1
|
Sharma S, Gupta S, Saini AK, Saini RV, Kaushal A. Electrochemical nanosensors: Revolutionizing vitamin detection. Talanta 2025; 291:127830. [PMID: 40054216 DOI: 10.1016/j.talanta.2025.127830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025]
Abstract
Electrochemical nanosensors offer remarkable capabilities for precise and selective vitamin detection, with transformative implications for healthcare, nutrition, and food industry quality control. Nanotechnology advancements have facilitated the creation of nanoscale sensors with customized properties, enhancing the efficacy of detecting vitamins. Materials such as gold nanoparticles, carbon nanotubes, and quantum dots have been modified to display remarkable sensitivity and specificity for distinct vitamins. Integrating these materials with electrochemical techniques enables the translation of biochemical interactions into measurable electrical signals, achieving accurate and swift detection. Real-time monitoring of vitamin levels enables health optimization and improves quality control, nutritional label accuracy and supply chain monitoring in the food industry. This review comprehensively examines the electrochemical properties of sensors for vitamin analysis, highlighting modernization in the design of sensors, restyling nanomaterial-based sensor technologies and exploring their applications in food quality control while simultaneously addressing current challenges and future directions in the development of sensors.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Shagun Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Adesh K Saini
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Reena V Saini
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India.
| |
Collapse
|
2
|
Wang H, Xu T, Fu Y, Wang Z, Leeson MS, Jiang J, Liu T. Liquid Crystal Biosensors: Principles, Structure and Applications. BIOSENSORS 2022; 12:639. [PMID: 36005035 PMCID: PMC9406233 DOI: 10.3390/bios12080639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022]
Abstract
Liquid crystals (LCs) have been widely used as sensitive elements to construct LC biosensors based on the principle that specific bonding events between biomolecules can affect the orientation of LC molecules. On the basis of the sensing interface of LC molecules, LC biosensors can be classified into three types: LC-solid interface sensing platforms, LC-aqueous interface sensing platforms, and LC-droplet interface sensing platforms. In addition, as a signal amplification method, the combination of LCs and whispering gallery mode (WGM) optical microcavities can provide higher detection sensitivity due to the extremely high quality factor and the small mode volume of the WGM optical microcavity, which enhances the interaction between the light field and biotargets. In this review, we present an overview of the basic principles, the structure, and the applications of LC biosensors. We discuss the important properties of LC and the principle of LC biosensors. The different geometries of LCs in the biosensing systems as well as their applications in the biological detection are then described. The fabrication and the application of the LC-based WGM microcavity optofluidic sensor in the biological detection are also introduced. Finally, challenges and potential research opportunities in the development of LC-based biosensors are discussed.
Collapse
Affiliation(s)
- Haonan Wang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Yaoxin Fu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ziyihui Wang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mark S. Leeson
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Junfeng Jiang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Jolvis Pou KR, Raghavan V, Packirisamy M. Applications of microfluidic technology in food sector: A bibliometric analysis. COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT 2021. [DOI: 10.1080/09737766.2021.1989989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. R. Jolvis Pou
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue Montreal, Quebec, H9X 3V9, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue Montreal, Quebec, H9X 3V9, Canada
| | - Muthukumaran Packirisamy
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
4
|
Potential of Nanotechnology for Rural Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-04332-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Bliese S, O’Donnell D, Weaver AA, Lieberman M. Paper Millifluidics Lab: Using a Library of Color Tests to Find Adulterated Antibiotics. JOURNAL OF CHEMICAL EDUCATION 2020; 97:786-792. [PMID: 32174646 PMCID: PMC7066646 DOI: 10.1021/acs.jchemed.9b00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A two to three period analytical chemistry experiment has been developed which allows second year students to explore chemical color tests used to detect adulterated pharmaceuticals. Students prepare several paper analytical devices (PADs) to generate positive and negative controls antibiotics, along with cutting agents such as starch and chalk. These PADs are used to identify the active ingredients and excipients in mystery tablets prepared by their classmates. In the second part of the lab, the students select an individual color test and design an experiment to quantify their mystery pill's active pharmaceutical ingredient (API). Nearly all of the student groups were able to successfully identify adulterants present in their mystery tablets. The quantification of the mystery tablets was also successful with all but one group calculating the correct concentration within 6%. In a postlab assessment, the students identified their largest gains in their ability to analyze data and other information, skill in science writing, and learning of laboratory techniques.
Collapse
Affiliation(s)
- Sarah
L. Bliese
- Chemistry
and Biochemistry Department, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Deanna O’Donnell
- Chemistry
Department, Hamline University, St. Paul, Minnesota 55104, United States
| | - Abigail A. Weaver
- Civil
& Environmental Engineering & Earth Sciences Department, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marya Lieberman
- Chemistry
and Biochemistry Department, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Voltammetric determination of ethylvanillin and methylvanillin sum at carbon paste electrode modified by sodium dodecyl sulfate in selected foodstuffs. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Hudari FF, Bessegato GG, Bedatty Fernandes FC, Zanoni MVB, Bueno PR. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Anal Chem 2018; 90:7651-7658. [DOI: 10.1021/acs.analchem.8b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Felipe F. Hudari
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Guilherme G. Bessegato
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | | | - Maria V. B. Zanoni
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Paulo R. Bueno
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Xing Y, Dittrich PS. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices. SENSORS 2018; 18:s18010134. [PMID: 29303990 PMCID: PMC5795670 DOI: 10.3390/s18010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed.
Collapse
Affiliation(s)
- Yanlong Xing
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e. V, 12489 Berlin, Germany.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
9
|
Advances in Nano Based Biosensors for Food and Agriculture. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-70166-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Kuznetsov A, Komarova N, Andrianova M, Grudtsov V, Kuznetsov E. Aptamer based vanillin sensor using an ion-sensitive field-effect transistor. Mikrochim Acta 2017; 185:3. [DOI: 10.1007/s00604-017-2586-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
|
11
|
Sierra T, Crevillen AG, Escarpa A. Derivatization agents for electrochemical detection in amino acid, peptide and protein separations: The hidden electrochemistry? Electrophoresis 2017; 38:2695-2703. [DOI: 10.1002/elps.201700167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcala; Alcala de Henares Madrid Spain
| | - Agustin G. Crevillen
- Department of Analytical Sciences, Faculty of Sciences; Universidad Nacional de Educación a Distancia (UNED); Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcala; Alcala de Henares Madrid Spain
| |
Collapse
|
12
|
Toh RJ, Mayorga-Martinez CC, Han J, Sofer Z, Pumera M. Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS2 for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide. Anal Chem 2017; 89:4978-4985. [DOI: 10.1021/acs.analchem.7b00302] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rou Jun Toh
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Science, Nanyang Technological University, 637371 Singapore
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, S16-05-08, 3 Science Drive 2, 117543 Singapore
| | - Carmen C. Mayorga-Martinez
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Science, Nanyang Technological University, 637371 Singapore
| | - Jongyoon Han
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, S16-05-08, 3 Science Drive 2, 117543 Singapore
- Department
of Electrical Engineering and Computer Science, Department of Biological
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zdenek Sofer
- Department
of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Martin Pumera
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Science, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
13
|
Singh R, Hong S, Jang J. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform. Sci Rep 2017; 7:42771. [PMID: 28198459 PMCID: PMC5309888 DOI: 10.1038/srep42771] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/13/2017] [Indexed: 12/23/2022] Open
Abstract
Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL-1, where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL-1 (R2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples.
Collapse
Affiliation(s)
- Renu Singh
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongkyeol Hong
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
14
|
Della Pelle F, Del Carlo M, Sergi M, Compagnone D, Escarpa A. Press-transferred carbon black nanoparticles on board of microfluidic chips for rapid and sensitive amperometric determination of phenyl carbamate pesticides in environmental samples. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1964-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP. Recent Advances in the Fabrication and Application of Screen-Printed Electrochemical (Bio)Sensors Based on Carbon Materials for Biomedical, Agri-Food and Environmental Analyses. BIOSENSORS 2016; 6:E50. [PMID: 27690118 PMCID: PMC5192370 DOI: 10.3390/bios6040050] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023]
Abstract
This review describes recent advances in the fabrication of electrochemical (bio)sensors based on screen-printing technology involving carbon materials and their application in biomedical, agri-food and environmental analyses. It will focus on the various strategies employed in the fabrication of screen-printed (bio)sensors, together with their performance characteristics; the application of these devices for the measurement of selected naturally occurring biomolecules, environmental pollutants and toxins will be discussed.
Collapse
Affiliation(s)
- Gareth Hughes
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kelly Westmacott
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kevin C Honeychurch
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Adrian Crew
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Roy M Pemberton
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
16
|
Zhang L, Zhang W, Chen W, Chen G. Simultaneous determination of five bioactive constituents in Rhizoma Chuanxiong by capillary electrophoresis with a carbon nanotube-polydimethylsiloxane composite electrode. J Pharm Biomed Anal 2016; 131:107-112. [PMID: 27589027 DOI: 10.1016/j.jpba.2016.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/18/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
A carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite electrode was developed for the capillary electrophoretic determination of the bioactive constituents in Rhizoma Chuanxiong, a traditional Chinese medicine. The novel composite electrode was fabricated on the basis of the in situ polyaddition of curing agent-containing dimethyl siloxane oligomer in the presence of CNTs in the inner bore of a piece of fused silica capillary under heat. It was coupled with capillary electrophoresis for the separation and detection of vanillin, ferulic acid, vanillic acid, caffeic acid, and protocatechuic acid in Rhizoma Chuanxiong to demonstrate its feasibility and performance. The five phenolic constituents were well separated within 13min in a 45cm long capillary at a separation voltage of 15kV using a 50mM borate buffer (pH 9.2). The CNT-based detector offered higher sensitivity, significantly lower operating potential, satisfactory reproducibility, and lower expense of operation, indicating great promise for a wide range of analytical applications.
Collapse
Affiliation(s)
- Luyan Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weilong Chen
- Phenom Scientific Instrument (Shanghai) Co., Ltd., Shanghai, 201203, China
| | - Gang Chen
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
17
|
Della Pelle F, Vázquez L, Del Carlo M, Sergi M, Compagnone D, Escarpa A. Press-Printed Conductive Carbon Black Nanoparticle Films for Molecular Detection at the Microscale. Chemistry 2016; 22:12761-6. [PMID: 27460290 DOI: 10.1002/chem.201601743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/08/2022]
Abstract
Carbon black nanoparticle (CBNP) press-transferred film-based transducers for the molecular detection at the microscale level were proposed for the first time. Current-sensing atomic force microscopy (CS-AFM) revealed that the CBNP films were effectively press-transferred, retaining their good conductivity. A significant correlation between the morphology and the resistance was observed. The highest resistance was localized at the top of the press-transferred film protrusions, whereas low values are usually obtained at the deep crevices or grooves. The amount of press-transferred CBNPs is the key parameter to obtain films with improved conductivity, which is in good agreement with the electrochemical response. In addition, the conductivity of such optimum films was not only Ohmic; in fact, tunneling/hopping contributions were observed, as assessed by CS-AFM. The CBNP films acted as exclusive electrochemical transducers as evidenced by using two classes of molecules, that is, neurotransmitters and environmental organic contaminants. These results revealed the potential of these CBNP press-transferred films for providing new options in microfluidics and other related micro- and nanochemistry applications.
Collapse
Affiliation(s)
- Flavio Della Pelle
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain), Fax: (+34) 918854971.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942
| | - Luis Vázquez
- Institute of Materials Science of Madrid (CSIC), C/Sor Juana Inés de la Cruz No 3, Cantoblanco, 28049, Madrid, Spain
| | - Michele Del Carlo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain), Fax: (+34) 918854971.
| |
Collapse
|
18
|
Fabrication of a carbon nanotube-polyurethane composite electrode by in situ polyaddition for use in amperometric detection in capillary electrophoresis. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Oh JM, Chow KF. Naked-Eye Coulometric Sensor Using a Longitudinally Oriented Ag Band Electrode in a Microfluidic Channel. Anal Chem 2016; 88:4849-56. [DOI: 10.1021/acs.analchem.6b00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jung-Min Oh
- Department
of Chemistry, University of Massachusetts Lowell, One University
Ave., Lowell, Massachusetts 01854, United States
| | - Kwok-Fan Chow
- Department
of Chemistry, University of Massachusetts Lowell, One University
Ave., Lowell, Massachusetts 01854, United States
| |
Collapse
|
20
|
Bueno AM, Marín MÁ, Contento AM, Ríos Á. Determination of mutagenic amines in water and food samples by high pressure liquid chromatography with amperometric detection using a multiwall carbon nanotubes-glassy carbon electrode. Food Chem 2016; 192:343-50. [DOI: 10.1016/j.foodchem.2015.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 12/08/2014] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
|
21
|
Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 2016; 45:715-52. [DOI: 10.1039/c5cs00297d] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New synthetic approaches, materials, properties, electroanalytical applications and perspectives of carbon materials are presented.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuyun Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Rafael Luque
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuang Han
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Lianzhe Hu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
22
|
Emerging Nanomaterials for Analytical Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Ferey L, Delaunay N. Food Analysis on Electrophoretic Microchips. SEPARATION AND PURIFICATION REVIEWS 2015. [DOI: 10.1080/15422119.2015.1014049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Liao Y, Wang N, Ni Y, Xu J, Shao S. Electrochemical sensor based on Nbim/CNT composite for selective determination of luteolin in the flavonoids. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Micro- and nanodevices integrated with biomolecular probes. Biotechnol Adv 2015; 33:1727-43. [PMID: 26363089 PMCID: PMC4948648 DOI: 10.1016/j.biotechadv.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 12/28/2022]
Abstract
Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities.
Collapse
|
26
|
Herrasti Z, Martínez F, Baldrich E. Reversible nanostructuration of microfluidic electrode devices by CNT magnetic co-entrapment. LAB ON A CHIP 2015; 15:3269-3273. [PMID: 26155767 DOI: 10.1039/c5lc00573f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carbon nanotubes (CNTs) have been extensively used to produce electrodes of enhanced performance but have only been very recently exploited in microfluidic devices. In these cases, CNT electrodes had to be produced prior to device assembly, which might damage the CNT layer. Here, we show a fast and simple method for the reversible nanostructuration of microfluidic electrode devices in situ. The procedure is based on the attachment of single-walled CNTs (SWCNTs) onto the surface of magnetic particles (MPs) and magnetic confinement of the MP/SWCNT composite onto the sensor in a two-step process that provided homogeneous coating. As it is shown, subsequent magnet removal allows MP/SWCNT release and electrode reutilization. Compared to most previously described methods, ours is faster, simpler and also reversible.
Collapse
Affiliation(s)
- Zorione Herrasti
- IK4-Ikerlan Technological Research Centre, 20500 Mondragón, Spain
| | | | | |
Collapse
|
27
|
Zhang L, Zhang W, Chen G. Determination of arbutin and bergenin in Bergeniae Rhizoma by capillary electrophoresis with a carbon nanotube-epoxy composite electrode. J Pharm Biomed Anal 2015; 115:323-9. [PMID: 26263060 DOI: 10.1016/j.jpba.2015.07.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
This report describes the fabrication and the application of a novel carbon nanotube (CNT)-epoxy composite electrode as a sensitive amperometric detector for the capillary electrophoresis (CE). The composite electrode was fabricated on the basis of the in situ polycondensation of a mixture of CNTs and 1,2-ethanediamine-containing bisphenol A epoxy resin in the inner bore of a piece of fused silica capillary under heat. It was coupled with CE for the separation and detection of arbutin and bergenin in Bergeniae Rhizoma, a traditional Chinese medicine, to demonstrate its feasibility and performance. The two phenolic constituents were well separated within 10min in a 45cm capillary length at a separation voltage of 12kV using a 50mM borate buffer (pH 9.2). The CNT-based detector offered higher sensitivity, significantly lower operating potential, satisfactory resistance to surface fouling, and lower expense of operation, indicating great promise for a wide range of analytical applications. It showed long-term stability and reproducibility with relative standard deviations of less than 5% for the peak current (n=15).
Collapse
Affiliation(s)
- Luyan Zhang
- School of Pharmacy, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Zhang
- School of Pharmacy, 826 Zhangheng Road, Shanghai 201203, China
| | - Gang Chen
- School of Pharmacy, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
28
|
Batalla P, Martín A, López MÁ, González MC, Escarpa A. Enzyme-Based Microfluidic Chip Coupled to Graphene Electrodes for the Detection of D-Amino Acid Enantiomer-Biomarkers. Anal Chem 2015; 87:5074-8. [DOI: 10.1021/acs.analchem.5b00979] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pilar Batalla
- Department of Analytical
Chemistry, Physical Chemistry and Chemical Engineering, Faculty of
Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Aída Martín
- Department of Analytical
Chemistry, Physical Chemistry and Chemical Engineering, Faculty of
Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical
Chemistry, Physical Chemistry and Chemical Engineering, Faculty of
Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - María Cristina González
- Department of Analytical
Chemistry, Physical Chemistry and Chemical Engineering, Faculty of
Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical
Chemistry, Physical Chemistry and Chemical Engineering, Faculty of
Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
29
|
Gomez FJV, Martín A, Silva MF, Escarpa A. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors. Electrophoresis 2015; 36:1880-5. [PMID: 25735903 DOI: 10.1002/elps.201400580] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 11/07/2022]
Abstract
In the current work, single-wall carbon nanotube press-transferred electrodes (SW-PTEs) were used for detection of melatonin (MT) and its precursors tryptophan (Trp) and serotonin (5-HT) on microchip electrophoresis (ME). SW-PTEs were simply fabricated by press transferring a filtered dispersion of single-wall carbon nanotubes on a nonconductive PMMA substrate, where single-wall carbon nanotubes act as exclusive transducers. The coupling of ME-SW-PTEs allowed the fast detection of MT, Trp, and 5-HT in less than 150 s with excellent analytical features. It exhibited an impressive antifouling performance with RSD values of ≤2 and ≤4% for migration times and peak heights, respectively (n = 12). In addition, sample analysis was also investigated by analysis of 5-HT, MT, and Trp in commercial samples obtaining excellent quantitative and reproducible recoveries with values of 96.2 ± 1.8%, 101.3 ± 0.2%, and 95.6 ± 1.2% for 5-HT, MT, and Trp, respectively. The current novel application reveals the analytical power of the press-transfer technology where the fast and reliable determination of MT and its precursors were performed directly on the nanoscale carbon nanotube detectors without the help of any other electrochemical transducer.
Collapse
Affiliation(s)
- Federico José Vicente Gomez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Aída Martín
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Fernanda Silva
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
30
|
Martín A, López MÁ, González MC, Escarpa A. Multidimensional carbon allotropes as electrochemical detectors in capillary and microchip electrophoresis. Electrophoresis 2014; 36:179-94. [DOI: 10.1002/elps.201400328] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Aída Martín
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| |
Collapse
|
31
|
Abstract
These insights attempt to share with the community the lights and shadows of one emerging and exciting topic, Food Microfluidics, defined as microfluidic technology for food analysis and diagnosis in important areas such as food safety and quality. The reader is invited to question non-easy interrogations such as why Food Microfluidics, what is the next step and what could we do with the available technology. This article invites food analysts to be seduced by this technology and then to take an interesting trip departing from the main gained achievements, having a look at the crossing bridges over Food Microfluidic challenges or having a look at available technology to start. Finally, this trip arrives at a privileged place to gaze the horizons. A wonderful landscape--full of inspiration--for Food Microfluidics is anticipated. These insights have also been written wishing to give improved conceptual and realistic solutions for food analysis, with the additional hope to attract the community with exciting technology, in order to get novel and unexpected achievements in this field.
Collapse
Affiliation(s)
- Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá E-28871, Ctra. Madrid-Barcelona km 33,600. 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
32
|
Henrique Duarte E, dos Santos WP, Fantinato Hudari F, Bott Neto JL, Romão Sartori E, Dall׳Antonia LH, César Pereira A, Teixeira Tarley CR. A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid. Talanta 2014; 127:26-32. [DOI: 10.1016/j.talanta.2014.03.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
|
33
|
Kalia A, Parshad VR. Novel Trends to Revolutionize Preservation and Packaging of Fruits/Fruit Products: Microbiological and Nanotechnological Perspectives. Crit Rev Food Sci Nutr 2014; 55:159-82. [DOI: 10.1080/10408398.2011.649315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Liu M, Franko M. Progress in Thermal Lens Spectrometry and Its Applications in Microscale Analytical Devices. Crit Rev Anal Chem 2014; 44:328-53. [DOI: 10.1080/10408347.2013.869171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Electrochemical Analysis of Acrylamide Using Screen-Printed Carboxylated Single-Walled Carbon Nanotube Electrodes. ELECTROANAL 2014. [DOI: 10.1002/elan.201300636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Determination of 5,7-dihydroxychromone and luteolin in peanut hulls by capillary electrophoresis with a multiwall carbon nanotube/poly(ethylene terephthalate) composite electrode. Food Chem 2014; 145:555-61. [DOI: 10.1016/j.foodchem.2013.08.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/16/2012] [Accepted: 08/28/2013] [Indexed: 11/23/2022]
|
37
|
Ma W, Han D, Zhou M, Sun H, Wang L, Dong X, Niu L. Ultrathin g-C3N4/TiO2composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chem Sci 2014. [DOI: 10.1039/c4sc00826j] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Using utg-C3N4/TiO2, a photoelectrochemical platform was designed for the sensing of global antioxidant capacity, which presented a rapid response, and anti-fouling and colour-interference-proof properties.
Collapse
Affiliation(s)
- Weiguang Ma
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Dongxue Han
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Hao Sun
- College of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Lingnan Wang
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Xiandui Dong
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| |
Collapse
|
38
|
Vilela D, Martín A, González MC, Escarpa A. Fast and reliable class-selective isoflavone index determination on carbon nanotube press-transferred electrodes using microfluidic chips. Analyst 2014; 139:2342-7. [DOI: 10.1039/c4an00025k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct microfluidic electrochemical sensing of class-isoflavones in complex soy samples on press-transferred carbon nanotubes.
Collapse
Affiliation(s)
- D. Vilela
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- University of Alcalá
- E-28871 Alcalá de Henares, Spain
| | - A. Martín
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- University of Alcalá
- E-28871 Alcalá de Henares, Spain
| | - M. C. González
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- University of Alcalá
- E-28871 Alcalá de Henares, Spain
| | - A. Escarpa
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- University of Alcalá
- E-28871 Alcalá de Henares, Spain
| |
Collapse
|
39
|
Li M, Zhao F, Zeng J, Qi J, Lu J, Shih WC. Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:111611. [PMID: 25054918 DOI: 10.1117/1.jbo.19.11.111611] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/19/2014] [Indexed: 05/08/2023]
Abstract
We present a microfluidic surface-enhanced Raman scattering (SERS) sensor for rapid and label-free biomolecular detection. Our sensor design mitigates a common limiting factor in microfluidic SERS sensors that utilize integrated nanostructures: low-efficiency transport of biomolecules to nanostructured surface which adversely impacts sensitivity. Our strategy is to increase the total usable nanostructured surface area, which provides more adsorption sites for biomolecules. Specifically, a nanoporous gold disk (NPGD) array, a highly effective SERS substrate, has been monolithically integrated inside a microfluidic chip. Individual NPGD is known to feature an order of magnitude larger surface area than its projected disk area. The increased surface area arises from nanoscale pores and ligaments three-dimensionally distributed in the NPGD, which manifest themselves as high-density SERS hot-spots. High-density NPGD arrays further guarantee large coverage of these hot-spots on the microchannel floor. The sensor performance has been demonstrated using Rhodamine 6G to quantify spatial uniformity and determine the shortest detection time. Next, the sensor is applied to detect two biomolecules, dopamine and urea, with unprecedented detection limit and speed compared to other existing microfluidic SERS sensors. The sensor holds great promise in point-of-care applications for various biomolecular detections.
Collapse
|
40
|
Yardım Y, Gülcan M, Şentürk Z. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode. Food Chem 2013; 141:1821-7. [DOI: 10.1016/j.foodchem.2013.04.085] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 09/11/2012] [Accepted: 04/26/2013] [Indexed: 11/15/2022]
|
41
|
García M, Escarpa A. Microchip electrophoresis-copper nanowires for fast and reliable determination of monossacharides in honey samples. Electrophoresis 2013; 35:425-32. [PMID: 24115078 DOI: 10.1002/elps.201300458] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 12/22/2022]
Abstract
Microchip electrophoresis (ME) with electrochemical detection has been demonstrated to be a powerful tool in food analysis. However, the coupling of ME with electrochemical detection and nanotechnologies is still in its infancy, knowing that nanomaterials can significantly improve the ME analytical performance. This work reports the coupling between ME and copper nanowires (CuNWs) for the selective analysis of monosaccharides in honey samples. Also, in terms of real applicability, the study of analytical reliability of ME is an issue of paramount importance. To this end, a representative group of nine honey samples were analyzed and the results were compared with those previously obtained by HPLC-refractive index. ME-CuNWs approach allowed the separation of glucose and fructose in <250 s under optimized separation (20 mM NaOH + 10 mM H3 BO3 , pH 12; separation voltage + 1000 V) and detection (E = +0.70 V in 20 mM NaOH + 10 mM H3 BO3 , pH 12) conditions. An excellent stability of EOF during sample analysis was achieved with RSDs for migration times <2% and for amperometric currents <9%. The quantitative contents for individual glucose and fructose obtained using ME-CuNWs in comparison with those obtained by HPLC-refractive index were highly in agreement with errors <10% indicating the reliability of the approach. The excellent analytical performance obtained confirms the analytical potency of ME-CuNWs approach, enhancing the maturity of the microchip technology and opening new avenues for future implementation of applications in the field of food analysis.
Collapse
Affiliation(s)
- Miguel García
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
42
|
Graphene–epoxy composite electrode fabricated by in situ polycondensation for enhanced amperometric detection in capillary electrophoresis. J Chromatogr A 2013; 1316:127-34. [DOI: 10.1016/j.chroma.2013.09.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
43
|
Li S, Kiehne J, Sinoway LI, Cameron CE, Huang TJ. Microfluidic opportunities in the field of nutrition. LAB ON A CHIP 2013; 13:3993-4003. [PMID: 24056522 PMCID: PMC3875330 DOI: 10.1039/c3lc90090h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition.
Collapse
Affiliation(s)
- Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209;
- Cell and Developmental Biology (CDB) Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Justin Kiehne
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209;
| | - Lawrence I. Sinoway
- Heart and Vascular Institute and Department of Medicine, Penn State College of Medicine, and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Craig E. Cameron
- Cell and Developmental Biology (CDB) Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209;
- Cell and Developmental Biology (CDB) Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
44
|
Ali MA, Srivastava S, Solanki PR, Reddy V, Agrawal VV, Kim C, John R, Malhotra BD. Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. Sci Rep 2013; 3:2661. [PMID: 24071971 PMCID: PMC3784945 DOI: 10.1038/srep02661] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/27/2013] [Indexed: 11/21/2022] Open
Abstract
This report describes the fabrication of a novel microfluidics nanobiochip based on a composite comprising of nickel oxide nanoparticles (nNiO) and multiwalled carbon nanotubes (MWCNTs), as well as the chip's use in a biomedical application. This nanocomposite was integrated with polydimethylsiloxane (PDMS) microchannels, which were constructed using the photolithographic technique. A structural and morphological characterization of the fabricated microfluidics chip, which was functionalized with a bienzyme containing cholesterol oxidase (ChOx) and cholesterol esterase (ChEt), was accomplished using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The XPS studies revealed that 9.3% of the carboxyl (COOH) groups present in the nNiO-MWCNT composite are used to form amide bonds with the NH2 groups of the bienzyme. The response studies on this nanobiochip reveal good reproducibility and selectivity, and a high sensitivity of 2.2 mA/mM/cm2. This integrated microfluidics biochip provides a promising low-cost platform for the rapid detection of biomolecules using minute samples.
Collapse
Affiliation(s)
- Md. Azahar Ali
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
- Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Hyderabad, Andhra Pradesh 502205, India
| | - Saurabh Srivastava
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
| | - Pratima R. Solanki
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Venu Reddy
- Center for NanoBioengineering and SpinTronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Ved V. Agrawal
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
| | - CheolGi Kim
- Center for NanoBioengineering and SpinTronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Renu John
- Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Hyderabad, Andhra Pradesh 502205, India
| | - Bansi D. Malhotra
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
- Center for NanoBioengineering and SpinTronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764, South Korea
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi1 110042, India
| |
Collapse
|
45
|
Chng ELK, Poh HL, Sofer Z, Pumera M. Purification of carbon nanotubes by high temperature chlorine gas treatment. Phys Chem Chem Phys 2013; 15:5615-9. [PMID: 23471202 DOI: 10.1039/c3cp50348h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) have a tremendous amount of potential to become useful components for future practical applications that may become a part of everyday life. While the sp(2) carbon itself is a rather chemically inert material, the issue of residual metal nanoparticle catalysts remains a prominent barrier in the utilization of CNTs in many areas due to the strong influence of these metallic impurities on the redox chemistry of biomarkers. Even with a standard purification procedure, CNTs have been shown to still contain residual metal nanoparticle catalysts. As such, presented in this paper is an improved purification technique for treating the CNTs with the highly reactive Cl2 gas at an elevated temperature of 1000 °C for 10 min, which would result in the vaporization of the metallic impurities as MxCly, leading to a large decrease in the amount of metallic nanoparticle impurities within the CNTs. By means of electrochemistry and X-ray fluorescence analysis, we demonstrate that the behaviour of such Cl2 treated CNTs showed a significant shift towards that of high purity CNTs, with a dramatic decrease in the influence of the residual metallic impurities on the electrochemical behaviour of CNTs. Therefore it is suggested that the Cl2 treatment of carbon nanotubes is a highly promising route towards the production of pure CNTs.
Collapse
Affiliation(s)
- Elaine Lay Khim Chng
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | | | |
Collapse
|
46
|
Oliveira R, Bento F, Sella C, Thouin L, Amatore C. Direct Electroanalytical Method for Alternative Assessment of Global Antioxidant Capacity Using Microchannel Electrodes. Anal Chem 2013; 85:9057-63. [DOI: 10.1021/ac401566w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Raquel Oliveira
- Centro
de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fátima Bento
- Centro
de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catherine Sella
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Laurent Thouin
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Christian Amatore
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
47
|
Sadeghi R, Karimi-Maleh H, Khalilzadeh MA, Beitollahi H, Ranjbarha Z, Zanousi MBP. A new strategy for determination of hydroxylamine and phenol in water and waste water samples using modified nanosensor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6584-6593. [PMID: 23608992 DOI: 10.1007/s11356-013-1733-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
A carbon paste electrode modified with p-chloranil and carbon nanotubes was used for the sensitive and selective voltammetric determination of hydroxylamine (HX) and phenol (PL). The oxidation of HX at the modified electrode was investigated by cyclic voltammetry (CV), chronoamperommetry, and electrochemical impedance spectroscopy. The values of the catalytic rate constant (k), and diffusion coefficient (D) for HX were calculated. Square wave voltammetric peaks current of HX and PL increased linearly with their concentrations at the ranges of 0.1-172.0 and 5.0-512.0 μmol L(-1), respectively. The detection limits for HX and PL were 0.08 and 2.0 μmol L(-1), respectively. The separation of the anodic peak potentials of HX and PL reached to 0.65 V, using square wave voltammetry. The proposed sensor was successfully applied for the determination of HX and PL in water and wastewater samples.
Collapse
Affiliation(s)
- Roya Sadeghi
- Department of Physics, Science and Research Branch, Islamic Azad University, Mazandaran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Castañeda R, Vilela D, González MC, Mendoza S, Escarpa A. SU-8/Pyrex microchip electrophoresis with integrated electrochemical detection for class-selective electrochemical index determination of phenolic compounds in complex samples. Electrophoresis 2013; 34:2129-35. [DOI: 10.1002/elps.201300060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 11/06/2022]
Affiliation(s)
| | - Diana Vilela
- Departamento de Química Analítica; Química-Física e Ingeniería Química, Facultad de Química, Universidad de Alcalá; Alcalá de Henares; Madrid; España
| | - María Cristina González
- Departamento de Química Analítica; Química-Física e Ingeniería Química, Facultad de Química, Universidad de Alcalá; Alcalá de Henares; Madrid; España
| | - Sandra Mendoza
- Departamento de Investigación y Posgrado en Alimentos; Facultad de Química, Universidad Autónoma de Querétaro; Querétaro; Qro.; México
| | - Alberto Escarpa
- Departamento de Química Analítica; Química-Física e Ingeniería Química, Facultad de Química, Universidad de Alcalá; Alcalá de Henares; Madrid; España
| |
Collapse
|
49
|
Xu J, Zhang L, Chen G. Fabrication of a magnet-assisted alignment device for the amperometric detection of capillary electrophoresis using a carbon nanotube/polypropylene composite electrode. Electrophoresis 2013; 34:2017-24. [DOI: 10.1002/elps.201200443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Junchao Xu
- School of Pharmacy; Fudan University; Shanghai; China
| | - Luyan Zhang
- School of Pharmacy; Fudan University; Shanghai; China
| | - Gang Chen
- School of Pharmacy; Fudan University; Shanghai; China
| |
Collapse
|
50
|
Chen R, Li Y, Huo K, Chu PK. Microelectrode arrays based on carbon nanomaterials: emerging electrochemical sensors for biological and environmental applications. RSC Adv 2013. [DOI: 10.1039/c3ra43033b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|