1
|
Monakhova YB, Adels K, Diehl BWK. Plant-Derived and Synthetic Nicotine in E-Cigarettes: Is Differentiation with NMR Spectroscopy Possible? Chem Res Toxicol 2024; 37:2022-2031. [PMID: 39545700 DOI: 10.1021/acs.chemrestox.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
To circumvent regulatory frameworks, many producers start to substitute plant-derived nicotine (tobacco-derived nicotine, TDN) by synthetic nicotine (tobacco-free nicotine, TFN) in e-cigarette products. Due to the higher costs of enantiomeric synthesis and purification of TFN, there is a need to develop an analytical method that clearly distinguishes between the two sources. To trace nicotine's origin, its enantiomeric purity can be postulated by 1H NMR spectroscopy using (R)-(-)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNPPA) as a chiral complexing agent. Low-field (LF) NMR conditions were optimized for this purpose even using a small amount of e-liquid sample (limit of quantification 8 mg/mL nicotine). All investigated products were found to contain one isomer (most likely (S)-(-)-nicotine). A direct 13C NMR method at natural abundance has been validated to differentiate (S)-TDN and (S)-TFN in e-cigarettes produced using nicotine of different origin. The method is based on calculation of the relative 13C content of 10 C-positions of the nicotine molecule with intraday and interday precisions below <0.2%. The method was applied to 12 commercial e-cigarette products labeled as containing TDN and TFN. Principal component analysis (PCA) was applied to the relative peak areas to visualize the difference between studied products. The LF 1H NMR method is a good alternative to expensive high-field NMR to differentiate between a racemate mixture and single optical isomers, whereas only high-precision 13C NMR can be used to distinguish (S)-TDN and (S)-TFN in e-cigarettes after appropriate sample extraction.
Collapse
Affiliation(s)
- Yulia B Monakhova
- Department of Chemistry and Biotechnology, University of Applied Sciences Aachen, Heinrich-Mußmann-Straße 1, Jülich D-52428, Germany
- Spectral Service AG, Emil-Hoffmann-Straße 33, Cologne 50996, Germany
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012, Russia
| | - Klaudia Adels
- Department of Chemistry and Biotechnology, University of Applied Sciences Aachen, Heinrich-Mußmann-Straße 1, Jülich D-52428, Germany
| | - Bernd W K Diehl
- Spectral Service AG, Emil-Hoffmann-Straße 33, Cologne 50996, Germany
| |
Collapse
|
2
|
Taujale R, Uchimiya M, Clendinen CS, Borges RM, Turck CW, Edison AS. PyINETA: Open-Source Platform for INADEQUATE-JRES Integration in NMR Metabolomics. Anal Chem 2024; 96:19029-19037. [PMID: 39563064 PMCID: PMC11618735 DOI: 10.1021/acs.analchem.4c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Robust annotation of compounds is a critical element in metabolomics. The 13C-detection NMR experiment incredible natural abundance double-quantum transfer experiment (INADEQUATE) stands out as a powerful tool for structural elucidation, but this valuable experiment is not often included in metabolomics studies. This is partly due to the lack of a community platform that provides structural information based on INADEQUATE. Also, it is often the case that a single study uses various NMR experiments synergistically to improve the quality of information or balance total NMR experiment time, but there is no public platform that can integrate the outputs of INADEQUATE with other NMR experiments. Here, we introduce PyINETA, a Python-based INADEQUATE network analysis. PyINETA is an open-source platform that provides structural information on molecules using INADEQUATE, conducts database searches using an INADEQUATE library, and integrates information on INADEQUATE and a complementary NMR experiment 13C J-resolved experiment (13C-JRES). 13C-JRES was chosen because of its ability to efficiently provide relative quantification in a study of the 13C-enriched samples. Those steps are carried out automatically, and PyINETA keeps track of all the pipeline parameters and outputs, ensuring the transparency of annotation in metabolomics. Our evaluation of PyINETA using a model mouse study showed that PyINETA successfully integrated INADEQUATE and 13C-JRES. The results showed that 13C-labeled amino acids that were fed to mice were transferred to different tissues and were transformed to other metabolites. The distribution of those compounds was tissue-specific, showing enrichment of specific metabolites in the liver, spleen, pancreas, muscle, or lung. PyINETA is freely available on NMRbox.
Collapse
Affiliation(s)
- Rahil Taujale
- Institute
of Bioinformatics, University of Georgia, 120 E Green St, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Rd., Athens, Georgia 30602, United States
| | - Mario Uchimiya
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Rd., Athens, Georgia 30602, United States
| | - Chaevien S. Clendinen
- The
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ricardo M. Borges
- Instituto
de Pesquisas de Produtos Naturais, Universidade
Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Christoph W. Turck
- Max
Planck Institute of Psychiatry, Proteomics and Biomarkers, Kraepelinstr. 2-10, 80804 Munich, Germany
- Key Laboratory
of Animal Models and Human Disease Mechanisms of Yunnan Province,
and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research
in Common Diseases, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National
Resource Center for Non-human Primates, and National Research Facility
for Phenotypic & Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Arthur S. Edison
- Institute
of Bioinformatics, University of Georgia, 120 E Green St, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Rd., Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 E Green
St, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Ajoolabady A, Pratico D, Dunn WB, Lip GYH, Ren J. Metabolomics: Implication in cardiovascular research and diseases. Obes Rev 2024; 25:e13825. [PMID: 39370721 DOI: 10.1111/obr.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 10/08/2024]
Abstract
Cellular metabolism influences all aspects of cellular function and is crucial for overall organismal health. Metabolic disorders related to cardiovascular health can lead to cardiovascular diseases (CVDs). Moreover, associated comorbidities may also damage cardiovascular metabolism, exacerbating CVD and perpetuating a vicious cycle. Given the prominent role of metabolic alterations in CVD, metabolomics has emerged as an imperative technique enabling a comprehensive assessment of metabolites and metabolic architecture within the body. Metabolite profile and metabolic pathways help to deepen and broaden our understanding of complex genomic landscape and pathophysiology of CVD. Here in this review, we aim to overview the experimental and clinical applications of metabolomics in pathogenesis, diagnosis, prognosis, and management of various CVD plus future perspectives and limitations.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Warwick B Dunn
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
4
|
de Campos EG, Farrar DG, Krotulski AJ. Identification of ADB-5'Br-BINACA in plant material and analytical characterization using GC-MS, LC-QTOF-MS, NMR and ATR-FTIR. J Pharm Biomed Anal 2024; 247:116254. [PMID: 38810333 DOI: 10.1016/j.jpba.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Synthetic cannabinoids are a class of novel psychoactive substances that emerged in the drug market in the early 2010s. Since then, a wide range of different synthetic cannabinoids has been detected in drug materials and in biological specimens collected from intoxication cases. In general, synthetic cannabinoids are reported first in seized materials. In this study, the identification of the novel synthetic cannabinoid, ADB-5'Br-BINACA is reported. A plant material suspected to contain a synthetic cannabinoid was extracted and analyzed. Analyses were performed using gas chromatography-mass spectrometry (GC-MS), liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and one dimensional and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. An aliquot of the sample was extracted using methanol and deuterated chloroform, and analyzed via GC-MS and NMR, respectively. Further dilution of the methanolic extract was analyzed via LC-QTOF-MS. For ATR-FTIR analyses, a few drops of the extract in deuterated chloroform were analyzed. GC-MS, LC-QTOF-MS, and 1H NMRwere successfully used to elucidate and confirm the structure of ADB-5'Br-BINACA in the drug sample. ATR-FTIR and 13C NMR analyses of the extracts did not result in significant information for the confirmation of ADB-5'Br-BINACA in the plant material likely due to low amount of drug material and high background noise. The chemical characterization of ADB-5'Br-BINACA in an authentic sample is reported herein, and chromatographic, mass spectrometric and spectroscopic data are provided for use in future analysis of this drug in suspected samples.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, United States.
| | - David G Farrar
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, United States
| | - Alex J Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Horsham, PA, United States
| |
Collapse
|
5
|
Michaud A, Bertrand S, Akoka S, Farjon J, Martineau E, Ruiz N, Robiou du Pont T, Grovel O, Giraudeau P. Exploring the complementarity of fast multipulse and multidimensional NMR methods for metabolomics: a chemical ecology case study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5166-5177. [PMID: 39028155 DOI: 10.1039/d4ay01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
This study investigates the potential and complementarity of high-throughput multipulse and multidimensional NMR methods for metabolomics. Through a chemical ecology case study, three methods are investigated, offering a continuum of methods with complementary features in terms of resolution, sensitivity and experiment time. Ultrafast 2D COSY, adiabatic INEPT and SYMAPS HSQC are shown to provide a very good classification ability, comparable to the reference 1D 1H NMR method. Moreover, a detailed analysis of discriminant buckets upon supervised statistical analysis shows that all methods are highly complementary, since they are able to highlight discriminant signals that could not be detected by 1D 1H NMR. In particular, fast 2D methods appear very efficient to discriminate signals located in highly crowded regions of the 1H spectrum. Overall, the combination of these recent methods within a single NMR metabolomics workflow allows to maximize the accessible metabolic information, and also raises exciting challenges in terms of NMR data analysis for chemical ecology.
Collapse
Affiliation(s)
- Aurore Michaud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Serge Akoka
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Jonathan Farjon
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | | | - Nicolas Ruiz
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Thibaut Robiou du Pont
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Olivier Grovel
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | | |
Collapse
|
6
|
Taujale R, Uchimiya M, Clendinen CS, Borges RM, Turck CW, Edison AS. PyINETA: Open-source platform for INADEQUATE-JRES integration in NMR metabolomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601875. [PMID: 39026850 PMCID: PMC11257532 DOI: 10.1101/2024.07.10.601875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Annotating compounds with high confidence is a critical element in metabolomics. 13C-detection NMR experiment INADEQUATE (incredible natural abundance double-quantum transfer experiment) stands out as a powerful tool for structural elucidation, whereas this valuable experiment is not often included in metabolomics studies. This is partly due to the lack of community platform that provides structural information based INADEQUATE. Also, it is often the case that a single study uses various NMR experiments synergistically to improve the quality of information or balance total NMR experiment time, but there is no public platform that can integrate the outputs of INADEQUATE and other NMR experiments either. Here, we introduce PyINETA, Python-based INADEQUATE network analysis. PyINETA is an open-source platform that provides structural information of molecules using INADEQUATE, conducts database search, and integrates information of INADEQUATE and a complementary NMR experiment 13C J-resolved experiment (13C-JRES). Those steps are carried out automatically, and PyINETA keeps track of all the pipeline parameters and outputs, ensuring the transparency of annotation in metabolomics. Our evaluation of PyINETA using a model mouse study showed that our pipeline successfully integrated INADEQUATE and 13C-JRES. The results showed that 13C-labeled amino acids that were fed to mice were transferred to different tissues, and, also, they were transformed to other metabolites. The distribution of those compounds was tissue-specific, showing enrichment of particular metabolites in liver, spleen, pancreas, muscle, or lung. The value of PyINETA was not limited to those known compounds; PyINETA also provided fragment information for unknown compounds. PyINETA is available on NMRbox.
Collapse
Affiliation(s)
- Rahil Taujale
- Institute of Bioinformatics, University of Georgia, 120 E Green St, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Mario Uchimiya
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Chaevien S. Clendinen
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354 USA
| | - Ricardo M. Borges
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Christoph W. Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Kraepelinstr. 2-10, 80804 Munich, Germany
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- National Resource Center for Non-human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Arthur S. Edison
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E Green St, Athens, GA 30602, USA
| |
Collapse
|
7
|
Ghosh Biswas R, Bermel W, Jenne A, Soong R, Simpson MJ, Simpson AJ. HR-MAS DREAMTIME NMR for Slow Spinning ex Vivo and in Vivo Samples. Anal Chem 2023; 95:17054-17063. [PMID: 37934172 DOI: 10.1021/acs.analchem.3c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
HR-MAS NMR is a powerful tool, capable of monitoring molecular changes in intact heterogeneous samples. However, one of the biggest limitations of 1H NMR is its narrow spectral width which leads to considerable overlap in complex natural samples. DREAMTIME NMR is a highly selective technique that allows users to isolate suites of metabolites from congested spectra. This permits targeted metabolomics by NMR and is ideal for monitoring specific processes. To date, DREAMTIME has only been employed in solution-state NMR, here it is adapted for HR-MAS applications. At high spinning speeds (>5 kHz), DREAMTIME works with minimal modifications. However, spinning over 3-4 kHz leads to cell lysis, and if maintaining sample integrity is necessary, slower spinning (<2.5 kHz) is required. Very slow spinning (≤500 Hz) is advantageous for in vivo analysis to increase organism survival; however, sidebands from water pose a problem. To address this, a version of DREAMTIME, termed DREAMTIME-SLOWMAS, is introduced. Both techniques are compared at 2500, 500, and 50 Hz, using ex vivo worm tissue. Following this, DREAMTIME-SLOWMAS is applied to monitor key metabolites of anoxic stress in living shrimp at 500 Hz. Thus, standard DREAMTIME works well under MAS conditions and is recommended for samples reswollen in D2O or spun >2500 Hz. For slow spinning in vivo or intact tissue samples, DREAMTIME-SLOWMAS provides an excellent way to target process-specific metabolites while maintaining sample integrity. Overall, DREAMTIME should find widespread application wherever targeted molecular information is required from complex samples with a high degree of spectral overlap.
Collapse
Affiliation(s)
| | - Wolfgang Bermel
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Amy Jenne
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Andre J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
8
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
9
|
Sannelli F, Wang KC, Jensen PR, Meier S. Rapid probing of glucose influx into cancer cell metabolism: using adjuvant and a pH-dependent collection of central metabolites to improve in-cell D-DNP NMR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4870-4882. [PMID: 37702554 DOI: 10.1039/d3ay01120h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Changes to metabolism are a hallmark of many diseases. Disease metabolism under physiological conditions can be probed in real time with in-cell NMR assays. Here, we pursued a systematic approach towards improved in-cell NMR assays. Unambiguous identifications of metabolites and of intracellular pH are afforded by a comprehensive, downloadable collection of spectral data for central carbon metabolites in the physiological pH range (4.0-8.0). Chemical shifts of glycolytic intermediates provide unique pH dependent patterns akin to a barcode. Using hyperpolarized 13C1 enriched glucose as the probe molecule of central metabolism in cancer, we find that early glycolytic intermediates are detectable in PC-3 prostate cancer cell lines, concurrently yielding intracellular pH. Using non-enriched and non-enhanced pyruvate as an adjuvant, reactions of the pentose phosphate pathway become additionally detectable, without significant changes to the barriers in upper glycolysis and to intracellular pH. The scope of tracers for in-cell observations can thus be improved by the presence of adjuvants, showing that a recently proposed effect of pyruvate in the tumor environment is paralleled by a rerouting of cancer cell metabolism towards producing building blocks for proliferation. Overall, the combined use of reference data for compound identification, site specific labelling for reducing overlap, and use of adjuvant afford increasingly detailed insight into disease metabolism.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| | - Ke-Chuan Wang
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
10
|
Foratori-Junior GA, Le Guennec A, Fidalgo TKDS, Jarvis J, Mosquim V, Buzalaf MAR, Carpenter GH, Sales-Peres SHDC. Comparison of the Metabolic Profile between Unstimulated and Stimulated Saliva Samples from Pregnant Women with/without Obesity and Periodontitis. J Pers Med 2023; 13:1123. [PMID: 37511736 PMCID: PMC10381358 DOI: 10.3390/jpm13071123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to compare the metabolic profile of unstimulated (US) and stimulated (SS) saliva samples from pregnant women with/without obesity and periodontitis. Ninety-six pregnant women were divided into: obesity + periodontitis (OP = 20); obesity/no periodontitis (OWP = 27); normal BMI + periodontitis (NP = 20); and normal BMI/no periodontitis (NWP = 29). US and SS samples were collected by expectoration and chewing of sterilized parafilm gum, respectively, and samples were individually analyzed by Proton Nuclear Magnetic Resonance (1H-NMR). Univariate (t test and correlations) and multivariate (Principal Component Analysis-PCA, and Partial Least Square-Discriminant Analysis-PLS-DA with Variance Importance Projection-VIP scores) and Metabolite Set Enrichment Analysis were done (p < 0.05). Metabolites commonly found in all groups in elevated concentration in US samples were 5-Aminopentoate, Acetic acid, Butyric acid, Propionic acid, Pyruvic acid, and Succinic acid. They were mainly related to the butyrate metabolism, citric acid cycle, amino sugar metabolism, fatty acids biosynthesis, pyruvate metabolism, glutamate metabolism, and Warburg effect. Metabolites commonly found in all groups that were in elevated concentration in SS samples were Citrulline, Fumaric acid, Histidine, N-acetyl glutamine, N-acetylneuraminic acid, para-hydroxyphenylacetic acid, Proline, Tyrosine. Although some differences were found between unstimulated and stimulated saliva samples from pregnant women with/without obesity and periodontitis, stimulated saliva collection seems adequate, demonstrating similar metabolic pathways to unstimulated saliva samples when groups are compared.
Collapse
Affiliation(s)
- Gerson Aparecido Foratori-Junior
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Adrien Le Guennec
- Nuclear Magnetic Resonance Facility, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tatiana Kelly da Silva Fidalgo
- Department of Preventive and Community Dentistry, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil
| | - James Jarvis
- Randall Division of Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Victor Mosquim
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | - Guy Howard Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | |
Collapse
|
11
|
Downey K, Michal CA, Bermel W, Jenne A, Soong R, Decker V, Busse F, Goerling B, Heumann H, Boenisch H, Gundy M, Simpson A. Targeted Compound Selection with Increased Sensitivity in 13C-Enriched Biological and Environmental Samples Using 13C-DREAMTIME in Both High-Field and Low-Field NMR. Anal Chem 2023; 95:6709-6717. [PMID: 37037008 DOI: 10.1021/acs.analchem.3c00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Chemical characterization of complex mixtures by Nuclear Magnetic Resonance (NMR) spectroscopy is challenging due to a high degree of spectral overlap and inherently low sensitivity. Therefore, NMR experiments that reduce overlap and increase signal intensity hold immense potential for the analysis of mixtures such as biological and environmental media. Here, we introduce a 13C version of DREAMTIME (Designed Refocused Excitation And Mixing for Targets In Vivo and Mixture Elucidation) NMR, which, when analyzing 13C-enriched materials, allows the user to selectively detect only the compound(s) of interest and remove all other peaks in a 13C spectrum. Selected peaks can additionally be "focused" into sharp "spikes" to increase sensitivity. 13C-DREAMTIME is first demonstrated at high field strength (500 MHz) with simultaneous selection of eight amino acids in a 13C-enriched cell free amino acid mixture and of six metabolites in an extract of 13C-enriched green algae and demonstrated at low field strength (80 MHz) with a standard solution of 13C-d-glucose and 13C-l-phenylalanine. 13C-DREAMTIME is then applied at high-field to analyze metabolic changes in 13C-enrichedDaphnia magna after exposure to polystyrene "microplastics," as well as at low-field to track fermentation of 13C-d-glucose using wine yeast. Ultimately, 13C-DREAMTIME reduces spectral overlap as only selected compounds are recorded, resulting in the detection of analyte peaks that may otherwise not have been discernable. In combination with focusing, up to a 6-fold increase in signal intensity can be obtained for a given peak. 13C-DREAMTIME is a promising experiment type for future reaction monitoring and for tracking metabolic processes with 13C-enriched compounds.
Collapse
Affiliation(s)
- Katelyn Downey
- Environmental NMR Centre, University of Toronto, Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Straße 23, 76275 Ettlingen, Germany
| | - Amy Jenne
- Environmental NMR Centre, University of Toronto, Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto, Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Venita Decker
- Bruker BioSpin GmbH, Rudolf-Plank-Straße 23, 76275 Ettlingen, Germany
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Straße 23, 76275 Ettlingen, Germany
| | - Benjamin Goerling
- Bruker BioSpin GmbH, Rudolf-Plank-Straße 23, 76275 Ettlingen, Germany
| | | | | | - Marcel Gundy
- Silantes GmbH, Gollierstrasse 70c, D-80339 München, Germany
| | - Andre Simpson
- Environmental NMR Centre, University of Toronto, Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
12
|
Dube-Johnstone NM, Tshishonga U, Mnyakeni-Moleele SS, Murulana LC. Investigation of synthesized ethyl-(2-(5-arylidine-2,4-dioxothiazolidin-3-yl) acetyl) butanoate as an effective corrosion inhibitor for mild steel in 1 M HCl: A gravimetric, electrochemical, and spectroscopic study. Heliyon 2023; 9:e14753. [PMID: 37025920 PMCID: PMC10070713 DOI: 10.1016/j.heliyon.2023.e14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The corrosion inhibition effects of five concentrations (5E-5 M to 9E-5 M) of ethyl-(2-(5-arylidine-2,4-dioxothiazolidin-3-yl) acetyl) butanoate, a novel thiazolidinedione derivative code named B1, were investigated on mild steel in 1 M HCl using gravimetric analysis, electrochemical analysis and Fourier transform infrared spectroscopy. After synthesis and purification, B1 was characterized using nuclear magnetic resonance spectroscopy. All gravimetric analysis experiments were carried out at four different temperatures: 303.15 K, 313.15 K, 323.15 K and 333.15 K, achieving a maximum percentage inhibition efficiency of 92% at 303.15 K. The maximum percentage inhibition efficiency obtained from electrochemical analysis, conducted at 303.15 K, was 83%. Thermodynamic parameters such as ΔG°ads showed that B1 adsorbs onto the MS surface via a mixed type of action at lower temperatures, transitioning to exclusively chemisorption at higher temperatures.
Collapse
|
13
|
Graziani V, Garcia AR, Alcolado LS, Le Guennec A, Henriksson MA, Conte MR. Metabolic rewiring in MYC-driven medulloblastoma by BET-bromodomain inhibition. Sci Rep 2023; 13:1273. [PMID: 36690651 PMCID: PMC9870962 DOI: 10.1038/s41598-023-27375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. High-risk MB patients harbouring MYC amplification or overexpression exhibit a very poor prognosis. Aberrant activation of MYC markedly reprograms cell metabolism to sustain tumorigenesis, yet how metabolism is dysregulated in MYC-driven MB is not well understood. Growing evidence unveiled the potential of BET-bromodomain inhibitors (BETis) as next generation agents for treating MYC-driven MB, but whether and how BETis may affect tumour cell metabolism to exert their anticancer activities remains unknown. In this study, we explore the metabolic features characterising MYC-driven MB and examine how these are altered by BET-bromodomain inhibition. To this end, we employed an NMR-based metabolomics approach applied to the MYC-driven MB D283 and D458 cell lines before and after the treatment with the BETi OTX-015. We found that OTX-015 triggers a metabolic shift in both cell lines resulting in increased levels of myo-inositol, glycerophosphocholine, UDP-N-acetylglucosamine, glycine, serine, pantothenate and phosphocholine. Moreover, we show that OTX-015 alters ascorbate and aldarate metabolism, inositol phosphate metabolism, phosphatidylinositol signalling system, glycerophospholipid metabolism, ether lipid metabolism, aminoacyl-tRNA biosynthesis, and glycine, serine and threonine metabolism pathways in both cell lines. These insights provide a metabolic characterisation of MYC-driven childhood MB cell lines, which could pave the way for the discovery of novel druggable pathways. Importantly, these findings will also contribute to understand the downstream effects of BETis on MYC-driven MB, potentially aiding the development of new therapeutic strategies to combat medulloblastoma.
Collapse
Affiliation(s)
- Vittoria Graziani
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Aida Rodriguez Garcia
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lourdes Sainero Alcolado
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Marie Arsenian Henriksson
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
14
|
Wishart DS, Rout M, Lee BL, Berjanskii M, LeVatte M, Lipfert M. Practical Aspects of NMR-Based Metabolomics. Handb Exp Pharmacol 2023; 277:1-41. [PMID: 36271165 DOI: 10.1007/164_2022_613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While NMR-based metabolomics is only about 20 years old, NMR has been a key part of metabolic and metabolism studies for >40 years. Historically, metabolic researchers used NMR because of its high level of reproducibility, superb instrument stability, facile sample preparation protocols, inherently quantitative character, non-destructive nature, and amenability to automation. In this chapter, we provide a short history of NMR-based metabolomics. We then provide a detailed description of some of the practical aspects of performing NMR-based metabolomics studies including sample preparation, pulse sequence selection, and spectral acquisition and processing. The two different approaches to metabolomics data analysis, targeted vs. untargeted, are briefly outlined. We also describe several software packages to help users process NMR spectra obtained via these two different approaches. We then give several examples of useful or interesting applications of NMR-based metabolomics, ranging from applications to drug toxicology, to identifying inborn errors of metabolism to analyzing the contents of biofluids from dairy cattle. Throughout this chapter, we will highlight the strengths and limitations of NMR-based metabolomics. Additionally, we will conclude with descriptions of recent advances in NMR hardware, methodology, and software and speculate about where NMR-based metabolomics is going in the next 5-10 years.
Collapse
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Manoj Rout
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Brian L Lee
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mark Berjanskii
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Matthias Lipfert
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Reference Standard Management & NMR QC, Lonza Group AG, Visp, Switzerland
| |
Collapse
|
15
|
Abstract
Metabolomics has long been used in a biomedical context. The most typical samples are body fluids in which small molecules can be detected and quantified using technologies such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS). Many studies, in particular in the wider field of cancer research, are based on cellular models. Different cancer cells can have vastly different ways of regulating metabolism and responses to drug treatments depend on specific metabolic mechanisms which are often cell type specific. This has led to a series of publications using metabolomics to study metabolic mechanisms. Cell-based metabolomics has specific requirements and allows for interesting approaches where metabolism is followed in real-time. Here applications of metabolomics in cell biology have been reviewed, providing insight into specific technologies used and showing exemplary case studies with an emphasis towards applications which help to understand drug mechanisms.
Collapse
Affiliation(s)
- Zuhal Eraslan
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
16
|
Foratori-Junior GA, Guennec AL, Fidalgo TKDS, Cleaver L, Buzalaf MAR, Carpenter GH, Sales-Peres SHDC. Metabolomic Profiles Associated with Obesity and Periodontitis during Pregnancy: Cross-Sectional Study with Proton Nuclear Magnetic Resonance ( 1H-NMR)-Based Analysis. Metabolites 2022; 12:metabo12111029. [PMID: 36355112 PMCID: PMC9694155 DOI: 10.3390/metabo12111029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 12/27/2022] Open
Abstract
This study aimed to elucidate the metabolomic signature associated with obesity and periodontitis during pregnancy in plasma and saliva biofluids. Ninety-eight pregnant women were divided into: with obesity and periodontitis (OP = 20), with obesity but without periodontitis (OWP = 27), with normal BMI but with periodontitis (NP = 21), with normal BMI and without periodontitis (NWP = 30). Saliva and plasma were analyzed by 1H-NMR for metabolites identification. Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA (sPLS-DA), and Variable Importance of Projection (VIP) were performed. ANOVA and Pearson’s correlation were applied (p < 0.05). Plasmatic analysis indicated the levels of glucose (p = 0.041) and phenylalanine (p = 0.015) were positively correlated with periodontal parameters and BMI, respectively. In saliva, periodontitis was mainly associated with high levels of acetic acid (p = 0.024), isovaleric acid, butyric acid, leucine, valine, isoleucine, and propionic acid (p < 0.001). High salivary concentrations of glycine (p = 0.015), succinic acid (p = 0.015), and lactate (p = 0.026) were associated with obesity. Saliva demonstrated a more elucidative difference than plasma, indicating the glucose-alanine cycle, alanine metabolism, valine, leucine and isoleucine degradation, glutamate metabolism, and Warburg effect as the main metabolic pathways.
Collapse
Affiliation(s)
- Gerson Aparecido Foratori-Junior
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Correspondence: (G.A.F.-J.); (S.H.d.C.S.-P.)
| | - Adrien Le Guennec
- Nuclear Magnetic Resonance Facility, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tatiana Kelly da Silva Fidalgo
- Department of Preventive and Community Dentistry, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | | - Guy Howard Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Silvia Helena de Carvalho Sales-Peres
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Correspondence: (G.A.F.-J.); (S.H.d.C.S.-P.)
| |
Collapse
|
17
|
Dey A, Charrier B, Lemaitre K, Ribay V, Eshchenko D, Schnell M, Melzi R, Stern Q, Cousin S, Kempf J, Jannin S, Dumez JN, Giraudeau P. Fine optimization of a dissolution dynamic nuclear polarization experimental setting for 13C NMR of metabolic samples. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:183-202. [PMID: 37904870 PMCID: PMC10583282 DOI: 10.5194/mr-3-183-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/16/2022] [Indexed: 11/01/2023]
Abstract
NMR-based analysis of metabolite mixtures provides crucial information on biological systems but mostly relies on 1D 1 H experiments for maximizing sensitivity. However, strong peak overlap of 1 H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution dynamic nuclear polarization (d-DNP) improves NMR sensitivity by several orders of magnitude, which enables 13 C NMR-based analysis of metabolites at natural abundance. We have recently demonstrated the successful introduction of d-DNP into a full untargeted metabolomics workflow applied to the study of plant metabolism. Here we describe the systematic optimization of d-DNP experimental settings for experiments at natural 13 C abundance and show how the resolution, sensitivity, and ultimately the number of detectable signals improve as a result. We have systematically optimized the parameters involved (in a semi-automated prototype d-DNP system, from sample preparation to signal detection, aiming at providing an optimization guide for potential users of such a system, who may not be experts in instrumental development). The optimization procedure makes it possible to detect previously inaccessible protonated 13 C signals of metabolites at natural abundance with at least 4 times improved line shape and a high repeatability compared to a previously reported d-DNP-enhanced untargeted metabolomic study. This extends the application scope of hyperpolarized 13 C NMR at natural abundance and paves the way to a more general use of DNP-hyperpolarized NMR in metabolomics studies.
Collapse
Affiliation(s)
- Arnab Dey
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Karine Lemaitre
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Dmitry Eshchenko
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Marc Schnell
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Roberto Melzi
- Bruker Biospin, Viale V. Lancetti 43, 20158 Milan, Italy
| | - Quentin Stern
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | | - Sami Jannin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | |
Collapse
|
18
|
Thomas JN, Johnston TL, Litvak IM, Ramaswamy V, Merritt ME, Rocca JR, Edison AS, Brey WW. Implementing High Q-Factor HTS Resonators to Enhance Probe Sensitivity in 13C NMR Spectroscopy. JOURNAL OF PHYSICS. CONFERENCE SERIES 2022; 2323:012030. [PMID: 36187328 PMCID: PMC9524303 DOI: 10.1088/1742-6596/2323/1/012030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nuclear magnetic resonance spectroscopy (NMR) probes using thin-film high temperature superconducting (HTS) resonators provide exceptional mass sensitivity in small-sample NMR experiments for natural products chemistry and metabolomics. We report improvements in sensitivity to our 1.5 mm 13C-optimized NMR probe based on HTS resonators. The probe has a sample volume of 35 microliters and operates in a 14.1 T magnet. The probe also features HTS resonators for 1H transmission and detection and the 2H lock. The probe utilizes a 13C resonator design that provides greater efficiency than our previous design. The quality factor of the new resonator in the 14.1 T background field was measured to be 4,300, which is over 3x the value of the previous design. To effectively implement the improved quality factor, we demonstrate the effect of adding a shorted transmission line stub to increase the bandwidth and reduce the rise/fall time of 13C irradiation pulses. Initial NMR measurements verify 13C NMR sensitivity is significantly improved while preserving detection bandwidth. The probe will be used for applications in metabolomics.
Collapse
Affiliation(s)
- J N Thomas
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| | - T L Johnston
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| | - I M Litvak
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| | | | | | - J R Rocca
- University of Florida, Gainesville FL, USA
| | | | - W W Brey
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| |
Collapse
|
19
|
Ghosh Biswas R, Soong R, Ning P, Lane D, Bastawrous M, Jenne A, Schmidig D, de Castro P, Graf S, Kuehn T, Kümmerle R, Bermel W, Busse F, Struppe J, Simpson MJ, Simpson AJ. Exploring the Applications of Carbon-Detected NMR in Living and Dead Organisms Using a 13C-Optimized Comprehensive Multiphase NMR Probe. Anal Chem 2022; 94:8756-8765. [PMID: 35675504 DOI: 10.1021/acs.analchem.2c01356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Comprehensive multiphase-nuclear magnetic resonance (CMP-NMR) is a non-invasive approach designed to observe all phases (solutions, gels, and solids) in intact samples using a single NMR probe. Studies of dead and living organisms are important to understand processes ranging from biological growth to environmental stress. Historically, such studies have utilized 1H-based phase editing for the detection of soluble/swollen components and 1H-detected 2D NMR for metabolite assignments/screening. However, living organisms require slow spinning rates (∼500 Hz) to increase survivability, but at such low speeds, complications from water sidebands and spectral overlap from the modest chemical shift window (∼0-10 ppm) make 1H NMR challenging. Here, a novel 13C-optimized E-Free magic angle spinning CMP probe is applied to study all phases in ex vivo and in vivo samples. This probe consists of a two-coil design, with an inner single-tuned 13C coil providing a 113% increase in 13C sensitivity relative to a traditional multichannel single-CMP coil design. For organisms with a large biomass (∼0.1 g) like the Ganges River sprat (ex vivo), 13C-detected full spectral editing and 13C-detected heteronuclear correlation (HETCOR) can be performed at natural abundance. Unfortunately, for a single living shrimp (∼2 mg), 13C enrichment was still required, but 13C-detected HETCOR shows superior data relative to heteronuclear single-quantum coherence at low spinning speeds (due to complications from water sidebands in the latter). The probe is equipped with automatic-tuning-matching and is compatible with automated gradient shimming─a key step toward conducting multiphase screening of dead and living organisms under automation in the near future.
Collapse
Affiliation(s)
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Paris Ning
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Monica Bastawrous
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Peter de Castro
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Rainer Kümmerle
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Jochem Struppe
- Bruker Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821-3991, USA
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - André J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
20
|
Johnston TL, Edison AS, Ramaswamy V, Freytag N, Merritt ME, Thomas JN, Hooker JW, Litvak IM, Brey WW. Application of Counter-wound Multi-arm Spirals in HTS Resonator Design. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY : A PUBLICATION OF THE IEEE SUPERCONDUCTIVITY COMMITTEE 2022; 32:1500304. [PMID: 35449718 PMCID: PMC9017787 DOI: 10.1109/tasc.2022.3146109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Significant sensitivity improvements have been achieved by utilizing high temperature superconducting (HTS) resonators in nuclear magnetic resonance (NMR) probes. Many nuclei such as 13C benefit from strong excitation fields which cannot be produced by traditional HTS resonator designs. We investigate the use of double-sided, counter-wound multi-arm spiral HTS resonators with the aim of increasing the excitation field at the required nuclear Larmor frequency for 13C. When compared to double-sided, counter-wound spiral resonators with similar geometry, simulations indicate that the multi-arm spiral version develops a more uniform current distribution. Preliminary tests of a two-arm resonator indicate that it may produce a stronger excitation field.
Collapse
Affiliation(s)
- Taylor L Johnston
- National High Magnetic Laboratory, Tallahassee, FL 32310, USA and also with the Department of Chemistry and Biochemistry, Florida State University
| | | | | | | | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32601, USA
| | - Jeremy N Thomas
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA and also with the Department of Physics, Florida State University
| | - Jerris W Hooker
- Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Ilya M Litvak
- National High Magnetic Laboratory, Tallahassee, FL 32310, USA and also with Florida State University
| | - William W Brey
- National High Magnetic Laboratory, Tallahassee, FL 32310, USA and also with Florida State University
| |
Collapse
|
21
|
Emwas AH, Szczepski K, Al-Younis I, Lachowicz JI, Jaremko M. Fluxomics - New Metabolomics Approaches to Monitor Metabolic Pathways. Front Pharmacol 2022; 13:805782. [PMID: 35387341 PMCID: PMC8977530 DOI: 10.3389/fphar.2022.805782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Fluxomics is an innovative -omics research field that measures the rates of all intracellular fluxes in the central metabolism of biological systems. Fluxomics gathers data from multiple different -omics fields, portraying the whole picture of molecular interactions. Recently, fluxomics has become one of the most relevant approaches to investigate metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to monitor metabolic pathways, to probe the corresponding gene-RNA and protein-metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning of multi-molecular metabolic pathways and is increasingly applied in biotechnology and pharmacology. Here, we describe the main fluxomics approaches and experimental platforms. Moreover, we summarize recent fluxomic results in different biological systems.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Inas Al-Younis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
22
|
NMR Spectroscopy Identifies Chemicals in Cigarette Smoke Condensate That Impair Skeletal Muscle Mitochondrial Function. TOXICS 2022; 10:toxics10030140. [PMID: 35324765 PMCID: PMC8955362 DOI: 10.3390/toxics10030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
Tobacco smoke-related diseases such as chronic obstructive pulmonary disease (COPD) are associated with high healthcare burden and mortality rates. Many COPD patients were reported to have muscle atrophy and weakness, with several studies suggesting intrinsic muscle mitochondrial impairment as a possible driver of this phenotype. Whereas much information has been learned about muscle pathology once a patient has COPD, little is known about how active tobacco smoking might impact skeletal muscle physiology or mitochondrial health. In this study, we examined the acute effects of cigarette smoke condensate (CSC) on muscle mitochondrial function and hypothesized that toxic chemicals present in CSC would impair mitochondrial respiratory function. Consistent with this hypothesis, we found that acute exposure of muscle mitochondria to CSC caused a dose-dependent decrease in skeletal muscle mitochondrial respiratory capacity. Next, we applied an analytical nuclear magnetic resonance (NMR)-based approach to identify 49 water-soluble and 12 lipid-soluble chemicals with high abundance in CSC. By using a chemical screening approach in the Seahorse XF96 analyzer, several CSC-chemicals, including nicotine, o-Cresol, phenylacetate, and decanoic acid, were found to impair ADP-stimulated respiration in murine muscle mitochondrial isolates significantly. Further to this, several chemicals, including nicotine, o-Cresol, quinoline, propylene glycol, myo-inositol, nitrosodimethylamine, niacinamide, decanoic acid, acrylonitrile, 2-naphthylamine, and arsenic acid, were found to significantly decrease the acceptor control ratio, an index of mitochondrial coupling efficiency.
Collapse
|
23
|
Abstract
BACKGROUND Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, 130-701, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Nagana Gowda GA, Pascua V, Raftery D. Extending the Scope of 1H NMR-Based Blood Metabolomics for the Analysis of Labile Antioxidants: Reduced and Oxidized Glutathione. Anal Chem 2021; 93:14844-14850. [PMID: 34704738 DOI: 10.1021/acs.analchem.1c03763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutathione is a ubiquitous cellular antioxidant, which is critically required to protect cells from oxidative damage and free radical injury. It is practically impossible to analyze glutathione in its native form after isolation from biological mixtures since the active form (reduced glutathione, GSH) spontaneously gets converted to the oxidized form (oxidized glutathione, GSSG). To address this challenge, numerous highly sensitive detection methods, including mass spectrometry, have been used in conjunction with derivatization to block the oxidation of GSH. Efforts so far to quantitate GSH and GSSG using the nuclear magnetic resonance (NMR) spectroscopy method have remained unsuccessful. With a focus on addressing this challenge, in this study, we describe an extension to our recent whole blood analysis method [ Anal. Chem. 2017, 89, 4620-4627] that includes the important antioxidants GSH and GSSG. Fresh and frozen human whole blood specimens as well as standard GSH and GSSG were comprehensively investigated using NMR without and with derivatization using N-ethylmaleimide (NEM). NMR experiments detect two diastereomers, distinctly, for the derivatized GSH and enable the analysis of both GSH and GSSG in human whole blood with an accuracy of >99%. Interestingly, the excess (unreacted) NEM used for blocking the GSH can be removed from the samples during a drying step after extraction, with no need for additional processing. This is an important characteristic that offers an added advantage for simultaneous analysis of the antioxidants (GSH and GSSG), redox coenzymes (oxidized nicotinamide adenine dinucleotide (NAD+), reduced nicotinamide adenine dinucleotide (NADH), oxidized nicotinamide adenine dinucleotide phosphate (NADP+), reduced nicotinamide adenine dinucleotide phosphate (NADPH)), energy coenzymes (adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP)), and a large number of other blood metabolites using the same one-dimensional (1D) NMR spectrum. The presented method broadens the scope of global metabolite profiling and adds a new dimension to NMR-based blood metabolomics. Further, the method demonstrated here for human blood can be extended to virtually any biological specimen.
Collapse
Affiliation(s)
| | | | - Daniel Raftery
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|
25
|
Letertre MPM, Giraudeau P, de Tullio P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives. Front Mol Biosci 2021; 8:698337. [PMID: 34616770 PMCID: PMC8488110 DOI: 10.3389/fmolb.2021.698337] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine is probably the most promising area being developed in modern medicine. This approach attempts to optimize the therapies and the patient care based on the individual patient characteristics. Its success highly depends on the way the characterization of the disease and its evolution, the patient’s classification, its follow-up and the treatment could be optimized. Thus, personalized medicine must combine innovative tools to measure, integrate and model data. Towards this goal, clinical metabolomics appears as ideally suited to obtain relevant information. Indeed, the metabolomics signature brings crucial insight to stratify patients according to their responses to a pathology and/or a treatment, to provide prognostic and diagnostic biomarkers, and to improve therapeutic outcomes. However, the translation of metabolomics from laboratory studies to clinical practice remains a subsequent challenge. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the two key platforms for the measurement of the metabolome. NMR has several advantages and features that are essential in clinical metabolomics. Indeed, NMR spectroscopy is inherently very robust, reproducible, unbiased, quantitative, informative at the structural molecular level, requires little sample preparation and reduced data processing. NMR is also well adapted to the measurement of large cohorts, to multi-sites and to longitudinal studies. This review focus on the potential of NMR in the context of clinical metabolomics and personalized medicine. Starting with the current status of NMR-based metabolomics at the clinical level and highlighting its strengths, weaknesses and challenges, this article also explores how, far from the initial “opposition” or “competition”, NMR and MS have been integrated and have demonstrated a great complementarity, in terms of sample classification and biomarker identification. Finally, a perspective discussion provides insight into the current methodological developments that could significantly raise NMR as a more resolutive, sensitive and accessible tool for clinical applications and point-of-care diagnosis. Thanks to these advances, NMR has a strong potential to join the other analytical tools currently used in clinical settings.
Collapse
Affiliation(s)
| | | | - Pascal de Tullio
- Metabolomics Group, Center for Interdisciplinary Research of Medicine (CIRM), Department of Pharmacy, Université de Liège, Liège, Belgique
| |
Collapse
|
26
|
Thomas JN, Ramaswamy V, Litvak IM, Johnston TL, Edison AS, Brey WW. Progress Towards a Higher Sensitivity 13C-Optimized 1.5 mm HTS NMR Probe. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY : A PUBLICATION OF THE IEEE SUPERCONDUCTIVITY COMMITTEE 2021; 31:1500504. [PMID: 33867781 PMCID: PMC8045891 DOI: 10.1109/tasc.2021.3061042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nuclear magnetic resonance (NMR) probes using thin-film high temperature superconducting (HTS) resonators offer high sensitivity and are particularly suitable for small-sample applications. We are developing an improved 1.5 mm HTS NMR probe designed for operation at 14.1 T and optimized for 13C detection. The total sample volume is about 35 μL and the active sample volume is 20 μL. The probe employs HTS resonators for 13C and 1H transmission and detection and the 2H lock. We examine the interactions of multiple superconducting resonators and normal metal tuning loops on coil resonance frequency and probe sensitivity. We test a recently introduced 13C resonator design, engineered to significantly increase 13C detection sensitivity over previous all-HTS probes. At zero field, we observe a 13C quality factor of 6000 which is several times higher than previous resonators. In this work the coil design considerations and probe build-out procedure are discussed.
Collapse
Affiliation(s)
- Jeremy N Thomas
- National High Magnetic Laboratory and the Department of Physics, Florida State University, Tallahassee, FL 32310 USA
| | | | - Ilya M Litvak
- National High Magnetic Laboratory, Florida State University, Tallahassee, FL 32310 USA
| | - Taylor L Johnston
- National High Magnetic Laboratory and the Department of Chemistry, Florida State University, Tallahassee, FL 32310 USA
| | | | - William W Brey
- National High Magnetic Laboratory, Florida State University, Tallahassee, FL 32310 USA
| |
Collapse
|
27
|
Dey A, Charrier B, Martineau E, Deborde C, Gandriau E, Moing A, Jacob D, Eshchenko D, Schnell M, Melzi R, Kurzbach D, Ceillier M, Chappuis Q, Cousin SF, Kempf JG, Jannin S, Dumez JN, Giraudeau P. Hyperpolarized NMR Metabolomics at Natural 13C Abundance. Anal Chem 2020; 92:14867-14871. [PMID: 33136383 PMCID: PMC7705890 DOI: 10.1021/acs.analchem.0c03510] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Metabolomics plays a pivotal role in systems biology, and NMR is a central tool with high precision and exceptional resolution of chemical information. Most NMR metabolomic studies are based on 1H 1D spectroscopy, severely limited by peak overlap. 13C NMR benefits from a larger signal dispersion but is barely used in metabolomics due to ca. 6000-fold lower sensitivity. We introduce a new approach, based on hyperpolarized 13C NMR at natural abundance, that circumvents this limitation. A new untargeted NMR-based metabolomic workflow based on dissolution dynamic nuclear polarization (d-DNP) for the first time enabled hyperpolarized natural abundance 13C metabolomics. Statistical analysis of resulting hyperpolarized 13C data distinguishes two groups of plant (tomato) extracts and highlights biomarkers, in full agreement with previous results on the same biological model. We also optimize parameters of the semiautomated d-DNP system suitable for high-throughput studies.
Collapse
Affiliation(s)
- Arnab Dey
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
| | - Benoît Charrier
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
| | - Estelle Martineau
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
- SpectroMaitrise,
CAPACITES SAS, F-44000 Nantes, France
| | - Catherine Deborde
- INRAE,
Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave
d’Ornon, France
- Bordeaux
Metabolome, MetaboHUB, Centre INRAE de Nouvelle
Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Elodie Gandriau
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
| | - Annick Moing
- INRAE,
Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave
d’Ornon, France
- Bordeaux
Metabolome, MetaboHUB, Centre INRAE de Nouvelle
Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Daniel Jacob
- INRAE,
Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave
d’Ornon, France
- Bordeaux
Metabolome, MetaboHUB, Centre INRAE de Nouvelle
Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Dmitry Eshchenko
- Bruker
Biospin, Industriestrasse
26, 8117 Fällanden, Switzerland
| | - Marc Schnell
- Bruker
Biospin, Industriestrasse
26, 8117 Fällanden, Switzerland
| | | | - Dennis Kurzbach
- University
of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Morgan Ceillier
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | - Quentin Chappuis
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | - Samuel F. Cousin
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | - James G. Kempf
- Bruker
Biospin, 15 Fortune Dr., Billerica, Massachusetts 01821, United States
| | - Sami Jannin
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | | | | |
Collapse
|
28
|
Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020; 21:E6843. [PMID: 32961865 PMCID: PMC7554780 DOI: 10.3390/ijms21186843] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des sciences, Université de Liège, 4000 Liège, Belgium;
| | | | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Univ Lyon, Université Claude Bernard Lyon 1, 69921 Oullins CEDEX, France;
- Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins CEDEX, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (CRMN FRE 2034 CNRS, UCBL, ENS Lyon), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
29
|
Bhinderwala F, Evans P, Jones K, Laws BR, Smith T, Morton M, Powers R. Phosphorus NMR and Its Application to Metabolomics. Anal Chem 2020; 92:9536-9545. [PMID: 32530272 PMCID: PMC8327684 DOI: 10.1021/acs.analchem.0c00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable isotopes are routinely employed by NMR metabolomics to highlight specific metabolic processes and to monitor pathway flux. 13C-carbon and 15N-nitrogen labeled nutrients are convenient sources of isotope tracers and are commonly added as supplements to a variety of biological systems ranging from cell cultures to animal models. Unlike 13C and 15N, 31P-phosphorus is a naturally abundant and NMR active isotope that does not require an external supplemental source. To date, 31P NMR has seen limited usage in metabolomics because of a lack of reference spectra, difficulties in sample preparation, and an absence of two-dimensional (2D) NMR experiments, but 31P NMR has the potential of expanding the coverage of the metabolome by detecting phosphorus-containing metabolites. Phosphorylated metabolites regulate key cellular processes, serve as a surrogate for intracellular pH conditions, and provide a measure of a cell's metabolic energy and redox state, among other processes. Thus, incorporating 31P NMR into a metabolomics investigation will enable the detection of these key cellular processes. To facilitate the application of 31P NMR in metabolomics, we present a unified protocol that allows for the simultaneous and efficient detection of 1H-, 13C-, 15N-, and 31P-labeled metabolites. The protocol includes the application of a 2D 1H-31P HSQC-TOCSY experiment to detect 31P-labeled metabolites from heterogeneous biological mixtures, methods for sample preparation to detect 1H-, 13C-, 15N-, and 31P-labeled metabolites from a single NMR sample, and a data set of one-dimensional (1D) 31P NMR and 2D 1H-31P HSQC-TOCSY spectra of 38 common phosphorus-containing metabolites to assist in metabolite assignments.
Collapse
Affiliation(s)
- Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Paula Evans
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Kaleb Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Benjamin R. Laws
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Thomas Smith
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Martha Morton
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| |
Collapse
|
30
|
Charris-Molina A, Riquelme G, Burdisso P, Hoijemberg PA. Consecutive Queries to Assess Biological Correlation in NMR Metabolomics: Performance of Comprehensive Search of Multiplets over Typical 1D 1H NMR Database Search. J Proteome Res 2020; 19:2977-2988. [PMID: 32450699 DOI: 10.1021/acs.jproteome.9b00872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NMR-based metabolomics requires proper identification of metabolites to draw conclusions from the system under study. Normally, multivariate data analysis is performed using 1D 1H NMR spectra, and identification of peaks (and then compounds) relevant to the classification is accomplished using database queries as a first step. 1D 1H NMR spectra of complex mixtures often suffer from peak overlap. To overcome this issue, several studies employed the projections of the (tilted and symmetrized) 2D 1H J-resolved (JRES) spectra, p-JRES, which are similar to 1D 1H decoupled spectra. Nonetheless, there are no public databases available that allow searching for chemical shift spectral data for multiplets. We present the Chemical Shift Multiplet Database (CSMDB), built utilizing JRES spectra obtained from the Birmingham Metabolite Library. The CSMDB provides scoring accounting for both matched and unmatched peaks from a query list and the database hits. This input list is generated from a projection of a 2D statistical correlation analysis on the JRES spectra, p-(JRES-STOCSY), being able to compare the multiplets for the matched peaks, in essence, the f1 traces from the JRES-STOCSY spectrum and from the database hit. The inspection of the unmatched peaks for the database hit allows the retrieval of peaks in the query list that have a decreased correlation coefficient due to low intensities. The CSMDB is coupled to "ConQuer ABC", which permits the assessment of biological correlation by means of consecutive queries with the unmatched peaks in the first and subsequent queries.
Collapse
Affiliation(s)
- Andrés Charris-Molina
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,CIBION-CONICET, Centro de Investigaciones en Bionanociencias, NMR Group, Polo Científico Tecnológico, Ciudad Autónoma de Buenos Aires, Buenos Aires C1425FQD, Argentina
| | - Gabriel Riquelme
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,CIBION-CONICET, Centro de Investigaciones en Bionanociencias, NMR Group, Polo Científico Tecnológico, Ciudad Autónoma de Buenos Aires, Buenos Aires C1425FQD, Argentina
| | - Paula Burdisso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Rosario, Santa Fe S2002LRK, Argentina
| | - Pablo A Hoijemberg
- CIBION-CONICET, Centro de Investigaciones en Bionanociencias, NMR Group, Polo Científico Tecnológico, Ciudad Autónoma de Buenos Aires, Buenos Aires C1425FQD, Argentina.,ECyT-UNSAM, 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
| |
Collapse
|
31
|
Bruguière A, Derbré S, Dietsch J, Leguy J, Rahier V, Pottier Q, Bréard D, Suor-Cherer S, Viault G, Le Ray AM, Saubion F, Richomme P. MixONat, a Software for the Dereplication of Mixtures Based on 13C NMR Spectroscopy. Anal Chem 2020; 92:8793-8801. [DOI: 10.1021/acs.analchem.0c00193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Antoine Bruguière
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Séverine Derbré
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Joël Dietsch
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
- JEOL Europe SAS, 1 Allée de Giverny, 78290 Croissy-sur-Seine, France
| | - Jules Leguy
- LERIA, EA2645, UNIV Angers, SFR MathSTIC, Faculty of Sciences, 2 boulevard Lavoisier, 49045 Angers cedex 01, France
| | - Valentine Rahier
- LERIA, EA2645, UNIV Angers, SFR MathSTIC, Faculty of Sciences, 2 boulevard Lavoisier, 49045 Angers cedex 01, France
| | - Quentin Pottier
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Dimitri Bréard
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Sorphon Suor-Cherer
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Guillaume Viault
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Anne-Marie Le Ray
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Frédéric Saubion
- LERIA, EA2645, UNIV Angers, SFR MathSTIC, Faculty of Sciences, 2 boulevard Lavoisier, 49045 Angers cedex 01, France
| | - Pascal Richomme
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| |
Collapse
|
32
|
Giraudeau P. NMR-based metabolomics and fluxomics: developments and future prospects. Analyst 2020; 145:2457-2472. [DOI: 10.1039/d0an00142b] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent NMR developments are acting as game changers for metabolomics and fluxomics – a critical and perspective review.
Collapse
|
33
|
Sengupta A, Weljie AM. NMR Spectroscopy-Based Metabolic Profiling of Biospecimens. ACTA ACUST UNITED AC 2019; 98:e98. [PMID: 31763785 DOI: 10.1002/cpps.98] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolomics refers to study of metabolites in biospecimens such as blood serum, tissues, and urine. Nuclear magnetic resonance (NMR) spectroscopy and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS; mass spectrometry coupled with liquid chromatography) are most frequently employed to analyze complex biological/clinical samples. NMR is a relatively insensitive tool compared to UPLC-MS/MS but offers straightforward quantification and identification and easy sample processing. One-dimensional 1 H NMR spectroscopy is inherently quantitative and can be readily used for metabolite quantification without individual metabolite standards. Two-dimensional spectroscopy is most commonly used for identification of metabolites but can also be used quantitatively. Although NMR experiments are unbiased regarding the chemical nature of the analyte, it is crucial to adhere to the proper metabolite extraction protocol for optimum results. Selection and implementation of appropriate NMR pulse programs are also important. Finally, employment of the correct metabolite quantification strategy is crucial as well. In this unit, step-by-step guidance for running an NMR metabolomics experiment from typical biospecimens is presented. The unit describes an optimized metabolite extraction protocol, followed by implementation of NMR experiments and quantification strategies using the so-called "targeted profiling" technique. This approach relies on an underlying basis set of metabolite spectra acquired under similar conditions. Some strategies for statistical analysis of the data are also presented. Overall, this set of protocols should serve as a guide for anyone who wishes to enter the world of NMR-based metabolomics analysis. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Metabolite extraction from different biospecimens Basic Protocol 2: Preparation of dried upper fraction for NMR analysis Alternate Protocol: Preparation of urine samples for NMR analysis Basic Protocol 3: NMR experiments Basic Protocol 4: Spectral processing and quantification of metabolites Basic Protocol 5: Statistical analysis of the data.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Siciliano C, Bartella L, Mazzotti F, Aiello D, Napoli A, De Luca P, Temperini A. 1H NMR quantification of cannabidiol (CBD) in industrial products derived from Cannabis sativa L. (hemp) seeds. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/572/1/012010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Monge ME, Dodds JN, Baker ES, Edison AS, Fernández FM. Challenges in Identifying the Dark Molecules of Life. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:177-199. [PMID: 30883183 PMCID: PMC6716371 DOI: 10.1146/annurev-anchem-061318-114959] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metabolomics is the study of the metabolome, the collection of small molecules in living organisms, cells, tissues, and biofluids. Technological advances in mass spectrometry, liquid- and gas-phase separations, nuclear magnetic resonance spectroscopy, and big data analytics have now made it possible to study metabolism at an omics or systems level. The significance of this burgeoning scientific field cannot be overstated: It impacts disciplines ranging from biomedicine to plant science. Despite these advances, the central bottleneck in metabolomics remains the identification of key metabolites that play a class-discriminant role. Because metabolites do not follow a molecular alphabet as proteins and nucleic acids do, their identification is much more time consuming, with a high failure rate. In this review, we critically discuss the state-of-the-art in metabolite identification with specific applications in metabolomics and how technologies such as mass spectrometry, ion mobility, chromatography, and nuclear magnetic resonance currently contribute to this challenging task.
Collapse
Affiliation(s)
- María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Ciudad de Buenos Aires, Argentina
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Arthur S Edison
- Department of Genetics, Department of Biochemistry and Molecular Biology, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology and Petit Institute for Biochemistry and Bioscience, Atlanta, Georgia 30332, USA;
| |
Collapse
|
36
|
Lee-McMullen B, Chrzanowski SM, Vohra R, Forbes S, Vandenborne K, Edison AS, Walter GA. Age-dependent changes in metabolite profile and lipid saturation in dystrophic mice. NMR IN BIOMEDICINE 2019; 32:e4075. [PMID: 30848538 PMCID: PMC6777843 DOI: 10.1002/nbm.4075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/20/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal X-linked genetic disorder. In DMD, the absence of the dystrophin protein causes decreased sarcolemmal integrity resulting in progressive replacement of muscle with fibrofatty tissue. The effects of lacking dystrophin on muscle and systemic metabolism are still unclear. Therefore, to determine the impact of the absence of dystrophin on metabolism, we investigated the metabolic and lipid profile at two different, well-defined stages of muscle damage and stabilization in mdx mice. We measured NMR-detectable metabolite and lipid profiles in the serum and muscles of mdx mice at 6 and 24 weeks of age. Metabolites were determined in muscle in vivo using 1 H MRI/MRS, in isolated muscles using 1 H-HR-MAS NMR, and in serum using high resolution 1 H/13 C NMR. Dystrophic mice were found to have a unique lipid saturation profile compared with control mice, revealing an age-related metabolic change. In the 6-week-old mdx mice, serum lipids were increased and the degree of lipid saturation changed between 6 and 24 weeks. The serum taurine-creatine ratio increased over the life span of mdx, but not in control mice. Furthermore, the saturation index of lipids increased in the serum but decreased in the tissue over time. Finally, we demonstrated associations between MRI-T2 , a strong indicator of inflammation/edema, with tissue and serum lipid profiles. These results indicate the complex temporal changes of metabolites in the tissue and serum during repetitive bouts of muscle damage and regeneration that occur in dystrophic muscle.
Collapse
Affiliation(s)
- Brittany Lee-McMullen
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
| | | | - Ravneet Vohra
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Sean Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Arthur S. Edison
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
- Current address: Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
37
|
Statistically correlating NMR spectra and LC-MS data to facilitate the identification of individual metabolites in metabolomics mixtures. Anal Bioanal Chem 2019; 411:1301-1309. [PMID: 30793214 DOI: 10.1007/s00216-019-01600-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023]
Abstract
NMR and LC-MS are two powerful techniques for metabolomics studies. In NMR spectra and LC-MS data collected on a series of metabolite mixtures, signals of the same individual metabolite are quantitatively correlated, based on the fact that NMR and LC-MS signals are derived from the same metabolite covary. Deconvoluting NMR spectra and LC-MS data of the mixtures through this kind of statistical correlation, NMR and LC-MS spectra of individual metabolites can be obtained as if the specific metabolite is virtually isolated from the mixture. Integrating NMR and LC-MS spectra, more abundant and orthogonal information on the same compound can significantly facilitate the identification of individual metabolites in the mixture. This strategy was demonstrated by deconvoluting 1D 13C, DEPT, HSQC, TOCSY, and LC-MS spectra acquired on 10 mixtures consisting of 6 typical metabolites with varying concentration. Based on statistical correlation analysis, NMR and LC-MS signals of individual metabolites in the mixtures can be extracted as if their spectra are acquired on the purified metabolite, which notably facilitates structure identification. Statistically correlating NMR spectra and LC-MS data (CoNaM) may represent a novel approach to identification of individual compounds in a mixture. The success of this strategy on the synthetic metabolite mixtures encourages application of the proposed strategy of CoNaM to biological samples (such as serum and cell extracts) in metabolomics studies to facilitate identification of potential biomarkers.
Collapse
|
38
|
Nagana Gowda GA, Abell L, Tian R. Extending the Scope of 1H NMR Spectroscopy for the Analysis of Cellular Coenzyme A and Acetyl Coenzyme A. Anal Chem 2019; 91:2464-2471. [PMID: 30608643 DOI: 10.1021/acs.analchem.8b05286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coenzyme A (CoA) and acetyl-coenzyme A (acetyl-CoA) are ubiquitous cellular molecules, which mediate hundreds of anabolic and catabolic reactions including energy metabolism. Highly sensitive methods including absorption spectroscopy and mass spectrometry enable their analysis, albeit with many limitations. To date, however, NMR spectroscopy has not been used to analyze these important molecules. Building on our recent efforts, which enabled simultaneous analysis of a large number of metabolites in tissue and blood including many coenzymes and antioxidants ( Anal. Chem. 2016, 88, 4817-24; ibid 2017, 89, 4620-4627), we describe here a new method for identification and quantitation of CoA and acetyl-CoA ex vivo in tissue. Using mouse heart, kidney, liver, brain, and skeletal tissue, we show that a simple 1H NMR experiment can simultaneously measure these molecules. Identification of the two species involved a comprehensive analysis of the different tissue types using 1D and 2D NMR, in combination with spectral databases for standards, as well as spiking with authentic compounds. Time dependent studies showed that while the acetyl-CoA levels remain unaltered, CoA levels diminish by more than 50% within 24 h, which indicates that CoA is labile in solution; however, degassing the sample with helium gas halted its oxidation. Further, interestingly, we also identified endogenous coenzyme A glutathione disulfide (CoA-S-S-G) in tissue for the first time by NMR and show that CoA, when oxidized in tissue extract, also forms the same disulfide metabolite. The ability to simultaneously visualize absolute concentrations of CoA, acetyl-CoA, and endogenous CoA-S-S-G along with redox coenzymes (NAD+, NADH, NADP+, NADPH), energy coenzymes (ATP, ADP, AMP), antioxidants (GSH, GSSG), and a vast pool of other metabolites using a single 1D NMR spectrum offers a new avenue in the metabolomics field for investigation of cellular function in health and disease.
Collapse
|
39
|
Edison AS, Le Guennec A, Delaglio F, Kupče Ē. Practical Guidelines for 13C-Based NMR Metabolomics. Methods Mol Biol 2019; 2037:69-95. [PMID: 31463840 DOI: 10.1007/978-1-4939-9690-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We present an overview of 13C-based NMR metabolomics. At first glance, the low sensitivity of 13C relative to 1H NMR might seem like too great an obstacle to use this approach. However, there are several advantages to 13C NMR, whether samples can be isotopically enriched or not. At natural abundance, peaks are sharp and largely resolved, and peak frequencies are more stable to pH and other sample conditions. Statistical approaches can be used to obtain C-C and C-H correlation maps, which greatly aid in compound identification. With 13C isotopic enrichment, other experiments are possible, including both 13C-J-RES and INADEQUATE, which can be used for de novo identification of metabolites not in databases.NMR instrumentation and software has significantly improved, and probes are now commercially available that can record useful natural abundance 1D 13C spectra from real metabolomics samples in 2 h or less. Probe technology continues to improve, and the next generation should be even better. Combined with new methods of simultaneous data acquisition, which allows for two or more 1D or 2D NMR experiments to be collected using multiple receivers, very rich datasets can be collected in a reasonable amount of time that should improve metabolomics data analysis and compound identification.
Collapse
Affiliation(s)
- Arthur S Edison
- Department of Biochemistry, University of Georgia, Athens, GA, USA. .,Department of Genetics, University of Georgia, Athens, GA, USA. .,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | - Adrien Le Guennec
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,NMR Facility, Guy's Campus, King's College London, London, UK
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, MD, USA
| | | |
Collapse
|
40
|
Gowda GAN. Profiling Redox and Energy Coenzymes in Whole Blood, Tissue and Cells Using NMR Spectroscopy. Metabolites 2018; 8:E32. [PMID: 29757993 PMCID: PMC6027050 DOI: 10.3390/metabo8020032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
Coenzymes of cellular redox reactions and cellular energy, as well as antioxidants mediate biochemical reactions fundamental to the functioning of all living cells. Conventional analysis methods lack the opportunity to evaluate these important redox and energy coenzymes and antioxidants in a single step. Major coenzymes include redox coenzymes: NAD⁺ (oxidized nicotinamide adenine dinucleotide), NADH (reduced nicotinamide adenine dinucleotide), NADP⁺ (oxidized nicotinamide adenine dinucleotide phosphate) and NADPH (reduced nicotinamide adenine dinucleotide phosphate); energy coenzymes: ATP (adenosine triphosphate), ADP (adenosine diphosphate) and AMP (adenosine monophosphate); and antioxidants: GSSG (oxidized glutathione) and GSH (reduced glutathione). We show here that a simple ¹H NMR experiment can measure these coenzymes and antioxidants in tissue and whole blood apart from a vast pool of other metabolites. In addition, focused on the goal of identification of coenzymes in subcellular fractions, we demonstrate analysis of coenzymes in the cytoplasm using breast cancer cells. Owing to their unstable nature, or low concentrations, most of the coenzymes either evade detection or lose their integrity when established sample preparation and analysis methods are used. To overcome this challenge, here we describe the development of new methods to detect these molecules without affecting the integrity of other metabolites. We used an array of 1D and 2D NMR methods, chemical shift databases, pH measurements and spiking with authentic compounds to establish the identity of peaks for the coenzymes and antioxidants in NMR spectra. Interestingly, while none of the coenzymes and antioxidants were detected in plasma, they were abundant in whole blood. Considering that the coenzymes and antioxidants represent a sensitive measure of human health and risk for numerous diseases, the presented NMR methods to measure them in one step potentially open new opportunities in the metabolomics field.
Collapse
Affiliation(s)
- G A Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
41
|
Kikuchi J, Ito K, Date Y. Environmental metabolomics with data science for investigating ecosystem homeostasis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:56-88. [PMID: 29405981 DOI: 10.1016/j.pnmrs.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 05/08/2023]
Abstract
A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches.
Collapse
Affiliation(s)
- Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan.
| | - Kengo Ito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
42
|
Bakiri A, Hubert J, Reynaud R, Lambert C, Martinez A, Renault JH, Nuzillard JM. Reconstruction of HMBC Correlation Networks: A Novel NMR-Based Contribution to Metabolite Mixture Analysis. J Chem Inf Model 2018; 58:262-270. [DOI: 10.1021/acs.jcim.7b00653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ali Bakiri
- Institut de Chimie
Moléculaire de Reims, UMR CNRS 7312, SFR CAP’SANTE, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex, France
- Active Beauty Department, Givaudan France, Route de Bazancourt, 51110 Pomacle, France
| | - Jane Hubert
- Institut de Chimie
Moléculaire de Reims, UMR CNRS 7312, SFR CAP’SANTE, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex, France
| | - Romain Reynaud
- Active Beauty Department, Givaudan France, Route de Bazancourt, 51110 Pomacle, France
| | - Carole Lambert
- Active Beauty Department, Givaudan France, Route de Bazancourt, 51110 Pomacle, France
| | - Agathe Martinez
- Institut de Chimie
Moléculaire de Reims, UMR CNRS 7312, SFR CAP’SANTE, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex, France
| | - Jean-Hugues Renault
- Institut de Chimie
Moléculaire de Reims, UMR CNRS 7312, SFR CAP’SANTE, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex, France
| | - Jean-Marc Nuzillard
- Institut de Chimie
Moléculaire de Reims, UMR CNRS 7312, SFR CAP’SANTE, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex, France
| |
Collapse
|
43
|
Ebbels TMD, Rodriguez-Martinez A, Dumas ME, Keun HC. Advances in Computational Analysis of Metabolomic NMR Data. NMR-BASED METABOLOMICS 2018. [DOI: 10.1039/9781782627937-00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter we discuss some of the more recent developments in preprocessing and statistical analysis of NMR spectra in metabolomics. Bayesian methods for analyzing NMR spectra are summarized and we describe one particular approach, BATMAN, in more detail. We consider techniques based on statistical associations, such as correlation spectroscopy (e.g. STOCSY and recent variants), as well as approaches that model the associations as a network and how these change under different biological conditions. The link between metabolism and genotype is explored by looking at metabolic GWAS and related techniques. Finally, we describe the relevance and current status of data standards for NMR metabolomics.
Collapse
Affiliation(s)
- Timothy M. D. Ebbels
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London London SW7 2AZ UK
| | - Andrea Rodriguez-Martinez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London London SW7 2AZ UK
| | - Marc-Emmanuel Dumas
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London London SW7 2AZ UK
| | - Hector C. Keun
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London London W12 0NN UK
| |
Collapse
|
44
|
Hoijemberg PA, Pelczer I. Fast Metabolite Identification in Nuclear Magnetic Resonance Metabolomic Studies: Statistical Peak Sorting and Peak Overlap Detection for More Reliable Database Queries. J Proteome Res 2017; 17:392-401. [PMID: 29135266 DOI: 10.1021/acs.jproteome.7b00617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A lot of time is spent by researchers in the identification of metabolites in NMR-based metabolomic studies. The usual metabolite identification starts employing public or commercial databases to match chemical shifts thought to belong to a given compound. Statistical total correlation spectroscopy (STOCSY), in use for more than a decade, speeds the process by finding statistical correlations among peaks, being able to create a better peak list as input for the database query. However, the (normally not automated) analysis becomes challenging due to the intrinsic issue of peak overlap, where correlations of more than one compound appear in the STOCSY trace. Here we present a fully automated methodology that analyzes all STOCSY traces at once (every peak is chosen as driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the metabolite identification process with more successful database queries and searching all tentative compounds in the sample set.
Collapse
Affiliation(s)
- Pablo A Hoijemberg
- Department of Chemistry, Frick Chemistry Laboratory, Princeton University , Princeton, New Jersey 08544, United States.,NMR Group, Centro de Investigaciones en Bionanociencias, CIBION-CONICET, Polo Científico Tecnológico , 1425 Ciudad Autónoma de Buenos Aires, Argentina
| | - István Pelczer
- Department of Chemistry, Frick Chemistry Laboratory, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
45
|
Sandlers Y. The future perspective: metabolomics in laboratory medicine for inborn errors of metabolism. Transl Res 2017; 189:65-75. [PMID: 28675806 DOI: 10.1016/j.trsl.2017.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
Metabolomics can be described as a simultaneous and comprehensive analysis of small molecules in a biological sample. Recent technological and bioinformatics advances have facilitated large-scale metabolomic studies in many areas, including inborn errors of metabolism (IEMs). Despite significant improvements in the diagnosis and treatment of some IEMs, it is still challenging to understand how genetic variation affects disease progression and susceptibility. In addition, a search for new more personalized therapies and a growing demand for tools to monitor the long-term metabolic effects of existing therapies set the stage for metabolomics integration in preclinical and clinical studies. While targeted metabolomics approach is a common practice in biochemical genetics laboratories for biochemical diagnosis and monitoring of IEMs, applications of untargeted metabolomics in the clinical laboratories are still in infancy, facing some challenges. It is however, expected in the future to dramatically change the scope and utility of the clinical laboratory playing a significant role in patient management. This review provides an overview of targeted and global, large-scale metabolomic studies applied to investigate various IEMs. We discuss an existing and prospective clinical applications of metabolomics in IEMs for better diagnosis and deep understanding of complex metabolic perturbations associated with the etiology of inherited metabolic disorders.
Collapse
Affiliation(s)
- Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, Ohio.
| |
Collapse
|
46
|
Bakiri A, Hubert J, Reynaud R, Lanthony S, Harakat D, Renault JH, Nuzillard JM. Computer-Aided 13C NMR Chemical Profiling of Crude Natural Extracts without Fractionation. JOURNAL OF NATURAL PRODUCTS 2017; 80:1387-1396. [PMID: 28414230 DOI: 10.1021/acs.jnatprod.6b01063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A computer-aided, 13C NMR-based dereplication method is presented for the chemical profiling of natural extracts without any fractionation. An algorithm was developed in order to compare the 13C NMR chemical shifts obtained from a single routine spectrum with a set of predicted NMR data stored in a natural metabolite database. The algorithm evaluates the quality of the matching between experimental and predicted data by calculating a score function and returns the list of metabolites that are most likely to be present in the studied extract. The proof of principle of the method is demonstrated on a crude alkaloid extract obtained from the leaves of Peumus boldus, resulting in the identification of eight alkaloids, including isocorydine, rogersine, boldine, reticuline, coclaurine, laurotetanine, N-methylcoclaurine, and norisocorydine, as well as three monoterpenes, namely, p-cymene, eucalyptol, and α-terpinene. The results were compared to those obtained with other methods, either involving a fractionation step before the chemical profiling process or using mass spectrometry detection in the infusion mode or coupled to gas chromatography.
Collapse
Affiliation(s)
- Ali Bakiri
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR CAP'SANTE, Université de Reims Champagne-Ardenne , Reims 51097, France
- Soliance-Givaudan , Pomacle 51110, France
| | - Jane Hubert
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR CAP'SANTE, Université de Reims Champagne-Ardenne , Reims 51097, France
| | | | - Sylvie Lanthony
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR CAP'SANTE, Université de Reims Champagne-Ardenne , Reims 51097, France
| | - Dominique Harakat
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR CAP'SANTE, Université de Reims Champagne-Ardenne , Reims 51097, France
| | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR CAP'SANTE, Université de Reims Champagne-Ardenne , Reims 51097, France
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR CAP'SANTE, Université de Reims Champagne-Ardenne , Reims 51097, France
| |
Collapse
|
47
|
Monteagudo E, Virgili A, Parella T, Pérez-Trujillo M. Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled dl-Methionine. Anal Chem 2017; 89:4939-4944. [PMID: 28394124 DOI: 10.1021/acs.analchem.7b00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A method based on d-DNP NMR spectroscopy to study chiral recognition is described for the first time. The enantiodifferentiation of a racemic metabolite in a millimolar aqueous solution using a chiral solvating agent was performed. Hyperpolarized 13C-labeled dl-methionine enantiomers were differently observed with a single-scan 13C NMR experiment, while the chiral auxiliary at thermal equilibrium remained unobserved. The method developed entails a step forward in the chiral recognition of small molecules by NMR spectroscopy, opening new possibilities in situations where the sensitivity is limited, for example, when a low concentration of analyte is available or when the measurement of an insensitive nucleus, like 13C, is required. The advantages and current limitations of the method, as well as future perspectives, are discussed.
Collapse
Affiliation(s)
- Eva Monteagudo
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona , E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Albert Virgili
- Departament de Química, Universitat Autònoma de Barcelona , E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona , E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona , E-08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
48
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
- Department of Chemistry, University of Washington, Seattle, Washington 98109, United States
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|
49
|
Giraudeau P. Challenges and perspectives in quantitative NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:61-69. [PMID: 27370178 DOI: 10.1002/mrc.4475] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Patrick Giraudeau
- EBSI Team, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, LUNAM Université, Nantes, France
- Institut Universitaire de France, Paris Cedex 5, France
| |
Collapse
|
50
|
Walker LR, Hoyt DW, Walker SM, Ward JK, Nicora CD, Bingol K. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:998-1003. [PMID: 27539910 DOI: 10.1002/mrc.4503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/08/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Lawrence R Walker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - S Michael Walker
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Joy K Ward
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Carrie D Nicora
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kerem Bingol
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|