1
|
Hoefnagel ME, Hetterscheid DGH. The Role of Metal-Organic Framework Induced Confinement Effects on Molecular Electrocatalysts Relevant to the Energy Transition. CHEMSUSCHEM 2025; 18:e202402676. [PMID: 40272071 DOI: 10.1002/cssc.202402676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Indexed: 04/25/2025]
Abstract
Metal organic frameworks (MOFs) are promising materials for (electro)catalysis as they can improve stability, reusability, and catalytic current densities of molecular catalysts, thereby combining the advantages of homogeneous- and heterogeneous catalysts. However, much is unknown about the effects of confinement of a catalyst within an MOF on the overall catalytic behavior. The performance of a series of electrocatalysts confined in MOFs is compared to that of the corresponding homogeneous catalysts to evaluate to what extend the catalytic site is affected by confinement in terms of stability, activity, and selectivity. Together the examples discuss depict what happens to a catalyst when it is incorporated into an MOF, and recommendations are made on how to evaluate the electrochemical activity of an MOF in a way that allows for description of such confinement effects on the catalyst performance. It is noted that the limiting factor for the catalytic reaction in MOFs is found in 1) slow electron transport, 2) slow mass transport of reactants and products, or 3) a low activity of the catalytic site itself. Understanding the changes in mass- and electron transport and the resulting effects on catalytic mechanism is essential to be able to bring MOF systems to practical applications.
Collapse
Affiliation(s)
- Marlene E Hoefnagel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Dennis G H Hetterscheid
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
2
|
Chen M, Fu GE, Zhao W, Zhang T. Effective Strategies in Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Production. Chemistry 2025; 31:e202500100. [PMID: 40041928 DOI: 10.1002/chem.202500100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Hydrogen as a significant green energy source, has emerged as one of the most promising candidates to solve serious environmental and energy problems. Photocatalytic water splitting is a prospective route to sustainable hydrogen production. Covalent organic frameworks (COFs) are considered as efficient photocatalysts due to their substantial specific surface areas, extended π-conjugated backbones, and robust chemical stability. This review summarizes the recent advances of COF-based materials in the field of photocatalytic hydrogen production, including the construction of donor-acceptor (D-A) structure, protonation of the N site, synthesis of zwitterionic COFs, introduction of co-catalysts, use of metal-containing monomers, and compositing COFs with other catalysts. The properties of the catalysts are meticulously adjusted through those structural and system design strategies, thereby significantly enhancing the hydrogen production performance of the COFs. Finally, the challenges and potential opportunities for future developments are discussed in terms of the current research status and practical applications of photocatalytic hydrogen production from COFs.
Collapse
Affiliation(s)
- Mengyao Chen
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenkai Zhao
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
3
|
Tsai YS, Chen YW, Dayawansa CL, Chang H, Chen WC, Shen JS, Ong TG, Yap GPA, Wang VCC. Mechanistic Investigations of a Hydrogen-Evolving Cobalt Diimine-Dioxime Complex in an Oxygen Environment: Roles of Secondary Coordination Sphere, Bro̷nsted Acid, and Axial Ligand. Inorg Chem 2025; 64:4213-4222. [PMID: 39999341 PMCID: PMC11898077 DOI: 10.1021/acs.inorgchem.4c03301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
The concept of a secondary coordination sphere (SCS) has been widely adopted in designing molecular electrocatalysts to promote energy-conversion reactions, such as the hydrogen-evolution reaction (HER) or the reduction of carbon dioxide. The role of SCS in the oxygen-tolerant properties of molecular electrocatalysts is less explored. An HER electrocatalyst, the cobalt diimine-dioxime complex, is one of the metal complexes designed by the concept of SCS to facilitate HER and retain its reactivity in an oxygen environment. Nevertheless, the mechanism underlying its oxygen tolerance remains unclear. This study revealed that in the presence of molecular oxygen, the oxygen reduction reaction (ORR) predominates over the hydrogen evolution reaction (HER) for this cobalt complex. Further investigations suggest that intramolecular proton transfer through SCS and intermolecular proton transfer from exogenous proton sources mutually dictate the product selectivity of ORR between H2O2 and H2O, thereby determining the stability of the complex under HER. In addition, the choice of labile ligands has emerged as a useful factor in enhancing oxygen tolerance. These findings provide valuable design principles for developing oxygen-tolerant molecular catalysts and shed light on the reactivity and product selectivity controlled by the interplay of proton transfer routes.
Collapse
Affiliation(s)
- Yu-Syuan Tsai
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, R.O.C.
| | - Yu-Wei Chen
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, R.O.C.
| | | | - Hsuan Chang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, R.O.C.
| | - Wen-Ching Chen
- Institute
of Chemistry, Academia Sinica, Taipei, Taiwan 11529, R.O.C.
| | - Jiun-Shian Shen
- Institute
of Chemistry, Academia Sinica, Taipei, Taiwan 11529, R.O.C.
| | - Tiow-Gan Ong
- Institute
of Chemistry, Academia Sinica, Taipei, Taiwan 11529, R.O.C.
| | - Glenn P. A. Yap
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Vincent C.-C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, R.O.C.
- Green
Hydrogen Research Center, National Sun Yat-sen
University, Kaohsiung, Taiwan 80424, R.O.C.
| |
Collapse
|
4
|
Haake M, Reuillard B, Chavarot-Kerlidou M, Costentin C, Artero V. Proton Relays in Molecular Catalysis for Hydrogen Evolution and Oxidation: Lessons From the Mimicry of Hydrogenases and Electrochemical Kinetic Analyses. Angew Chem Int Ed Engl 2024; 63:e202413910. [PMID: 39555743 DOI: 10.1002/anie.202413910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/19/2024]
Abstract
The active sites of metalloenzymes involved in small molecules activation often contain pendant bases that act as proton relay promoting proton-coupled electron-transfer processes. Here we focus on hydrogenases and on the reactions they catalyze, i. e. the hydrogen evolution and oxidation reactions. After a short description of these enzymes, we review some of the various biomimetic and bioinspired molecular systems that contain proton relays. We then provide the formal electrochemical framework required to decipher the key role of such proton relay to enhance catalysis in a single direction and discuss the few systems active for H2 evolution for which quantitative kinetic data are available. We finally highlight key parameters required to reach bidirectional catalysis (both hydrogen evolution and hydrogen oxidation catalyzed) and then transition to reversible catalysis (both reactions catalyzed in a narrow potential range) as well as illustrate these features on few systems from the literature.
Collapse
Affiliation(s)
- Matthieu Haake
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bertrand Reuillard
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Cyrille Costentin
- Département de Chimie Moléculaire, Univ. Grenoble. Alpes, CNRS, 38000, Grenoble, France
| | - Vincent Artero
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| |
Collapse
|
5
|
Yuan H, Ming M, Yang S, Guo K, Chen B, Jiang L, Han Z. Molecular Copper-Anthraquinone Photocatalysts for Robust Hydrogen Production. J Am Chem Soc 2024; 146:31901-31910. [PMID: 39508387 DOI: 10.1021/jacs.4c11223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The development of robust and inexpensive photocatalysts for H2 production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R4N)CuL2 (R = ethyl, L = alizarin dianion (CuAA); R = n-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H2 production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H2 in a mixture of H2O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV-vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H2. Dependence of the catalytic rate on the concentration of H2O suggests that either the generation of a CuII-H intermediate by protonation or heterocoupling between CuII-H and H+ to produce H2 is the turnover-limiting step in catalysis.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Bixian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Liu J, Liao ZH, Zhu T, Wu J, Wang F. In Situ Self-Inflating-Modeled Giant-Vesicle-Like Quantum Dot Assembly for Biomimetic Artificial Photosynthesis. ACS NANO 2024; 18:31537-31546. [PMID: 39475626 DOI: 10.1021/acsnano.4c12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The study of biomimetic self-assembly is crucial for scientists aiming to understand the origin of life and construct biomimetic functional structures. In our endeavor to create a biomimetic photosynthetic assembly, we discover a self-inflation behavior that drives the components, MPA-CdSe quantum dots (QDs) and a solid cationic polyelectrolyte, CPPA, to form a giant-vesicle-like (GVL) architecture, termed GVL-QDs@CPPA. The in situ generation of osmotic pressure during the self-assembly of QDs onto swollen CPPA in water was found to cause this self-inflation process. The resulting vesicle-like structure exhibits spatial characteristics similar to those of natural photosynthetic cells, with QDs acting as pigments uniformly distributed on the CPPA membranes, which have embedded cobalt catalytic centers. This architecture ensures optimal absorption of visible light and facilitates efficient electron transfer between the QDs and catalytic centers. As a result, GVL-QDs@CPPA assemblies efficiently harness photogenerated electrons and holes to convert protons and isopropanol into hydrogen (H2) and acetone, respectively, achieving a nearly 1:1 ratio of the reduction product (H2) to the oxidation product (acetone).
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zi-Hao Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ting Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jin Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization (2023B1212060012), Guangdong HUST (Huazhong University of Science and Technology) Industrial Technology Research Institute, Dongguan 523808, P. R. China
| |
Collapse
|
7
|
Cropley JD, Mitchell AC, Fritsch NA, Ho M, Wells TD, Reynolds TM, Brennessel WW, McNamara WR. Mononuclear Fe(III) Schiff base antipyrine complexes for catalytic hydrogen generation. Dalton Trans 2024; 53:15421-15426. [PMID: 39246062 DOI: 10.1039/d4dt01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Mononuclear Fe(III) complexes containing an antipyrine Schiff base ligand were prepared and fully characterized, demonstrating a planar tetradentate coordination geometry. These complexes were found to be active for the hydrogen evolution reaction. Catalysis occurs at -1.4 V vs. Fc+/Fc, with an overpotential of 700 mV. The complexes are active electrocatalysts with a turnover frequency of 700 s-1. Furthermore, when paired with a chromophore and sacrificial donor, the complexes are active photocatalysts demonstrating >1700 turnovers during 40 hours of irradiation with a quantum yield of up to 5.4%. The catalysts have also been found to operate in natural water samples of varying salinity.
Collapse
Affiliation(s)
- Jessica D Cropley
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Amanda C Mitchell
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Nicole A Fritsch
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Marissa Ho
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Timothy D Wells
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Todd M Reynolds
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - William W Brennessel
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA
| | - William R McNamara
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| |
Collapse
|
8
|
Samanta A, Dutta B, Halder S. Cobalt-Based Nanoscale Material: An Emerging Electrocatalyst for Hydrogen Production. Chem Asian J 2024; 19:e202400209. [PMID: 38639720 DOI: 10.1002/asia.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Modern civilization has been highly suffering from energy crisis and environmental pollutions. These two burning issues are directly and indirectly created from fossil fuel consumption and uncontrolled industrialization. The above critical issue can be solved through the proper utilization of green energy sources where no greenhouse gases will be generated upon burning of such materials. Hydrogen is the most eligible candidate for this purpose. Among various methods of hydrogen generation, electrocatalytic process is one of the most efficient methods because of easy handling and high efficiency. In these aspects Co-based nanomaterials are considered to be extremely significant as they can be utilized as efficient, recyclable and ideal catalytic system. In this article a series of Co-based nano-electrocatalysts has been discussed with proper structure-property relationship and their medium dependency. Therefore, such type of stimulating summary on recently reported electrocatalysts and their activity may be helpful for scientists of the corresponding field as well as for broader research communities. This can be inspiration for materials researchers to fabricate active catalysts for the production of hydrogen gas in room temperature.
Collapse
Affiliation(s)
- Arnab Samanta
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Basudeb Dutta
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shibashis Halder
- Department of Chemistry, T.N.B. College, Bhagalpur (A constituent unit of Tilka Manjhi Bhagalpur University), Bihar, 812007, India
| |
Collapse
|
9
|
Askins EJ, Sarkar A, Navabi P, Kumar K, Finkelmeyer SJ, Presselt M, Cabana J, Glusac KD. Interfacial Electrochemistry of Catalyst-Coordinated Graphene Nanoribbons. J Am Chem Soc 2024; 146:22360-22373. [PMID: 39087647 DOI: 10.1021/jacs.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The immobilization of molecular electrocatalysts on conductive electrodes is an appealing strategy for enhancing their overall activity relative to those of analogous molecular compounds. In this study, we report on the interfacial electrochemistry of self-assembled two-dimensional nanosheets of graphene nanoribbons (GNR-2DNS) and analogs containing a Rh-based hydrogen evolution reaction (HER) catalyst (RhGNR-2DNS) immobilized on conductive electrodes. Proton-coupled electron transfer (PCET) taking place at N-centers of the nanoribbons was utilized as an indirect reporter of the interfacial electric fields experienced by the monolayer nanosheet located within the electric double layer. The experimental Pourbaix diagrams were compared with a theoretical model, which derives the experimental Pourbaix slopes as a function of parameter f, a fraction of the interfacial potential drop experienced by the redox-active group. Interestingly, our study revealed that GNR-2DNS was strongly coupled to glassy carbon electrodes (f = 1), while RhGNR-2DNS was not (f = 0.15). We further investigated the HER mechanism by RhGNR-2DNS using electrochemical and X-ray absorption spectroelectrochemical methods and compared it to homogeneous molecular model compounds. RhGNR-2DNS was found to be an active HER electrocatalyst over a broader set of aqueous pH conditions than its molecular analogs. We find that the improved HER performance in the immobilized catalyst arises due to two factors. First, redox-active bipyrimidine-based ligands were shown to dramatically alter the activity of Rh sites by increasing the electron density at the active Rh center and providing RhGNR-2DNS with improved catalysis. Second, catalyst immobilization was found to prevent catalyst aggregation that was found to occur for the molecular analog in the basic pH. Overall, this study provides valuable insights into the mechanism by which catalyst immobilization can affect the overall electrocatalytic performance.
Collapse
Affiliation(s)
- Erik J Askins
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Abdul Sarkar
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Pouyan Navabi
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Khagesh Kumar
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Sarah Jasmin Finkelmeyer
- Leibniz Institute of Photonic Technology (IPHT), Jena 07745, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Jena 07745, Germany
- SciClus GmbH & Co. KG, Jena 07745, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany
| | - Jordi Cabana
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
10
|
Taechaworaphong C, Juthathan M, Thamyongkit P, Tuntulani T, Leeladee P. Electrocatalytic Hydrogen Evolution of Immobilized Copper Complex on Carbonaceous Materials: From Neutral Water to Seawater. Chempluschem 2024; 89:e202300679. [PMID: 38367268 DOI: 10.1002/cplu.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Electrochemical hydrogen evolution reaction (HER) is an appealing strategy to utilize renewable electricity to produce green H2. Moreover, use of neutral-pH electrolyte such as water and seawater for the HER has long been desired for eco-friendly energy production that aligns with net zero emission goal. Herein, new heterogeneous catalysts were developed by dispersing an HER-active copper complex containing N4-Schiff base macrocycle (CuL) on carbonaceous materials, i. e. multi-walled carbon nanotube (CNT) and graphene oxide (GO), via non-covalent interaction and investigated their HER performance. It was found that CuL/GO exhibited higher HER activity than CuL/CNT, possibly due to its significantly larger amount of CuL immobilized onto GO. In addition, CuL/GO showed satisfactory HER performance in a neutral (pH 7) NaCl electrolyte solution. Notably, the performances of CuL/GO were boosted up when performed in natural seawater sample with the faradaic efficiency of 70 % and 3 times higher amount of H2 at -0.6 V vs reversible hydrogen electrode (RHE), in comparison to the HER in a NaCl electrolyte. Furthermore, it possessed a low overpotential of 139 mV at -10 mA/cm2. This demonstrated the potential use of CuL/GO as an effective HER catalyst in seawater for further sustainable development.
Collapse
Affiliation(s)
| | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Ali A, Verma RK, Das A, Paria S. Exploring the effect of a pendent amine group poised over the secondary coordination sphere of a cobalt complex on the electrocatalytic hydrogen evolution reaction. Dalton Trans 2024; 53:8289-8297. [PMID: 38660950 DOI: 10.1039/d4dt00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A CoIII complex (2) of a bispyridine-dioxime ligand (H2LNMe2) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of the CoII complex (2a). The acid-base properties of 2 showed pKa values of 5.9, 8.4, and 9.6, which are assigned to the dissociation of two consecutive oxime protons and amine protons, respectively. The electrocatalytic proton reduction of 2 was investigated in an aqueous phosphate buffer solution (PBS), revealing a catalytic hydrogen evolution reaction (HER) at an Ecat/2 of -1.01 V vs. the SHE, with an overpotential of 673 mV and a kobs value of 2.6 × 103 s-1 at pH 7. For comparison, the HER of the Co complex (1) lacking the tert-amine group at the secondary sphere was investigated in PBS, which showed a kobs of 1.3 × 103 s-1 and an overpotential of 577 mV. At pH 4, however, 2 revealed a ∼3 times higher kobs value than 1, which suggests that the protonated amine group likely works as a proton relay site. Notably, no significant change in the reaction rate was observed at different pH values for 1, implying that oxime protons may not be involved in the intramolecular proton-coupled electron transfer reaction in the HER. The kobs values for Co complexes at pH 7.0 are significantly higher than those of the [Co(dmgH)2(pyridine)(Cl)] complex, implying that the primary coordination sphere around 1 or 2 enhances the HER and offers better catalyst stability in acidic buffer solutions.
Collapse
Affiliation(s)
- Afsar Ali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajaneesh Kumar Verma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
12
|
Babu A, Sinha A. Catalytic Tetrazole Synthesis via [3+2] Cycloaddition of NaN 3 to Organonitriles Promoted by Co(II)-complex: Isolation and Characterization of a Co(II)-diazido Intermediate. ACS OMEGA 2024; 9:21626-21636. [PMID: 38764698 PMCID: PMC11097157 DOI: 10.1021/acsomega.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The [3+2] cycloaddition of sodium azide to nitriles to give 5-substituted 1H-tetrazoles is efficiently catalyzed by a Cobalt(II) complex (1) with a tetradentate ligand N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine. Detailed mechanistic investigation shows the intermediacy of the cobalt(II) diazido complex (2), which has been isolated and structurally characterized. Complex 2 also shows good catalytic activity for the synthesis of 5-substituted 1H-tetrazoles. These are the first examples of cobalt complexes used for the [3+2] cycloaddition reaction for the synthesis of 1H-tetrazoles under homogeneous conditions.
Collapse
Affiliation(s)
- Archana Babu
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| | - Arup Sinha
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| |
Collapse
|
13
|
Biswas B, Siddiqui AI, Majee MC, Saha SK, Mondal B, Saha R, Gómez García CJ. Heptanuclear Mixed-Valence Co 4IIICo 3II Molecular Wheel─A Molecular Analogue of Layered Double Hydroxides with Single-Molecule Magnet Behavior and Electrocatalytic Activity for Hydrogen Evolution Reactions. Inorg Chem 2024; 63:6161-6172. [PMID: 38526851 PMCID: PMC11005049 DOI: 10.1021/acs.inorgchem.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(μ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four μ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 μmol H2 h-1 mol-1.
Collapse
Affiliation(s)
- Biplab Biswas
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Department
of Chemistry, Hooghly Mohsin College, Chinsurah 712101, West Bengal, India
| | | | | | - Swadhin Kumar Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Biswajit Mondal
- Department
of Chemistry, IIT Gandhinagar, Palaj 382355, Gujarat, India
| | - Rajat Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| |
Collapse
|
14
|
Hosseinmardi S, Scheurer A, Heinemann FW, Marigo N, Munz D, Meyer K. Closed Synthetic Cycle for Nickel-Based Dihydrogen Formation. Chemistry 2023; 29:e202302063. [PMID: 37615237 DOI: 10.1002/chem.202302063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Dihydrogen evolution was observed in a two-step protonation reaction starting from a Ni0 precursor with a tripodal N-heterocyclic carbene (NHC) ligand. Upon the first protonation, a NiII monohydride complex was formed, which was isolated and fully characterized. Subsequent protonation yields H2 via a transient intermediate (INT) and an isolable NiII acetonitrile complex. The latter can be reduced to regenerate its Ni0 precursor. The mechanism of H2 formation was investigated by using a deuterated acid and scrutinized by 1 H NMR spectroscopy and gas chromatography. Remarkably, the second protonation forms a rare nickel dihydrogen complex, which was detected and identified in solution and characterized by 1 H NMR spectroscopy. DFT-based computational analyses were employed to propose a reaction profile and a molecular structure of the Ni-H2 complex. Thus, a dihydrogen-evolving, closed-synthetic cycle is reported with a rare Ni-H2 species as a key intermediate.
Collapse
Affiliation(s)
- Soosan Hosseinmardi
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Nicola Marigo
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Dominik Munz
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Papadakis M, Barrozo A, Delmotte L, Straistari T, Shova S, Réglier M, Krewald V, Bertaina S, Hardré R, Orio M. How Metal Nuclearity Impacts Electrocatalytic H2 Production in Thiocarbohydrazone-Based Complexes. INORGANICS 2023. [DOI: 10.3390/inorganics11040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Thiocarbohydrazone-based catalysts feature ligands that are potentially electrochemically active. From the synthesis point of view, these ligands can be easily tailored, opening multiple strategies for optimization, such as using different substituent groups or metal substitution. In this work, we show the possibility of a new strategy, involving the nuclearity of the system, meaning the number of metal centers. We report the synthesis and characterization of a trinuclear nickel-thiocarbohydrazone complex displaying an improved turnover rate compared with its mononuclear counterpart. We use DFT calculations to show that the mechanism involved is metal-centered, unlike the metal-assisted ligand-centered mechanism found in the mononuclear complex. Finally, we show that two possible mechanisms can be assigned to this catalyst, both involving an initial double reduction of the system.
Collapse
Affiliation(s)
- Michael Papadakis
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Alexandre Barrozo
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Léa Delmotte
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Tatiana Straistari
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Sergiu Shova
- Institute of Macromolecular Chemistry Petru Poni, 700487 Iasi, Romania
| | - Marius Réglier
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Sylvain Bertaina
- Aix-Marseille Univ, CNRS, IN2MP UMR 7334, 13397 Marseille, France
| | - Renaud Hardré
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Maylis Orio
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
16
|
Xia W, Wang F. Molecular catalysts design: Intramolecular supporting site assisting to metal center for efficient CO2 photo- and electroreduction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Qin L, Xin X, Wang R, Lv H, Yang GY. Rational Design of Bromine-Modified Ir(III) Photosensitizer for Photocatalytic Hydrogen Generation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
To TH, Tran DB, Thi Thu Ha V, Tran PD. Electrocatalytic H 2 evolution using binuclear cobalt complexes as catalysts. RSC Adv 2022; 12:26428-26434. [PMID: 36275106 PMCID: PMC9479770 DOI: 10.1039/d2ra05109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
We report herein on the use of two binuclear cobalt complexes with the N,N'-bis(salicylidene)-phenylmethanediamine ligand as catalysts for the H2 evolution in DMF solution with acetic acid as proton source. Both experimental analyses (electrochemical analysis, spectroscopy analysis) and theoretical analysis (foot-of-the wave analysis) were employed. These catalysts required an overpotential of ca. 470 mV to catalyze the H2 evolution and generated H2 gas with a faradaic efficiency of 85-95% as calculated on the basis of after 5 hour bulk electrolysis. The kinetic investigation showed the maximal TOF value of 50 s-1 on the basis of an ECEC mechanism. Two cobalt centers, standing at a long distance of 4.175 Å, operated independently during catalysis without a synergetic effect or cooperation capability.
Collapse
Affiliation(s)
- Tung H To
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Dang B Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Ho Chi Minh City University of Education 280 An Duong Vuong Ho Chi Minh City Vietnam
| | - Vu Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| |
Collapse
|
19
|
Chi M, Li H, Xin X, Qin L, Lv H, Yang GY. All-Inorganic Bis-Sb 3O 3-Functionalized A-Type Anderson–Evans Polyoxometalate for Visible-Light-Driven Hydrogen Production. Inorg Chem 2022; 61:8467-8476. [DOI: 10.1021/acs.inorgchem.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manzhou Chi
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Huijie Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xing Xin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Lin Qin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
20
|
Zhang Q, Lei H, Guo H, Wang Y, Gao Y, Zhang W, Cao R. Through-Space Electrostatic Effects of Positively Charged Substituents on the Hydrogen Evolution Reaction. CHEMSUSCHEM 2022; 15:e202200086. [PMID: 35156337 DOI: 10.1002/cssc.202200086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Elucidating the effects of various structural components on energy-related small molecule activation is of fundamental and practical significance. Herein the inhibition effect of positively charged substituents on the hydrogen evolution reaction (HER) was reported. With the use of Cu porphyrins 1-5 containing different numbers and locations of positively charged substituents, it was demonstrated that their electrocatalytic HER activities significantly decreased when more cationic units were located close to the Cu ion: the icat /ip (icat is the catalytic peak current, ip is the one-electron reduction peak current) value decreased from 38 with zero cationic unit to 15 with four closely located cationic units. Inspired by this result, Cu porphyrin 6, with four meso-phenyl groups each bearing a negatively charged para-sulfonic substituent, was designed. With these anionic units, 6 outperformed the other Cu porphyrins for electrocatalytic HER under the same conditions.
Collapse
Affiliation(s)
- Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
21
|
Casadevall C, Pascual D, Aragón J, Call A, Casitas A, Casademont-Reig I, Lloret-Fillol J. Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes. Chem Sci 2022; 13:4270-4282. [PMID: 35509462 PMCID: PMC9006965 DOI: 10.1039/d1sc06608k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
A catalytic system based on earth-abundant elements that efficiently hydrogenates aryl olefins using visible light as the driving-force and H2O as the sole hydrogen atom source is reported. The catalytic system involves a robust and well-defined aminopyridine cobalt complex and a heteroleptic Cu photoredox catalyst. The system shows the reduction of styrene in aqueous media with a remarkable selectivity (>20 000) versus water reduction (WR). Reactivity and mechanistic studies support the formation of a [Co–H] intermediate, which reacts with the olefin via a hydrogen atom transfer (HAT). Synthetically useful deuterium-labelled compounds can be straightforwardly obtained by replacing H2O with D2O. Moreover, the dual photocatalytic system and the photocatalytic conditions can be rationally designed to tune the selectivity for aryl olefin vs. aryl ketone reduction; not only by changing the structural and electronic properties of the cobalt catalysts, but also by modifying the reduction properties of the photoredox catalyst. A dual catalytic system based on earth-abundant elements reduces aryl olefins to alkanes in aqueous media under visible light. Mechanistic studies allow for rational tunning of the system for the selective reduction of aryl olefins vs ketones and vice versa.![]()
Collapse
Affiliation(s)
- Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Arnau Call
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Alicia Casitas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Irene Casademont-Reig
- Donostia International Physics Center (DIPC), Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU P.K. 1072 20080 Donostia Euskadi Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain .,Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
22
|
Sun D, Morozan A, Koepf M, Artero V. A covalent cobalt diimine-dioxime - fullerene assembly for photoelectrochemical hydrogen production from near-neutral aqueous media. Chem Sci 2022; 13:3857-3863. [PMID: 35432907 PMCID: PMC8966733 DOI: 10.1039/d1sc06335a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
The covalent assembly between a cobalt diimine-dioxime complex and a fullerenic moiety results in enhanced catalytic properties in terms of overpotential requirement for H2 evolution. The interaction between the fullerene moiety and PCBM heterojunction further allows for the easy integration of the cobalt diimine-dioxime – fullerene catalyst with a poly-3-hexylthiophene (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction, yielding hybrid photoelectrodes for H2 evolution from near-neutral aqueous solutions. The covalent assembly between a cobalt diimine-dioxime complex and a fullerenic moiety results in enhanced catalytic properties in terms of overpotential requirement for H2 evolution and allows its integration in an operating photocathode.![]()
Collapse
Affiliation(s)
- Dongyue Sun
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
| | - Adina Morozan
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
| | - Matthieu Koepf
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
| |
Collapse
|
23
|
Srivastava AK, Mondal A, Konar S, Pal S. A tetra Co(II/III) complex with an open cubane Co 4O 4 core and square-pyramidal Co(II) and octahedral Co(III) centres: bifunctional electrocatalytic activity towards water splitting at neutral pH. Dalton Trans 2022; 51:4510-4521. [PMID: 35234225 DOI: 10.1039/d1dt04086c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The reaction of 2,6-diformyl-4-methylphenol, 4-methoxybenzoylhydrazine and Co(OAc)2·4H2O in 1 : 2 : 2 mole ratio in methanol under aerobic conditions produced in 61% yield a tetranuclear complex having the molecular formula [CoIICoIII(μ-OAc)(μ3-OH)(μ-L)]2 where OAc- and L3- represent acetate and N',N''-(5-methyl-2-oxido-1,3-phenylene)bis(methan-1-yl-1-ylidene)bis(4-methoxybenzoylhydrazonate), respectively. The elemental analysis and the mass spectrometric data confirmed the molecular formula of the complex. It is electrically non-conducting and paramagnetic. The complex crystallized as acetonitrile solvate. The X-ray structure shows that each Co(II) centre has a distorted square-pyramidal NO4 coordination sphere, while each Co(III) centre is in a distorted octahedral NO5 environment. The four metal atoms and the four bridging O-atoms form an open cubane type Co4O4 motif. In the crystal lattice, self-assembly of the solvated complex via intermolecular O-H⋯O interaction leads to a two-dimensional network structure. The infrared and electronic spectroscopic features of the complex are consistent with its molecular structure. Cryomagnetic measurements together with theoretical calculations suggest the presence of easy-axis anisotropy for the square-pyramidal Co(II) centres. The complex is redox-active and displays metal centred oxidation and reduction responses on the anodic and cathodic sides, respectively, of the Ag/AgCl electrode. Bifunctional heterogeneous electrocatalytic activity of the complex towards O2 and H2 evolution reactions (OER and HER) in neutral aqueous medium has been explored in detail.
Collapse
Affiliation(s)
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Samudranil Pal
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
24
|
Li X, Lei H, Xie L, Wang N, Zhang W, Cao R. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Acc Chem Res 2022; 55:878-892. [PMID: 35192330 DOI: 10.1021/acs.accounts.1c00753] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are involved in biological and artificial energy conversions. H-H and O-O bond formation/cleavage are essential steps in these reactions. In nature, intermediates involved in the H-H and O-O bond formation/cleavage are highly reactive and short-lived, making their identification and investigation difficult. In artificial catalysis, the realization of these reactions at considerable rates and close to their thermodynamic reaction equilibria remains a challenge. Therefore, the elucidation of the reaction mechanisms and structure-function relationships is of fundamental significance to understand these reactions and to develop catalysts.This Account describes our recent investigations on catalytic HER, OER, and ORR with metalloporphyrins and derivatives. Metalloporphyrins are used in nature for light harvesting, energy conversion, electron transfer, O2 activation, and peroxide degradation. Synthetic metal porphyrin complexes are shown to be active for these reactions. We focused on exploring metalloporphyrins to study reaction mechanisms and structure-function relationships because they have stable and tunable structures and characteristic spectroscopic properties.For HER, we identified three H-H bond formation mechanisms and established the correlation between these processes and metal hydride electronic structures. Importantly, we provided direct experimental evidence for the bimetallic homolytic H-H bond formation mechanism by using sterically bulky porphyrins. Homolytic HER has been long proposed but rarely verified because the coupling of active hydride intermediates occurs spontaneously and quickly, making their detection challenging. By blocking the bimolecular mechanism through steric effects, we stabilized and characterized the NiIII-H intermediate and verified homolytic HER by comparing the reaction behaviors of Ni porphyrins with and without steric effects. We therefore provided an unprecedented example to control homolytic versus heterolytic HER mechanisms through tuning steric effects of molecular catalysts.For the OER, the water nucleophilic attack (WNA) on high-valent terminal Mn-oxo has been proposed for the O-O bond formation in natural and artificial water oxidation. By using Mn tris(pentafluorophenyl)corrole, we identified MnV(O) and MnIV-peroxo intermediates in chemical and electrochemical OER and provided direct experimental evidence for the Mn-based WNA mechanism. Moreover, we demonstrated several catalyst design strategies to enhance the WNA rate, including the pioneering use of protective axial ligands. By studying Cu porphyrins, we proposed a bimolecular coupling mechanism between two metal-hydroxide radicals to form O-O bonds. Note that late-transition metals do not likely form terminal metal-oxo/oxyl.For the ORR, we presented several strategies to improve activity and selectivity, including providing rapid electron transfer, using electron-donating axial ligands, introducing hydrogen-bonding interactions, constructing dinuclear cooperation, and employing porphyrin-support domino catalysis. Importantly, we used Co porphyrin atropisomers to realize both two-electron and four-electron ORR, representing an unparalleled example to control ORR selectivity by tuning only steric effects without modifying molecular and/or electronic structures.Lastly, we developed several strategies to graft metalloporphyrins on various electrode materials through different covalent bonds. The molecular-engineered materials exhibit boosted electrocatalytic performance, highlighting promising applications of molecular electrocatalysis. Taken together, this Account demonstrates the benefits of exploring metalloporphyrins for the HER, OER, and ORR. The knowledge learned herein is valuable for the development of porphyrin-based catalysts and also other molecular and material catalysts for small molecule activation reactions.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
25
|
Zhu X, Xiong J, Wang Z, Chen R, Cheng G, Wu Y. Metallic Copper-Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. SMALL METHODS 2022; 6:e2101001. [PMID: 35174995 DOI: 10.1002/smtd.202101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor photocatalysis has long been regarded as a potential solution to tackle the energy and environmental challenges since the first discovery of water splitting by TiO2 almost 50 years ago. The past few years have seen a tremendous flurry of research interest in the modification of semiconductors because of their shortcomings in the aspects of solar harvesting, electron-hole pairs separation, and utilization of photogenerated carriers. Among the various strategies, the introduction of metallic copper into the photocatalysis system can not only enhance the absorption of sunlight and the separation efficiency of photogenerated electrons and holes, but also increase the adsorption ability of substrate and the number of active sites, so as to realize the high solar to chemical energy conversion efficiency. This review focuses on the rational design of copper-based composites and their applications in photoredox catalysis. First, the preparation methods of metallic copper-containing composites are discussed. Then, the applications of different types of copper-based composites in the photocatalytic removal of pollutants, splitting of water to hydrogen production, reduction of carbon dioxide, and conversion of organic matter are introduced. Finally, the opportunities and challenges in the design and synthesis of copper-based composites and their applications in the photocatalysis are prospected.
Collapse
Affiliation(s)
- Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
26
|
Goia S, Turner MAP, Woolley JM, Horbury MD, Borrill AJ, Tully JJ, Cobb SJ, Staniforth M, Hine NDM, Burriss A, Macpherson JV, Robinson BR, Stavros VG. Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple. Chem Sci 2022; 13:486-496. [PMID: 35126981 PMCID: PMC8730129 DOI: 10.1039/d1sc04993c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically, via oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH2QS). This is achieved by generating AH2QS in situ from AQS via electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH2QS. AQS relaxation occurs via formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH2QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS- within approximately 150 ps.
Collapse
Affiliation(s)
- Sofia Goia
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Molecular Analytical Science CDT, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Matthew A P Turner
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Molecular Analytical Science CDT, Senate House, University of Warwick Coventry CV4 7AL UK
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Jack M Woolley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Michael D Horbury
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- School of Electronic and Electrical Engineering, University of Leeds LS2 9JT UK
| | - Alexandra J Borrill
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
| | - Joshua J Tully
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
| | - Samuel J Cobb
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Li X, Lv B, Zhang X, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel U, Cao R. Introducing Water‐Network‐Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
28
|
Li X, Lv B, Zhang XP, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel UP, Cao R. Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2021; 61:e202114310. [PMID: 34913230 DOI: 10.1002/anie.202114310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/10/2022]
Abstract
Proton transfer is vital for many biological and chemical reactions. Hydrogen-bonded water-containing networks are often found in enzymes to assist proton transfer, but similar strategy has been rarely presented by synthetic catalysts. We herein report the Co corrole 1 with an appended crown ether unit and its boosted activity for the hydrogen evolution reaction (HER). Crystallographic and 1H NMR studies proved that the crown ether of 1 can grab water via hydrogen bonds. By using protic acids as proton sources, the HER activity of 1 was largely boosted with added water, while the activity of crown-ether-free analogues showed very small enhancement. Inhibition studies by adding (1) external 18-crown-6-ether to extract water molecules and (2) potassium ion or N-benzyl-n-butylamine to block the crown ether of 1 further confirmed its critical role in assisting proton transfer via grabbed water molecules. This work presents a synthetic example to boost HER through water-containing networks.
Collapse
Affiliation(s)
- Xialiang Li
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Bin Lv
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xiaotong Jin
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Kai Guo
- shaanxi normal university, School of Chemistry and Chemical Engineering, CHINA
| | - Dexia Zhou
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Hongtao Bian
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Wei Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Fakultät fur Chemie und Biochemie, GERMANY
| | - Rui Cao
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus, Number 620 West Chang'an Avenue, Chang'an District, 710119, Xi'an, CHINA
| |
Collapse
|
29
|
Matsumoto K, Akira O, Campidell S, Hayashi T. Electrocatalytic Hydrogen Evolution Reaction Promoted by Co/N/C Catalysts with Co−Nx Active Sites Derived from Precursors Forming N-doped Graphene Nanoribbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koki Matsumoto
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Onoda Akira
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Stéphane Campidell
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
30
|
Giannoudis E, Bold S, Müller C, Schwab A, Bruhnke J, Queyriaux N, Gablin C, Leonard D, Saint-Pierre C, Gasparutto D, Aldakov D, Kupfer S, Artero V, Dietzek B, Chavarot-Kerlidou M. Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye-Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49802-49815. [PMID: 34637266 DOI: 10.1021/acsami.1c12138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of hydrogen by efficient, low-cost, and integrated photoelectrochemical water splitting processes represents an important target for the ecological transition. This challenge can be addressed thanks to bioinspired chemistry and artificial photosynthesis approaches by designing dye-sensitized photocathodes for hydrogen production, incorporating bioinspired first-row transition metal-based catalysts. The present work describes the preparation and photoelectrochemical characterization of a NiO photocathode sensitized with a phosphonate-derivatized ruthenium tris-diimine photosensitizer covalently linked to a cobalt diimine dioxime hydrogen-evolving catalyst. Under simulated AM 1.5G irradiation, hydrogen is produced with photocurrent densities reaching 84 ± 7 μA·cm-2, which is among the highest values reported so far for dye-sensitized photocathodes with surface-immobilized catalysts. Thanks to the unique combination of advanced spectroscopy and surface characterization techniques, the fast desorption of the dyad from the NiO electrode and the low yield of electron transfer to the catalyst, resulting in the Co demetallation from the diimine dioxime framework, were identified as the main barriers limiting the performances and the stability of the system. This work therefore paves the way for a more rational design of molecular photocathodes for solar fuel production and represents a further step toward the development of sustainable processes for the production of hydrogen from sunlight and water.
Collapse
Affiliation(s)
- Emmanouil Giannoudis
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Sebastian Bold
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Carolin Müller
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Alexander Schwab
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jakob Bruhnke
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Nicolas Queyriaux
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Corinne Gablin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, F-69100 Villeurbanne, France
| | - Didier Leonard
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, F-69100 Villeurbanne, France
| | | | - Didier Gasparutto
- Univ. Grenoble Alpes, CNRS, CEA IRIG, SyMMES, F-38000 Grenoble, France
| | - Dmitry Aldakov
- Univ. Grenoble Alpes, CNRS, CEA IRIG, SyMMES, F-38000 Grenoble, France
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
31
|
Zhao H, McMillan AJ, Constantin T, Mykura RC, Juliá F, Leonori D. Merging Halogen-Atom Transfer (XAT) and Cobalt Catalysis to Override E2-Selectivity in the Elimination of Alkyl Halides: A Mild Route toward contra-Thermodynamic Olefins. J Am Chem Soc 2021; 143:14806-14813. [PMID: 34468137 DOI: 10.1021/jacs.1c06768] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report here a mechanistically distinct tactic to carry E2-type eliminations on alkyl halides. This strategy exploits the interplay of α-aminoalkyl radical-mediated halogen-atom transfer (XAT) with desaturative cobalt catalysis. The methodology is high-yielding, tolerates many functionalities, and was used to access industrially relevant materials. In contrast to thermal E2 eliminations where unsymmetrical substrates give regioisomeric mixtures, this approach enables, by fine-tuning of the electronic and steric properties of the cobalt catalyst, to obtain high olefin positional selectivity. This unprecedented mechanistic feature has allowed access to contra-thermodynamic olefins, elusive by E2 eliminations.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alastair J McMillan
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Rory C Mykura
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
32
|
Song S, Cho J, Jo H, Lee J, Choi J, Seo J. Effect of Lewis Basic Amine Site on Proton Reduction Activity of
NNN‐Co
Pincer Complex. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seungjin Song
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Jaewhan Cho
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Hyeonjeong Jo
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Junseong Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Jun‐Ho Choi
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Junhyeok Seo
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| |
Collapse
|
33
|
Sun D, Karippara Harshan A, Pécaut J, Hammes‐Schiffer S, Costentin C, Artero V. Hydrogen Evolution Mediated by Cobalt Diimine‐Dioxime Complexes: Insights into the Role of the Ligand Acid/Base Functionalities. ChemElectroChem 2021. [DOI: 10.1002/celc.202100413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyue Sun
- Univ. Grenoble Alpes CNRS CEA IRIG Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble, Cedex France
| | - Aparna Karippara Harshan
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 United States
| | - Jacques Pécaut
- Univ. Grenoble Alpes CNRS CEA IRIG SyMMES 17 rue des Martyrs F-38054 Grenoble, Cedex France
| | | | - Cyrille Costentin
- Univ Grenoble Alpes CNRS DCM 38000 Grenoble France
- Université de Paris 75013 Paris France
| | - Vincent Artero
- Univ. Grenoble Alpes CNRS CEA IRIG Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble, Cedex France
| |
Collapse
|
34
|
Abstract
Herein we report the first synthesis of borylfuroxans via the reaction of sulfonylfuroxans with Lewis base-ligated boranes under radical conditions. As a synthetic application, the transformation of borylfuroxans to a range of 1,2-dioximes and their derivatives is demonstrated.
Collapse
Affiliation(s)
- Weibin Xie
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
35
|
Zhang D, Hui X, Wu C, Zhu Y. Metal‐Catalyzed Hydrogen Evolution Reactions Involving Strong C−H Bonds Activation via Hydrogen Atom Transfer. ChemCatChem 2021. [DOI: 10.1002/cctc.202100248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Zhang
- School of Pharmacy Health Science Center Xi'an Jiaotong University Xi'an 710061 P. R. China
| | - Xin Hui
- School of Pharmacy Health Science Center Xi'an Jiaotong University Xi'an 710061 P. R. China
| | - Chunying Wu
- School of Pharmacy Health Science Center Xi'an Jiaotong University Xi'an 710061 P. R. China
| | - Yunbo Zhu
- School of Pharmacy Health Science Center Xi'an Jiaotong University Xi'an 710061 P. R. China
| |
Collapse
|
36
|
Cook AW, Emge TJ, Waldie KM. Insights into Formate Oxidation by a Series of Cobalt Piano-Stool Complexes Supported by Bis(phosphino)amine Ligands. Inorg Chem 2021; 60:7372-7380. [PMID: 33904730 DOI: 10.1021/acs.inorgchem.1c00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of (cyclopentadienyl)cobalt(III) half-sandwich complexes (1-4) supported by bidentate bis(phosphino)amine ligands was synthesized and characterized by NMR spectroscopy, X-ray crystallography, and cyclic voltammetry. The CoIII-hydride complex 4-H bearing the bis(cyclohexylphosphine) ligand derivative was successfully isolated via protonation of the neutral reduced CoI complex 5 with a weak acid. Experimental and computational methods were used to determine the thermodynamic hydride accepting ability of these CoIII centers and to evaluate their reactivity toward the oxidation of formate. We find that the hydride accepting ability of 1-4 ranges from 71 to 74 kcal/mol in acetonitrile, which should favor a highly exergonic reaction with formate through direct hydride transfer. Formate oxidation was demonstrated at elevated temperatures in the presence of stoichiometric quantities of 4, generating carbon dioxide and the CoIII-hydride complex 4-H in 72% yield.
Collapse
Affiliation(s)
- Andrew W Cook
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Kate M Waldie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
37
|
Smith PT, Benke BP, An L, Kim Y, Kim K, Chang CJ. A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem 2021. [DOI: 10.1002/celc.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Lun An
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
38
|
Lin X, Qin P, Ni S, Yang T, Li M, Dang L. Priority of Mixed Diamine Ligands in Cobalt Dithiolene Complex-Catalyzed H 2 Evolution: A Theoretical Study. Inorg Chem 2021; 60:6688-6695. [PMID: 33861584 DOI: 10.1021/acs.inorgchem.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox non-innocent metal dithiolene or diamine complexes are potential alternative catalysts in hydrogen evolution reaction and have been incorporated into 2D metal-organic frameworks to obtain unexpected electrocatalytic activity. According to an experimental study, Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine portions are considered as active sites where the generation of H2 occurs and a diamine ligand is necessary for high catalytic efficiency. We are interested in the difference between these catalytic active sites, and mechanistic studies on extracted Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine complex-catalyzed hydrogen evolution reactions are carried out by using density functional methods. Our calculated results indicate that the priority of ligand mixed complexes resulted from the readily occurring protonation of diamine ligands and large electron affinity of dithiolene ligands as well as the lowest overall barrier for H2 evolution.
Collapse
Affiliation(s)
- Xiuhua Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Peng Qin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
39
|
Carpenter AE, Moore CE, Rheingold AL, Figueroa JS. A Well-Defined Isocyano Analogue of HCo(CO) 4. 3: Hydride Migration to Olefins, H-Atom Transfer and Reactivity toward Protic Sources. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alex E. Carpenter
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Joshua S. Figueroa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
40
|
Bold S, Massin J, Giannoudis E, Koepf M, Artero V, Dietzek B, Chavarot-Kerlidou M. Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Bold
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Julien Massin
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Emmanouil Giannoudis
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Matthieu Koepf
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
41
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Charisiadis A, Giannoudis E, Pournara Z, Kosma A, Nikolaou V, Charalambidis G, Artero V, Chavarot‐Kerlidou M, Coutsolelos AG. Synthesis and Characterization of a Covalent Porphyrin‐Cobalt Diimine‐Dioxime Dyad for Photoelectrochemical H
2
Evolution. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Asterios Charisiadis
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus, Heraklion 70013 Crete Greece
| | - Emmanouil Giannoudis
- Univ. Grenoble Alpes, CNRS, CEA IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Zoi Pournara
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus, Heraklion 70013 Crete Greece
| | - Aimilia Kosma
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus, Heraklion 70013 Crete Greece
| | - Vasilis Nikolaou
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus, Heraklion 70013 Crete Greece
| | - Georgios Charalambidis
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus, Heraklion 70013 Crete Greece
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Murielle Chavarot‐Kerlidou
- Univ. Grenoble Alpes, CNRS, CEA IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Athanassios G. Coutsolelos
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus, Heraklion 70013 Crete Greece
| |
Collapse
|
43
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
44
|
Wani AA, Bhat MM, Sofi FA, Bhat SA, Ingole PP, Rashid N, Bhat MA. Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H 2O 2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02383g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis of a nano-spinel cobalt decorated sulphur doped reduced graphene oxide (Co@S–rGO) composite exhibiting excellent electrocatalytic performance and electrochemical stability toward oxygen evolution reaction in an alkaline medium.
Collapse
Affiliation(s)
- Adil Amin Wani
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Pravin P. Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nusrat Rashid
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
45
|
Kaim V, Kaur-Ghumaan S. Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear Mn(i) carbonyl complexes incorporating 2-mercaptobenzothiazole or 2-mercaptobenzimidazole and phosphaadamantane ligands were evaluated as electrocatalysts for the HER both in acetonitrile and acetonitrile/water.
Collapse
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
46
|
Wu HL, Li XB, Tung CH, Wu LZ. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chem Commun (Camb) 2020; 56:15496-15512. [PMID: 33300513 DOI: 10.1039/d0cc05870j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired transformation of small-molecules to energy-related feedstocks is an attractive research area to overcome both the environmental issues and the depletion of fossil fuels. The highly effective metalloenzymes in nature provide blueprints for the utilization of bioinspired metal complexes for artificial photosynthesis. Through simpler structural and functional mimics, the representative herein is the pivotal development of several critical small molecule conversions catalyzed by metal complexes, e.g., water oxidation, proton and CO2 reduction and organic chemical transformation of small molecules. Of great achievement is the establishment of bioinspired metal complexes as catalysts with high stability, specific selectivity and satisfactory efficiency to drive the multiple-electron and multiple-proton processes related to small molecule transformation. Also, potential opportunities and challenges for future development in these appealing areas are highlighted.
Collapse
Affiliation(s)
- Hao-Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | |
Collapse
|
47
|
Walaijai K, Cavill SA, Whitwood AC, Douthwaite RE, Perutz RN. Electrocatalytic Proton Reduction by a Cobalt(III) Hydride Complex with Phosphinopyridine PN Ligands. Inorg Chem 2020; 59:18055-18067. [PMID: 33275426 DOI: 10.1021/acs.inorgchem.0c02505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cobalt complexes with 2-(diisopropylphosphinomethyl)pyridine (PN) ligands have been synthesized with the aim of demonstrating electrocatalytic proton reduction to dihydrogen with a well-defined hydride complex of an Earth-abundant metal. Reactions of simple cobalt precursors with 2-(diisopropylphosphino-methyl)pyridine (PN) yield [CoII(PN)2(MeCN)][BF4]2 1, [CoIII(PN)2(H)(MeCN)][PF6]2 2, and [CoIII(PN)2(H)(Cl)][PF6] 3. Complexes 1 and 3 have been characterized crystallographically. Unusually for a bidentate PN ligand, all three exhibit geometries with mutually trans phosphorus and nitrogen ligands. Complex 1 exhibits a distorted square-pyramidal geometry with an axial MeCN ligand in a low-spin electronic state. In complexes 2 and 3, the PN ligands lie in a plane leaving the hydride trans to MeCN or chloride, respectively. The redox behavior of the three complexes has been studied by cyclic voltammetry at variable scan rates and by spectroelectrochemistry. A catalytic wave is observed in the presence of trifluoroacetic acid (TFA) at an applied potential close to the Co(II/I) couple of 1. Bulk electrolysis of 1, 2, or 3 at a potential of ca. -1.4 V vs E(Fc+/Fc) in the presence of TFA yields H2 with Faradaic yields close to 100%. A catalytic mechanism is proposed in which the pyridine moiety of a PN ligand acts as a pendant proton donor following opening of the chelate ring. Additional mechanisms may also operate, especially in the presence of high acid concentration where speciation changes.
Collapse
Affiliation(s)
- Khanittha Walaijai
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Stuart A Cavill
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - Adrian C Whitwood
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Robin N Perutz
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
48
|
Investigating Light-Induced Processes in Covalent Dye-Catalyst Assemblies for Hydrogen Production. Catalysts 2020. [DOI: 10.3390/catal10111340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The light-induced processes occurring in two dye-catalyst assemblies for light-driven hydrogen production were investigated by ultrafast transient absorption spectroscopy. These dyads consist of a push-pull organic dye based on a cyclopenta[1,2-b:5,4-b’]dithiophene (CPDT) bridge, covalently linked to two different H2-evolving cobalt catalysts. Whatever the nature of the latter, photoinduced intramolecular electron transfer from the excited state of the dye to the catalytic center was never observed. Instead, and in sharp contrast to the reference dye, a fast intersystem crossing (ISC) populates a long-lived triplet excited state, which in turn non-radiatively decays to the ground state. This study thus shows how the interplay of different structures in a dye-catalyst assembly can lead to unexpected excited state behavior and might open up new possibilities in the area of organic triplet sensitizers. More importantly, a reductive quenching mechanism with an external electron donor must be considered to drive hydrogen production with these dye-catalyst assemblies.
Collapse
|
49
|
Bozal-Ginesta C, Mesa CA, Eisenschmidt A, Francàs L, Shankar RB, Antón-García D, Warnan J, Willkomm J, Reynal A, Reisner E, Durrant JR. Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO 2. Chem Sci 2020; 12:946-959. [PMID: 34163861 PMCID: PMC8178996 DOI: 10.1039/d0sc04344c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/07/2020] [Indexed: 11/29/2022] Open
Abstract
Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with their counterparts. Herein, we investigate charge accumulation in two model multi-redox molecular catalysts for proton and CO2 reduction attached onto mesoporous TiO2 electrodes. Transient absorption spectroscopy and spectroelectrochemical techniques have been employed to study the kinetics of photoinduced electron transfer from the TiO2 to the molecular catalysts in acetonitrile, with triethanolamine as the hole scavenger. At high light intensities, we detect charge accumulation in the millisecond timescale in the form of multi-reduced species. The redox potentials of the catalysts and the capacity of TiO2 to accumulate electrons play an essential role in the charge accumulation process at the molecular catalyst. Recombination of reduced species with valence band holes in TiO2 is observed to be faster than microseconds, while electron transfer from multi-reduced species to the conduction band or the electrolyte occurs in the millisecond timescale. Finally, under light irradiation, we show how charge accumulation on the catalyst is regulated as a function of the applied bias and the excitation light intensity.
Collapse
Affiliation(s)
- Carlota Bozal-Ginesta
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Camilo A Mesa
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Annika Eisenschmidt
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Laia Francàs
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Ravi B Shankar
- Department of Chemical Engineering, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Daniel Antón-García
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Julien Warnan
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Janina Willkomm
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Anna Reynal
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - James R Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| |
Collapse
|
50
|
Cable-like carbon nanotubes decorated metal-organic framework derived ultrathin CoSe2/CNTs nanosheets for electrocatalytic overall water splitting. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|