Zuo
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, PR China
| | - Zhixiang Kuang
- Guangdong Love-health Agriculture Group Limited, Qingyuan, 511800, PR China
| | - Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Xuefeng Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Huanmin Zhang
- USDA, US National Poultry Research Center, Athens, GA 30605, USA
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Weiguo Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China.
| |
Collapse
|
2
|
Mancin E, Maltecca C, Jiang J, Huang YJ, Tiezzi F. Capturing resilience from phenotypic deviations: a case study using feed consumption and whole genome data in pigs. BMC Genomics 2024; 25:1128. [PMID: 39574040 PMCID: PMC11583387 DOI: 10.1186/s12864-024-11052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND In recent years, interest has grown in quantifying resilience in livestock by examining deviations in target phenotypes. This method is based on the idea that variability in these phenotypes reflects an animal's ability to adapt to external factors. By utilizing routinely collected time-series feed intake data in pigs, researchers can obtain a broad measure of resilience. This measure extends beyond specific conditions, capturing the impact of various unknown external factors that influence phenotype variations. Importantly, this method does not require additional phenotyping investments. Despite growing interest, the relationship between resilience indicators-calculated as deviations from longitudinally recorded target traits-and the mean of those traits remains largely unexplored. This gap raises the risk of inadvertently selecting for the mean rather than accurately capturing true resilience. Additionally, distinguishing between random phenotype fluctuations (white noise) and structural variations linked to resilience poses a challenge. With the aim of developing general resilience indicators applicable to commercial swine populations, we devised four resilience indicators utilizing daily feed consumption as the target trait. These include a canonical resilience indicator (BALnVar) and three novel ones (BAMaxArea, SPLnVar, and SPMaxArea), designed to minimize noise and ensure independence from daily feed consumption. We subsequently integrated these indicators with Whole Genome Sequencing using SLEMM algorithm, data from 1,250 animals to assess their efficacy in capturing resilience and their independence from the mean of daily feed consumption. RESULTS Our findings revealed that conventional resilience indicators failed to differentiate from the mean of daily feed consumption, underscoring potential limitations in accurately capturing true resilience. Notably, significant associations involving conventional resilience indicators were identified on chromosome 1, which is commonly linked to body weight. CONCLUSION We observed that deviations in feed consumption can effectively serve as indicators for selecting resilience in commercial pig farming, as confirmed by the identification of genes such as PKN1 and GYPC. However, the identification of other genes, such as RNF152, related to growth, suggests that common resilience quantification methods may be more closely related to the mean of daily feed consumption rather than capturing true resilience.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Natural Resources, Animals and Environment, (DAFNAE), University of Padova, Viale del Università 14, Legnaro (Padova), Food, 35020, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy
| | - Jicaj Jiang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy.
| |
Collapse
|
3
|
Futse JE, Zumor-Baligi S, Ashiagbor CNK, Noh SM, Fox CB, Palmer GH. An adjuvant formulation containing Toll-like Receptor 7 agonist stimulates protection against morbidity and mortality due to Anaplasma marginale in a highly endemic region of west Africa. PLoS One 2024; 19:e0306092. [PMID: 39208226 PMCID: PMC11361566 DOI: 10.1371/journal.pone.0306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Efficient cattle production and provision of animal-sourced foods in much of Africa is constrained by vector-borne bacterial and protozoal diseases. Effective vaccines are not currently available for most of these infections resulting in a continuous disease burden that limits genetic improvement. We tested whether stimulation of innate immunity using the Toll-like Receptor (TLR) 7 agonist imiquimod, formulated with saponin and water-in-oil emulsion, would protect against morbidity and mortality due to Anaplasma marginale, a tick-borne pathogen of cattle highly endemic in west Africa. In Trial 1, haplotype matched Friesian x Sanga (F1) A. marginale negative calves were allocated to either the experimental group (n = 10) and injected with the synthetic TLR 7 agonist/saponin formulation or to an untreated control group (n = 10). TLR7 agonist/saponin injected calves responded with significantly elevated rectal temperature, enlarged regional lymph nodes, and elevated levels of IL-6 post-injection as compared to control group calves. All calves were then allowed to graze in pasture for natural exposure to tick transmission. All calves in both groups acquired A. marginale, consistent with the high transmission rate in the endemic region. The need for antibiotic treatment, using pre-existing criteria, was significantly lower in the experimental group (odds ratio for not requiring treatment was 9.3, p = 0.03) as compared to the control group. Despite treatment, 6/10 calves in the control group died, reflecting treatment failures that are typical of anaplasmosis in the acute phase, while mortality in the experimental group was 1/10 (odds ratio for survival was 13.5, p = 0.03). The trial was then repeated using 45 Friesian x Sanga calves per group. In Trial 2, the odds ratios for preventing the need for treatment and for mortality in the TLR7 agonist/saponin experimental group versus the control group were 5.6 (p = 0.0002) and 7.0 (p = 0.004), respectively, reproducing the findings of the initial trial. Together these findings demonstrate that innate immune stimulation using a TLR7 agonist formulated with saponin and water-in-oil emulsion provides significant protection against disease caused by tick borne A. marginale in highly susceptible cross-bred cattle, critically important for their potential to increase productivity for smallholder farmers in Africa.
Collapse
Affiliation(s)
- James E. Futse
- Animal Disease Biotechnology Laboratory, Department of Animal Science, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Songliedong Zumor-Baligi
- Animal Disease Biotechnology Laboratory, Department of Animal Science, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Charles N. K. Ashiagbor
- Animal Disease Biotechnology Laboratory, Department of Animal Science, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Susan M. Noh
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Christopher B. Fox
- Access to Advanced Health Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
- Institute for Tropical Infectious Diseases, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
4
|
Nguyen NH. Genetics and Genomics of Infectious Diseases in Key Aquaculture Species. BIOLOGY 2024; 13:29. [PMID: 38248460 PMCID: PMC10813283 DOI: 10.3390/biology13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Diseases pose a significant and pressing concern for the sustainable development of the aquaculture sector, particularly as their impact continues to grow due to climatic shifts such as rising water temperatures. While various approaches, ranging from biosecurity measures to vaccines, have been devised to combat infectious diseases, their efficacy is disease and species specific and contingent upon a multitude of factors. The fields of genetics and genomics offer effective tools to control and prevent disease outbreaks in aquatic animal species. In this study, we present the key findings from our recent research, focusing on the genetic resistance to three specific diseases: White Spot Syndrome Virus (WSSV) in white shrimp, Bacterial Necrotic Pancreatitis (BNP) in striped catfish, and skin fluke (a parasitic ailment) in yellowtail kingfish. Our investigations reveal that all three species possess substantial heritable genetic components for disease-resistant traits, indicating their potential responsiveness to artificial selection in genetic improvement programs tailored to combat these diseases. Also, we observed a high genetic association between disease traits and survival rates. Through selective breeding aimed at enhancing resistance to these pathogens, we achieved substantial genetic gains, averaging 10% per generation. These selection programs also contributed positively to the overall production performance and productivity of these species. Although the effects of selection on immunological traits or immune responses were not significant in white shrimp, they yielded favorable results in striped catfish. Furthermore, our genomic analyses, including shallow genome sequencing of pedigreed populations, enriched our understanding of the genomic architecture underlying disease resistance traits. These traits are primarily governed by a polygenic nature, with numerous genes or genetic variants, each with small effects. Leveraging a range of advanced statistical methods, from mixed models to machine and deep learning, we developed prediction models that demonstrated moderate-to-high levels of accuracy in forecasting these disease-related traits. In addition to genomics, our RNA-seq experiments identified several genes that undergo upregulation in response to infection or viral loads within the populations. Preliminary microbiome data, while offering limited predictive accuracy for disease traits in one of our studied species, underscore the potential for combining such data with genome sequence information to enhance predictive power for disease traits in our populations. Lastly, this paper briefly discusses the roles of precision agriculture systems and AI algorithms and outlines the path for future research to expedite the development of disease-resistant genetic lines tailored to our target species. In conclusion, our study underscores the critical role of genetics and genomics in fortifying the aquaculture sector against the threats posed by diseases, paving the way for more sustainable and resilient aquaculture development.
Collapse
Affiliation(s)
- Nguyen Hong Nguyen
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
5
|
The association of gene polymorphisms with milk production and mastitis resistance phenotypic traits in dairy cattle. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The aim of this study was to evaluate the association between gene polymorphisms (SNPs) and mastitis indicators and their relationship with milk production profitability in dairy herd.A functional analysis was also performed of five genes containing the studied SNPs and those located close by. DNA was isolated from the hair bulb of 320 dairy cows kept in three herds and SNP-microarray analysis was performed. The data on 299 cows was subjected to final statistical analysis using AI-REML method with one-trait repeatability test-day animal model and pedigree information using the DMU4 package. Five from 35 SNPs significantly associated with mastitis indicators or production traits and located within a gene or no more than 500,000 nucleotides from the gene were selected for the functional and economic analysis. A questionnaire was also developed to collect associated economic data of 219 cows from three herds, such as the value of milk production and direct costs incurred over three years; this allowed the gross margin, direct profitability index and direct costs incurred to produce one liter of milk to be determined, among others. None of the five studied SNPs were related to protein content. The rs110785912(T/A), found near CXCR4, and rs136813430(T/C), located in the TLR4 gene exon, were associated with lnSCC, while rs110455063(C/G), located near IGFI, was associated with milk yield, fat and total solid contents. rs109421300(T/C), associated with fat/protein content ratio, as well as fat and total solid content, is located in the DGAT1 gene intron. rs41587003(A/C), located in the DLG2 gene intron, was associated with lactose content. The economic analysis revealed differences between the variants of the three tested SNPs. The T/C variant of the rs136813430(T/C) SNP was characterized by the highest gross margin, the highest direct profitability index and the lowest costs incurred to produce 1 liter of milk. The T/A variant of rs110785912(T/A) was related to low lnSCC and was characterized by the highest direct profitability index. In turn, the C/C variant of the rs41587003(T/C) was related to the lowest level of lactose and the highest costs of milk production. It appears that rs136813430(T/C) may be the most promising of the tested SNPs for increasing the profitability of milk production. To our knowledge, it is the first effort to assess directly a correlation between the DNA polymorphism and economic output of a dairy enterprise.
Collapse
|
6
|
Valente D, Gomes J, Coelho AC, Carolino I. Genetic Resistance of Bovines to Theileriosis. Animals (Basel) 2022; 12:2903. [PMID: 36359026 PMCID: PMC9657666 DOI: 10.3390/ani12212903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 04/07/2024] Open
Abstract
Diseases caused by ticks have a high impact on the health, welfare, and productivity of livestock species. They are also an important cause of economic losses in farms worldwide. An example of such diseases is theileriosis, which can be controlled by drugs or vaccines, although these are not fully efficient. Therefore, there is a need to develop alternative and more sustainable and efficient complementary strategies. These may involve the identification and selection of animals more resistant to the disease. Several previous studies have identified significant differences in resistance between different breeds, with resistant breeds typically identified as those native to the region where they are being studied, and susceptible as those from exotic breeds. These studies have indicated that resistance traits are intrinsically related to the modulation of the immune response to infection. This review aims to systematize the general knowledge about theileriosis, emphasize resistance to this disease as a sustainable control strategy, and identify which traits of resistance to the disease are already known in cattle.
Collapse
Affiliation(s)
- Diana Valente
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Jacinto Gomes
- Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, 7350-092 Elvas, Portugal
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Inês Carolino
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
- Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, Instituto Nacional de Investigação Agrária e Veterinária, 2005-424 Santarém, Portugal
- ISA—Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
7
|
Genome-wide transcriptome profiling of CSF virus challenged monocyte-derived macrophages provides distinct insights into immune response of Landrace and indigenous Ghurrah pigs. Genomics 2022; 114:110427. [PMID: 35803450 DOI: 10.1016/j.ygeno.2022.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
The present study was undertaken to characterize the distinct immune response in indigenous Ghurrah and exotic Landrace pigs by challenging monocyte-derived macrophages (MDMs) with CSF virus under in-vitro conditions and assessing the variations in the transcriptome profile at 48 h post-infection (hpi). RNA-sequencing was carried out in infected and non-infected MDMs of Ghurrah (n = 3) and Landrace (n = 3) piglets prior- as well as post-stimulation. MDMs of Ghurrah showed greater immune regulation in response to CSF infection with 518 significantly differentially expressed genes (DEG) in infected versus non-infected MDMs, as compared to only 31 DEGs in Landrace MDMs. In Landrace, the principal regulators of inflammation (IL1α, IL1β and TNF) were upregulated in infected cells while in Ghurrah, these were downregulated. Overall, macrophages from indigenous Ghurrah showed more immunological dysregulation in response to virulent CSF virus infection as compared to the exotic Landrace pigs.
Collapse
|
8
|
Mucha S, Tortereau F, Doeschl-Wilson A, Rupp R, Conington J. Animal Board Invited Review: Meta-analysis of genetic parameters for resilience and efficiency traits in goats and sheep. Animal 2022; 16:100456. [PMID: 35190322 DOI: 10.1016/j.animal.2022.100456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic selection focused purely on production traits has proven very successful in improving the productive performance of livestock. However, heightened environmental and infectious disease challenges have raised the need to also improve the resilience of animals to such external stressors, as well as their efficiency in utilising available resources. A better understanding of the relationship between efficiency and production and health traits is needed to properly account for it in breeding programmes and to produce animals that can maintain high production performance in a range of environmental conditions with minimal environmental footprint. The aim of this study was to perform a meta-analysis of genetic parameters for production, efficiency and health traits in sheep and goats. The dataset comprised 963 estimates of heritability and 572 genetic correlations collated from 162 published studies. A threelevel meta-analysis model was fitted. Pooled heritability estimates for milk production traits ranged between 0.27 ± 0.03 and 0.48 ± 0.13 in dairy goats and between 0.21 ± 0.06 and 0.33 ± 0.07 in dairy sheep. In meat sheep, the heritability of efficiency traits ranged from 0.09 ± 0.02 (prolificacy) up to 0.32 ± 0.14 (residual feed intake). For health traits, pooled heritability was 0.07 ± 0.01 (faecal egg count) and 0.21 ± 0.01 (somatic cell score) in dairy goats and 0.14 ± 0.04 (faecal egg count) and 0.13 ± 0.02 (somatic cell score) in dairy sheep. In meat sheep, the heritability of disease resistance and survival traits ranged between 0.07 ± 0.02 (mastitis) and 0.50 ± 0.10 (breech strike). Pooled estimates of genetic correlations between resilience and efficiency traits in dairy goats were not significantly different from zero with the exception of somatic cell score and fat content (-0.19 ± 0.01). In dairy sheep, only the unfavourable genetic correlation between somatic cell score and protein content (0.12 ± 0.03) was statistically significant. In meat sheep only, the correlations between growth and faecal egg count (-0.28 ± 0.11) as well as between growth and dagginess (-0.33 ± 0.13) were statistically significant and favourable. Results of this meta-analysis provide evidence of genetic antagonism between production and health in dairy sheep and goats. This was not observed in meat sheep where most of the pooled estimates had high standard errors and were non-significant. Based on the obtained results, it seems feasible to simultaneously improve efficiency and health in addition to production by including the different types of traits in the breeding goal. However, a better understanding of potential trade-offs between these traits would be beneficial. Particularly, more studies focused on reproduction and resilience traits linked to the animal's multi-trait response to challenges are required.
Collapse
Affiliation(s)
- S Mucha
- Animal & Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom.
| | - F Tortereau
- INRAE, INPT-ENVT, INPT-ENSAT, GenPhySE, 31326 Castanet-Tolosan, France
| | - A Doeschl-Wilson
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - R Rupp
- INRAE, INPT-ENVT, INPT-ENSAT, GenPhySE, 31326 Castanet-Tolosan, France
| | - J Conington
- Animal & Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
9
|
Bai X, Plastow GS. Breeding for disease resilience: opportunities to manage polymicrobial challenge and improve commercial performance in the pig industry. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:6. [PMID: 35072100 PMCID: PMC8761052 DOI: 10.1186/s43170-022-00073-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/06/2022] [Indexed: 05/31/2023]
Abstract
Disease resilience, defined as an animal's ability to maintain productive performance in the face of infection, provides opportunities to manage the polymicrobial challenge common in pig production. Disease resilience can deliver a number of benefits, including more sustainable production as well as improved animal health and the potential for reduced antimicrobial use. However, little progress has been made to date in the application of disease resilience in breeding programs due to a number of factors, including (1) confusion around definitions of disease resilience and its component traits disease resistance and tolerance, and (2) the difficulty in characterizing such a complex trait consisting of multiple biological functions and dynamic elements of rates of response and recovery from infection. Accordingly, this review refines the definitions of disease resistance, tolerance, and resilience based on previous studies to help improve the understanding and application of these breeding goals and traits under different scenarios. We also describe and summarize results from a "natural disease challenge model" designed to provide inputs for selection of disease resilience. The next steps for managing polymicrobial challenges faced by the pig industry will include the development of large-scale multi-omics data, new phenotyping technologies, and mathematical and statistical methods adapted to these data. Genome editing to produce pigs resistant to major diseases may complement selection for disease resilience along with continued efforts in the more traditional areas of biosecurity, vaccination and treatment. Altogether genomic approaches provide exciting opportunities for the pig industry to overcome the challenges provided by hard-to-manage diseases as well as new environmental challenges associated with climate change.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Graham S. Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
10
|
Association of Breed of Sheep or Goats with Somatic Cell Counts and Total Bacterial Counts of Bulk-Tank Milk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective was to describe potential associations of somatic cell counts (SCC) and total bacterial counts (TBC) in bulk-tank milk from sheep and goat farms with breeds of these animals in Greece. In total, 325 dairy sheep flocks and 119 dairy goat herds were visited for the collection of milk; the breed of animals in farms was evaluated for a potential association with SCC or TBC. The most frequently seen sheep breeds were the Lacaune (95 flocks) and the Chios (44 flocks). The most frequently seen goat breeds were the indigenous Greek (Capra prisca) (50 herds) and the Murciano-Granadina (13 herds). In a multivariable analysis, the breed and the application of machine-milking in sheep flocks, and the breed and the management system in goat herds emerged as significant factors for increased SCC (>0.75 × 106 cells mL−1) in bulk-tank milk. Further, the month of lactation at sampling in sheep flocks emerged a significant factor for increased TBC (>1500 × 103 cfu mL−1) in bulk-tank milk.
Collapse
|
11
|
Bai X, Yang T, Putz AM, Wang Z, Li C, Fortin F, Harding JCS, Dyck MK, Dekkers JCM, Field CJ, Plastow GS. Investigating the genetic architecture of disease resilience in pigs by genome-wide association studies of complete blood count traits collected from a natural disease challenge model. BMC Genomics 2021; 22:535. [PMID: 34256695 PMCID: PMC8278769 DOI: 10.1186/s12864-021-07835-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an animal’s disease response. The aim was to identify the genetic control of disease resilience. Results Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood cell morphology, and platelet aggregation. Conclusions This study helps to improve our understanding of the genetic basis of CBC traits collected before and after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07835-4.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Current: ST Genetics, Navasota, TX, USA
| | - Austin M Putz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Frédéric Fortin
- Centre de Développement du Porc du Québec, Inc., Quebec City, QC, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael K Dyck
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Catherine J Field
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Kulkarni PS, Biemans F, de Jong MCM, Bijma P. On the origin of the genetic variation in infectious disease prevalence: Genetic analysis of disease status versus infections for Digital Dermatitis in Dutch dairy cattle. J Anim Breed Genet 2021; 138:629-642. [PMID: 34105197 PMCID: PMC8518086 DOI: 10.1111/jbg.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/17/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the origin of the genetic variation in the prevalence of bovine digital dermatitis (DD) by comparing a genetic analysis of infection events to a genetic analysis of disease status. DD is an important endemic infectious disease affecting the claws of cattle. For disease status, we analysed binary data on individual disease status (0,1; indicating being free versus infected), whereas for infections, we analysed binary data on disease transmission events (1,0; indicating becoming infected or not). The analyses of the two traits were compared using cross‐validation. The analysis of disease status captures a combination of genetic variation in disease susceptibility and the ability of individuals to recover, whereas the analysis of infections captures genetic variation in susceptibility only. Estimated genetic variances for both traits indicated substantial genetic variation. The GEBV for disease status and infections correlated with only 0.60, indicating that both models indeed capture distinct information. Together, these results suggest the presence of genetic variation not only in disease susceptibility, but also in the ability of individuals to recover from DD. We argue that the presence of genetic variation in recovery implies that breeders should distinguish between infected individuals versus infectious individuals. This is because epidemiological theory shows that selection for recovery is effective only when it targets recovery from being infectious.
Collapse
Affiliation(s)
- Pranav Shrikant Kulkarni
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Business Economics Group, Wageningen University & Research, Wageningen, The Netherlands.,Farm Animal Health, Faculty of Vet. Med, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Floor Biemans
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands.,Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands.,Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.,INRAE, BIOEPAR, Nantes, France
| | - Mart C M de Jong
- Wageningen Business Economics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Islam MA, Rony SA, Rahman MB, Cinar MU, Villena J, Uddin MJ, Kitazawa H. Improvement of Disease Resistance in Livestock: Application of Immunogenomics and CRISPR/Cas9 Technology. Animals (Basel) 2020; 10:E2236. [PMID: 33260762 PMCID: PMC7761152 DOI: 10.3390/ani10122236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
Disease occurrence adversely affects livestock production and animal welfare, and have an impact on both human health and public perception of food-animals production. Combined efforts from farmers, animal scientists, and veterinarians have been continuing to explore the effective disease control approaches for the production of safe animal-originated food. Implementing the immunogenomics, along with genome editing technology, has been considering as the key approach for safe food-animal production through the improvement of the host genetic resistance. Next-generation sequencing, as a cutting-edge technique, enables the production of high throughput transcriptomic and genomic profiles resulted from host-pathogen interactions. Immunogenomics combine the transcriptomic and genomic data that links to host resistance to disease, and predict the potential candidate genes and their genomic locations. Genome editing, which involves insertion, deletion, or modification of one or more genes in the DNA sequence, is advancing rapidly and may be poised to become a commercial reality faster than it has thought. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) [CRISPR/Cas9] system has recently emerged as a powerful tool for genome editing in agricultural food production including livestock disease management. CRISPR/Cas9 mediated insertion of NRAMP1 gene for producing tuberculosis resistant cattle, and deletion of CD163 gene for producing porcine reproductive and respiratory syndrome (PRRS) resistant pigs are two groundbreaking applications of genome editing in livestock. In this review, we have highlighted the technological advances of livestock immunogenomics and the principles and scopes of application of CRISPR/Cas9-mediated targeted genome editing in animal breeding for disease resistance.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sharmin Aqter Rony
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mohammad Bozlur Rahman
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka 1215, Bangladesh;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey;
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA), Tucuman 4000, Argentina
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Science, Gatton Campus, The University of Queensland, Brisbane 4072, Australia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
14
|
Schut CH, Farzan A, Fraser RS, Ainslie-Garcia MH, Friendship RM, Lillie BN. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Vet Res 2020; 16:138. [PMID: 32414370 PMCID: PMC7227190 DOI: 10.1186/s12917-020-02344-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica serovars are a major cause of foodborne illness and have a substantial impact on global human health. In Canada, Salmonella is commonly found on swine farms and the increasing concern about drug use and antimicrobial resistance associated with Salmonella has promoted research into alternative control methods, including selecting for pig genotypes associated with resistance to Salmonella. The objective of this study was to identify single-nucleotide variants in the pig genome associated with Salmonella susceptibility using a genome-wide association approach. Repeated blood and fecal samples were collected from 809 pigs in 14 groups on farms and tonsils and lymph nodes were collected at slaughter. Sera were analyzed for Salmonella IgG antibodies by ELISA and feces and tissues were cultured for Salmonella. Pig DNA was genotyped using a custom 54 K single-nucleotide variant oligo array and logistic mixed-models used to identify SNVs associated with IgG seropositivity, shedding, and tissue colonization. RESULTS Variants in/near PTPRJ (p = 0.0000066), ST6GALNAC3 (p = 0.0000099), and DCDC2C (n = 3, p < 0.0000086) were associated with susceptibility to Salmonella, while variants near AKAP12 (n = 3, p < 0.0000358) and in RALGAPA2 (p = 0.0000760) may be associated with susceptibility. CONCLUSIONS Further study of the variants and genes identified may improve our understanding of neutrophil recruitment, intracellular killing of bacteria, and/or susceptibility to Salmonella and may help future efforts to reduce Salmonella on-farm through genetic approaches.
Collapse
Affiliation(s)
- Corinne H Schut
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Russell S Fraser
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Present address: Department of Pathology and Microbiology, Atlantic Veterinary College, University of PEI, Charlottetown, Prince Edward Island, Canada
| | | | - Robert M Friendship
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
15
|
Nietfeld F, Höltig D, Willems H, Valentin-Weigand P, Wurmser C, Waldmann KH, Fries R, Reiner G. Candidate genes and gene markers for the resistance to porcine pleuropneumonia. Mamm Genome 2020; 31:54-67. [PMID: 31960078 PMCID: PMC7060169 DOI: 10.1007/s00335-019-09825-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022]
Abstract
Actinobacillus (A.) pleuropneumoniae is one of the most important respiratory pathogens in global pig production. Antimicrobial treatment and vaccination provide only limited protection, but genetic disease resistance is a very promising alternative for sustainable prophylaxis. Previous studies have discovered multiple QTL that may explain up to 30% of phenotypic variance. Based on these findings, the aim of the present study was to use genomic sequencing to identify genetic markers for resistance to pleuropneumonia in a segregating commercial German Landrace line. 163 pigs were infected with A. pleuropneumoniae Serotype 7 through a standardized aerosol infection method. Phenotypes were accurately defined on a clinical, pathological and microbiological basis. The 58 pigs with the most extreme phenotypes were genotyped by sequencing (next-generation sequencing). SNPs were used in a genome-wide association study. The study identified genome-wide associated SNPs on three chromosomes, two of which were chromosomes of QTL which had been mapped in a recent experiment. Each variant explained up to 20% of the total phenotypic variance. Combined, the three variants explained 52.8% of the variance. The SNPs are located in genes involved in the pathomechanism of pleuropneumonia. This study confirms the genetic background for the host's resistance to pleuropneumonia and indicates a potential role of three candidates on SSC2, SSC12 and SSC15. Favorable gene variants are segregating in commercial populations. Further work is needed to verify the results in a controlled study and to identify the functional QTN.
Collapse
Affiliation(s)
- Florian Nietfeld
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany
| | - Doris Höltig
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hermann Willems
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christine Wurmser
- Chair of Animal Breeding, Technical University of Munich, Freising, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technical University of Munich, Freising, Germany
| | - Gerald Reiner
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
16
|
Banos G, Clark EL, Bush SJ, Dutta P, Bramis G, Arsenos G, Hume DA, Psifidi A. Genetic and genomic analyses underpin the feasibility of concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep. PLoS One 2019; 14:e0214346. [PMID: 31765378 PMCID: PMC6876840 DOI: 10.1371/journal.pone.0214346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
Milk yield is the most important dairy sheep trait and constitutes the key genetic improvement goal via selective breeding. Mastitis is one of the most prevalent diseases, significantly impacting on animal welfare, milk yield and quality, while incurring substantial costs. Our objectives were to determine the feasibility of a concomitant genetic improvement programme for enhanced milk production and resistance to mastitis. Individual records for milk yield, and four mastitis-related traits (milk somatic cell count, California Mastitis Test score, total viable bacterial count in milk and clinical mastitis presence) were collected monthly throughout lactation for 609 ewes of the Chios breed. All ewes were genotyped with a mastitis specific custom-made 960 single nucleotide polymorphism (SNP) array. We performed targeted genomic association studies, (co)variance component estimation and pathway enrichment analysis, and characterised gene expression levels and the extent of allelic expression imbalance. Presence of heritable variation for milk yield was confirmed. There was no significant genetic correlation between milk yield and mastitis traits. Environmental factors appeared to favour both milk production and udder health. There were no overlapping of SNPs associated with mastitis resistance and milk yield in Chios sheep. Furthermore, four distinct Quantitative Trait Loci (QTLs) affecting milk yield were detected on chromosomes 2, 12, 16 and 19, in locations other than those previously identified to affect mastitis resistance. Five genes (DNAJA1, GHR, LYPLA1, NUP35 and OXCT1) located within the QTL regions were highly expressed in both the mammary gland and milk transcriptome, suggesting involvement in milk synthesis and production. Furthermore, the expression of two of these genes (NUP35 and OXCT1) was enriched in immune tissues implying a potentially pleiotropic effect or likely role in milk production during udder infection, which needs to be further elucidated in future studies. In conclusion, the absence of genetic antagonism between milk yield and mastitis resistance suggests that simultaneous genetic improvement of both traits be achievable.
Collapse
Affiliation(s)
- Georgios Banos
- Scotland’s Rural College, Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emily L. Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, England, United Kingdom
| | - Prasun Dutta
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Georgios Bramis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Arsenos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David A. Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Androniki Psifidi
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- Royal Veterinary College, University of London, Hatfield, England, United Kingdom
- * E-mail: ,
| |
Collapse
|
17
|
Sareyyüpoğlu B, Gülyaz V, Çokçalışkan C, Ünal Y, Çökülgen T, Uzunlu E, Gürcan S, İlk O. Effect of FMD vaccination schedule of dams on the level and duration of maternally derived antibodies. Vet Immunol Immunopathol 2019; 217:109881. [PMID: 31450164 DOI: 10.1016/j.vetimm.2019.109881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022]
Abstract
Vaccination against Foot and Mouth Disease (FMD) in pregnant cows is crucial to produce greater immunity in new born calves, especially in late gestation, as this directly affects neonatal immunity. Therefore, we aimed to investigate how late gestation FMD vaccination of pregnant cows affects the maternally derived antibodies in their offspring. Pregnant cows were vaccinated with and without booster vaccination during the 3rd months (early gestation vaccination, EGV) or the 6.5th months (late gestation vaccination, LGV). Their offspring were investigated for passive immunity transfer, maternal antibody duration, and the first vaccination age of calves (when the maternal antibody has waned sufficiently to allow the first vaccination). Antibody titers were analyzed by a virus neutralization test (VNT). A digital Brix refractometer (% Brix) was used to estimate passive antibody transfer efficiency measuring total protein (TP) content of calf blood sera and also colostrum IgG content. Two linear mixed effects models were fitted: one for the antibody titer values of the dams, and the other for the antibody titer values of calves before the vaccination. A marginal fixed effects model was also fitted to explore the effects of the dam titers on the antibody titers of the calves after their vaccinations. As a result, the average neutralizing antibody titers did not differ between the EGV and LGV groups nor were any differences detected between dams that received a booster and those that were not boosted. However, the LGV calves' mean maternally derived antibody titers were significantly higher (p-values = 0.0001 for both groups) and the duration was longer than that of the EGV calves (120 days in LGV, 60 days in EGV, p < 0.05). Since no statistical difference was found between the titers of either group of dams at the beginning of the experiment and parturition, it does not appear that the higher VN titers in LGV calves compared to titers in EGV are directly related to the circulating antibody levels in the dams. Furthermore, the TP value (% Brix) of calf blood sera was higher than>8.4% in both calf groups (9.3 ± 0.33 in LGV and 8.6 ± 0.40 in EGV, p > 0.05) indicating that passive immunity transfer had occurred for both groups. In addition, we found that the % Brix mean colostrum IgG content of the LGV (25.8 ± 1.30) was higher than the EGV (21.8 ± 0.58) dams (p < 0.01) and a significant positive correlation found between the colostrum density of LGV dams and TP (% Brix) value of their offspring (r = 0.73, p < 0.01). Our results show that vaccination during the late gestation period increased the colostrum IgG content of dams of LGV in addition to the maternally derived antibody duration and potentially provided greater protection of the offspring.
Collapse
Affiliation(s)
- B Sareyyüpoğlu
- Institute of Foot and Mouth disease (SAP), Ministry of Agriculture and Forestry, Ankara, Turkey.
| | - V Gülyaz
- General Directorate for Agriculture and Rural Development, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - C Çokçalışkan
- Institute of Foot and Mouth disease (SAP), Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Y Ünal
- General Directorate for State farms, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - T Çökülgen
- International Center for Livestock Research and Training, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - E Uzunlu
- Institute of Foot and Mouth disease (SAP), Ministry of Agriculture and Forestry, Ankara, Turkey
| | - S Gürcan
- Department of Biostatistics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - O İlk
- Department of Statistics, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
18
|
|
19
|
Berghof TVL, Matthijs MGR, Arts JAJ, Bovenhuis H, Dwars RM, van der Poel JJ, Visker MHPW, Parmentier HK. Selective breeding for high natural antibody level increases resistance to avian pathogenic Escherichia coli (APEC) in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:45-57. [PMID: 30579935 DOI: 10.1016/j.dci.2018.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Keyhole limpet hemocyanin (KLH)-binding natural antibody (NAb) titers in chickens are heritable, and higher levels have previously been associated with a higher survival. This suggests that selective breeding for higher NAb levels might increase survival by means of improved general disease resistance. Chickens were divergently selected and bred for total NAb levels binding KLH at 16 weeks of age for six generations, resulting in a High NAb selection line and a Low NAb selection line. To for test differences in disease resistance, chickens were challenged with avian pathogenic Escherichia coli (APEC) in two separate experiments. Chickens at 8 days of age received one of four intratracheal inoculations of 0.2 mL phosphate buffered saline (PBS): 1) mock inoculate, 2) with 0.2 mL PBS containing 108.20 colony-forming units (CFU)/mL APEC, 3) with 0.2 mL PBS containing 106.64 CFU/mL APEC, and 4) with 0.2 mL PBS containing 107.55 CFU/mL APEC. Mortality was recorded during 7 days post inoculation. Overall, 50-60% reduced mortality was observed in the High line compared to the Low line for all APEC doses. In addition, morbidity was determined of the surviving chickens at 15 days of age. The High line had lower morbidity scores compared to the Low line. We conclude that selective breeding for high KLH-binding NAb levels at 16 weeks of age increase APEC resistance in early life. This study and previous studies support the hypothesis that KLH-binding NAb might be used as an indicator trait for to selective breed for general disease resistance in an antigen non-specific fashion.
Collapse
Affiliation(s)
- T V L Berghof
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands; Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - M G R Matthijs
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, The Netherlands
| | - J A J Arts
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands
| | - H Bovenhuis
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - R M Dwars
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, The Netherlands
| | - J J van der Poel
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - M H P W Visker
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - H K Parmentier
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands
| |
Collapse
|
20
|
Rupp R, Huau C, Caillat H, Fassier T, Bouvier F, Pampouille E, Clément V, Palhière I, Larroque H, Tosser-Klopp G, Jacquiet P, Rainard P. Divergent selection on milk somatic cell count in goats improves udder health and milk quality with no effect on nematode resistance. J Dairy Sci 2019; 102:5242-5253. [PMID: 30904305 DOI: 10.3168/jds.2018-15664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022]
Abstract
Milk somatic cell count (SCC) is commonly higher in goats than in cattle and sheep. Furthermore, the ability of milk SCC to predict mastitis is considered lower in goats than in cattle and sheep, and the relevance of somatic cell score (SCS)-based selection in this species has been questioned. To address this issue, we created 2 divergent lines of Alpine goats using artificially inseminated bucks with extreme estimated breeding values for SCS. A total of 287 goats, 158 in high- and 129 in low-SCS lines, were scrutinized for mastitis infections. We subjected 2,688 milk samples to conventional bacteriological analyses on agarose and bacterial counts were estimated for positive samples. The SCS, milk yield, fat content, and protein content were recorded every 3 wk. Clinical mastitis was systematically noted. A subset of 40 goats (20 from each line) was subsequently challenged with Haemonchus contortus and monitored for anemia (blood packed cell volume) and fecal egg counts to see if SCS-based selection had an indirect effect on resistance to gastrointestinal nematodes. Milk production traits, including milk quantity, fat content, and protein content, were similar in both goat lines. In contrast, the raw milk SCC almost doubled between the lines, with 1,542,000 versus 855,000 cells/mL in the high- and low-SCS lines, respectively. The difference in breeding value for SCS between lines was 1.65 genetic standard deviation equivalents. The Staphylococcus spp. most frequently isolated from milk were S. xylosus, S. caprae, S. epidermidis, and S. aureus. The frequency of positive bacteriology samples was significantly higher in the high-SCS line (49%) than in the low-SCS line (33%). The highest odds ratio was 3.49 (95% confidence interval: 11.95-6.25) for S. aureus. The distribution of bacterial species in positive samples between lines was comparable. The average quantity of bacteria in positive samples was also significantly higher in high-SCS goats (69 ± 80 growing colonies) than in low-SCS goats (38 ± 62 growing colonies). Clinical cases were rare and equally distributed between high- (n = 4; 2.5%) and low-SCS (n = 3; 2.3%) lines. Furthermore, the larger the amounts of bacteria in milk the higher the SCS level. Conversely, goats with repeatedly culture-negative udders exhibited the lowest SCC levels, with an average of below 300,000 cells/mL. We therefore confirmed that SCS is a relevant predictor of intramammary infection and hygienic quality of milk in goats and can be used for prophylactic purposes. After challenge with H. contortus, goats were anemic with high fecal egg counts but we found no difference between the genetic lines. This result provides initial evidence that resistance to mastitis or to gastrointestinal nematodes infections is under independent genetic regulation. Altogether, this monitoring of the goat lines indicated that SCS-based selection helps to improve udder health by decreasing milk cell counts and reducing the incidence of infection and related bacterial shedding in milk. Selection for low SCC should not affect a goat's ability to cope with gastrointestinal nematodes.
Collapse
Affiliation(s)
- R Rupp
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France.
| | - C Huau
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France
| | - H Caillat
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France
| | - T Fassier
- Domaine de Bourges, INRA, Osmoy, F-31326, France
| | - F Bouvier
- Domaine de Bourges, INRA, Osmoy, F-31326, France
| | - E Pampouille
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France
| | - V Clément
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France; Institut de l'Elevage, Castanet Tolosan, F-31326, France
| | - I Palhière
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France
| | - H Larroque
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France
| | - G Tosser-Klopp
- Génétique, Physiologie et Système d'Elevage (GenPhySE), Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326, France
| | - P Jacquiet
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRA, INPT, ENVT, Toulouse, F-131076, France
| | - P Rainard
- Infectiologie et santé publique (ISP), INRA, Université Tours, Nouzilly, F-37380, France
| |
Collapse
|
21
|
McRae KM, Rowe SJ, Baird HJ, Bixley MJ, Clarke SM. Genome-wide association study of lung lesions and pleurisy in New Zealand lambs. J Anim Sci 2019; 96:4512-4520. [PMID: 30099550 PMCID: PMC6247835 DOI: 10.1093/jas/sky323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an important issue for sheep production, leading to reduced growth rate and a predisposition to pleurisy. The objective of this study was to identify loci associated with pneumonic lesions and pleurisy in New Zealand progeny test lambs. The lungs from 3,572 progeny-test lambs were scored for presence and severity of pneumonic lesions and pleurisy at slaughter. Animals were genotyped using the Illumina Ovine Infinium HD SNP BeadChip (606,006 markers). The heritability of lung lesion score and pleurisy were calculated using the genomic relationship matrix, and genome-wide association analyses were conducted using EMMAX and haplotype trend regression. At slaughter, 35% of lambs had pneumonic lesions, with 9% showing lesions on more than half of any individual lobe. The number of lambs recorded as having pleurisy by the processing plants was 9%. Heritability estimates for pneumonic lesions and pleurisy scores adjusted for heteroscedasticity (CPSa and PLEURa) were 0.16 (± 0.03) and 0.05 (± 0.02), respectively. Five single-nucleotide polymorphisms (SNPs) were significantly associated with pneumonic lesions at the genome-wide level, and additional 37 SNPs were suggestively significant. Four SNPs were significantly associated with pleurisy, with an additional 11 SNPs reaching the suggestive level of significance. There were no regions that overlapped between the 2 traits. Multiple SNPs were in regions that contained genes involved in either the DNA damage response or the innate immune response, including several that had previously been reported to have associations with respiratory disease. Both EMMAX and HTR analyses of pleurisy data showed a significant peak on chromosome 2, located downstream from the transcription factor SP3. SP3 activates or suppresses the expression of numerous genes, including several genes with known functions in the immune system. This study identified several SNPs associated with genes involved in both the innate immune response and the response to DNA damage that are associated with pneumonic lesions and pleurisy in lambs at slaughter. Additionally, the identification in sheep of several SNPs within genes that have previously been associated with the respiratory system in cattle, pigs, rats, and mice indicates that there may be common pathways that underlie the response to invasion by respiratory pathogens in multiple species.
Collapse
|
22
|
Abstract
The objective of the research described in this Research Communication was to describe potential associations of subclinical mastitis with sheep breeds in Greece. A countrywide survey (2198 ewes in 111 farms) was performed. Prevalence of subclinical mastitis was 0·260. Results did not indicate any difference in the prevalence of subclinical mastitis between farms with pure-bred and farms with cross-bred animals, nor any difference in prevalence between farms with Greek pure-bred animals and farms with imported pure-bred animals. Results indicated that prevalence of subclinical mastitis was smaller in farms with Assaf-breed (0·100) and higher in farms with Frisarta-breed (0·625) (P < 0·02). Prevalence of mastitis was smaller in farms with Greek traditional indigenous breeds (0·221) (P = 0·007). In a model that included sheep breed and management system in farm, breed emerged as a significant factor for prevalence of subclinical mastitis (P = 0·003).
Collapse
|
23
|
Molaee V, Eltanany M, Lühken G. First survey on association of TMEM154 and CCR5 variants with serological maedi-visna status of sheep in German flocks. Vet Res 2018; 49:36. [PMID: 29673399 PMCID: PMC5909245 DOI: 10.1186/s13567-018-0533-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/03/2018] [Indexed: 12/03/2022] Open
Abstract
Maedi-visna, a disease caused by small ruminant lentiviruses (SRLVs), is present in sheep from many countries, also including Germany. An amino acid substitution (E/K) at position 35 of the transmembrane protein 154 (TMEM154) as well as a deletion in the chemokine (C-C motif) receptor type 5 gene (CCR5) were reported to be associated with the serological MV status and/or the SRLV provirus concentration in North American sheep populations. The aim of this study was to test if those two gene variants might be useful markers for MV susceptibility in Germany. For this purpose, more than 500 sheep from 17 serologically MV positive German sheep flocks with different breed backgrounds were genotyped applying PCR-based methods. Both, crosstab and non-parametric analyses showed significant associations of the amino acid substitution at position 35 of TMEM154 with the serological MV status (cut-off-based classification) and the median MV ELISA S/P value in all samples and in two of the four analyzed breed subsets. The deletion in the CCR5 promoter did not show a consistent association with serological MV status or median ELISA S/P value. It can be concluded that the amino acid substitution at position 35 of TMEM154 is a promising marker for breeding towards a lower number of serologically MV positive sheep in German flocks, at least in flocks of the Texel breed, while this remains questionable for the deletion in the CCR5 promoter. The findings of this study still need to be verified in additional sheep breeds.
Collapse
Affiliation(s)
- Vahid Molaee
- Department of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Marwa Eltanany
- Department of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Gesine Lühken
- Department of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany.
| |
Collapse
|
24
|
Five BoLA-DRB3 genotypes detected in Egyptian buffalo infected with Foot and Mouth disease virus serotype O. J Genet Eng Biotechnol 2018; 16:513-518. [PMID: 30733768 PMCID: PMC6353717 DOI: 10.1016/j.jgeb.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/18/2018] [Indexed: 11/21/2022]
Abstract
Foot and Mouth disease (FMD) is a contagious disease leads to economically loss in livestock production all over the world. This serious disease is caused due to the infection of the animal with a single-stranded RNA virus (FMDV). This study aimed to investigate the genetic polymorphism of BoLA-DRB3 gene in Egyptian buffalo as a candidate genetic marker included in multi-factorial process of FMD resistance/susceptibility. Also this work aimed to genetically characterization and serotyping of circulating FMD virus in Egypt during 2016. For serotyping of FMDV, RT-PCR was used for FMDV-positive samples and the results declared the presence of serotype O in all tested animals. The sequence analysis of FMDV samples revealed five different patterns for the detected serotype O which were submitted to GenBank under the accession Nos.: MG017361–MG017365. The 302-bp amplified fragments from BoLA-DRB3 exon 2 were digested with HaeIII endonuclease and the results showed that the presence of five BoLA-DRB3 genotypes, among them the genotype AA might be associated with FMD-resistance (P < 0.01). On the other hand, genotype AC could be correlated with susceptibility (P < 0.01) to FMD in Egyptian buffaloes where it was absent in resistant group. The five detected genotypes of BoLA-DRB3 exon 2 were submitted to GenBank with the accession Nos.: MF977316–MF977320. In conclusion, our findings suggested that the detection of different BoLA-DRB3 genotypes may be has a promising role for raising the resistance of Egyptian buffalo against FMDV especially serotype O which is prevalent in Egypt with preferring genotype AA.
Collapse
|
25
|
SAH VAISHALI, KUMAR AMIT, KUMAR RAVI, PATHAK SHALUKUMARI, WANI SAJADAHMAD, SAHU AMITRANJAN, UPMANYU VIKRAMADITYA, SAHOO NIHARRANJAN, BHUSHAN BHARAT. Exploration of genetic basis of differential immune response to CSF vaccination in desi (indigenous) piglets using RNA-Seq approach. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In the present study, the transcriptome profiling of peripheral blood mononuclear cells (PBMCs) of indigenous piglets against classical swine fever (CSF) vaccination was performed for elucidating the genetic basis of their differential humoral immunity. Piglets were vaccinated with lapinised strain of CSF virus (CSFV) followed by measurement of humoral immune response using c-ELISA at 28th day post vaccination (28dpv). The RNA sequencing data was analysed using established pipeline to determine set of differentially expressed genes (DEGs) in high responder as compared to low responder piglet. The differentially expressed important immune molecules were involved in regulating important pathways including antigen processing and presentation, T cell receptor signalling, B cell development, activation and signaling genes. The genes with differential expression also included TLR 3, 6, 7, 8, 9, and antiviral molecules such as MX, and ISG (Interferon stimulated genes) family members. The proteinprotein interaction of the immune genes was extracted for network representation. Most of the immune genes involved showed upregulation except the genes for antigen processing and presentation and T cell receptor signaling that were downregulated in the high responder. The immunologically important genes namely IFIT1, IFIT5, TAPBP, and TLR7 were validated using qRT-PCT and were observed to be in concordance with the RNA Seq results.
Collapse
|
26
|
Banos G, Bramis G, Bush SJ, Clark EL, McCulloch MEB, Smith J, Schulze G, Arsenos G, Hume DA, Psifidi A. The genomic architecture of mastitis resistance in dairy sheep. BMC Genomics 2017; 18:624. [PMID: 28814268 PMCID: PMC5559839 DOI: 10.1186/s12864-017-3982-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Background Mastitis is the most prevalent disease in dairy sheep with major economic, hygienic and welfare implications. The disease persists in all dairy sheep production systems despite the implementation of improved management practises. Selective breeding for enhanced mastitis resistance may provide the means to further control the disease. In the present study, we investigated the genetic architecture of four mastitis traits in dairy sheep. Individual animal records for clinical mastitis occurrence and three mastitis indicator traits (milk somatic cell count, total viable bacterial count in milk and the California mastitis test) were collected monthly throughout lactation for 609 ewes of the Greek Chios breed. All animals were genotyped with a custom-made 960-single nucleotide polymorphism (SNP) DNA array based on markers located in quantitative trait loci (QTL) regions for mastitis resistance previously detected in three other distinct dairy sheep populations. Results Heritable variation and strong positive genetic correlations were estimated for clinical mastitis occurrence and the three mastitis indicator traits. SNP markers significantly associated with these mastitis traits were confirmed on chromosomes 2, 3, 5, 16 and 19. We identified pathways, molecular interaction networks and functional gene clusters for mastitis resistance. Candidate genes within the detected regions were identified based upon analysis of an ovine transcriptional atlas and transcriptome data derived from milk somatic cells. Relevant candidate genes implicated in innate immunity included SOCS2, CTLA4, C6, C7, C9, PTGER4, DAB2, CARD6, OSMR, PLXNC1, IDH1, ICOS, FYB, and LYFR. Conclusions The results confirmed the presence of animal genetic variability in mastitis resistance and identified genomic regions associated with specific mastitis traits in the Chios sheep. The conserved genetic architecture of mastitis resistance between distinct dairy sheep breeds suggests that across-breed selection programmes would be feasible. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3982-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Banos
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Scotland's Rural College, Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - G Bramis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - S J Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - E L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - M E B McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - J Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - G Schulze
- School of Informatics, University of Bergen, 5008, Bergen, Norway
| | - G Arsenos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - D A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - A Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK. .,Royal Veterinary College, University of London, AL9 7TA, Hatfield, UK.
| |
Collapse
|
27
|
Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proc Natl Acad Sci U S A 2017; 114:9397-9402. [PMID: 28808019 DOI: 10.1073/pnas.1710336114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In host-pathogen arms races, increases in host resistance prompt counteradaptation by pathogens, but the nature of that counteradaptation is seldom directly observed outside of laboratory models. The best-documented field example is the coevolution of myxoma virus (MYXV) in European rabbits. To understand how MYXV in Australia has continued to evolve in wild rabbits under intense selection for genetic resistance to myxomatosis, we compared the phenotypes of the progenitor MYXV and viral isolates from the 1950s and the 1990s in laboratory rabbits with no resistance. Strikingly, and unlike their 1950s counterparts, most virus isolates from the 1990s induced a highly lethal immune collapse syndrome similar to septic shock. Thus, the next step in this canonical case of coevolution after a species jump has been further escalation by the virus in the face of widespread host resistance.
Collapse
|
28
|
RNA Seq analysis for transcriptome profiling in response to classical swine fever vaccination in indigenous and crossbred pigs. Funct Integr Genomics 2017; 17:607-620. [DOI: 10.1007/s10142-017-0558-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
|
29
|
Murphy D, Ricci A, Auce Z, Beechinor JG, Bergendahl H, Breathnach R, Bureš J, Duarte Da Silva JP, Hederová J, Hekman P, Ibrahim C, Kozhuharov E, Kulcsár G, Lander Persson E, Lenhardsson JM, Mačiulskis P, Malemis I, Markus-Cizelj L, Michaelidou-Patsia A, Nevalainen M, Pasquali P, Rouby JC, Schefferlie J, Schlumbohm W, Schmit M, Spiteri S, Srčič S, Taban L, Tiirats T, Urbain B, Vestergaard EM, Wachnik-Święcicka A, Weeks J, Zemann B, Allende A, Bolton D, Chemaly M, Fernandez Escamez PS, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Wahlström H, Baptiste K, Catry B, Cocconcelli PS, Davies R, Ducrot C, Friis C, Jungersen G, More S, Muñoz Madero C, Sanders P, Bos M, Kunsagi Z, Torren Edo J, Brozzi R, Candiani D, Guerra B, Liebana E, Stella P, Threlfall J, Jukes H. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 2017; 15:e04666. [PMID: 32625259 PMCID: PMC7010070 DOI: 10.2903/j.efsa.2017.4666] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA and EMA have jointly reviewed measures taken in the EU to reduce the need for and use of antimicrobials in food-producing animals, and the resultant impacts on antimicrobial resistance (AMR). Reduction strategies have been implemented successfully in some Member States. Such strategies include national reduction targets, benchmarking of antimicrobial use, controls on prescribing and restrictions on use of specific critically important antimicrobials, together with improvements to animal husbandry and disease prevention and control measures. Due to the multiplicity of factors contributing to AMR, the impact of any single measure is difficult to quantify, although there is evidence of an association between reduction in antimicrobial use and reduced AMR. To minimise antimicrobial use, a multifaceted integrated approach should be implemented, adapted to local circumstances. Recommended options (non-prioritised) include: development of national strategies; harmonised systems for monitoring antimicrobial use and AMR development; establishing national targets for antimicrobial use reduction; use of on-farm health plans; increasing the responsibility of veterinarians for antimicrobial prescribing; training, education and raising public awareness; increasing the availability of rapid and reliable diagnostics; improving husbandry and management procedures for disease prevention and control; rethinking livestock production systems to reduce inherent disease risk. A limited number of studies provide robust evidence of alternatives to antimicrobials that positively influence health parameters. Possible alternatives include probiotics and prebiotics, competitive exclusion, bacteriophages, immunomodulators, organic acids and teat sealants. Development of a legislative framework that permits the use of specific products as alternatives should be considered. Further research to evaluate the potential of alternative farming systems on reducing AMR is also recommended. Animals suffering from bacterial infections should only be treated with antimicrobials based on veterinary diagnosis and prescription. Options should be reviewed to phase out most preventive use of antimicrobials and to reduce and refine metaphylaxis by applying recognised alternative measures.
Collapse
|
30
|
Genomic Tools and Animal Health. Vet Sci 2016; 3:vetsci3030021. [PMID: 29056729 PMCID: PMC5606579 DOI: 10.3390/vetsci3030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/07/2016] [Accepted: 08/09/2016] [Indexed: 12/01/2022] Open
Abstract
Animals have been selected to improve their productivity in order to increase the profitability to the producer. In this scenario, not much attention was given to health traits. As a consequence of that, selection was made for animals with higher production and a shortened productive life. In addition to that, the intense production system used in livestock has forced animals to be exposed to higher pathogen loads, therefore predisposing them to infections. Infectious diseases are known to be caused by micro-organisms that are able to infect and colonize the host, affecting their physiological functions and causing problems in their production and on animal welfare. Even with the best management practices, diseases are still the most important cause of economic losses in the animal industry. In this review article we have addressed the new tools that could be used to select animals to better cope with diseases and pathogens.
Collapse
|
31
|
An alternative experimental case-control design for genetic association studies on bovine mastitis. Animal 2016; 11:574-579. [PMID: 27534682 DOI: 10.1017/s1751731116001750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The possibility of using genetic control strategies to increase disease resistance to infectious diseases relies on the identification of markers to include in the breeding plans. Possible incomplete exposure of mastitis-free (control) animals, however, is a major issue to find relevant markers in genetic association studies for infectious diseases. Usually, designs based on elite dairy sires are used in association studies, but an epidemiological case-control strategy, based on cows repeatedly field-tested could be an alternative for disease traits. To test this hypothesis, genetic association results obtained in the present work from a cohort of Italian Holstein cows tested for mastitis over time were compared with those from a previous genome-wide scan on Italian Holstein sires genotyped with 50k single nucleotide polymorphisms for de-regressed estimated breeding values for somatic cell counts (SCCs) on Bos taurus autosome (BTA6) and BTA14. A total of 1121 cows were selected for the case-control approach (cases=550, controls=571), on a combination of herd level of SCC incidence and of within herd individual level of SCC. The association study was conducted on nine previously identified markers, six on BTA6 and four on BTA14, using the R statistical environment with the 'qtscore' function of the GenABEL package, on high/low adjusted linear score as a binomial trait. The results obtained in the cow cohort selected on epidemiological information were in agreement with those obtained from the previous sire genome-wide association study (GWAS). Six out of the nine markers showed significant association, four on BTA14 (rs109146371, rs109234250, rs109421300, rs109162116) and two on BTA6 (rs110527224 and rs42766480). Most importantly, using mastitis as a case study, the current work further validated the alternative use of historical field disease data in case-control designs for genetic analysis of infectious diseases in livestock.
Collapse
|
32
|
Rupp R, Senin P, Sarry J, Allain C, Tasca C, Ligat L, Portes D, Woloszyn F, Bouchez O, Tabouret G, Lebastard M, Caubet C, Foucras G, Tosser-Klopp G. A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2) Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model. PLoS Genet 2015; 11:e1005629. [PMID: 26658352 PMCID: PMC4676722 DOI: 10.1371/journal.pgen.1005629] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2). The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host’s inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway. Mastitis is an inflammation of the mammary gland mainly caused by invading bacteria. Ruminants show natural variability in their predisposition to mastitis, and therefore provide unique models for study of the genetics and physiology of host response to bacterial infection. A genome-wide association study was conducted in a dairy sheep population for milk somatic cell counts as a proxy for mastitis. Fine mapping, using whole genome sequencing, led to the identification of a mutation in the Suppressor of Cytokine Signaling 2 gene (socs2). This mutation was shown to cause a loss of functional activity of the SOCS2 protein, which suggested impairment of feedback control of the JAK/STAT signaling pathways in susceptible animals. Additionally, size, weight and milk production were increased in animals carrying the susceptible variant suggesting a pleiotropic effect of the gene on production versus health traits. Results gave strong evidence of the role of SOCS2 in the host’s inflammation of the udder and provided new insights into the key mechanisms underlying the genetic control of mastitis.
Collapse
Affiliation(s)
- Rachel Rupp
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- * E-mail:
| | - Pavel Senin
- INRA, Sigenae, Castanet-Tolosan, France
- INRA, UR 0875, Mathématiques et Intelligence Artificielle Toulouse, Castanet-Tolosan, France
| | - Julien Sarry
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Charlotte Allain
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Christian Tasca
- Université de Toulouse, Institut National Polytechnique (INP), École Nationale Vétérinaire de Toulouse (ENVT), Unité Mixte de Recherche (UMR) 1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
| | - Laeticia Ligat
- INSERM UMR1037, Centre Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - David Portes
- INRA, UE0321 Domaine de La Fage, Saint Jean et Saint Paul, France
| | - Florent Woloszyn
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | | | - Guillaume Tabouret
- Université de Toulouse, Institut National Polytechnique (INP), École Nationale Vétérinaire de Toulouse (ENVT), Unité Mixte de Recherche (UMR) 1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
| | - Mathieu Lebastard
- Université de Toulouse, Institut National Polytechnique (INP), École Nationale Vétérinaire de Toulouse (ENVT), Unité Mixte de Recherche (UMR) 1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
| | - Cécile Caubet
- Université de Toulouse, Institut National Polytechnique (INP), École Nationale Vétérinaire de Toulouse (ENVT), Unité Mixte de Recherche (UMR) 1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
| | - Gilles Foucras
- Université de Toulouse, Institut National Polytechnique (INP), École Nationale Vétérinaire de Toulouse (ENVT), Unité Mixte de Recherche (UMR) 1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes (IHAP), Toulouse, France
| | - Gwenola Tosser-Klopp
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|
33
|
Zhao Y, Cheng JL, Liu XY, Zhao J, Hu YX, Zhang GZ. Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine. Vet Microbiol 2015; 180:49-58. [PMID: 26277655 PMCID: PMC7111288 DOI: 10.1016/j.vetmic.2015.07.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/27/2022]
Abstract
An attenuated QX-like IBV strain was developed through multiple passages. We tested the safety and efficacy of the attenuated YN strain. The attenuated strain has a clear decrease in pathogenicity for chickens. The vaccine based on strain IB YN was efficacious against challenge.
Infectious bronchitis (IB) is a highly contagious respiratory and urogenital disease of chickens caused by infectious bronchitis virus (IBV). This disease is of considerable economic importance and is primarily controlled through biosecurity and immunization with live attenuated and inactivated IB vaccines of various serotypes. In the present study, we tested the safety and efficacy of an attenuated predominant Chinese QX-like IBV strain. The results revealed that the attenuated strain has a clear decrease in pathogenicity for specific-pathogen-free (SPF) chickens compared with the parent strain. Strain YN-inoculated birds had clinical signs of varying severity with 30% mortality, while the attenuated group appeared healthy, with less tissue damage. The attenuated strain also had relatively low tissue replication rates and higher antibody levels. The superior protective efficacy of the attenuated strain was observed when vaccinated birds were challenged with a homologous or heterologous field IBV strain, indicating the potential of the attenuated YN (aYN) as a vaccine. Producing a vaccine targeting the abundant serotype in China is essential to reducing the economic impact of IB on the poultry industry.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jin-long Cheng
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiao-yu Liu
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yan-xin Hu
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Guo-zhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
34
|
Abstract
This paper considers genetic resistance to infectious disease in sheep, with appropriate comparison with goats, and explores how such variation may be used to assist in disease control. Many studies have attempted to quantify the extent to which host animals differ genetically in their resistance to infection or in the disease side-effects of infection, using either recorded animal pedigrees or information from genetic markers to quantify the genetic variation. Across all livestock species, whenever studies are sufficiently well powered, then genetic variation in disease resistance is usually seen and such evidence is presented here for three infections or diseases of importance to sheep, namely mastitis, foot rot and scrapie. A further class of diseases of importance in most small ruminant production systems, gastrointestinal nematode infections, is outside the scope of this review. Existence of genetic variation implies the opportunity, at least in principle, to select animals for increased resistance, with such selection ideally used as part of an integrated control strategy. For each of the diseases under consideration, evidence for genetic variation is presented, the role of selection as an aid to disease control is outlined and possible side effects of selection in terms of effects in performance, effects on resistance to other diseases and potential parasite/pathogen coevolution risks are considered. In all cases, the conclusion is drawn that selection should work and it should be beneficial, with the main challenge being to define cost effective selection protocols that are attractive to sheep farmers.
Collapse
Affiliation(s)
- S C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
35
|
Wallenbeck A, Rydhmer L, Röcklinsberg H, Ljung M, Strandberg E, Ahlman T. Preferences for pig breeding goals among organic and conventional farmers in Sweden. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13165-015-0125-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Riggio V, Portolano B. Genetic selection for reduced somatic cell counts in sheep milk: A review. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Singh A, Kumar A, Sahoo NR, Upmanyu V, Kumar B, Bhushan B, Sharma D. Association of humoral response to classical swine fever vaccination with single nucleotide polymorphisms of swine leukocyte antigens. JOURNAL OF APPLIED ANIMAL RESEARCH 2015. [DOI: 10.1080/09712119.2015.1013965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Abstract
This paper considers the application of genetic and genomic techniques to disease resistance, the interpretation of data arising from such studies and the utilisation of the research outcomes to breed animals for enhanced resistance. Resistance and tolerance are defined and contrasted, factors affecting the analysis and interpretation of field data presented, and appropriate experimental designs discussed. These general principles are then applied to two detailed case studies, infectious pancreatic necrosis in Atlantic salmon and bovine tuberculosis in dairy cattle, and the lessons learnt are considered in detail. It is concluded that the rate limiting step in disease genetic studies will generally be provision of adequate phenotypic data, and its interpretation, rather than the genomic resources. Lastly, the importance of cross-disciplinary dialogue between the animal health and animal genetics communities is stressed.
Collapse
Affiliation(s)
- Stephen C Bishop
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - John A Woolliams
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
39
|
Lu A, Diao Y, Chen H, Wang J, Ge P, Sun X, Hao D. Evaluation of histopathological changes, viral load and immune function of domestic geese infected with Newcastle disease virus. Avian Pathol 2014; 43:325-32. [DOI: 10.1080/03079457.2014.931928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Darlay R, Stear MJ, Mason S, Smith J, Shaw MA. The heritability of abortion in pedigree Charollais flocks. Anim Reprod Sci 2014; 149:297-304. [PMID: 25037445 DOI: 10.1016/j.anireprosci.2014.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 12/01/2022]
Abstract
Foetal death, or abortion at term, in sheep is of major significance to the livestock industry, accounting for more than £24million lost per annum. We have investigated whether there is a genetic component to abortion within two flocks of pedigree Charollais sheep, one followed from 1989 to 2006, the other from 1992 to 2006. Abortion occurred at a rate of 5.74-8.78% per annum against a total mortality rate of 14-24%. By model covariate analysis we have shown that 15.5% aborting ewes went on to have one or more abortions and that this risk increased with parity (p=0.006). Heritability estimates were approximately 0.08 as calculated by SOLAR, pedigreemm and ASReml3, with sire and dam components of 0.046 and 0.048, respectively. Where the lamb was aborted, heritability estimates were highly variable according to the method employed, 0.046-0.378, with sex of the lamb being a significant covariate. This variability indicated one or more underlying, significant factors that were not measured in these analyses, potentially including infectious agents that may be involved. Nevertheless, the ASReml3 estimate (0.179) resolved to 0.074 variance attributable to the sire and 0.092 attributable to the dam, which, while not significant, was suggestive that genetic variants passed by the dam to the lamb may be of more weight than that from the sire in determining whether a lamb will abort.
Collapse
Affiliation(s)
- Rebecca Darlay
- School of Biology, Miall Building, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael J Stear
- Institute of Production, Disease and Welfare, University of Glasgow, Glasgow G61 1QH, UK
| | - Sam Mason
- School of Biology, Miall Building, University of Leeds, Leeds LS2 9JT, UK
| | - Judith Smith
- Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Marie-Anne Shaw
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
41
|
Abdel-Shafy H, Bortfeldt RH, Tetens J, Brockmann GA. Single nucleotide polymorphism and haplotype effects associated with somatic cell score in German Holstein cattle. Genet Sel Evol 2014; 46:35. [PMID: 24898131 PMCID: PMC4078941 DOI: 10.1186/1297-9686-46-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 04/28/2014] [Indexed: 11/28/2022] Open
Abstract
Background To better understand the genetic determination of udder health, we performed a genome-wide association study (GWAS) on a population of 2354 German Holstein bulls for which daughter yield deviations (DYD) for somatic cell score (SCS) were available. For this study, we used genetic information of 44 576 informative single nucleotide polymorphisms (SNPs) and 11 725 inferred haplotype blocks. Results When accounting for the sub-structure of the analyzed population, 16 SNPs and 10 haplotypes in six genomic regions were significant at the Bonferroni threshold of P ≤ 1.14 × 10-6. The size of the identified regions ranged from 0.05 to 5.62 Mb. Genomic regions on chromosomes 5, 6, 18 and 19 coincided with known QTL affecting SCS, while additional genomic regions were found on chromosomes 13 and X. Of particular interest is the region on chromosome 6 between 85 and 88 Mb, where QTL for mastitis traits and significant SNPs for SCS in different Holstein populations coincide with our results. In all identified regions, except for the region on chromosome X, significant SNPs were present in significant haplotypes. The minor alleles of identified SNPs on chromosomes 18 and 19, and the major alleles of SNPs on chromosomes 6 and X were favorable for a lower SCS. Differences in somatic cell count (SCC) between alternative SNP alleles reached 14 000 cells/mL. Conclusions The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle. The small size of the regions identified here will facilitate the search for causal genetic variations that affect gene functions.
Collapse
Affiliation(s)
| | | | | | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Hosoya S, Kido S, Hirabayashi Y, Kai W, Kinami R, Yoshinaga T, Ogawa K, Suetake H, Kikuchi K, Suzuki Y. Genomic regions of pufferfishes responsible for host specificity of a monogenean parasite, Heterobothrium okamotoi. Int J Parasitol 2013; 43:909-15. [DOI: 10.1016/j.ijpara.2013.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/10/2013] [Accepted: 06/12/2013] [Indexed: 11/25/2022]
|
43
|
Gowane GR, Sharma AK, Sankar M, Narayanan K, Das B, Subramaniam S, Pattnaik B. Association of BoLA DRB3 alleles with variability in immune response among the crossbred cattle vaccinated for foot-and-mouth disease (FMD). Res Vet Sci 2013; 95:156-63. [PMID: 23541924 DOI: 10.1016/j.rvsc.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 02/23/2013] [Accepted: 03/03/2013] [Indexed: 12/20/2022]
Abstract
Polymorphism of bovine leukocyte antigen (BoLA) DRB3 gene is being intensively investigated for potential association with economically important diseases of cattle. Accordingly, we investigated the association of DRB3 Exon 2 polymorphism as evidenced by the variation in the binding pockets with variability in immune response to inactivated trivalent (O, A and Asia1) foot and mouth disease virus (FMDV) vaccine in a closed population of crossbred cattle. Antibody titer of ≥ 1.8 was set as the cut off value to distinguish the protected (≥ 1.8) and unprotected (<1.8) animals. Eleven different alleles of over 3% frequency were detected in the population. We found that DRB3 alleles 0201, 0801 and 1501 always ranked high for protective immune response whereas alleles 0701, 1103 and 1101 consistently ranked low for unprotected immune response for all the three serotypes. Rank correlation of DRB3 alleles among the three serotypes was positive, high in magnitude and statistically significant (P<0.05). Logistic regression analysis revealed that odds of protection from the vaccine were highest for all the three serotypes if allele (∗)1501 was present and strengthened the results of allele ranking. Predicted amino acid substitution in the peptide binding pockets revealed that all the important sites had high Wu-Kabat index. Similarly, specific residues in pockets were crucial for immune response to FMD vaccine. There were specific substitutions in un-protected alleles such as absence of acidic amino acids substituted by basic amino acid at β71, presence of non-polar cysteine or basic histidine at β30 and presence of polar tyrosine at β37. From the observations, we hypothesize that the substitutions lead to unique conformational changes in the protein products of the studied alleles that would associate with the protective or unprotective antibody response to FMDV vaccine. The knowledge has potential implications in future selection programs if integrated with the complete BoLA haplotype details and production traits of the herd.
Collapse
Affiliation(s)
- G R Gowane
- Central Sheep & Wool Research Institute, Avikanagar via Jaipur, Rajasthan 304 501, India.
| | | | | | | | | | | | | |
Collapse
|
44
|
Detilleux JC. A mathematical model to study resistance and tolerance to infection at the animal and population levels: application to E. coli mastitis. Front Genet 2012; 3:146. [PMID: 23248637 PMCID: PMC3522067 DOI: 10.3389/fgene.2012.00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/18/2012] [Indexed: 11/22/2022] Open
Abstract
A mathematical model is proposed that describes the colonization of host tissues by a contagious pathogen and the early nonspecific immune response, the impact of the infection on the performances of the host, and the spread of the infection in the population. The model obeys specific biological characteristics: Susceptible hosts are infected after contact with an infected one. The number of pathogenic units that invade a susceptible host is dependent on the infectious dose provided by the infected host and on the ability of the susceptible host to resist the invasion. After entry in host, pathogenic changes over time are expressed as the difference between the intrinsic logistic growth rate and the Holling type II kill rate provided by the immune response cells. Hosts have different ability to restrict reproduction of the pathogen units. The number of response cells actively recruited to the site of infection depends on the number of the pathogenic units. Response cells are removed after having killed a fixed number of pathogenic units. The effects of the number of pathogenic units on the performances of the host depend upon its levels of tolerance to the deleterious effects of both pathogenic and response cells. Pre-infection costs are associated to tolerance and resistance levels. Estimates of most biological parameters of the model are based on published experimental studies while resistance/tolerance parameters are varied across their allowable ranges. The model reproduces qualitatively realistic outcomes in response to infection: healthy response, recurrent infection, persistent infectious and non-infectious inflammation, and severe immunodeficiency. Evolution across time at the animal and population levels is presented. Effects on animal performances are discussed with respect to changes in resistance/tolerance parameters and selection strategies are suggested.
Collapse
Affiliation(s)
- Johann C Detilleux
- Quantitative Genetics Group, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| |
Collapse
|
45
|
Bishop SC. A consideration of resistance and tolerance for ruminant nematode infections. Front Genet 2012; 3:168. [PMID: 23248638 PMCID: PMC3522420 DOI: 10.3389/fgene.2012.00168] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/15/2012] [Indexed: 11/22/2022] Open
Abstract
Debates on the relative merits of resistance (the ability of the host to control the parasite lifecycle) and tolerance (the net impact of infection on host performance) are often lively and unhindered by data or evidence. Resistance generally shows continuous, heritable variation but data are sparser for tolerance, the utility of which will depend upon the disease prevalence. Prevalence is a function of group mean resistance and infection pressure, which itself is influenced by mean resistance. Tolerance will have most value for endemic diseases with a high prevalence but will be of little value for low prevalence diseases. The conditionality of tolerance on infection status, and hence resistance, makes it difficult to estimate independently of resistance. Tolerance is potentially tractable for nematode infections, as the prevalence of infection is ca. 100% in animals grazing infected pasture, and infection level can be quantified by faecal egg count (FEC). Whilst individual animal phenotypes for tolerance are difficult to estimate, breeding values are estimable if related animals graze pastures of different contamination levels. Selection for resistance, i.e., FEC, provides both direct and indirect benefits from ever decreased pasture contamination and hence decreased infectious challenge. Modeling and experimental studies have shown that such reductions in pasture contamination may lead to substantially increased performance. It is proposed that selection goals addressing nematode infections should include both resistance and performance under challenging conditions. However, there may be benefits from exploiting large datasets in which sires are used across cohorts differing in infection level, to further explore tolerance. This may help to customise breeding objectives, with tolerance given greater weight in heavily parasitized environments.
Collapse
Affiliation(s)
- Stephen C Bishop
- Genetics and Genomics, Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh Edinburgh, UK
| |
Collapse
|
46
|
Calenge F, Beaumont C. Toward integrative genomics study of genetic resistance to Salmonella and Campylobacter intestinal colonization in fowl. Front Genet 2012; 3:261. [PMID: 23412643 PMCID: PMC3571208 DOI: 10.3389/fgene.2012.00261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica serotypes Enteritidis and Typhimurium and Campylobacter jejuni are responsible for most cases of food poisoning in Europe. These bacteria do not cause severe disease symptoms in chicken, but they are easily propagated by symptomless chicken carriers which cannot be easily isolated. This animal tolerance is detrimental to food safety. In this particular case, increasing animal's resistance is not sufficient, since some animals considered as resistant are able to carry bacteria during several weeks without displaying disease symptoms. We review studies aimed at evaluating the resistance of chicken to Salmonella and Campylobacter intestinal colonization, either a few days or several weeks after infection. While studies of the genetic control of Campylobacter colonization are only beginning, mostly due to technical difficulties in infection protocols, genetic studies of Salmonella colonization have been conducted for now more than 20 years. They have initially reported an estimation of the genetic parameters associated with resistance to Salmonella colonization and are now aimed at identifying the genomic regions controlling variation of this trait in experimental lines and commercial populations. With the advent of high-throughput genomics, we are closer than ever to identify the true genes controlling resistance to Enterobacteria colonization in chicken. The comparison of genes involved in early resistance to intestinal colonization with genes controlling resistance to bacteria persistence several weeks after infection (i.e., carrier-state) should soon highlight the differences between the molecular mechanisms underlying those two distinct phenotypes. It will also be highly interesting to compare the genes or genomic regions controlling Campylobacter and Salmonella, in order to evaluate the feasibility of a selection conducted on both bacteria simultaneously.
Collapse
Affiliation(s)
- Fanny Calenge
- INRA, UMR1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas cedex, France
| | | |
Collapse
|
47
|
Glass EJ. The molecular pathways underlying host resistance and tolerance to pathogens. Front Genet 2012; 3:263. [PMID: 23403960 PMCID: PMC3566117 DOI: 10.3389/fgene.2012.00263] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/05/2012] [Indexed: 01/31/2023] Open
Abstract
Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.
Collapse
Affiliation(s)
- Elizabeth J. Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| |
Collapse
|
48
|
Cremonesi P, Capoferri R, Pisoni G, Del Corvo M, Strozzi F, Rupp R, Caillat H, Modesto P, Moroni P, Williams JL, Castiglioni B, Stella A. Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells. BMC Genomics 2012; 13:540. [PMID: 23046560 PMCID: PMC3532242 DOI: 10.1186/1471-2164-13-540] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/28/2012] [Indexed: 11/10/2022] Open
Abstract
Background S. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores. Results No differences in gene expression were found between high and low SCS (Somatic Cells Score) selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change) play an important role in (i) immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3); (ii) the regulation of innate resistance to pathogens (PTX3); and (iii) the regulation of cell metabolism (CYTH4, SLC2A6, ARG2). The genes with reduced expression (−1.5 to −2.5 fold) included genes involved in (i) lipid metabolism (ABCG2, FASN), (ii) chemokine, cytokine and intracellular signalling (SPPI), and (iii) cell cytoskeleton and extracellular matrix (KRT19). Conclusions Analysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further studies on immune response associated with mastitis.
Collapse
Affiliation(s)
- Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Lodi, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Genini S, Paternoster T, Costa A, Botti S, Luini MV, Caprera A, Giuffra E. Identification of serum proteomic biomarkers for early porcine reproductive and respiratory syndrome (PRRS) infection. Proteome Sci 2012; 10:48. [PMID: 22873815 PMCID: PMC3492009 DOI: 10.1186/1477-5956-10-48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/17/2012] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine diseases worldwide. Despite its relevance, serum biomarkers associated with early-onset viral infection, when clinical signs are not detectable and the disease is characterized by a weak anti-viral response and persistent infection, have not yet been identified. Surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS) is a reproducible, accurate, and simple method for the identification of biomarker proteins related to disease in serum. This work describes the SELDI-TOF MS analyses of sera of 60 PRRSV-positive and 60 PRRSV-negative, as measured by PCR, asymptomatic Large White piglets at weaning. Sera with comparable and low content of hemoglobin (< 4.52 μg/mL) were fractionated in 6 different fractions by anion-exchange chromatography and protein profiles in the mass range 1-200 kDa were obtained with the CM10, IMAC30, and H50 surfaces. RESULTS A total of 200 significant peaks (p < 0.05) were identified in the initial discovery phase of the study and 47 of them were confirmed in the validation phase. The majority of peaks (42) were up-regulated in PRRSV-positive piglets, while 5 were down-regulated. A panel of 14 discriminatory peaks identified in fraction 1 (pH = 9), on the surface CM10, and acquired at low focus mass provided a serum protein profile diagnostic pattern that enabled to discriminate between PRRSV-positive and -negative piglets with a sensitivity and specificity of 77% and 73%, respectively. CONCLUSIONS SELDI-TOF MS profiling of sera from PRRSV-positive and PRRSV-negative asymptomatic piglets provided a proteomic signature with large scale diagnostic potential for early identification of PRRSV infection in weaning piglets. Furthermore, SELDI-TOF protein markers represent a refined phenotype of PRRSV infection that might be useful for whole genome association studies.
Collapse
Affiliation(s)
- Sem Genini
- Parco Tecnologico Padano - CERSA, Via Einstein, 26900, Lodi, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Bishop SC, Doeschl-Wilson AB, Woolliams JA. Uses and implications of field disease data for livestock genomic and genetics studies. Front Genet 2012; 3:114. [PMID: 22737163 PMCID: PMC3381217 DOI: 10.3389/fgene.2012.00114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022] Open
Abstract
This paper identifies issues associated with field disease data and their implications on the interpretation of estimated genetic parameters and experimental designs. The main focus is on concepts relating to the impacts of diagnostic test properties and exposure to infection, and how exposure to infection is intricately related to within-herd epidemic dynamics. The following are raised challenges: (i) to more fully understand and describe the dynamic impacts of disease epidemics on genetic interpretations; (ii) to develop statistical methods to jointly estimate epidemiological and genetic parameters from complex epidemiological data; (iii) to develop and explore optimal experimental designs for case-control studies, exploiting field disease data. Solving these problems would add insight to both disease genetic and epidemiological studies, as well as enabling us to better select animals for increased disease resistance.
Collapse
Affiliation(s)
- Stephen C. Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| | - Andrea B. Doeschl-Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| | - John A. Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| |
Collapse
|