1
|
van Ede JM, Soic D, Pabst M. Decoding Sugars: Mass Spectrometric Advances in the Analysis of the Sugar Alphabet. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39972673 DOI: 10.1002/mas.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Monosaccharides play a central role in metabolic networks and in the biosynthesis of glycomolecules, which perform essential functions across all domains of life. Thus, identifying and quantifying these building blocks is crucial in both research and industry. Routine methods have been established to facilitate the analysis of common monosaccharides. However, despite the presence of common metabolites, most organisms utilize distinct sets of monosaccharides and derivatives. These molecules therefore display a large diversity, potentially numbering in the hundreds or thousands, with many still unknown. This complexity presents significant challenges in the study of glycomolecules, particularly in microbes, including pathogens and those with the potential to serve as novel model organisms. This review discusses mass spectrometric techniques for the isomer-sensitive analysis of monosaccharides, their derivatives, and activated forms. Although mass spectrometry allows for untargeted analysis and sensitive detection in complex matrices, the presence of stereoisomers and extensive modifications necessitates the integration of advanced chromatographic, electrophoretic, ion mobility, or ion spectroscopic methods. Furthermore, stable-isotope incorporation studies are critical in elucidating biosynthetic routes in novel organisms.
Collapse
Affiliation(s)
- Jitske M van Ede
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Dinko Soic
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
2
|
Byanju B, Lamsal BP. Effects of Lactiplantibacillus plantarum and Bacillus subtilis fermentation on the constituents of ground or extruded corn bran. Food Res Int 2025; 203:115812. [PMID: 40022340 DOI: 10.1016/j.foodres.2025.115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
The effects of two physical modifications of corn bran, namely, 1) grinding to < 500 μm and 2) extruding at two die temperature settings (high, 140 °C and low, 120 °C) were evaluated on growth performance of Lactiplantibacillus plantarum and Bacillus subtilis. The resulting constituent changes in dried fermented bran ingredients were also compared. Corn bran at 25 or 35 % moisture content were either ground or extruded prior to fermenting with L. plantarum or B. subtilis at 37 °C for 72 h at 200 rpm. Both the ground or extruded brans showed typical growth patterns for both probiotic bacteria studied. B. subtilis had the highest growth rate of 0.64 h-1 and lowest population doubling time of 1.09 h on corn bran (35 % moisture) extruded at 120 °C compared to no inoculation control. The major soluble sugars in corn bran were arabinose (0.011 to 1.68 g kg-1) and xylose (0.029 to 0.246 g kg-1) which decreased upon extrusion at higher temperature (HT: 140 °C). The total phenolic content range of 9-10 mg GAE g-1 for extruded and fermented brans was not significantly different from their respective controls. Phytic acid and trypsin inhibitors reduced by a maximum of 42 % and 34 %, respectively, when extruded and fermented with both microbes.
Collapse
Affiliation(s)
- Bibek Byanju
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Buddhi P Lamsal
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Harsla TR, Breitzman MW, Showman LJ, Robeck TR, Staggs LA, Russell JP, Schmitt TL, Steinman KJ, McGill JL, Lippolis JD, Sacco RE. Shotgun metabolomic analysis of killer whale ( Orcinus orca) exhaled breath condensate. J Breath Res 2024; 19:016012. [PMID: 39637438 DOI: 10.1088/1752-7163/ad9ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
The ocean is facing many anthropogenic stressors caused from both pollution and climate change. These stressors are significantly impacting and changing the ocean's ecosystem, and as such, methods must continually be developed that can improve our ability to monitor the health of marine life. For cetaceans, the current practice for health assessments of individuals requires live capture and release, which is expensive, usually stressful, and for larger species impractical. In this study, we investigated the potential of exhaled breath condensate (EBC) samples to provide unique metabolomic profiles from healthy killer whales (Orcinus orca) of varying known age and sex. EBC collection is a non-invasive procedure that has potential for remote collection using unmanned aerial vehicles, thus improving our ability to understand physiologic parameters within wild populations while minimizing stress from collection procedures. However, descriptions of the available metabolome within EBC and its clinical significance within animals of known health and age must be described before this technique can be considered diagnostically useful. We describe normal variations of the metabolome across age and sex and provide evidence for the potential of this breath analysis method to become a valuable adjunctive tool for assessing the health of managed-care and free-ranging killer whales.
Collapse
Affiliation(s)
- Trevor R Harsla
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Matthew W Breitzman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, United States of America
| | - Lucas J Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, United States of America
| | - Todd R Robeck
- Corporate Zoological Operations, United Parks and Resorts, Orlando, FL 32821, United States of America
| | - Lydia A Staggs
- Zoological Department, SeaWorld of Florida, Orlando, FL 32821, United States of America
| | - Jennifer P Russell
- Zoological Department, SeaWorld of Texas, San Antonio, TX 78251, United States of America
| | - Todd L Schmitt
- Zoological Department, SeaWorld of California, San Diego, CA 92109, United States of America
| | - Karen J Steinman
- SeaWorld & Busch Gardens Species Preservation Lab, United Parks and Resorts, San Diego, CA 92109, United States of America
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, United States of America
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, United States of America
| |
Collapse
|
4
|
Weide T, Mills K, Shofner I, Breitzman MW, Kerns K. Metabolic Shift in Porcine Spermatozoa during Sperm Capacitation-Induced Zinc Flux. Int J Mol Sci 2024; 25:7919. [PMID: 39063161 PMCID: PMC11276750 DOI: 10.3390/ijms25147919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans.
Collapse
Affiliation(s)
- Tyler Weide
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| | - Kayla Mills
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center (BARC), Beltsville, MD 20705, USA;
| | - Ian Shofner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| | - Matthew W. Breitzman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA;
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| |
Collapse
|
5
|
Ovbude ST, Sharmeen S, Kyei I, Olupathage H, Jones J, Bell RJ, Powers R, Hage DS. Applications of chromatographic methods in metabolomics: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124124. [PMID: 38640794 PMCID: PMC11618781 DOI: 10.1016/j.jchromb.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.
Collapse
Affiliation(s)
- Susan T Ovbude
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Harshana Olupathage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Richard J Bell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
6
|
Zhu L, Li J, Pan Y, Huang J, Yao H. Metabolomics reveals high fructose-1,6-bisphosphate from fluoride-resistant Streptococcus mutans. BMC Microbiol 2024; 24:151. [PMID: 38702601 PMCID: PMC11067228 DOI: 10.1186/s12866-024-03310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear. OBJECTIVE This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans. MATERIALS AND METHODS Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ). RESULTS Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway. CONCLUSIONS The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.
Collapse
Affiliation(s)
- Laikuan Zhu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Stomatology, Hainan Western Central Hospital, Hainan, 571700, China
| | - Jiehang Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yueping Pan
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Hui Yao
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
7
|
Dagar R, Gautam A, Priscilla K, Sharma V, Gupta P, Kumar R. Sample Preparation from Plant Tissue for Gas Chromatography-Mass Spectrometry (GC-MS)we. Methods Mol Biol 2024; 2788:19-37. [PMID: 38656506 DOI: 10.1007/978-1-0716-3782-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.
Collapse
Affiliation(s)
- Rinku Dagar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Ashish Gautam
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Kagolla Priscilla
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Mangalagiri, India
| | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India.
| |
Collapse
|
8
|
Krishna S, Echevarria KG, Reed CH, Eo H, Wintzinger M, Quattrocelli M, Valentine RJ, Selsby JT. A fat- and sucrose-enriched diet causes metabolic alterations in mdx mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R692-R711. [PMID: 37811713 PMCID: PMC11178302 DOI: 10.1152/ajpregu.00246.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
Duchenne muscular dystrophy (DMD), a progressive muscle disease caused by the absence of functional dystrophin protein, is associated with multiple cellular, physiological, and metabolic dysfunctions. As an added complication to the primary insult, obesity/insulin resistance (O/IR) is frequently reported in patients with DMD; however, how IR impacts disease severity is unknown. We hypothesized a high-fat, high-sucrose diet (HFHSD) would induce O/IR, exacerbate disease severity, and cause metabolic alterations in dystrophic mice. To test this hypothesis, we treated 7-wk-old mdx (disease model) and C57 mice with a control diet (CD) or an HFHSD for 15 wk. The HFHSD induced insulin resistance, glucose intolerance, and hyperglycemia in C57 and mdx mice. Of note, mdx mice on CD were also insulin resistant. In addition, visceral adipose tissue weights were increased with HFHSD in C57 and mdx mice though differed by genotype. Serum creatine kinase activity and histopathological analyses using Masson's trichrome staining in the diaphragm indicated muscle damage was driven by dystrophin deficiency but was not augmented by diet. In addition, markers of inflammatory signaling, mitochondrial abundance, and autophagy were impacted by disease but not diet. Despite this, in addition to disease signatures in CD-fed mice, metabolomic and lipidomic analyses demonstrated a HFHSD caused some common changes in C57 and mdx mice and some unique signatures of O/IR within the context of dystrophin deficiency. In total, these data revealed that in mdx mice, 15 wk of HFHSD did not overtly exacerbate muscle injury but further impaired the metabolic status of dystrophic muscle.
Collapse
Affiliation(s)
- Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | | | - Carter H Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
9
|
Yang WH, Hao JW, Chen ND, Li J. Development of a joint derivatization protocol for the unequivocal identification of the monosaccharide composition in four dendrobium polysaccharides and free monosaccharide by GC-MS. Biomed Chromatogr 2023; 37:e5743. [PMID: 37700561 DOI: 10.1002/bmc.5743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The determination of monosaccharides is crucial for studying the structure of polysaccharides and the composition of free monosaccharides in living organisms. Based on previous derivatization gas chromatography-mass spectrometry (GC-MS) methods, we aimed to develop a novel analytical protocol for better quantifying monosaccharides. In this study, sugar alcohol acetylation, saccharonitrile acetylation, silylation and a combination of sugar alcohols acetylation and saccharonitrile acetylation were compared. The optimal method was verified with the monosaccharide determination of four polysaccharides and four free monosaccharides from Dendrobium. The results showed that the novel combined derivatization method was superior to the other three methods in terms of content analysis of monosaccharides. Furthermore, it possessed good linearity (all calibration curves showed relative coefficients ≥ 0.999), sensitivity, precision (relative standard deviation < 2%), and accuracy (recovery, 95.7-105%). Finally, the novel method established in this study was successfully employed in determining the monosaccharide composition of four polysaccharides and four free monosaccharide samples from Dendrobium.
Collapse
Affiliation(s)
- Wei-Han Yang
- College of Biothchnology and Pharmaceutical Engineering, West Anhui University, Lu'an, China
- College of Pharmacy, Anhui University of Chinese Medicine, He'fei, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an, China
| | - Jing-Wen Hao
- College of Biothchnology and Pharmaceutical Engineering, West Anhui University, Lu'an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an, China
| | - Nai-Dong Chen
- College of Biothchnology and Pharmaceutical Engineering, West Anhui University, Lu'an, China
- College of Pharmacy, Anhui University of Chinese Medicine, He'fei, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an, China
| | - Jiao Li
- College of Biothchnology and Pharmaceutical Engineering, West Anhui University, Lu'an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an, China
| |
Collapse
|
10
|
Wevers D, Ramautar R, Clark C, Hankemeier T, Ali A. Opportunities and challenges for sample preparation and enrichment in mass spectrometry for single-cell metabolomics. Electrophoresis 2023; 44:2000-2024. [PMID: 37667867 DOI: 10.1002/elps.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Single-cell heterogeneity in metabolism, drug resistance and disease type poses the need for analytical techniques for single-cell analysis. As the metabolome provides the closest view of the status quo in the cell, studying the metabolome at single-cell resolution may unravel said heterogeneity. A challenge in single-cell metabolome analysis is that metabolites cannot be amplified, so one needs to deal with picolitre volumes and a wide range of analyte concentrations. Due to high sensitivity and resolution, MS is preferred in single-cell metabolomics. Large numbers of cells need to be analysed for proper statistics; this requires high-throughput analysis, and hence automation of the analytical workflow. Significant advances in (micro)sampling methods, CE and ion mobility spectrometry have been made, some of which have been applied in high-throughput analyses. Microfluidics has enabled an automation of cell picking and metabolite extraction; image recognition has enabled automated cell identification. Many techniques have been used for data analysis, varying from conventional techniques to novel combinations of advanced chemometric approaches. Steps have been set in making data more findable, accessible, interoperable and reusable, but significant opportunities for improvement remain. Herein, advances in single-cell analysis workflows and data analysis are discussed, and recommendations are made based on the experimental goal.
Collapse
Affiliation(s)
- Dirk Wevers
- Wageningen University and Research, Wageningen, The Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Charlie Clark
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
11
|
Upadyshev M, Ivanova B, Motyleva S. Mass Spectrometric Identification of Metabolites after Magnetic-Pulse Treatment of Infected Pyrus communis L. Microplants. Int J Mol Sci 2023; 24:16776. [PMID: 38069098 PMCID: PMC10705910 DOI: 10.3390/ijms242316776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The major goal of this study is to create a venue for further work on the effect of pulsed magnetic fields on plant metabolism. It deals with metabolite synthesis in the aforementioned conditions in microplants of Pyrus communis L. So far, there have been glimpses into the governing factors of plant biochemistry in vivo, and low-frequency pulsed magnestatic fields have been shown to induce additional electric currents in plant tissues, thus perturbing the value of cell membrane potential and causing the biosynthesis of new metabolites. In this study, sixty-seven metabolites synthesized in microplants within 3-72 h after treatment were identified and annotated. In total, thirty-one metabolites were produced. Magnetic-pulse treatment caused an 8.75-fold increase in the concentration of chlorogenic acid (RT = 8.33 ± 0.0197 min) in tissues and the perturbation of phenolic composition. Aucubin, which has antiviral and antistress biological activity, was identified as well. This study sheds light on the effect of magnetic fields on the biochemistry of low-molecular-weight metabolites of pear plants in vitro, thus providing in-depth metabolite analysis under optimized synthetic conditions. This study utilized high-resolution gas chromatography-mass spectrometry, metabolomics methods, stochastic dynamics mass spectrometry, quantum chemistry, and chemometrics, respectively. Stochastic dynamics uses the relationships between measurands and molecular structures of silylated carbohydrates, showing virtually identical mass spectra and comparable chemometrics parameters.
Collapse
Affiliation(s)
- Mikhail Upadyshev
- Laboratory of Virology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127422 Moscow, Russia;
| | - Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany;
| | - Svetlana Motyleva
- Federal State Budgetary Scientific Institution “Federal Scientific Center of Legumes and Groat Crops”, Molodezhnaya Str. 10, 302502 Oryol, Russia
| |
Collapse
|
12
|
Synan L, Ghazvini S, Uthaman S, Cutshaw G, Lee CY, Waite J, Wen X, Sarkar S, Lin E, Santillan M, Santillan D, Bardhan R. First Trimester Prediction of Preterm Birth in Patient Plasma with Machine-Learning-Guided Raman Spectroscopy and Metabolomics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38185-38200. [PMID: 37549133 PMCID: PMC10625673 DOI: 10.1021/acsami.3c04260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Preterm birth (PTB) is the leading cause of infant deaths globally. Current clinical measures often fail to identify women who may deliver preterm. Therefore, accurate screening tools are imperative for early prediction of PTB. Here, we show that Raman spectroscopy is a promising tool for studying biological interfaces, and we examine differences in the maternal metabolome of the first trimester plasma of PTB patients and those that delivered at term (healthy). We identified fifteen statistically significant metabolites that are predictive of the onset of PTB. Mass spectrometry metabolomics validates the Raman findings identifying key metabolic pathways that are enriched in PTB. We also show that patient clinical information alone and protein quantification of standard inflammatory cytokines both fail to identify PTB patients. We show for the first time that synergistic integration of Raman and clinical data guided with machine learning results in an unprecedented 85.1% accuracy of risk stratification of PTB in the first trimester that is currently not possible clinically. Correlations between metabolites and clinical features highlight the body mass index and maternal age as contributors of metabolic rewiring. Our findings show that Raman spectral screening may complement current prenatal care for early prediction of PTB, and our approach can be translated to other patient-specific biological interfaces.
Collapse
Affiliation(s)
- Lilly Synan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saman Ghazvini
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Che-Yu Lee
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Joshua Waite
- Department of Mechanical Engineering, Iowa state University, Ames, IA 50012, USA
| | - Xiaona Wen
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Soumik Sarkar
- Department of Mechanical Engineering, Iowa state University, Ames, IA 50012, USA
| | - Eugene Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Mark Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Donna Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
13
|
Luo H, Hang Y, Zhu H, Zhong Q, Peng S, Gu S, Fang X, Hu L. Rapid Identification of Carbapenemase-Producing Klebsiella pneumoniae Using Headspace Solid-Phase Microextraction Combined with Gas Chromatography-Mass Spectrometry. Infect Drug Resist 2023; 16:2601-2609. [PMID: 37152404 PMCID: PMC10162101 DOI: 10.2147/idr.s404742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Background Carbapenemase-producing Klebsiella pneumoniae is an unprecedented threat to public health, and its detection remains challenging. Analysis of microbial volatile organic compounds (VOCs) may offer a rapid way to determine bacterial antibiotic susceptibility. Purpose The aim of this study was to explore the VOCs released by carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). Methods Test bacteria were incubated in trypticase soy broth to the end of exponential growth phase, and imipenem was added in the middle time. Headspace VOCs were concentrated and analyzed using HS-SPME/GC-MS. Results The compound 3-methyl-1-butanol was found to be a biomarker among the 26 bacterial isolates (10 KPC-positive, 10 NDM-positive, 2 IMP-positive, 2 carbapenemase-negative CRKP, and 2 carbapenem-susceptible K. pneumonoiae). Conclusion This study explored a promising new strategy for the screening of carbapenemase-producing CRKP strains. Further research with larger sample sizes will potentially accelerate the application of biomarkers in routine microbiology.
Collapse
Affiliation(s)
- Hong Luo
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yaping Hang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Hongying Zhu
- Clinical Laboratory of Ganzhou People’s Hospital, Ganzhou, Jiangxi, People’s Republic of China
| | - Qiaoshi Zhong
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Suqin Peng
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Shumin Gu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xueyao Fang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
14
|
Tarakhovskaya E, Marcillo A, Davis C, Milkovska-Stamenova S, Hutschenreuther A, Birkemeyer C. Matrix Effects in GC–MS Profiling of Common Metabolites after Trimethylsilyl Derivatization. Molecules 2023; 28:molecules28062653. [PMID: 36985624 PMCID: PMC10053008 DOI: 10.3390/molecules28062653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Metabolite profiling using gas chromatography coupled to mass spectrometry (GC–MS) is one of the most frequently applied and standardized methods in research projects using metabolomics to analyze complex samples. However, more than 20 years after the introduction of non-targeted approaches using GC–MS, there are still unsolved challenges to accurate quantification in such investigations. One particularly difficult aspect in this respect is the occurrence of sample-dependent matrix effects. In this project, we used model compound mixtures of different compositions to simplify the study of the complex interactions between common constituents of biological samples in more detail and subjected those to a frequently applied derivatization protocol for GC–MS analysis, namely trimethylsilylation. We found matrix effects as signal suppression and enhancement of carbohydrates and organic acids not to exceed a factor of ~2, while amino acids can be more affected. Our results suggest that the main reason for our observations may be an incomplete transfer of carbohydrate and organic acid derivatives during the injection process and compound interaction at the start of the separation process. The observed effects were reduced at higher target compound concentrations and by using a more suitable injection-liner geometry.
Collapse
Affiliation(s)
- Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Vavilov Institute of General Genetics RAS, St. Petersburg Branch, 199034 St. Petersburg, Russia
| | - Andrea Marcillo
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Institute of Energy and Climate Research (IEK-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Caroline Davis
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Waters GmbH, 1130 Vienna, Austria
| | - Sanja Milkovska-Stamenova
- Bioanalytics Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- AP Diagnostics GmbH, 04103 Leipzig, Germany
| | - Antje Hutschenreuther
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Si-Hung L, Izumi Y, Bamba T. First proof-of-concept of UC/HILIC for extending the versatility of the current art of supercritical fluid separation. Anal Chim Acta 2023; 1240:340741. [PMID: 36641155 DOI: 10.1016/j.aca.2022.340741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Supercritical Fluid Chromatography (SFC), a high-throughput separation technique, has been widely applied as a promising routine method in pharmaceutical, pesticides, and metabolome analysis in the same way as conventional liquid chromatography and gas chromatography. Unified chromatography (UC), an advanced version of SFC, which applied gradient elution with mobile phase changing continuously from supercritical to subcritical and to liquid states, can further extend the SFC applications. UC mostly applying the popular mobile phase of 95%:5%/Methanol:Water with additives allows to analyze many hydrophilic compounds. However, many of phosphorylated metabolites or multi carboxylic acids show very poor peak shapes or even can't be eluted under UC conditions, thus hampering the UC's metabolome coverage. In this study, we proposed the first proof-of-concept of UC/HILIC, a novel strategy to extend the current UC metabolome coverage by employing an aqueous gradient right after the UC gradient on a single packed column in a single measurement. The proposed method showed significant improvement regarding the chromatographic performance and metabolome coverage, while still maintaining the precision and high throughput in comparison with conventional UC methods.
Collapse
Affiliation(s)
- Le Si-Hung
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Japan.
| |
Collapse
|
16
|
Boness HVM, de Sá HC, Dos Santos EKP, Canuto GAB. Sample Preparation in Microbial Metabolomics: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:149-183. [PMID: 37843809 DOI: 10.1007/978-3-031-41741-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Microbial metabolomics has gained significant interest as it reflects the physiological state of microorganisms. Due to the great variability of biological organisms, in terms of physicochemical characteristics and variable range of concentration of metabolites, the choice of sample preparation methods is a crucial step in the metabolomics workflow and will reflect on the quality and reliability of the results generated. The procedures applied to the preparation of microbial samples will vary according to the type of microorganism studied, the metabolomics approach (untargeted or targeted), and the analytical platform of choice. This chapter aims to provide an overview of the sample preparation workflow for microbial metabolomics, highlighting the pre-analytical factors associated with cultivation, harvesting, metabolic quenching, and extraction. Discussions focus on obtaining intracellular and extracellular metabolites. Finally, we introduced advanced sample preparation methods based on automated systems.
Collapse
Affiliation(s)
- Heiter V M Boness
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Hanna C de Sá
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Emile K P Dos Santos
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Gisele A B Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
17
|
Sherman ME, Smith RD, Gardner FM, Goodlett DR, Ernst RK. A Sensitive GC-MS Method for Quantitation of Lipid A Backbone Components and Terminal Phosphate Modifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2301-2309. [PMID: 36326685 PMCID: PMC9933694 DOI: 10.1021/jasms.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid A, the hydrophobic anchor of lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria, serves as a target for cationic antimicrobial peptides, such as polymyxins. Membrane stress from polymyxins results in activation of two-component regulatory systems that produce lipid A modifying enzymes. These enzymes add neutral moieties, such as aminoarabinose (AraN) and ethanolamine (EtN) to lipid A terminal phosphates that mask the phosphate's negative charge and inhibit electrostatic interaction with the cationic polymyxins. Currently, these modifications may be detected by MALDI-TOF MS; however, this analysis is only semiquantitative. Herein we describe a GC-MS method to quantitate lipid A backbone components, glucosamine (GlcN) and inorganic phosphate (Pi), along with terminal phosphate modifications AraN and EtN. In this assay, lipid A is isolated from Gram-negative bacterial samples, hydrolyzed into its individual moieties, and derivatized via methoximation followed by silylation prior to analysis via GC-MS. Changes in AraN and EtN quantity were characterized using a variety of regulatory mutants of Salmonella, revealing differences that were not detected using MALDI-TOF MS analysis. Additionally, an increase in the abundance of AraN and EtN modifications were observed when resistant Enterobacter and Escherichia coli strains were grown in the presence of colistin (polymyxin E). Lastly, increased levels of Pi were found in bisphosphorylated lipid A compared to monophosphorylated lipid A samples. Because lipid A modifications serve as indicators of polymyxin resistance in Gram-negative bacteria, this method provides the capacity to monitor polymyxin resistance by quantification of lipid A modification using GC-MS.
Collapse
Affiliation(s)
- Matthew E Sherman
- Department of Microbial Pathogenesis, University of Maryland─Baltimore, Baltimore, Maryland 21201, United States
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland─Baltimore, Baltimore, Maryland 21201, United States
| | - Francesca M Gardner
- Department of Microbial Pathogenesis, University of Maryland─Baltimore, Baltimore, Maryland 21201, United States
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Gdansk, International Centre for Cancer Vaccine Science, Gdansk, 80-210, Poland
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland─Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
18
|
Li G, Jian T, Liu X, Lv Q, Zhang G, Ling J. Application of Metabolomics in Fungal Research. Molecules 2022; 27:7365. [PMID: 36364192 PMCID: PMC9654507 DOI: 10.3390/molecules27217365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Metabolomics is an essential method to study the dynamic changes of metabolic networks and products using modern analytical techniques, as well as reveal the life phenomena and their inherent laws. Currently, more and more attention has been paid to the development of metabolic histochemistry in the fungus field. This paper reviews the application of metabolomics in fungal research from five aspects: identification, response to stress, metabolite discovery, metabolism engineering, and fungal interactions with plants.
Collapse
Affiliation(s)
- Guangyao Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tongtong Jian
- Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingtao Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
19
|
Zhan L, Hou Z, Wang Y, Liu H, Liu Y, Huang G. Rapid Profiling of Metabolic Perturbations to Antibiotics in Living Bacteria by Induced Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1960-1966. [PMID: 36106750 DOI: 10.1021/jasms.2c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid monitoring of real bacterial metabolic perturbations to antibiotics may be helpful to better understand the mechanisms of action and more targeted treatment. In this study, the real metabolic responses to antibiotic treatment in living bacteria were profiled rapidly by induced electrospray ionization mass spectrometry. Significant metabolic perturbations were profiled after antibiotic treatment compared with untreated bacteria. Similar and unique metabolic responses were observed with different antibiotic treatments. Further multivariable analysis was performed to determine significant metabolites as potential biomarkers. Moreover, different metabolic disturbances were detected for serial dilutions of antibiotic treatments. Overall, combined with induced electrospray ionization mass spectrometry, the rapid and real bacterial metabolic status caused by antibiotics was monitored, suggesting the potential application of our method in mechanism exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yu Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
20
|
Interspecific Interactions Drive Nonribosomal Peptide Production in Nodularia spumigena. Appl Environ Microbiol 2022; 88:e0096622. [PMID: 35862669 PMCID: PMC9361812 DOI: 10.1128/aem.00966-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nodularia spumigena is a bloom-forming cyanobacterium that produces several classes of nonribosomal peptides (NRPs) that are biologically active; however, the ecological roles of specific NRPs remain largely unknown. Here, we explored the involvement of NRPs produced by N. spumigena in interspecific interactions by coculturing the cyanobacterium and its algal competitors, the diatom Phaeodactylum tricornutum and the cryptomonad Rhodomonas salina, and measuring NRP levels and growth responses in all three species. Contrary to the expected growth suppression in the algae, it was N. spumigena that was adversely affected by the diatom, while the cryptomonad had no effect. Reciprocal effects of N. spumigena on the algae were manifested as the prolonged lag phase in R. salina and growth stimulation in P. tricornutum; however, these responses were largely attributed to elevated pH and not to specific NRPs. Nevertheless, the NRP levels in the cocultures were significantly higher than in the monocultures, with an up to 5-fold upregulation of cell-bound nodularins and exudation of nodularin and anabaenopeptin. Thus, chemically mediated interspecific interactions can promote NRP production and release by cyanobacteria, resulting in increased input of these compounds into the water. IMPORTANCE NRPs were involved in growth responses of both cyanobacteria and algae; however, the primary driver of the growth trajectories was high pH induced by N. spumigena. Thus, the pH-mediated inhibition of eukaryotic phytoplankton may be involved in the bloom formation of N. spumigena. We also report, for the first time, the reciprocal growth inhibition of N. spumigena by diatoms resistant to alkaline conditions. As all species in this study can co-occur in the Baltic Sea during summer, these findings are highly relevant for understanding ecological interactions in planktonic communities in this and other systems experiencing regular cyanobacteria blooms.
Collapse
|
21
|
Jajin MG, Abooshahab R, Hooshmand K, Moradi A, Siadat SD, Mirzazadeh R, Chegini KG, Hedayati M. Gas chromatography-mass spectrometry-based untargeted metabolomics reveals metabolic perturbations in medullary thyroid carcinoma. Sci Rep 2022; 12:8397. [PMID: 35590091 PMCID: PMC9120505 DOI: 10.1038/s41598-022-12590-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Medullary thyroid cancer (MTC) is a rare tumor that arises from parafollicular cells within the thyroid gland. The molecular mechanism underlying MTC has not yet been fully understood. Here, we aimed to perform plasma metabolomics profiling of MTC patients to explore the perturbation of metabolic pathways contributing to MTC tumorigenesis. Plasma samples from 20 MTC patients and 20 healthy subjects were obtained to carry out an untargeted metabolomics by gas chromatography–mass spectrometry. Multivariate and univariate analyses were employed as diagnostic tools via MetaboAnalyst and SIMCA software. A total of 76 features were structurally annotated; among them, 13 metabolites were selected to be differentially expressed in MTC patients compared to controls (P < 0.05). These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids and amino acid metabolisms, mostly leucine, glutamine, and glutamate, tightly responsible for tumor cells' energy production. Moreover, according to the receiver operating characteristic curve analysis, metabolites with the area under the curve (AUC) value up to 0.90, including linoleic acid (AUC = 0.935), linolenic acid (AUC = 0.92), and leucine (AUC = 0.948) could discriminate MTC from healthy individuals. This preliminary work contributes to existing knowledge of MTC metabolism by providing evidence of a distinctive metabolic profile in MTC patients relying on the metabolomics approach.
Collapse
Affiliation(s)
- Morteza Ghazanfari Jajin
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Curtin Medical School, Curtin University, Bentley, 6102, Australia
| | | | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Koorosh Goodarzvand Chegini
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Nam SL, Tarazona Carrillo K, de la Mata AP, de Bruin OM, Doukhanine E, Harynuk J. Evaluation of fresh, frozen, and lyophilized fecal samples by SPME and derivatization methods using GC×GC-TOFMS. Metabolomics 2022; 18:25. [PMID: 35426515 DOI: 10.1007/s11306-022-01881-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Feces is a highly complex matrix containing thousands of metabolites. It also contains live bacteria and enzymes, and does not have a static chemistry. Consequently, proper control of pre-analytical parameters is critical to minimize unwanted variations in the samples. However, no consensus currently exists on how fecal samples should be stored/processed prior to analysis. OBJECTIVE The effects of sample handling conditions on fecal metabolite profiles and abundances were examined using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). METHODS Solid-phase microextraction (SPME) and derivatization via trimethylsilylation (TMS) were employed as complementary techniques to evaluate fresh, frozen, and lyophilized fecal samples with expanded coverage of the fecal metabolome. The total number of detected peaks and the signal intensities were compared among the different handling conditions. RESULTS Our analysis revealed that the metabolic profiles of fecal samples depend greatly on sample handling and processing conditions, which had a more pronounced effect on results obtained by SPME than by TMS derivatization. Overall, lyophilization resulted in a greater amount of total and class-specific metabolites, which may be attributed to cell lysis and/or membrane disintegration. CONCLUSIONS A comprehensive comparison of the sample handling conditions provides a deeper understanding of the physicochemical changes that occur within the samples during freezing and lyophilization. Based on our results, snap-freezing at -80 °C would be preferred over lyophilization for handling samples in the field of fecal metabolomics as this imparts the least change from the fresh condition.
Collapse
Affiliation(s)
- Seo Lin Nam
- Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada
| | | | - A Paulina de la Mata
- Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada
| | | | | | - James Harynuk
- Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Nam M, Kim MS, Hwang GS. Optimization and validation of capillary electrophoresis- and gas chromatography-tandem mass spectrometry methods for the analysis of intermediate metabolites in glycolysis and pentose phosphate pathways within biological samples. J Chromatogr A 2021; 1656:462531. [PMID: 34520889 DOI: 10.1016/j.chroma.2021.462531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Highly selective methods for the analysis of intermediate metabolites involved in glycolysis and phosphate pentose pathways are essential for metabolism and metabolic flux studies. However, the successful separation of phosphorylated compounds is difficult due to their high polarity, as well as their structural isomers. In this study, phosphorylated compounds in spiked serum samples were analyzed using capillary electrophoresis tandem mass spectrometry (CE-MS/MS) and gas chromatography (GC)-MS/MS. Following liquid-liquid extraction, ultrafiltration and derivatization steps were needed to perform CE-MS/MS and GC-MS/MS, respectively. The CE-MS/MS method allowed for the identification and quantification of all 15 biologically important phosphorylated compounds, whereas only 13 compounds were identified and quantified by GC-MS/MS. Both methods demonstrated wide linear ranges, good interday (<9.6%: CE-MS/MS; <14.7%: GC-MS/MS) and intraday (<13.0%: CE-MS/MS; <14.9%: GC-MS/MS) variability, and limits of detection (LODs) in the ranges of 0.25-2 and 0.05-0.5 μmol/L for CE-MS/MS and GC-MS/MS, respectively. In the phosphorylated compound stability test, the instability of glyceraldehyde 3-phosphate (GA3P) and dihydroxyacetone phosphate (DHAP) was observed during freeze-thaw and long-term storage due to reversible isomerization. The results of CE-MS/MS and GC-MS/MS analysis showed that the concentrations of phosphorylated compounds determined using the two methods matched closely, while that of glycerol 3-phosphate (G3P) showed some variability in cell extracts. Therefore, while both CE-MS/MS and GC-MS/MS are suitable for analyzing metabolites resulting from the glycolysis and pentose phosphate pathways, additional validation is needed for some compounds, depending on the background matrix.
Collapse
Affiliation(s)
- Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min-Sun Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Department of Chenistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
24
|
Liu R, Bao ZX, Zhao PJ, Li GH. Advances in the Study of Metabolomics and Metabolites in Some Species Interactions. Molecules 2021; 26:3311. [PMID: 34072976 PMCID: PMC8197931 DOI: 10.3390/molecules26113311] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
In the natural environment, interactions between species are a common natural phenomena. The mechanisms of interaction between different species are mainly studied using genomic, transcriptomic, proteomic, and metabolomic techniques. Metabolomics is a crucial part of system biology and is based on precision instrument analysis. In the last decade, the emerging field of metabolomics has received extensive attention. Metabolomics not only provides a qualitative and quantitative method for studying the mechanisms of interactions between different species, but also helps clarify the mechanisms of defense between the host and pathogen, and to explore new metabolites with various biological activities. This review focuses on the methods and progress of interspecies metabolomics. Additionally, the prospects and challenges of interspecies metabolomics are discussed.
Collapse
Affiliation(s)
| | | | | | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (R.L.); (Z.-X.B.); (P.-J.Z.)
| |
Collapse
|
25
|
Lage S, Mazur-Marzec H, Gorokhova E. Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Sci Rep 2021; 11:8970. [PMID: 33903638 PMCID: PMC8076297 DOI: 10.1038/s41598-021-88361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
Collapse
Affiliation(s)
- Sandra Lage
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden ,grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Hanna Mazur-Marzec
- grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Elena Gorokhova
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
26
|
Microbial Metabolomics: From Methods to Translational Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33791977 DOI: 10.1007/978-3-030-51652-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Most microbe-associated infectious diseases severely affect human health. However, clinical diagnosis of pathogenic diseases remains challenging due to the lack of specific and highly reliable methods. To better understand the diagnosis, pathogenesis, and treatment of these diseases, systems biology-driven metabolomics goes beyond the annotated phenotype and better targets the functions than conventional approaches. As a novel strategy for analysis of metabolomes in microbes, microbial metabolomics has been recently used to study many diseases, such as obesity, urinary tract infection (UTI), and hepatitis C. In this chapter, we attempt to introduce various microbial metabolomics methods to better interpret the microbial metabolism underlying a diversity of infectious diseases and inspire scientists to pay more attention to microbial metabolomics, enabling broadly and efficiently its translational applications to infectious diseases, from molecular diagnosis to therapeutic discovery.
Collapse
|
27
|
A rapid GC method coupled with quadrupole or time of flight mass spectrometry for metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122355. [PMID: 32920480 DOI: 10.1016/j.jchromb.2020.122355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) is an ideal tool for analyzing the intermediates of tricarboxylic acid cycle and glycolysis, sugars, organic acids and amino acids, etc. High-throughput metabolomics methods are required by large-scale clinical researches, and time of flight mass spectrometry (TOF MS) having fast scanning rate is preferable for rapid GC. Quadrupole MS (qMS) instruments have 95% market share, and their potential in rapid metabolomics is worth being studied. In this work, a within 15-min GC program was established and matched by qMS scanning for plasma metabolome analysis after N-methyl-N-(trimethylsilyl)-trifluoroacetamide derivatization. Compared to the longer-time program GC-qMS method, the rapid GC-qMS method had nearly no metabolome information loss, and it had excellent profile performance in repeatability, intra-day and inter-day precision, sampling range, linearity and extraction recovery. Compared to TOF MS, qMS achieved similar results in investigating lung cancer serum metabolic disruptions. Partial least squares-discriminant analysis revealed that the two datasets acquired by qMS and TOF MS had very similar model parameters, and most of top ranked differential metabolites were the same. This study provides a rapid and economical GC-qMS metabolomics method for researchers. Still, MS having faster scanning rate and higher sensitivity are recommended, if possible, to detect more small peaks and some co-eluted peaks.
Collapse
|
28
|
Sailwal M, Das AJ, Gazara RK, Dasgupta D, Bhaskar T, Hazra S, Ghosh D. Connecting the dots: Advances in modern metabolomics and its application in yeast system. Biotechnol Adv 2020; 44:107616. [DOI: 10.1016/j.biotechadv.2020.107616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
|
29
|
Miao Q, Zhao L, Wang Y, Hao F, Sun P, He P, Liu Y, Huang J, Liu X, Liu X, Deng G, Li H, Li L, Tang Y, Wang L, Feng M, Jia W. Microbial metabolomics and network analysis reveal fungistatic effect of basil (Ocimum basilicum) oil on Candida albicans. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113002. [PMID: 32502652 DOI: 10.1016/j.jep.2020.113002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fungal infections remain a serious problem worldwide that require effective therapeutic strategies. Essential oil of basil (Ocimum basilicum L., BEO) being traditionally used extensively for the treatment of bacterial and fungal infection has a long history. However, the potential mechanism of action was still obscure, especially from the metabolic perspective. MATERIALS AND METHODS The fungistatic effect of BEO on Candida albicans (C. albicans) was evaluated by measurement of minimum inhibitory concentration (MIC) and morphological analysis. A high-coverage microbial metabolomics approach was utilized to identify the alterations of intracellular metabolites of C. albicans at mid-logarithmic growth phase in response to the subinhibitory concentration of BEO, by using gas chromatography coupled to time-of-fight mass spectrometry (GC-TOFMS). Following the metabolic fingerprinting, systematic network analysis was performed to illustrate the potential mechanism of BEO involved in the suppression of C. albicans. RESULTS The damage in cellular membranes of C. albicans treated by BEO above MIC was observed on the scanning electron microscope (SEM) micrographs. Metabolomics results showed that, among 140 intracellular metabolites identified by comparison with reference standards, thirty-four had significantly changed abundances under 0.2 MIC of BEO treatment, mainly involving in central carbon metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway and TCA cycle), amino acids, polyamines and lipids metabolism. Pathway and network analyses further found that fifteen ingredients of BEO mainly terpenoids and phenyl-propanoids, potentially participated in the metabolic regulation and may be responsible for the suppression of C. albicans. CONCLUSIONS The findings highlighted that integrated microbial metabolomics and network analyses could provide a methodological support in understanding the functional mechanisms of natural antimicrobial agents and contribute to drug discovery.
Collapse
Affiliation(s)
- Qiandan Miao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yuting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Fangjia Hao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Peipei Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Peng He
- Minghang Hospital & School of Pharmacy, Fudan University, Shanghai, 201199, China; Shanghai Engineering Research Center of Immunotherapeutics, Shanghai, 201203, China
| | - Yumin Liu
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiashuai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Guoying Deng
- Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, 200233, China
| | - Hongsen Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lingai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yingao Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lixin Wang
- Integrated TCM & Western Medicine Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, 200433, China
| | - Meiqing Feng
- Minghang Hospital & School of Pharmacy, Fudan University, Shanghai, 201199, China; Shanghai Engineering Research Center of Immunotherapeutics, Shanghai, 201203, China.
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
30
|
Heyen S, Scholz-Böttcher BM, Rabus R, Wilkes H. Method development and validation for the quantification of organic acids in microbial samples using anionic exchange solid-phase extraction and gas chromatography-mass spectrometry. Anal Bioanal Chem 2020; 412:7491-7503. [PMID: 32970177 PMCID: PMC7533261 DOI: 10.1007/s00216-020-02883-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 11/07/2022]
Abstract
Organic acids play a key role in central metabolic functions of organisms, are crucial for understanding regulatory processes and are ubiquitous inside the cell. Therefore, quantification of these compounds provides a valuable approach for studying dynamics of metabolic processes, in particular when the organism faces changing environmental conditions. However, the extraction and analysis of organic acids can be challenging and validated methods available in this field are limited. In this study, we developed a method for the extraction and quantification of organic acids from microbial samples based on solid-phase extraction on a strong anionic exchange cartridge and gas chromatographic-mass spectrometric analysis. Full method validation was conducted to determine quality parameters of the new method. Recoveries for 12 of the 15 aromatic and aliphatic acids were between 100 and 111% and detection limits between 3 and 272 ng/mL. The ranges for the regression coefficients and process standard deviations for these compound classes were 0.9874–0.9994 and 0.04–0.69 μg/mL, respectively. Limitations were encountered when targeting aliphatic acids with hydroxy, oxo or enol ester functions. Finally, we demonstrated the applicability of the method on cell extracts of the bacterium Escherichia coli and the dinoflagellate Prorocentrum minimum. Graphical abstract ![]()
Collapse
Affiliation(s)
- Simone Heyen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany
| | - Barbara M Scholz-Böttcher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany.
| |
Collapse
|
31
|
Zou K, Turner K, Zheng D, Hinkley JM, Kugler BA, Hornby PJ, Lenhard J, Jones TE, Pories WJ, Dohm GL, Houmard JA. Impaired glucose partitioning in primary myotubes from severely obese women with type 2 diabetes. Am J Physiol Cell Physiol 2020; 319:C1011-C1019. [PMID: 32966127 DOI: 10.1152/ajpcell.00157.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to determine whether intramyocellular glucose partitioning was altered in primary human myotubes derived from severely obese women with type 2 diabetes. Human skeletal muscle cells were obtained from lean nondiabetic and severely obese Caucasian females with type 2 diabetes [body mass index (BMI): 23.6 ± 2.6 vs. 48.8 ± 1.9 kg/m2, fasting glucose: 86.9 ± 1.6 vs. 135.6 ± 12.0 mg/dL, n = 9/group]. 1-[14C]-Glucose metabolism (glycogen synthesis, glucose oxidation, and nonoxidized glycolysis) and 1- and 2-[14C]-pyruvate oxidation were examined in fully differentiated myotubes under basal and insulin-stimulated conditions. Tricarboxylic acid cycle intermediates were determined via targeted metabolomics. Myotubes derived from severely obese individuals with type 2 diabetes exhibited impaired insulin-mediated glucose partitioning with reduced rates of glycogen synthesis and glucose oxidation and increased rates of nonoxidized glycolytic products, when compared with myotubes derived from the nondiabetic individuals (P < 0.05). Both 1- and 2-[14C]-pyruvate oxidation rates were significantly blunted in myotubes from severely obese women with type 2 diabetes compared with myotubes from the nondiabetic controls. Lastly, concentrations of tricarboxylic acid cycle intermediates, namely, citrate (P < 0.05), cis-aconitic acid (P = 0.07), and α-ketoglutarate (P < 0.05), were lower in myotubes from severely obese women with type 2 diabetes. These data suggest that intramyocellular insulin-mediated glucose partitioning is intrinsically altered in the skeletal muscle of severely obese women with type 2 diabetes in a manner that favors the production of glycolytic end products. Defects in pyruvate dehydrogenase and tricarboxylic acid cycle may be responsible for this metabolic derangement associated with type 2 diabetes.
Collapse
Affiliation(s)
- Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| | - Kristen Turner
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,Department of Physiology, East Carolina University, Greenville, North Carolina
| | - J Matthew Hinkley
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Benjamin A Kugler
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| | - Pamela J Hornby
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - James Lenhard
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Terry E Jones
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina
| | - Walter J Pories
- Department of Surgery, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - G Lynis Dohm
- Department of Physiology, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
32
|
Li J, Rumancev C, Lutze HV, Schmidt TC, Rosenhahn A, Schmitz OJ. Effect of ozone stress on the intracellular metabolites from Cobetia marina. Anal Bioanal Chem 2020; 412:5853-5861. [PMID: 32676676 PMCID: PMC7413921 DOI: 10.1007/s00216-020-02810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023]
Abstract
A GCxGC-MS system was employed with a non-polar × mid-polar column set for the metabolic non-target analysis of Cobetia marina, the model bacteria for marine biofouling. C. marina was treated with ozone to investigate the intracellular metabolic state change under oxidative stress. A minimal inhibitory concentration test was involved to guarantee that the applied ozone dosages were not lethal for the cells. In this study, non-target analyses were performed to identify the metabolites according to the NIST database. As a result, over 170 signals were detected under normal living conditions including 35 potential metabolites. By the comparison of ozone-treated and non-treated samples, five compounds were selected to describe observed trends of signals in the contour plots. Oleic acid exhibited a slight growth by increasing ozone dosage. In contrast, other metabolites such as the amino acid L-proline showed less abundance after ozone treatment, which was more evident once ozone dosage was raised. Thus, this work could provide a hint for searching for up/downregulating factors in such environmental stress conditions for C. marina. Graphical abstract.
Collapse
Affiliation(s)
- Junjie Li
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Christoph Rumancev
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstr. 150, 44780, Bochum, Germany
| | - Holger V Lutze
- Instrumental Analytical Chemistry and Centre for Environmental and Water Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.,Technical University of Darmstadt, Department of Civil and Environmental Engineering, Institut IWAR, Franziska Braun Str. 7, 64287, Darmstadt, Germany.,IWW Water Centre, Moritzstr. 26, 45476, Mülheim an der Ruhr, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Environmental and Water Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.,IWW Water Centre, Moritzstr. 26, 45476, Mülheim an der Ruhr, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstr. 150, 44780, Bochum, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.
| |
Collapse
|
33
|
Khodadadi M, Pourfarzam M. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography-mass spectrometry. Metabolomics 2020; 16:66. [PMID: 32419109 DOI: 10.1007/s11306-020-01687-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human urine gives evidence of the metabolism in the body and contains different metabolites at various concentrations. A number of analytical techniques including mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been used to obtain metabolites levels in urine samples. However, gas chromatography-mass spectrometry (GC-MS) is one of the most widely used techniques for urinary metabolomics studies due to its higher sensitivity, resolution, reproducibility, reliability, relatively low cost and ease of operation compared to liquid chromatography-mass spectrometry and NMR. AIM OF REVIEW This review looks at various aspects of urine preparation prior to analysis by GC-MS including sample storage, urease pretreatment, derivatization, use of internal standard and quality control samples for data correction. In addition, most common types of inlet liners, ionization techniques and columns are discussed and a summary of mass analyzers are also highlighted. Lastly, the role of retention index in metabolite identification and data normalization methods are presented. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is summarizing methods of sample storage, pretreatment, and GC-MS analysis that are mostly used in urine metabolomics studies. Specific emphasis is given to the critical steps within the GC-MS urine metabolomics that those new to this field need to be aware of and the remaining challenges that require further attention and studies.
Collapse
Affiliation(s)
- Mohammad Khodadadi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
34
|
Dai M, Ma T, Niu Y, Zhang M, Zhu Z, Wang S, Liu H. Analysis of low-molecular-weight metabolites in stomach cancer cells by a simplified and inexpensive GC/MS metabolomics method. Anal Bioanal Chem 2020; 412:2981-2991. [PMID: 32185442 DOI: 10.1007/s00216-020-02543-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/01/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022]
Abstract
GC/MS coupled metabolomics analysis, using a simplified and much less expensive silylation process with trimethylsilyl cyanide (TMSCN), was conducted to investigate metabolic abnormalities in stomach cancer cells. Under optimized conditions for derivatization by TMSCN and methanol extraction, 228 metabolites were detected using GC/MS spectrometry analysis, and 89 metabolites were identified using standard compounds and the NIST database. Ten metabolite levels were found to be lower in stomach cancer cells relative to normal cells. Among those ten metabolites, four metabolites-ribose, proline, pyroglutamic acid, and glucose-were known to be linked to cancers. In particular, pyroglutamic acid level showed a drastic reduction of 22-fold in stomach cancer cells. Since glutamine and glutamic acid are known to undergo cyclization to pyroglutamic acid, the 22-fold reduction might be the actual reduction in the levels of glutamine and/or glutamic acid-both known to be cancer-related. Hence, the marked reduction in pyroglutamic acid level might serve as a biomarker to aid early detection of stomach cancer. Graphical abstract.
Collapse
Affiliation(s)
- Min Dai
- College of Chemistry, Zhengzhou University, 75 University Road, Zhengzhou, 450052, Henan, China
| | - Ting Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Ying Niu
- College of Chemistry, Zhengzhou University, 75 University Road, Zhengzhou, 450052, Henan, China
| | - Mengmeng Zhang
- College of Chemistry, Zhengzhou University, 75 University Road, Zhengzhou, 450052, Henan, China
| | - Zhiwu Zhu
- College of Chemistry, Zhengzhou University, 75 University Road, Zhengzhou, 450052, Henan, China
| | - Shaomin Wang
- College of Chemistry, Zhengzhou University, 75 University Road, Zhengzhou, 450052, Henan, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|
35
|
Mairinger T, Weiner M, Hann S, Troyer C. Selective and Accurate Quantification of N-Acetylglucosamine in Biotechnological Cell Samples via GC-MS/MS and GC-TOFMS. Anal Chem 2020; 92:4875-4883. [PMID: 32096989 PMCID: PMC7205392 DOI: 10.1021/acs.analchem.9b04582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
N-Acetylglucosamine is a key component of bacterial
and fungal cell walls and of the extracellular matrix of animal cells.
It plays a variety of roles at the cell surface structure and is under
discussion to be involved in signaling pathways. The presence of a
number of N-acetylhexosamine stereoisomers in samples
of biological or biotechnological origin demands for dedicated high
efficiency separation methods, due to identical exact mass and similar
fragmentation patterns of the stereoisomers. Gas chromatography offers
high sample capacity, separation efficiency, and precision under repeatability
conditions of measurement, which is a necessity for the analysis of
low abundant stereoisomers in biological samples. Automated online
derivatization facilitates to overcome the main obstacle for the use
of gas chromatography in metabolomics, namely, the derivatization
of polar metabolites prior to analysis. Using alkoximation and subsequent
trimethylsilylation, carbohydrates and their derivatives are known
to show several derivatives, since derivatization is incomplete as
well as highly matrix dependent inherent to the high number of functional
groups present in carbohydrates. A method based on efficient separation
of ethoximated and trimethylsilylated N-acetylglucosamines
was developed. Accurate absolute quantification is enabled using biologically
derived 13C labeled internal standards eliminating systematic
errors related to sample pretreatment and analysis. Due to the lack
of certified reference materials, a methodological comparison between
tandem and time-of-flight mass spectrometric instrumentation was performed
for mass spectrometric assessment of trueness. Both methods showed
limits of detection in the lower femtomol range. The methods were
applied to biological samples of Penicillium chrysogenum cultivations with different matrices revealing excellent agreement
of both mass spectrometric techniques.
Collapse
Affiliation(s)
- Teresa Mairinger
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Weiner
- Novartis Technical Operations Anti-Infectives, MS&T Laboratories, Biochemiestraße 10, 6250 Kundl, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christina Troyer
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
36
|
Lin CH, Lu CY, Tseng AT, Huang CJ, Lin YJ, Chen CY. The ptsG Gene Encoding the Major Glucose Transporter of Bacillus cereus C1L Participates in Root Colonization and Beneficial Metabolite Production to Induce Plant Systemic Disease Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:256-271. [PMID: 31809253 DOI: 10.1094/mpmi-06-19-0165-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rhizosphere interactions between microorganisms and plants have great influence on plant health. Bacillus cereus C1L, an induced systemic resistance (ISR)-eliciting rhizobacterium from Lilium formosanum, can protect monocot and dicot plants from disease challenges. To identify the ISR-involved bacterial genes, the systemic protection effect of transposon-tagged mutants of B. cereus C1L against southern corn leaf blight (SCLB) was surveyed, and a mutant of the ptsG gene encoding glucose-specific permease of the phosphotransferase system was severely impaired in the abilities of disease suppression and root colonization. The ptsG mutant lost the preferential utilization of glucose and showed reduction of glucose-assisted growth in minimal medium. A promoter-based reporter assay revealed that ptsG expression could be activated by certain sugar constituents of maize root exudates, among which B. cereus C1L exhibited the highest chemotactic response toward glucose, whereas neither of them could attract the ptsG mutant. Additionally, ptsG deficiency almost completely abolished glucose uptake of B. cereus C1L. Metabolite analysis indicated that the lack of ptsG undermined glucose-induced accumulation of acetoin and 2,3-butanediol in B. cereus C1L, both eliciting maize ISR against SCLB. Pretreatments with B. cereus C1L, ptsG mutant, acetoin, and 2,3-butanediol enhanced defense-related reactive oxygen species accumulation and callose deposition at different levels that were positively correlated to their ISR-eliciting activities. Thus, glucose uptake-mediating ptsG participates in ISR elicitation by endowing B. cereus C1L with the full capacities for root colonization and beneficial glucose metabolite production, providing a clue regarding how ISR-mediating rhizobacteria create a mutually beneficial relationship with various plant species.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Yen Lu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Ann-Tze Tseng
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Jui Huang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Medicine, National Chiayi University, Chiayi 60004, Taiwan
| | - Yu-Ju Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
37
|
Li M, Song J, Ma Q, Kong D, Zhou Y, Jiang X, Parales R, Ruan Z, Zhang Q. Insight into the Characteristics and New Mechanism of Nicosulfuron Biodegradation by a Pseudomonas sp. LAM1902. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:826-837. [PMID: 31895558 DOI: 10.1021/acs.jafc.9b06897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A total of five strains of nicosulfuron-degrading bacteria were isolated from a continuously cultivated microbial consortium using culturomics. Among them, a novel Pseudomonas strain, LAM1902, with the highest degradation efficiency was investigated in detail. The characteristics of nicosulfuron-degradation by LAM1902 were investigated and optimized by response surface analysis. Furthermore, non-targeted metabolomic analysis of extracellular and intracellular biodegradation of nicosulfuron by LAM1902 was carried out by liquid chromatography/mass spectroscopy (LC-MS) and gas chromatography-time-of-flight/mass spectroscopy (GC-TOF/MS). It was found that nicosulfuron was degraded by LAM1902 mainly via breaking the sulfonylurea bridge, and this degradation might be attributed to oxalate accumulation. The results of GC-TOF/MS also showed that the intracellular degradation of nicosulfuron did not occur. However, nicosulfuron exerted a significant influence on the metabolism of inositol phosphate, pyrimidine, arginine/proline, glyoxylate, and dicarboxylate metabolism and streptomycin biosynthesis. The changes of myo-inositol, trehalose, and 3-aminoisobutanoic acid were proposed as a mechanism of self-protection against nicosulfuron stress.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Bioscience and Engineering , Jiangxi Agricultural University , Nanchang 330045 , PR China
| | - Jinlong Song
- Chinese Academy of Fishery Sciences , Beijing 100141 , China
| | - Qingyun Ma
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Delong Kong
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yiqing Zhou
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Xu Jiang
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Rebecca Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences , University of California, Davis , Davis 95616 , California , United States
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Qinghua Zhang
- College of Bioscience and Engineering , Jiangxi Agricultural University , Nanchang 330045 , PR China
| |
Collapse
|
38
|
Abstract
Metabolomics is becoming increasingly important in bioscience research as it provides a comprehensive analytical platform for a better understanding of the metabolic functions of cells and organisms. Recently, microbial metabolomics has been utilized in diverse research areas, including detection and diagnosis of pathogens, metabolic engineering, and drug discovery. An efficient and reproducible method to measure the intracellular metabolites of a specific microbial organism is a key prerequisite for utilizing metabolome analysis in microbiological research. In this chapter, we describe a workflow focusing on the extraction and quantification of intracellular metabolites of Staphylococcus aureus. Fast quenching with chilled methanol is applied to minimize metabolite leakage, while solvent extraction is used to obtain both polar and nonpolar fractions, which are then analyzed by respective liquid chromatography-mass spectrometry (LC-MS) methods for characterizing and quantifying the intracellular metabolites of S. aureus. This protocol is demonstrated to be an efficient method for analyzing polar and nonpolar intracellular metabolites of S. aureus.
Collapse
Affiliation(s)
- Ting Lei
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Qingqing Mao
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA
| | - Yinduo Ji
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA.
| |
Collapse
|
39
|
Mairinger T, Hann S. Determination of Isotopologue and Tandem Mass Isotopologue Ratios Using Gas Chromatography Chemical Ionization Time of Flight Mass Spectrometry - Methodology and Uncertainty of Measurement. Methods Mol Biol 2020; 2088:1-16. [PMID: 31893367 DOI: 10.1007/978-1-0716-0159-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The accurate and precise analysis of isotopologue and tandem mass isotopologue ratios in heavy stable isotope labeling experiments is a critical part of assessing absolute intracellular metabolic fluxes. Resulting from feeding the organism of interest with a specifically isotope-labeled substrate, the principal characteristics of these labeling experiments are the metabolites' non-naturally distributed isotopologue patterns. For the purpose of inferring metabolic rates by maximizing the fit between a priori simulated and experimentally obtained labeling patterns, 13C is the preferred stable isotope of use.The analysis of the obtained labeling patterns can be approached by different mass spectrometric approaches. Gas chromatography (GC) features broad metabolite coverage and excellent separation efficiency of biologically relevant isomers. These advantages compensate for laborious derivatization steps and the resulting need for interference correction for natural abundant isotopes.Here, we describe a workflow based on GC-high resolution mass spectrometry with chemical ionization for the analysis of carbon-isotopologue distributions and some positional labeling information of primary metabolites. To study the associated measurement uncertainty of the resulting 13C labeling patterns, guidance to uncertainty estimation according to the EURACHEM guidelines with Monte-Carlo simulation is provided.
Collapse
Affiliation(s)
- Teresa Mairinger
- Department of Chemistry, University of Natural Resources and Life Sciences-BOKU Vienna, Vienna, Austria.
- Department of Environmental Chemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | - Stephen Hann
- Department of Chemistry, University of Natural Resources and Life Sciences-BOKU Vienna, Vienna, Austria
- Austrian Center for Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
40
|
Di Giovanni N, Meuwis MA, Louis E, Focant JF. Untargeted Serum Metabolic Profiling by Comprehensive Two-Dimensional Gas Chromatography–High-Resolution Time-of-Flight Mass Spectrometry. J Proteome Res 2019; 19:1013-1028. [DOI: 10.1021/acs.jproteome.9b00535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nicolas Di Giovanni
- Department of Chemistry, Organic and Biological Analytical Chemistry Group, Quartier Agora, University of Liège, Allée du Six Août, B6c, B-4000 Liège (Sart Tilman), Belgium
| | - Marie-Alice Meuwis
- GIGA institute, Translational Gastroenterology and CHU de Liège, Hepato-Gastroenterology and Digestive Oncology, Quartier Hôpital, University of Liège, Avenue de l’Hôpital 13, B34-35, B-4000 Liège, Belgium
| | - Edouard Louis
- GIGA institute, Translational Gastroenterology and CHU de Liège, Hepato-Gastroenterology and Digestive Oncology, Quartier Hôpital, University of Liège, Avenue de l’Hôpital 13, B34-35, B-4000 Liège, Belgium
| | - Jean-François Focant
- Department of Chemistry, Organic and Biological Analytical Chemistry Group, Quartier Agora, University of Liège, Allée du Six Août, B6c, B-4000 Liège (Sart Tilman), Belgium
| |
Collapse
|
41
|
Tischer A, Antelo G, Coltro G, Finke CM, Gonsalves W, Pardanani A, Ketterling R, Mangaonkar A, Gangat N, Tefferi A, Patnaik MM, Lasho TL. Functional evaluation of isocitrate dehydrogenase 1 and 2 variants of unclear significance in chronic myeloid neoplasms. Leuk Res 2019; 87:106264. [PMID: 31706195 DOI: 10.1016/j.leukres.2019.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Guadalupe Antelo
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giacomo Coltro
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy M Finke
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wilson Gonsalves
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rhett Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Abhishek Mangaonkar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Terra L Lasho
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
42
|
Kwak M, Kang K, Wang Y. Methods of Metabolite Identification Using MS/MS Data. JOURNAL OF COMPUTER INFORMATION SYSTEMS 2019. [DOI: 10.1080/08874417.2019.1681328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Development and validation of a systematic platform for broad-scale profiling of microbial metabolites. Talanta 2019; 200:537-546. [DOI: 10.1016/j.talanta.2019.03.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/13/2019] [Accepted: 03/24/2019] [Indexed: 01/23/2023]
|
44
|
Subramanian P, Gurunathan J. Differential Production of Pigments by Halophilic Bacteria Under the Effect of Salt and Evaluation of Their Antioxidant Activity. Appl Biochem Biotechnol 2019; 190:391-409. [PMID: 31363982 DOI: 10.1007/s12010-019-03107-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
Microorganisms that survive in the high salt environment have been shown to be a potential source for metabolites with pharmaceutical importance. In the present study, we have investigated the effect of 5 and 10% (w/v) NaCl on growth, biochemical changes, and metabolite production in seven moderately halophilic bacteria isolated from the salterns/mangrove area of South India. Metabolite production by Bacillus VITPS3 increased by 3.18-fold in the presence of 10% (w/v) NaCl concentration. Total phenolic and flavonoid content increased in Bacillus VITPS5 (11.3-fold) and Planococcus maritimus VITP21 (5.99-fold) whereas β-carotene content was less at higher NaCl concentrations. VITP21 and VITPS5, in response to NaCl, produced metabolites with higher (6.72- and 4.91-fold) DPPH and ABTS radical scavenging activity. UV/visible spectrophotometry of the extracts confirmed the presence of flavonoids, phenolics, and related compounds. 1H-NMR spectra indicated substantial changes in the metabolite production in response to salt concentration. Principal component analysis (PCA) revealed that VITP21 extracts exhibited the highest antioxidant activity compared with other extracts. The present study presents the first report on the comparative analysis of pigment production by moderate halophilic bacteria, in response to the effect of salt and their relation to radical scavenging property.
Collapse
Affiliation(s)
- Prathiba Subramanian
- Department of Biotechnology, School of BioScience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Jayaraman Gurunathan
- Department of Biotechnology, School of BioScience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
45
|
Si-Hung L, Troyer C, Causon T, Hann S. Sensitive quantitative analysis of phosphorylated primary metabolites using selective metal oxide enrichment and GC- and IC- MS/MS. Talanta 2019; 205:120147. [PMID: 31450417 DOI: 10.1016/j.talanta.2019.120147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
In this study, we present a novel selective cleanup/enrichment method based on metal oxide solid phase extraction combined with quantitative gas chromatography-tandem mass spectrometry and ion exchange chromatography-tandem mass spectrometry for the analysis of phosphorylated metabolites in yeast cell extracts relevant to biotechnological processes. Following screening of several commercially available metal oxide-based enrichment materials, all steps of the enrichment process (loading, washing and elution) were optimized for both the selective enrichment of 12 phosphorylated compounds from the glycolysis and pentose phosphate pathways, and the simultaneous removal of highly abundant matrix components such as organic acids and sugars. The full analytical workflow was then validated to meet the demands of accurate quantification of phosphorylated metabolites in yeast (Pichia pastoris) cell extracts using the best performing material and cleanup/enrichment method combined with quantification strategies based on internal standardization with isotopically labeled internal standards and external calibration. A good recovery (>70%) for 5 of the 12 targeted phosphorylated compounds with RSDs of less than 6.0% was obtained while many sugars, organic acids and amino acids were removed (>99% of glucose, and >95% of aspartate, succinate, glutamate, alanine, glycine, serine, threonine, proline, and valine). The use of isotopically labeled internal standards added to the samples prior to SPE, enables accurate quantification of the metabolites as it compensates for errors introduced during sample pretreatment and GC-MS or LC-MS analysis. To the best of our knowledge, this is the first time an effective and selective metal oxide-based affinity chromatography cleanup/enrichment method was designed and applied successfully for intracellular phosphorylated metabolites.
Collapse
Affiliation(s)
- Le Si-Hung
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christina Troyer
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tim Causon
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
46
|
An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines. J Pharm Biomed Anal 2019; 171:171-179. [DOI: 10.1016/j.jpba.2019.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
|
47
|
Montes-Grajales D, Esturau-Escofet N, Esquivel B, Martinez-Romero E. Exo-Metabolites of Phaseolus vulgaris-Nodulating Rhizobial Strains. Metabolites 2019; 9:E105. [PMID: 31151153 PMCID: PMC6630823 DOI: 10.3390/metabo9060105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Rhizobia are able to convert dinitrogen into biologically available forms of nitrogen through their symbiotic association with leguminous plants. This results in plant growth promotion, and also in conferring host resistance to different types of stress. These bacteria can interact with other organisms and survive in a wide range of environments, such as soil, rhizosphere, and inside roots. As most of these processes are molecularly mediated, the aim of this research was to identify and quantify the exo-metabolites produced by Rhizobium etli CFN42, Rhizobium leucaenae CFN299, Rhizobium tropici CIAT899, Rhizobium phaseoli Ch24-10, and Sinorhizobium americanum CFNEI156, by nuclear magnetic resonance (NMR). Bacteria were grown in free-living cultures using minimal medium containing sucrose and glutamate. Interestingly, we found that even when these bacteria belong to the same family (Rhizobiaceae) and all form nitrogen-fixing nodules on Phaseolus vulgaris roots, they exhibited different patterns and concentrations of chemical species produced by them.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena 130015, Colombia.
| | - Nuria Esturau-Escofet
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Baldomero Esquivel
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | |
Collapse
|
48
|
Wilkins J, Sakrikar D, Petterson XM, Lanza IR, Trushina E. A comprehensive protocol for multiplatform metabolomics analysis in patient-derived skin fibroblasts. Metabolomics 2019; 15:83. [PMID: 31123906 PMCID: PMC7928486 DOI: 10.1007/s11306-019-1544-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/18/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Patient-derived skin fibroblasts offer a unique translational model to study molecular mechanisms of multiple human diseases. Metabolomics profiling allows to track changes in a broad range of metabolites and interconnected metabolic pathways that could inform on molecular mechanisms involved in disease development and progression, and on the efficacy of therapeutic interventions. Therefore, it is important to establish standardized protocols for metabolomics analysis in human skin fibroblasts for rigorous and reliable metabolic assessment. OBJECTIVES We aimed to develop an optimized protocol for concurrent measure of the concentration of amino acids, acylcarnitines, and components of the tricarboxylic acid (TCA) cycle in human skin fibroblasts using gas (GC) and liquid chromatography (LC) coupled with mass spectrometry (MS). METHODS The suitability of four different methods of cell harvesting on the recovery of amino acids, acylcarnitines, and TCA cycle metabolites was established using GC/MS and LC/MS analytical platforms. For each method, metabolite stability was determined after 48 h, 2 weeks and 1 month of storage at - 80 °C. RESULTS Harvesting cells in 80% methanol solution allowed the best recovery and preservation of metabolites. Storage of samples in 80% methanol up to 1 month at - 80 °C did not significantly impact metabolite concentrations. CONCLUSION We developed a robust workflow for metabolomics analysis in human skin fibroblasts suitable for a high-throughput multiplatform analysis. This method allows a direct side-by-side comparison of metabolic changes in samples collected at different time that could be used for studies in large patient cohorts.
Collapse
Affiliation(s)
- Jordan Wilkins
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Ian R Lanza
- Metabolomics Core Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Guggenheim Bld., Room 1542B, Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Lee J, Park J, Kim T. Dynamic Culture and Selective Extraction of Target Microbial Cells in Self-Assembled Particle Membrane-Integrated Microfluidic Bioreactor Array. Anal Chem 2019; 91:6162-6171. [PMID: 30931565 DOI: 10.1021/acs.analchem.9b00762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Various microfluidic devices have overcome many disadvantages common to conventional bioreactor systems by enabling active manipulation of cell-culture conditions, monitoring of cellular responses in high-throughput mode, and extraction of target cells in a relatively rapid and low-cost manner. However, existing microfluidic devices still have limitations, including the complexity of their operation and a lack of availability of dynamic control of the chemical environment. Here, we present a novel microfluidic bioreactor array device capable of not only the stable and dynamic programing of cell-culture environments but also the selective extraction of target cells. This device comprises 64 microchambers in a 16 × 4 array format, and each microchamber is integrated with a robust and nanoporous membrane on one side and an H-shaped entrance on the other. The membrane made of self-assembled particles allowed continuous and sequential delivery of various nutrients containing gene inducers to compartmentalized microbial cells, thereby enabling dynamic cell culturing. Additionally, the H-shaped entrance was used for local and selective blocking of the microchamber by employing UV-curable material, thereby enabling the retrieval of target cells from the device while sequestering nontarget cells in the microchambers. Our results demonstrated that the targeted rare cells could be isolated and separated from a mixture of cells by repeating the extraction procedure. Therefore, we anticipate that this microfluidic bioreactor array device will be widely used for not only screening/extraction but also off-chip postanalyses of various microorganisms.
Collapse
Affiliation(s)
- Jongwan Lee
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering , Sogang University , Sinsudong , Mapogu , Seoul 04107 , Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Republic of Korea
| |
Collapse
|
50
|
Feith A, Teleki A, Graf M, Favilli L, Takors R. HILIC-Enabled 13C Metabolomics Strategies: Comparing Quantitative Precision and Spectral Accuracy of QTOF High- and QQQ Low-Resolution Mass Spectrometry. Metabolites 2019; 9:metabo9040063. [PMID: 30986989 PMCID: PMC6523712 DOI: 10.3390/metabo9040063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Dynamic 13C-tracer-based flux analyses of in vivo reaction networks still require a continuous development of advanced quantification methods applying state-of-the-art mass spectrometry platforms. Utilizing alkaline HILIC chromatography, we adapt strategies for a systematic quantification study in non- and 13C-labeled multicomponent endogenous Corynebacterium glutamicum extracts by LC-QTOF high resolution (HRMS) and LC-QQQ tandem mass spectrometry (MS/MS). Without prior derivatization, a representative cross-section of 17 central carbon and anabolic key intermediates were analyzed with high selectivity and sensitivity under optimized ESI-MS settings. In column detection limits for the absolute quantification range were between 6.8-304.7 (QQQ) and 28.7-881.5 fmol (QTOF) with comparable linearities (3-5 orders of magnitude) and enhanced precision using QQQ-MRM detection. Tailor-made preparations of uniformly (U)13C-labeled cultivation extracts for isotope dilution mass spectrometry enabled the accurate quantification in complex sample matrices and extended linearities without effect on method parameters. Furthermore, evaluation of metabolite-specific m+1-to-m+0 ratios (ISR1:0) in non-labeled extracts exhibited sufficient methodical spectral accuracies with mean deviations of 3.89 ± 3.54% (QTOF) and 4.01 ± 3.01% (QQQ). Based on the excellent HILIC performance, conformity analysis of time-resolved isotopic enrichments in 13C-tracer experiments revealed sufficient spectral accuracy for QQQ-SIM detection. However, only QTOF-HRMS ensures determination of the full isotopologue space in complex matrices without mass interferences.
Collapse
Affiliation(s)
- André Feith
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Lorenzo Favilli
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|