1
|
Johnee Britto N, Sen A, Rajaraman G. Brønsted Acids as Direct C-H Bond Activators in Conjunction with High-Valent Metal-Oxo Catalysts: Revisiting Metal-Oxo Centered Mechanisms. Inorg Chem 2025; 64:5944-5959. [PMID: 40101121 DOI: 10.1021/acs.inorgchem.4c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
High-valent metal-oxo species are ubiquitous in chemistry due to their versatile catalytic reactions and their widespread presence in metalloenzymes. Among the metal-oxo species, FeIV = O and MnIV = O species are the most widely studied, and several biomimic models of such species have been created over the years. While various factors such as spin state, ligand design, and redox potential influence the reactivity of these species, a dramatic enhancement of reactivity by a factor of 102 to 108 upon the addition of Lewis (LA) and Brønsted acids (BA) stands out as a striking phenomenon, whose underlying mechanism remains largely unexplored. In this work, we explored the mechanism of BA-promoted C-H activation using [(N4Py)MnIV(O)]2+ (1) and [(N4Py)FeIV(O)]2+ (2) species to arrive at a generic mechanism for these catalytic transformations. We have explored three possible mechanistic routes: (i) a mechanism of C-H activation followed by -OH rebound without the BA (triflic acid) for the toluene hydroxylation reaction, (ii) a mechanism where triflic acid is a spectator, and (iii) a mechanism where triflic acid directly participates in both electron transfer/proton transfer and C-H bond activation steps. Our calculations reveal that when BAs are added, it is no longer the metal-oxo species that activates the C-H bond (as known conventionally), rather it is the BA that directly performs the C-H activation through an unprecedented mechanistic route. The direct involvement of triflic acid was found to lower the C-H bond activation barrier by approximately 20-30 kJ/mol compared to when it is absent. This reduction is attributed to the triflate anion performing direct C-H bond activation from the toluene radical cation, rather than the conventionally assumed metal-oxo moiety. Among many factors, the formation of ion-pair and the consequent electronic changes incurred, and large localized electric field effect around the S-O bond of the triflic acid was found to be the driving force for the calculated lower barrier height. The theoretical findings corroborate experimental observations, providing the first comprehensive explanation for the enhanced reactivity in the presence of LA/BA acids. These findings have direct implications for enzymatic systems such as the oxygen-evolving complex and open an uncharted path in the catalytic design.
Collapse
Affiliation(s)
| | - Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
2
|
Maji K, Palai A, Mallick D, Maji B. Cobalt-Catalyzed Enantioselective Reductive Coupling of Imines and Internal Alkynes. Angew Chem Int Ed Engl 2025; 64:e202424394. [PMID: 39781749 DOI: 10.1002/anie.202424394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Chiral allylamines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allylamines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor. The substrate scope is extensive. Symmetric and unsymmetric alkyl and aryl alkynes have been successfully coupled with various imines derived from aryl and alkyl aldehydes. Tri- and tetra-substituted allyl amines were isolated in high yields, with enantiomeric excess surpassing >99.9 % and regioselectivities exceeding >20 : 1. These chiral allyl amines can serve as versatile platforms for subsequent transformations while preserving their stereochemical integrity. Extensive experimental and computational mechanistic studies were performed to elucidate the mechanism. These investigations have indicated that an in situ cobalt(I) catalyst enables the oxidative cyclization of alkynes and imines, and a spin crossover occurs during the enantio-determining step. Zinc plays a pivotal role in facilitating the transmetallation of the resulting azacobaltacycle. The observed enantioselectivity was interpreted by the stabilization of the transition state through higher stabilizing interaction energy from high negative polarization, dispersion, and C-H⋅⋅⋅π interactions.
Collapse
Affiliation(s)
- Kakoli Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Angshuman Palai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
3
|
Katoch A, Mandal D. Computational Insights into Hydrogen Atom Transfer Mediators in C-H Activation Catalysis of Nonheme Fe(IV)O Complexes. J Phys Chem B 2025; 129:88-95. [PMID: 39727200 DOI: 10.1021/acs.jpcb.4c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study presents a detailed density functional theory (DFT) investigation into the mechanism and energetics of C-H activations catalyzed by bioinspired Fe(IV)O complexes, particularly in the presence of N-hydroxy mediators. The findings show that these mediators significantly enhance the reactivity of the iron-oxo complex. The study examines three substrates with varying bond dissociation energies─ethylbenzene, cyclohexane, and cyclohexadiene─alongside the [Fe(IV)O(N4Py)]2+ complex. Mediators N-hydroxyphthalimide (NHPI) and N-hydroxyquinolinimide (NHQI) were chosen for their strong oxidative abilities. The results reveal that NO-H bond cleavage in N-hydroxy compounds occurs more readily than C-H bond cleavage in hydrocarbons, as supported by the Marcus cross-relation applied to H-abstraction. This leads to the rapid formation of aminoxyl radicals, which are more reactive than Fe(IV)O species, lowering the activation energy and enhancing the reaction rate. The C-H bond activation aligns with the Bell-Evans-Polanyi principle, correlating the activation energy with the substrate bond dissociation energy. The investigation reveals that the mediator pathway is favored both thermodynamically and kinetically. Additionally, distortion energy provides a compelling explanation for the observed reactivity trends, further highlighting NHQI's superior efficiency compared to NHPI. Additionally, quantum mechanical tunneling plays a significant role, as evidenced by the computed kinetic isotope effect, which matches experimental data.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, Punjab, India
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, Punjab, India
| |
Collapse
|
4
|
Das A, Pal N, Xiong J, Young VG, Guo Y, Swart M, Que L. 10-Fold Increase in Hydrogen Atom Transfer Reactivity for a Series of S = 1 Fe IV═O Complexes Over the S = 2 [(TQA)Fe IV═O] 2+ Complex via Entropic Lowering of Reaction Barriers by Secondary Sphere Cycloalkyl Substitution. J Am Chem Soc 2025; 147:292-304. [PMID: 39699233 DOI: 10.1021/jacs.4c10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Nonheme iron enzymes utilize S = 2 iron(IV)-oxo intermediates as oxidants in biological oxygenations. In contrast, corresponding synthetic nonheme FeIV═O complexes characterized to date favor the S = 1 ground state that generally shows much poorer oxidative reactivity than their S = 2 counterparts. However, one intriguing exception found by Nam a decade ago is the S = 1 [FeIV(O)(Me3NTB)]2+ complex (Me3NTB = [tris((N-methyl-benzimidazol-2-yl)methyl)amine], 1O) with a hydrogen atom transfer (HAT) reactivity that is 70% that of the S = 2 [FeIV(O)(TQA)]2+ complex (TQA = tris(2-quinolylmethyl)amine, 3O). In our efforts to further explore this direction, we have unexpectedly uncovered a family of new S = 1 complexes with HAT reaction rates beyond the currently reported limits in the tripodal ligand family, surpassing oxidation rates found for the S = 2 [FeIV(O)(TQA)]2+ complex by as much as an order of magnitude. This is achieved simply by replacing the secondary sphere methyl groups of the Me3NTB ligand with larger cycloalkyl-CH2 (R groups in 2OR) moieties ranging from c-propylmethyl to c-hexylmethyl. These 2OR complexes show Mössbauer data at 4 K and 1H NMR spectra at 193 and 233 K that reveal S = 1 ground states, in line with DFT calculations. Nevertheless, they give rise to the most reactive synthetic nonheme oxoiron(IV) complexes found to date within the tripodal ligand family. Our DFT study indicates transition state stabilization through entropy effects, similar to enzymatic catalysis.
Collapse
Affiliation(s)
- Abhishek Das
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nabhendu Pal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Victor G Young
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- IQCC and Department of Chemistry, University of Girona, Girona 17003, Spain
- ICREA, Barcelona 08010, Spain
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Braun A, Gee LB, Waters MDJ, Baker ML, Mara MW, Zhou A, Kroll T, Nordlund D, Sokaras D, Hedman B, Hodgson KO, Que L, Solomon EI. Experimental Definition of the S = 1 π vs S = 2 σ Reactivity and S = 2 Character in the Ground State of an S = 1 Fe IVO Complex. J Am Chem Soc 2024; 146:35139-35145. [PMID: 39668699 PMCID: PMC11796989 DOI: 10.1021/jacs.4c11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Iron(IV)-oxo intermediates found in iron enzymes and artificial catalysts are competent for H atom abstraction in catalytic cycles. For S = 2 intermediates, both axial and equatorial approaches are well-established. The mechanism for S = 1 sites is not as well understood: an equatorial approach is more energetically favorable, and an axial approach requires crossing from the S = 1 to the S = 2 surface. In this study, we use 1s2p resonant inelastic X-ray scattering (RIXS) and Fe L-edge X-ray absorption spectroscopy on the S = 1 [FeIVO(TMC)(CH3CN)]2+ and observe both S = 2 and S = 1 final states, which enables the experimental evaluation of the energetics of the axial and equatorial reactivity of an S = 1 FeIVO center on its S = 2 vs S = 1 surface. The observation of S = 2 final states in the RIXS spectrum demonstrates significant S = 2 character spin-orbit mixed into the S = 1 ground state.
Collapse
Affiliation(s)
- Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- A. B. and L.B.G. contributed equally to this work
| | - Leland B. Gee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- A. B. and L.B.G. contributed equally to this work
- Present address: Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Max D. J. Waters
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Michael L. Baker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- Present address: Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
- Present address: The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, United Kingdom
| | - Michael W. Mara
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- Present address: Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ang Zhou
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
6
|
He P, Zhu SF. Spin Crossover and Its Application in Organometallic Catalysis: Concepts and Recent Progress. Chemistry 2024; 30:e202403437. [PMID: 39404030 DOI: 10.1002/chem.202403437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Spin crossover is one of the most important properties of open-shell metal complexes. In organometallic catalytic reactions, catalysts can alter reaction kinetics by spin crossover, i. e., accelerating or hindering the reaction progression, as well as altering reaction pathways, modulating the reaction selectivity or promoting new reactions. This personal account outlines the introduction and development of important concepts such as "two-state reactivity" involving spin crossover, and proposes a new concept, "spin-responsive catalysis" to summarize the catalytic processes in which spin effects are present. Finally, the electronic mechanism of spin crossover accelerating the reaction and the role of spin crossover in changing the reaction path and regulating the reaction selectivity are introduced by taking two recent typical iron-catalyzed reactions recently reported by our group as examples.
Collapse
Affiliation(s)
- Peng He
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Thomas M, Jaber Sathik Rifayee SB, Christov CZ. How Do Variants of Residues in the First Coordination Sphere, Second Coordination Sphere, and Remote Areas Influence the Catalytic Mechanism of Non-Heme Fe(II)/2-Oxoglutarate Dependent Ethylene-Forming Enzyme? ACS Catal 2024; 14:18550-18569. [PMID: 39722885 PMCID: PMC11668244 DOI: 10.1021/acscatal.4c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The ethylene-forming enzyme (EFE) is a Fe(II)/2-oxoglutarate (2OG) and l-arginine (l-Arg)-dependent oxygenase that primarily decomposes 2OG into ethylene while also catalyzing l-Arg hydroxylation. While the hydroxylation mechanism in EFE is similar to other Fe(II)/2OG-dependent oxygenases, the formation of ethylene is unique. Various redesign strategies have aimed to increase ethylene production in EFE, but success has been limited, highlighting the need for alternate approaches. It is crucial to incorporate an accurate and comprehensive description of the integrative and multidimensional effects of the protein environment to enhance the redesign strategy in metalloenzymes, particularly in EFE. This involves understanding the role of the second coordination sphere (SCS) and long-range (LR) interacting residues, correlated motions, electronic structure, intrinsic electric field (IntEF), as well as the stabilization of transition states and reaction intermediates. In this study, we employ a molecular dynamics-based quantum mechanics/molecular mechanics approach to examine the integrative effects of the protein environment on reactions catalyzed by EFE variants from the first coordination sphere (FCS, D191E), SCS (A198V and R171A) and LR (E215A). The study uncovers how substitutions at different positions in EFE similarly impact the ethylene-forming reaction while posing distinct effects on the hydroxylation reaction. Results predict the effect of the variants in controlling the 2OG coordination mode in the Fe(II) center. Specifically, the study suggests that D191E uniquely prefers transitioning from an off-line to an in-line 2OG coordination mode before dioxygen binding. However, studies on the 2OG flip in the presence of off-line approaching dioxygen and dioxygen binding in the D191E variant indicate that the 2OG flip might not be feasible in the 5C Fe(II) state. Calculations show the possibility of a hydrogen atom transfer (HAT)-assisted oxygen flip in EFE and its variants (other than D191E). MD simulations elucidate the characteristic dynamic change in the α7 region in the D191E variant that might contribute to its increased hydroxylation reaction. Results indicate the possibility of forming an in-line ferryl from the IM2 (Fe(III)-partial bond intermediate) in the D191E variant. This alternative pathway from IM2 may also exist in WT EFE and other variants, which are yet to be explored. The study also delineates the impact of substitutions on the electronic structure and IntEF. Overall, the calculations support the idea that understanding the integrative and multidimensional effects of the protein environment on the reactions catalyzed by EFE variants provides the basics for improved enzyme redesign protocols of EFE to increase ethylene production. The results of this study will also contribute to the development of alternate redesign strategies for other metalloenzymes.
Collapse
Affiliation(s)
- Midhun
George Thomas
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
8
|
Okafor SU, Pinto G, Brdecka M, Smith W, Lewis TWR, Gutierrez M, Bellert DJ. Hydrogen tunneling with an atypically small KIE measured in the mediated decomposition of the Co(CH 3COOH) + complex. Phys Chem Chem Phys 2024; 26:27741-27750. [PMID: 39470007 DOI: 10.1039/d4cp02722a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Quantum mechanical tunneling (QMT) is a well-documented phenomenon in the C-H bond activation mechanism and is commonly identified by large KIE values. Herein we present surprising findings in the kinetic study of hydrogen tunneling in the Co+ mediated decomposition of acetic acid and its perdeuterated isotopologue, conducted with the energy resolved single photon initiated dissociative rearrangement reaction (SPIDRR) technique. Following laser activation, the reaction proceeds along parallel product channels Co(CH4O)+ + CO and Co(C2H2O)+ + H2O. An energetic threshold is observed in the energy dependence of the unimolecular microcanonical rate constants, k(E). This is interpreted as the reacting population surmounting a rate-limiting Eyring barrier in the reaction's potential energy surface. Measurements of the heavier isotopologue's reaction kinetics supports this interpretation. Kinetic signatures measured at energies below the Eyring barrier are attributed to H/D QMT. The below-the-barrier tunneling kinetics presents an unusually linear energy dependence and a staggeringly small tunneling KIE of ∼1.4 over a wide energy range. We explain this surprising observation in terms of a narrow tunneling barrier, wherein the electronic structure of the Co+ metal plays a pivotal role in enhanced reactivity by promoting efficient tunneling. These results suggest that hydrogen tunneling could play important functions in transition metal chemistry, such as that found in enzymatic mechanisms, even if small KIE values are measured.
Collapse
Affiliation(s)
| | | | | | - William Smith
- Baylor University, 1311 S 5th St, Waco, TX 76706, USA.
| | | | | | | |
Collapse
|
9
|
Katoch A, Mandal D. Impact of carboxylate ligation on the C-H activation reactivity of a non-heme Fe(IV)O complex: a computational investigation. Dalton Trans 2024; 53:15264-15272. [PMID: 39222036 DOI: 10.1039/d4dt02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A comprehensive DFT investigation has been presented to predict how a carboxylate-rich macrocycle would affect the reactivity of a non-heme Fe(IV)O complex towards C-H activation. The popular non-heme iron oxo complex [FeIV(O)(N4Py)]2+, (N4Py = N,N-(bis(2-pyridyl)methyl)N-bis(2-pyridylmethyl)amine) (1), has been selected here as the primary compound. It is transformed to the compound [FeIV(O)(nBu-P2DA)], where nBu-P2DA = N-(1',1'-bis(2-pyridyl)pentyl)iminodiacetate (2) after the replacement of two pyridine donors of N4Py with carboxylate groups. Two other complexes, namely 3 and 4, have been predicted sequentially substituting nitrogen with the carboxylate groups. Ethylbenzene and dihydrotoluene were chosen as substrates. In terms of C-H activation reactivity, an interesting pattern emerges: as the carboxylate group becomes more equatorially enriched, the reactivity increases, following the trend 1 < 2 < 3 < 4. This also aligns with available experimental reports related to complexes 1 and 2. Fe(IV)O complexes exhibit two-state reactivity (triplet and quintet), whereas the quintet state is more favourable due to the stabilization of the transition states through exchange interactions involving a greater number of unpaired electrons. A detailed analysis of the factors influencing reactivity has been performed, including distortion energy (which decreases for the transition state with the addition of carboxylate groups), the triplet-quintet oxidant energy gap (which consistently decreases as carboxylate group enrichment increases), steric factors, and quantum mechanical tunneling. This investigation provides a detailed explanation of the observed outcomes and predicts the higher reactivity of carboxylate-enriched Fe(IV)O complexes. After potential experimental verification, this could lead to the development of new, optimal catalysts for C-H activation.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| |
Collapse
|
10
|
Török P, Lakk-Bogáth D, Unjaroen D, Browne WR, Kaizer J. Effect of monodentate heterocycle co-ligands on the μ-1,2-peroxo-diiron(III) mediated aldehyde deformylation reactions. J Inorg Biochem 2024; 258:112620. [PMID: 38824901 DOI: 10.1016/j.jinorgbio.2024.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Peroxo-diiron(III) species are present in the active sites of many metalloenzymes that carry out challenging organic transformations. The reactivity of these species is influenced by various factors, such as the structure and topology of the supporting ligands, the identity of the axial and equatorial co-ligands, and the oxidation states of the metal ion(s). In this study, we aim to diversify the importance of equatorial ligands in controlling the reactivity of peroxo-diiron(III) species. As a model compound, we chose the previously published and fully characterized [(PBI)2(CH3CN)FeIII(μ-O2)FeIII(CH3CN)(PBI)2]4+ complex, where the steric effect of the four PBI ligands is minimal, so the labile CH3CN molecules easily can be replaced by different monodentate co-ligands (substituted pyridines and N-donor heterocyclic compounds). Thus, their effect on the electronic and spectral properties of peroxo-divas(III) intermediates could be easily investigated. The relationship between structure and reactivity was also investigated in the stoichiometric deformylation of PPA mediated by peroxo-diiron(III) complexes. It was found that the deformylation rates are influenced by the Lewis acidity and redox properties of the metal centers, and showed a linear correlation with the FeIII/FeII redox potentials (in the range of 197 to 415 mV).
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Dóra Lakk-Bogáth
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Duenpen Unjaroen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary.
| |
Collapse
|
11
|
Török P, Kaizer J. Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction. Molecules 2024; 29:3842. [PMID: 39202921 PMCID: PMC11357111 DOI: 10.3390/molecules29163842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Iodosilarene derivatives (PhIO, PhI(OAc)2) constitute an important class of oxygen atom transfer reagents in organic synthesis and are often used together with iron-based catalysts. Since the factors controlling the ability of iron centers to catalyze alkane hydroxylation are not yet fully understood, the aim of this report is to develop bioinspired non-heme iron catalysts in combination with PhI(OAc)2, which are suitable for performing C-H activation. Overall, this study provides insight into the iron-based ([FeII(PBI)3(CF3SO3)2] (1), where PBI = 2-(2-pyridyl)benzimidazole) catalytic and stoichiometric hydroxylation of triphenylmethane using PhI(OAc)2, highlighting the importance of reaction conditions including the effect of the co-ligands (para-substituted pyridines) and oxidants (para-substituted iodosylbenzene diacetates) on product yields and reaction kinetics. A number of mechanistic studies have been carried out on the mechanism of triphenylmethane hydroxylation, including C-H activation, supporting the reactive intermediate, and investigating the effects of equatorial co-ligands and coordinated oxidants. Strong evidence for the electrophilic nature of the reaction was observed based on competitive experiments, which included a Hammett correlation between the relative reaction rate (logkrel) and the σp (4R-Py and 4R'-PhI(OAc)2) parameters in both stoichiometric (ρ = +0.87 and +0.92) and catalytic (ρ = +0.97 and +0.77) reactions. The presence of [(PBI)2(4R-Py)FeIIIOIPh-4R']3+ intermediates, as well as the effect of co-ligands and coordinated oxidants, was supported by their spectral (UV-visible) and redox properties. It has been proven that the electrophilic nature of iron(III)-iodozilarene complexes is crucial in the oxidation reaction of triphenylmethane. The hydroxylation rates showed a linear correlation with the FeIII/FeII redox potentials (in the range of -350 mV and -524 mV), which suggests that the Lewis acidity and redox properties of the metal centers greatly influence the reactivity of the reactive intermediates.
Collapse
Affiliation(s)
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary;
| |
Collapse
|
12
|
Rice DB, Wong D, Weyhermüller T, Neese F, DeBeer S. The spin-forbidden transition in iron(IV)-oxo catalysts relevant to two-state reactivity. SCIENCE ADVANCES 2024; 10:eado1603. [PMID: 38941457 PMCID: PMC11212722 DOI: 10.1126/sciadv.ado1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Quintet oxoiron(IV) intermediates are often invoked in nonheme iron enzymes capable of performing selective oxidation, while most well-characterized synthetic model oxoiron(IV) complexes have a triplet ground state. These differing spin states lead to the proposal of a two-state reactivity model, where the complexes cross from the triplet to an excited quintet state. However, the energy of this quintet state has never been measured experimentally. Here, magnetic circular dichroism is used to assign the singlet and triplet excited states in a series of triplet oxoiron(IV) complexes. These transition energies are used to determine the energies of the quintet state via constrained fitting of 2p3d resonant inelastic x-ray scattering. This allowed for a direct correlation between the quintet energies and substrate C─H oxidation rates.
Collapse
Affiliation(s)
- Derek B. Rice
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Deniz Wong
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Thomas M, Jaber Sathik Rifayee SB, Chaturvedi SS, Gorantla KR, White W, Wildey J, Schofield CJ, Christov CZ. The Unique Role of the Second Coordination Sphere to Unlock and Control Catalysis in Nonheme Fe(II)/2-Oxoglutarate Histone Demethylase KDM2A. Inorg Chem 2024; 63:10737-10755. [PMID: 38781256 PMCID: PMC11168414 DOI: 10.1021/acs.inorgchem.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Nonheme Fe(II) and 2-oxoglutarate (2OG)-dependent histone lysine demethylases 2A (KDM2A) catalyze the demethylation of the mono- or dimethylated lysine 36 residue in the histone H3 peptide (H3K36me1/me2), which plays a crucial role in epigenetic regulation and can be involved in many cancers. Although the overall catalytic mechanism of KDMs has been studied, how KDM2 catalysis takes place in contrast to other KDMs remains unknown. Understanding such differences is vital for enzyme redesign and can help in enzyme-selective drug design. Herein, we employed molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) to explore the complete catalytic mechanism of KDM2A, including dioxygen diffusion and binding, dioxygen activation, and substrate oxidation. Our study demonstrates that the catalysis of KDM2A is controlled by the conformational change of the second coordination sphere (SCS), specifically by a change in the orientation of Y222, which unlocks the 2OG rearrangement from off-line to in-line mode. The study demonstrates that the variant Y222A makes the 2OG rearrangement more favorable. Furthermore, the study reveals that it is the size of H3K36me3 that prevents the 2OG rearrangement, thus rendering the enzyme inactivity with trimethylated lysine. Calculations show that the SCS and long-range interacting residues that stabilize the HAT transition state in KDM2A differ from those in KDM4A, KDM7B, and KDM6A, thus providing the basics for the enzyme-selective redesign and modulation of KDM2A without influencing other KDMs.
Collapse
Affiliation(s)
- Midhun
George Thomas
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | | | - Shobhit S. Chaturvedi
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Koteswara Rao Gorantla
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Walter White
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Jon Wildey
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12, Mansfield Road, Oxford OX1 5JJ, U.K.
| | - Christo Z. Christov
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
14
|
Kaur L, Mandal D. A density functional theory analysis of the C-H activation reactivity of iron(IV)-oxo complexes with an 'O' substituted tetramethylcyclam macrocycle. Dalton Trans 2024; 53:7527-7535. [PMID: 38597582 DOI: 10.1039/d4dt00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this article, we present a meticulous computational study to foresee the effect of an oxygen-rich macrocycle on the reactivity for C-H activation. For this study, a widely studied nonheme Fe(IV)O molecule with a TMC (1,4,8,11-tetramethyl 1,4,8,11-tetraazacyclotetradecane) macrocycle that is equatorially attached to four nitrogen atoms (designated as N4) and acetonitrile as an axial ligand has been taken into account. For the goal of hetero-substitution, step-by-step replacement of the N4 framework with O atoms, i.e., N4, N3O1, N2O2, N1O3, and O4 systems, has been considered, and dihydroanthracene (DHA) has been used as the substrate. In order to neutralise the system and prevent the self-interaction error in DFT, triflate counterions have also been included in the calculations. The study of the energetics of these C-H bond activation reactions and the potential energy surfaces mapped therefore reveal that the initial hydrogen abstraction, which is the rate-determining step, follows the two-state reactivity (TSR) pattern, which means that the originally excited quintet state falls lower in the transition state and the product. The reaction follows the hydrogen atom transfer (HAT) mechanism, as indicated by the spin density studies. The results revealed a fascinating reactivity order, in which the reactivity increases with the enrichment of the oxygen atom in the equatorial position, namely the order follows N4 < N3O1 < N2O2 < N1O3 < O4. The impacts of oxygen substitution on quantum mechanical tunneling and the H/D kinetic isotope effect have also been investigated. When analysing the causes of this reactivity pattern, a number of variables have been identified, including the reactant-like transition structure, spin density distribution, distortion energy, and energies of the electron acceptor orbital, i.e., the energy of the LUMO (σ*z2), which validate the obtained outcome. Our results also show very good agreement with earlier combined experimental and theoretical studies considering TMC and TMCO-type complexes. The DFT predictions reported here will undoubtedly encourage experimental research in this biomimetic field, as they provide an alternative with higher reactivity in which heteroatoms can be substituted for the traditional nitrogen atom.
Collapse
Affiliation(s)
- Lovleen Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| |
Collapse
|
15
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
16
|
Vennelakanti V, Jeon M, Kulik HJ. How Do Differences in Electronic Structure Affect the Use of Vanadium Intermediates as Mimics in Nonheme Iron Hydroxylases? Inorg Chem 2024; 63:4997-5011. [PMID: 38428015 DOI: 10.1021/acs.inorgchem.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
We study active-site models of nonheme iron hydroxylases and their vanadium-based mimics using density functional theory to determine if vanadyl is a faithful structural mimic. We identify crucial structural and energetic differences between ferryl and vanadyl isomers owing to the differences in their ground electronic states, i.e., high spin (HS) for Fe and low spin (LS) for V. For the succinate cofactor bound to the ferryl intermediate, we predict facile interconversion between monodentate and bidentate coordination isomers for ferryl species but difficult rearrangement for vanadyl mimics. We study isomerization of the oxo intermediate between axial and equatorial positions and find the ferryl potential energy surface to be characterized by a large barrier of ca. 10 kcal/mol that is completely absent for the vanadyl mimic. This analysis reveals even starker contrasts between Fe and V in hydroxylases than those observed for this metal substitution in nonheme halogenases. Analysis of the relative bond strengths of coordinating carboxylate ligands for Fe and V reveals that all of the ligands show stronger binding to V than Fe owing to the LS ground state of V in contrast to the HS ground state of Fe, highlighting the limitations of vanadyl mimics of native nonheme iron hydroxylases.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mugyeom Jeon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Tepaske MA, Fitterer A, Verplancke H, Delony D, Neben MC, de Bruin B, Holthausen MC, Schneider S. C-H Bond Activation by Iridium(III) and Iridium(IV) Oxo Complexes. Angew Chem Int Ed Engl 2024; 63:e202316729. [PMID: 38116899 DOI: 10.1002/anie.202316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Oxidation of an iridium(III) oxo precursor enabled the structural, spectroscopic, and quantum-chemical characterization of the first well-defined iridium(IV) oxo complex. Side-by-side examination of the proton-coupled electron transfer thermochemistry revealed similar driving forces for the isostructural oxo complexes in two redox states due to compensating contributions from H+ and e- transfer. However, C-H activation of dihydroanthracene revealed significant hydrogen tunneling for the distinctly more basic iridium(III) oxo complex. Our findings complement the growing body of data that relate tunneling to ground state properties as predictors for the selectivity of C-H bond activation.
Collapse
Affiliation(s)
- Martijn A Tepaske
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Arnd Fitterer
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Daniel Delony
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Marc C Neben
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| |
Collapse
|
18
|
Joy J, Schaefer AJ, Teynor MS, Ess DH. Dynamical Origin of Rebound versus Dissociation Selectivity during Fe-Oxo-Mediated C-H Functionalization Reactions. J Am Chem Soc 2024; 146:2452-2464. [PMID: 38241715 DOI: 10.1021/jacs.3c09891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The mechanism of catalytic C-H functionalization of alkanes by Fe-oxo complexes is often suggested to involve a hydrogen atom transfer (HAT) step with the formation of a radical-pair intermediate followed by diverging pathways for radical rebound, dissociation, or desaturation. Recently, we showed that in some Fe-oxo reactions, the radical pair is a nonstatistical-type intermediate and dynamic effects control rebound versus dissociation pathway selectivity. However, the effect of the solvent cage on the stability and lifetime of the radical-pair intermediate has never been analyzed. Moreover, because of the extreme complexity of motion that occurs during dynamics trajectories, the underlying physical origin of pathway selectivity has not yet been determined. For the reaction between [(TQA_Cl)FeIVO]+ and cyclohexane, here, we report explicit solvent trajectories and machine learning analysis on transition-state sampled features (e.g., vibrational, velocity, and geometric) that identified the transferring hydrogen atom kinetic energy as the most important factor controlling rebound versus nonrebound dynamics trajectories, which provides an explanation for our previously proposed dynamic matching effect in fast rebound trajectories that bypass the radical-pair intermediate. Manual control of the reaction trajectories confirmed the importance of this feature and provides a mechanism to enhance or diminish selectivity for the rebound pathway. This led to a general catalyst design principle and proof-of-principle catalyst design that showcases how to control rebound versus dissociation reaction pathway selectivity.
Collapse
Affiliation(s)
- Jyothish Joy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Anthony J Schaefer
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Matthew S Teynor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| |
Collapse
|
19
|
Kumar M, Gupta MK, Ansari M, Ansari A. C-H bond activation by high-valent iron/cobalt-oxo complexes: a quantum chemical modeling approach. Phys Chem Chem Phys 2024; 26:4349-4362. [PMID: 38235511 DOI: 10.1039/d3cp05866b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-valent metal-oxo species serve as key intermediates in the activation of inert C-H bonds. Here, we present a comprehensive DFT analysis of the parameters that have been proposed as influencing factors in modeled high-valent metal-oxo mediated C-H activation reactions. Our approach involves utilizing DFT calculations to explore the electronic structures of modeled FeIVO (species 1) and CoIVO ↔ CoIII-O˙ (species 2), scrutinizing their capacity to predict improved catalytic activity. DFT and DLPNO-CCSD(T) calculations predict that the iron-oxo species possesses a triplet as the ground state, while the cobalt-oxo has a doublet as the ground state. Furthermore, we have investigated the mechanistic pathways for the first C-H bond activation, as well as the desaturation of the alkanes. The mechanism was determined to be a two-step process, wherein the first hydrogen atom abstraction (HAA) represents the rate-limiting step, involving the proton-coupled electron transfer (PCET) process. However, we found that the second HAA step is highly exothermic for both species. Our calculations suggest that the iron-oxo species (Fe-O = 1.672 Å) exhibit relatively sluggish behavior compared to the cobalt-oxo species (Co-O = 1.854 Å) in C-H bond activation, attributed to a weak metal-oxygen bond. MO, NBO, and deformation energy analysis reveal the importance of weakening the M-O bond in the cobalt species, thereby reducing the overall barrier to the reaction. This catalyst was found to have a C-H activation barrier relatively smaller than that previously reported in the literature.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Mursaleem Ansari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
20
|
Katoch A, Mandal D. High-valent nonheme Fe(IV)O/Ru(IV)O complexes catalyze C-H activation reactivity and hydrogen tunneling: a comparative DFT investigation. Dalton Trans 2024; 53:2386-2394. [PMID: 38214597 DOI: 10.1039/d3dt03155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A comprehensive density functional theory investigation has been presented towards the comparison of the C-H activation reactivity between high-valent iron-oxo and ruthenium-oxo complexes. A total of four compounds, e.g., [Ru(IV)O(tpy-dcbpy)] (1), [Fe(IV)O(tpy-dcbpy)] (1'), [Ru(IV)O(TMCS)] (2), and [Fe(IV)O(TMCS)] (2'), have been considered for this investigation. The macrocyclic ligand framework tpy(dcbpy) implies tpy = 2,2':6',2''-terpyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine, and TMCS is TMC with an axially tethered -SCH2CH2 group. Compounds 1 and 2' are experimentally synthesized standard complexes with Ru and Fe, whereas compounds 1' and 2 were considered to keep the macrocycle intact when switching the central metal atom. Three reactants including benzyl alcohol, ethyl benzene, and dihydroanthracene were selected as substrates for C-H activation. It is noteworthy to mention that Fe(IV)O complexes exhibit higher reactivity than those of their Ru(IV)O counterparts. Furthermore, regardless of the central metal, the complex featuring a tpy-dcbpy macrocycle demonstrates higher reactivity than that of TMCS. Here, a thorough analysis of the reactivity-controlling characteristics-such as spin state, steric factor, distortion energy, energy of the electron acceptor orbital, and quantum mechanical tunneling-was conducted. Fe(IV)O exhibits the exchanged enhanced two-state-reactivity with the quintet reactive state, whereas Ru(IV)O has only a triplet reactive state. Both the distortion energy and acceptor orbital energy are low in the case of Fe(IV)O supporting its higher reactivity. All the investigated C-H activation processes involve a significant contribution from hydrogen tunneling, which is more pronounced in the case of Ru, although it cannot alter the reactivity pattern. Furthermore, it has also been found that, independent of the central metal, aliphatic hydroxylation is always preferable to aromatic hydroxylation. Overall, this work is successful in establishing and investigating the cause of enzymes' natural preference for Fe over Ru as a cofactor for C-H activation enzymes.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| |
Collapse
|
21
|
Lakk-Bogáth D, Pintarics D, Török P, Kaizer J. Influence of Equatorial Co-Ligands on the Reactivity of LFe IIIOIPh. Molecules 2023; 29:58. [PMID: 38202641 PMCID: PMC10779584 DOI: 10.3390/molecules29010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Previous biomimetic studies clearly proved that equatorial ligands significantly influence the redox potential and thus the stability/reactivity of biologically important oxoiron intermediates; however, no such studies were performed on FeIIIOIPh species. In this study, the influence of substituted pyridine co-ligands on the reactivity of iron(III)-iodosylbenzene adduct has been investigated in sulfoxidation and epoxidation reactions. Selective oxidation of thioanisole, cis-cyclooctene, and cis- and trans-stilbene in the presence of a catalytic amount of [FeII(PBI)3](OTf)2 with PhI(OAc)2 provide products in good to excellent yields through an FeIIIOIPh intermediate depending on the co-ligand (4R-Py) used. Several mechanistic studies were performed to gain more insight into the mechanism of oxygen atom transfer (OAT) reactions to support the reactive intermediate and investigate the effect of the equatorial co-ligands. Based on competitive experiments, including a linear free-energy relationship between the relative reaction rates (logkrel) and the σp (4R-Py) parameters, strong evidence has been observed for the electrophilic character of the reactive species. The presence of the [(PBI)2(4R-Py)FeIIIOIPh]3+ intermediates and the effect of the co-ligands was also supported by UV-visible measurements, including the color change from red to green and the hypsochromic shifts in the presence of co-ligands. This is another indication that the title iron(III)-iodosylbenzene adduct is able to oxygenate sulfides and alkenes before it is transformed into the oxoiron form by cleavage of the O-I bond.
Collapse
Affiliation(s)
| | | | | | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary; (D.L.-B.); (D.P.); (P.T.)
| |
Collapse
|
22
|
Li Y, Singh R, Sinha A, Lisensky GC, Haukka M, Nilsson J, Yiga S, Demeshko S, Gross SJ, Dechert S, Gonzalez A, Farias G, Wendt OF, Meyer F, Nordlander E. Nonheme Fe IV═O Complexes Supported by Four Pentadentate Ligands: Reactivity toward H- and O- Atom Transfer Processes. Inorg Chem 2023; 62:18338-18356. [PMID: 37913548 PMCID: PMC10647104 DOI: 10.1021/acs.inorgchem.3c02526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.
Collapse
Affiliation(s)
- Yong Li
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Reena Singh
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Arup Sinha
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - George C. Lisensky
- Department
of Chemistry, Beloit College, 700 College Street, Beloit, Wisconsin 53511, United States
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box-35, Jyväskylä FI-40014, Finland
| | - Justin Nilsson
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Solomon Yiga
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Serhiy Demeshko
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sophie Jana Gross
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sebastian Dechert
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, P.O.
Box 118, Lund SE-221 00, Sweden
| | - Giliandro Farias
- Department
of Chemistry, Federal University of Santa
Catarina, Florianópolis 88040900, Santa Catarina, Brazil
| | - Ola F. Wendt
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Franc Meyer
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ebbe Nordlander
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
23
|
Lewis TWR, Mastin EM, Theis ZC, Okafor SU, Gutierrez MG, Bellert DJ. Two state reactivity (TSR) and hydrogen tunneling reaction kinetics measured in the Co + mediated decomposition of CH 3CHO. Phys Chem Chem Phys 2023; 25:23477-23490. [PMID: 37646145 DOI: 10.1039/d2cp05042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The electronic structure of a transition metal atom allows it to act as a catalytic active site by providing lower energy alternative pathways in chemical transformations. We have identified and kinetically characterized three such pathways in the title reaction. One is an adiabatic pathway that occurs on a single potential energy surface described within the Born-Oppenheimer approximation. A second pathway opens microseconds into the reaction as a portion of the reacting population competitively transitions from triplet to singlet multiplicity to circumvent energetic barriers on the triplet surface. These pathways are single- and two-state reactive (SSR and TSR) where the Co+ cation mediates an oxidative addition/reductive elimination sequence of the CH3CHO molecule. The third observed reaction pathway is the aldehyde hydrogen tunneling through an Eyring barrier to form high-spin products. First-order rate constants for the adiabatic and nonadiabatic energy lowered pathways, and the hydrogen tunneling pathway, are each measured using the single photon initiated dissociative rearrangement reaction (SPIDRR) experimental technique. We believe that this is the first experimental study where such disparate dynamic features (SSR, TSR, and H-tunneling) are disentangled in a system's chemistry, attributing specific rate constant values to each effect and quantifying the various competitions. Moreover, multi-reference CASSCF/CASPT2 calculations indicate that structures with covalent Co-H bonds are present exclusively along the excited singlet surface. This phenomenon significantly reduces these structures' energy relative to their triplet counterparts, thus enabling the surface crossing and spin inversion that cause the observed two-state reactivity.
Collapse
Affiliation(s)
| | - Evan M Mastin
- Baylor University, 1311 S 5th St, Waco, TX 76706, USA.
| | | | | | | | | |
Collapse
|
24
|
Carter S, Tao W, Majumder R, Sokolov AY, Zhang S. Two-State Hydrogen Atom Transfer Reactivity of Unsymmetric [Cu 2(O)(NO)] 2+ Complexes. J Am Chem Soc 2023; 145:17779-17785. [PMID: 37540110 DOI: 10.1021/jacs.3c04510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report the temperature-dependent spin switching of dicopper oxo nitrosyl [Cu2(O)(NO)]2+ complexes and their influence on hydrogen atom transfer (HAT) reactivity. Electron paramagnetic resonance (EPR) and Evans method analysis suggest that [Cu2(O)(NO)]2+ complexes transition from the S = 1/2 to the S = 3/2 state around ca. 202 K. At low temperatures (198 K) where S = 3/2 dominates, a strong correlation between the rate of HAT (kHAT) and the population of the S = 1/2 state was identified (R2 = 0.988), suggesting that the HAT by [Cu2(O)(NO)]2+ complexes proceeds by the S = 1/2 isomer. Installation of functional groups that introduce an unsymmetric secondary coordination environment accelerates the HAT rates through perturbation of the spin equilibria. Given the often unsymmetric coordination sphere of bimetallic active sites in natural proteins, we anticipate that similar strategies could be employed by metalloenzymes to control HAT reactions.
Collapse
Affiliation(s)
- Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Rajat Majumder
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Bleher K, Comba P, Kass D, Ray K, Wadepohl H. Reactivities of iron(IV)-oxido compounds with pentadentate bispidine ligands. J Inorg Biochem 2023; 241:112123. [PMID: 36701984 DOI: 10.1016/j.jinorgbio.2023.112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The FeIVO complexes of bispidines (3,7-diazabicyclo[3.3.1]nonane derivatives) are known to be highly reactive oxidants - with the tetradentate bispidine, the so far most reactive ferryl complex has been reported and two isomeric pentadentate ligands also lead to very reactive high-valent oxidants. With a series of 4 new bispidine derivatives we now try to address the question why the bispidine scaffold in general leads to very reactive oxidants and how this can be tuned by ligand modifications. The study is based on a full structural, spectroscopic and electrochemical analysis of the iron(II) precursors, spectroscopic data of the iron(IV)-oxido complexes, a kinetic analysis of the stoichiometric oxidation of thioanisole by five different bispidine‑iron(IV)-oxido complexes and on product analyses of reactions by the five ferryl oxidants with thioanisole, β-methylstyrene and cis-stilbene as substrates.
Collapse
Affiliation(s)
- Katharina Bleher
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany; Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Germany.
| | - Dustin Kass
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, D-12489 Berlin, Germany
| | - Kallol Ray
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, D-12489 Berlin, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Sun D, Wu Z, Zhang X, Yang J, Zhao Y, Nam W, Wang Y. Brønsted Acids Promote Olefin Oxidations by Bioinspired Nonheme Co III(PhIO)(OH) Complexes: A Role for Low-Barrier Hydrogen Bonds. J Am Chem Soc 2023; 145:5739-5749. [PMID: 36867878 DOI: 10.1021/jacs.2c12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Introduction of Brønsted acids into biomimetic nonheme reactions promotes the oxidative ability of metal-oxygen complexes significantly. However, the molecular machinery of the promoted effects is missing. Herein, a comprehensive investigation of styrene oxidation by a cobalt(III)-iodosylbenzene complex, [(TQA)CoIII(OIPh)(OH)]2+ (1, TQA = tris(2-quinolylmethyl)amine), in the presence and absence of triflic acid (HOTf) was performed using density functional theory calculations. Results revealed for the first time that there is a low-barrier hydrogen bond (LBHB) between HOTf and the hydroxyl ligand of 1, which forms two valence-resonance structures [(TQA)CoIII(OIPh)(HO---HOTf)]2+ (1LBHB) and [(TQA)CoIII(OIPh)(H2O--OTf-)]2+ (1'LBHB). Due to the oxo-wall, these complexes (1LBHB and 1'LBHB) cannot convert to high-valent cobalt-oxyl species. Instead, styrene oxidation by these oxidants (1LBHB and 1'LBHB) shows novel spin-state selectivity, i.e., on the ground closed-shell singlet state, styrene is oxidized to an epoxide, whereas on the excited triplet and quintet states, an aldehyde product, phenylacetaldehyde, is formed. The preferred pathway is styrene oxidation by 1'LBHB, which is initiated by a rate-limiting bond-formation-coupled electron transfer process with an energy barrier of 12.2 kcal mol-1. The nascent PhIO-styrene-radical-cation intermediate undergoes an intramolecular rearrangement to produce an aldehyde. The halogen bond between the OH-/H2O ligand and the iodine of PhIO modulates the activity of the cobalt-iodosylarene complexes 1LBHB and 1'LBHB. These new mechanistic findings enrich our knowledge of nonheme chemistry and hypervalent iodine chemistry and will play a positive role in the rational design of new catalysts.
Collapse
Affiliation(s)
- Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xuan Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
27
|
Zhou A, Li XX, Sun D, Cao X, Wu Z, Chen H, Zhao Y, Nam W, Wang Y. Theoretical investigation on the elusive structure-activity relationship of bioinspired high-valence nickel-halogen complexes in oxidative fluorination reactions. Dalton Trans 2023; 52:1977-1988. [PMID: 36691931 DOI: 10.1039/d2dt03212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Very recently, bioinspired high-valence metal-halogen complexes have been proven to be competent oxidants in the C-H bond activation and heteroatom dihalogenation reactions. However, the structure-activity relationship of such active species and the reaction mechanisms of oxidations mediated by these oxidants are still elusive. In this study, density functional theory (DFT) calculations were performed to systematically study the oxidizing ability of the high-valence NiIII-X (X = F and Cl) complexes Et4N[NiIII(Cl/F)(L)], (1Cl/F, Et = ethyl, L = N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide), such as the reaction mechanism of fluorination of 1,4-cyclohexadiene (CHD) by 1F in the presence of AgF and the reaction mechanism of difluorination of triphenyl phosphine (PPh3) by 1F. All calculated results fit well with the experiments and present new mechanistic findings. The C-H bond activation by the high-valence nickel(III)-halogen complexes was found to proceed via a hydrogen-atom transfer (HAT) mechanism by analysis of the molecular orbitals of the transition states. C-H bond activation by 1F takes a Ni-F-H angle of ca. 180°, whereas that by 1Cl takes an angle of ca. 120° on the transition states. These results indicate that the exchange-enhanced reactivity is responsible for the dramatic oxidative difference between these two oxidants. The role of AgF in C-H fluorination of CHD by 1F is proposed to act as a Lewis acid adduct, AgF-binding Ni(III)-fluorine complex 1F-Ag-F, which acts both as an oxidant in C-H bond activation and as a fluorine donor in the fluorination step. A cooperative oxidation mechanism involving two 1F oxidants was proposed for the difluorination of PPh3 by 1F. These theoretical findings will enrich the knowledge of high-valence metal-halogen chemistry and play a positive role in the rational design of new catalysts.
Collapse
Affiliation(s)
- Anran Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xuanyu Cao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Huanhuan Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
28
|
Murakami T, Takayanagi T. Triplet-quintet spin-crossover efficiency in β-hydrogen transfer between Fe(C2H5)+ and HFe(C2H4)+. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Chaturvedi S, Jaber Sathik Rifayee SB, Waheed SO, Wildey J, Warner C, Schofield CJ, Karabencheva-Christova TG, Christov CZ. Can Second Coordination Sphere and Long-Range Interactions Modulate Hydrogen Atom Transfer in a Non-Heme Fe(II)-Dependent Histone Demethylase? JACS AU 2022; 2:2169-2186. [PMID: 36186565 PMCID: PMC9516565 DOI: 10.1021/jacsau.2c00345] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 05/10/2023]
Abstract
Fe(II)-dependent oxygenases employ hydrogen atom transfer (HAT) to produce a myriad of products. Understanding how such enzymes use dynamic processes beyond the immediate vicinity of the active site to control the selectivity and efficiency of HAT is important for metalloenzyme engineering; however, obtaining such knowledge by experiments is challenging. This study develops a computational framework for identifying second coordination sphere (SCS) and especially long-range (LR) residues relevant for catalysis through dynamic cross-correlation analysis (DCCA) using the human histone demethylase PHF8 (KDM7B) as a model oxygenase. Furthermore, the study explores the mechanistic pathways of influence of the SCS and LR residues on the HAT reaction. To demonstrate the plausibility of the approach, we investigated the effect of a PHF8 F279S clinical mutation associated with X-linked intellectual disability, which has been experimentally shown to ablate PHF8-catalyzed demethylation. In agreement, the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies showed a change in the H31-14K9me2 substrate orientation and an increased HAT barrier. We systematically analyzed the pathways by which the identified SCS and LR residues may influence HAT by exploring changes in H3K9me2 substrate orientation, interdomain correlated motions, HAT transition state stabilization, reaction energetics, electron transfer mechanism, and alterations in the intrinsic electric field of PHF8. Importantly, SCS and LR variations decrease key motions of α9-α12 of the JmjC domain toward the Fe(IV)-center that are associated with tighter binding of the H31-14K9me2 substrate. SCS and LR residues alter the intrinsic electric field of the enzyme along the reaction coordinate and change the individual energetic contributions of residues toward TS stabilization. The overall results suggest that DCCA can indeed identify non-active-site residues relevant for catalysis. The substitutions of such dynamically correlated residues might be used as a tool to tune HAT in non-heme Fe(II)- and 2OG-dependent enzymes.
Collapse
Affiliation(s)
- Shobhit
S. Chaturvedi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan49931, United States
| | | | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan49931, United States
| | - Jon Wildey
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan49931, United
States
| | - Cait Warner
- Department
of Biological Sciences, Michigan Technological
University, Houghton, Michigan49931, United
States
| | - Christopher J. Schofield
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, Mansfield Road, OxfordOX1 3TA, United Kingdom
| | | | - Christo Z. Christov
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan49931, United States
| |
Collapse
|
30
|
Kaur L, Mandal D. Role of "S" Substitution on C-H Activation Reactivity of Iron(IV)-Oxo Cyclam Complexes: a Computational Investigation. Inorg Chem 2022; 61:14582-14590. [PMID: 36069431 DOI: 10.1021/acs.inorgchem.2c01504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A comprehensive density functional theory (DFT) investigation has been presented in this article to address the role of equatorial sulfur ligation in C-H activation. A non-heme iron-oxo compound with four nitrogen atoms constituting the equatorially connected macrocyclic framework (represented as N4) [Fe(IV)═O(THC)(CH3CN)]2+(THC = 1,4,8,11-tetrahydro1,4,8,11-tetraazacyclotetradecane) has been considered as the base compound. Other complexes have been anticipated by the sequential replacement of this nitrogen by sulfur, that is, N4, N3S1, N2S2, N1S3, and S4. Counterions, as always, have been considered to avoid the self-interaction error in DFT. Generally, the anti-conformers (with respect to equatorial N-H and Fe═O) turned out to be the most stable. It was found that with the enrichment of the equatorial sulfur atom, reactivity increases successively, that is, we get the trend N4 < N3S1 < N2S2 < N1S3 < S4. Our investigations have also verified the available experimental results where it has been reported that N2S2 is more reactive than N4 in their mixed conformation. In search of insights into this typical pattern of reactivity, the interplay of several factors has been recognized, such as the distortion energy which decreases for the transition states with the addition of sulfur; the spin density on the oxygen atom which increases implying that the radical character of abstractor increases on sulfur ligation; the energy of the electron acceptor orbital (the lowest unoccupied molecular orbital (σz2*)) which decreases continuously with the sulfur substitution; and the triplet-quintet oxidant energy gap which decreases consistently with S enrichment in the equatorial position. The computational predictions reported here, if further validated by experiments, will definitely encourage the synthesis of sulfur-ligated bio-inspired complexes instead of the ones constituting nitrogen exclusively.
Collapse
Affiliation(s)
- Lovleen Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
31
|
Tripodi G, Roithová J. Unmasking the Iron-Oxo Bond of the [(Ligand)Fe-OIAr] 2+/+ Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1636-1643. [PMID: 35920859 PMCID: PMC9460779 DOI: 10.1021/jasms.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ArIO (ArI = 2-(tBuSO2)C6H4I) is an oxidant used to oxidize FeII species to their FeIV-oxo state, enabling hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions at low energy barriers. ArIO, as a ligand, generates masked Fen═O species of the type Fe(n-2)-OIAr. Herein, we used gas-phase ion-molecule reactions and DFT calculations to explore the properties of masked iron-oxo species and to understand their unmasking mechanisms. The theory shows that the I-O bond cleavage in [(TPA)FeIVO(ArIO)]2+ (12+, TPA = tris(2-pyridylmethyl)amine)) is highly endothermic; therefore, it can be achieved only in collision-induced dissociation of 12+ leading to the unmasked iron(VI) dioxo complex. The reduction of 12+ by HAT leads to [(TPA)FeIIIOH(ArIO)]2+ with a reduced energy demand for the I-O bond cleavage but is, however, still endothermic. The exothermic unmasking of the Fe═O bond is predicted after one-electron reduction of 12+ or after OAT reactivity. The latter leads to the 4e- oxidation of unsaturated hydrocarbons: The initial OAT from [(TPA)FeIVO(ArIO)]2+ leads to the epoxidation of an alkene and triggers the unmasking of the second Fe═O bond still within one collisional complex. The second oxidation step starts with HAT from a C-H bond and follows with the rebound of the C-radical and the OH group. The process starting with the one-electron reduction could be studied with [(TQA)FeIVO(ArIO)]2+ (22+, TQA = tris(2-quinolylmethyl)amine)) because it has a sufficient electron affinity for electron transfer with alkenes. Accordingly, the reaction of 22+ with 2-carene leads to [(TQA)FeIIIO(ArIO)]2+ that exothermically eliminates ArI and unmasks the reactive FeV-dioxo species.
Collapse
Affiliation(s)
- Guilherme
L. Tripodi
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
32
|
Seeman JI. An Iraqi by Birth, an Israeli in Body, a Soul without Borders. Sason Shaik in His Own Words**. Isr J Chem 2022. [DOI: 10.1002/ijch.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey I. Seeman
- Department of Chemistry University of Richmond 23173 Richmond VA USA
| |
Collapse
|
33
|
Two-state reactivity in the acetylene cyclotrimerization reaction catalyzed by a single atomic transition-metal ion: The case for V+ and Fe+. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Zhou A, Cao X, Chen H, Sun D, Zhao Y, Nam W, Wang Y. The chameleon-like nature of elusive cobalt-oxygen intermediates in C-H bond activation reactions. Dalton Trans 2022; 51:4317-4323. [PMID: 35212349 DOI: 10.1039/d2dt00224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-valence metal-oxo (M-O, M = Fe, Mn, etc.) species are well-known reaction intermediates that are responsible for a wide range of pivotal oxygenation reactions and water oxidation reactions in metalloenzymes. Although extensive efforts have been devoted to synthesizing and identifying such complexes in biomimetic studies, the structure-function relationship and related reaction mechanisms of these reaction intermediates remain elusive, especially for the cobalt-oxygen species. In the present manuscript, the calculated results demonstrate that the tetraamido macrocycle ligated cobalt complex, Co(O)(TAML) (1), behaves like a chameleon: the electronic structure varies from a cobalt(III)-oxyl species to a cobalt(IV)-oxo species when a Lewis acid Sc3+ salt coordinates or an acidic hydrocarbon attacks 1. The dichotomous correlation between the reaction rates of C-H bond activation by 1 and the bond dissociation energy (BDE) vs. the acidity (pKa) was rationalized for the first time by different reaction mechanisms: for normal C-H bond activation, the Co(III)-oxyl species directly activates the C-H bond via a hydrogen atom transfer (HAT) mechanism, whereas for acidic C-H bond activation, the Co(III)-oxyl species evolves to a Co(IV)-oxo species to increase the basicity of the oxygen to activate the acidic C-H bond, via a novel PCET(PT) mechanism (proton-coupled electron transfer with a PT(proton-transfer)-like transition state). These theoretical findings will enrich the knowledge of biomimetic metal-oxygen chemistry.
Collapse
Affiliation(s)
- Anran Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xuanyu Cao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Huanhuan Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
35
|
Ali HS, de Visser SP. Electrostatic Perturbations in the Substrate-Binding Pocket of Taurine/α-Ketoglutarate Dioxygenase Determine its Selectivity. Chemistry 2022; 28:e202104167. [PMID: 34967481 PMCID: PMC9304159 DOI: 10.1002/chem.202104167] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Taurine/α-ketoglutarate dioxygenase is an important enzyme that takes part in the cysteine catabolism process in the human body and selectively hydroxylates taurine at the C1 -position. Recent computational studies showed that in the gas-phase the C2 -H bond of taurine is substantially weaker than the C1 -H bond, yet no evidence exists of 2-hydroxytaurine products. To this end, a detailed computational study on the selectivity patterns in TauD was performed. The calculations show that the second-coordination sphere and the protonation states of residues play a major role in guiding the enzyme to the right selectivity. Specifically, a single proton on an active site histidine residue can change the regioselectivity of the reaction through its electrostatic perturbations in the active site and effectively changes the C1 -H and C2 -H bond strengths of taurine. This is further emphasized by many polar and hydrogen bonding interactions of the protein cage in TauD with the substrate and the oxidant that weaken the pro-R C1 -H bond and triggers a chemoselective reaction process. The large cluster models reproduce the experimental free energy of activation excellently.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sam P. de Visser
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
36
|
Comba P, Nunn G, Scherz F, Walton PH. Intermediate-spin iron(IV)-oxido species with record reactivity. Faraday Discuss 2022; 234:232-244. [PMID: 35156976 DOI: 10.1039/d1fd00073j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIVO(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, has an S = 1 electronic ground state and is the most reactive nonheme iron model system known so far, of a similar order of reactivity as nonheme iron enzymes (C-H abstraction of cyclohexane, -90 °C (propionitrile), t1/2 = 3.5 s). The reaction with cyclohexane selectively leads to chlorocyclohexane, but "cage escape" at the [(L1)FeIII(OH)(Cl)]+/cyclohexyl radical intermediate lowers the productivity. Ligand field theory is used herein to analyze the d-d transitions of [(L1)FeIVO(X)]n+ (X = Cl-, Br-, MeCN) in comparison with the thoroughly characterized ferryl complex of tetramethylcyclam (TMC = L2; [(L2)FeIVO(MeCN)]2+). The ligand field parameters and d-d transition energies are shown to provide important information on the triplet-quintet gap and its correlation with oxidation reactivity.
Collapse
Affiliation(s)
- Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany. .,Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Germany
| | - George Nunn
- Department of Chemistry, University of York, Heslington, YORK, YO10 5DD, UK
| | - Frederik Scherz
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany.
| | - Paul H Walton
- Department of Chemistry, University of York, Heslington, YORK, YO10 5DD, UK
| |
Collapse
|
37
|
Lewis TWR, Mastin EM, Theis ZC, Gutierrez MG, Bellert DJ. Measurement of time dependent product branching ratios indicates two-state reactivity in metal mediated chemical reactions. Phys Chem Chem Phys 2022; 24:2300-2308. [PMID: 35015007 DOI: 10.1039/d1cp05473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For several decades, the influence of Two State Reactivity (TSR) has been implicated in a host of reactions, but has lacked a stand-alone, definitive experimental kinetic signature identifying its occurrence. Here, we demonstrate that the measurement of a temporally dependent product branching ratio is indicative of spin inversion and is a kinetic signature of TSR. This is caused by products exiting different hypersurfaces with different rates and relative exothermicities. The composite measurement of product intensities with the same mass but with different multiplicities yield biexponential temporal dependences with the sampled product ratio changing in time. These measurements are made using the single photon initiated dissociative rearrangement reaction (SPIDRR) technique which identifies TSR but further determines the kinetic parameters for reaction along the original ground electronic surface in competition with spin inversion and its consequent TSR.
Collapse
Affiliation(s)
- Tucker W R Lewis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Evan M Mastin
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Zachry C Theis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Michael G Gutierrez
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Darrin J Bellert
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| |
Collapse
|
38
|
Bleher K, Comba P, Faltermeier D, Gupta A, Kerscher M, Krieg S, Martin B, Velmurugan G, Yang S. Non-Heme-Iron-Mediated Selective Halogenation of Unactivated Carbon-Hydrogen Bonds. Chemistry 2022; 28:e202103452. [PMID: 34792224 PMCID: PMC9300152 DOI: 10.1002/chem.202103452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Oxidation of the iron(II) precursor [(L1 )FeII Cl2 ], where L1 is a tetradentate bispidine, with soluble iodosylbenzene (s PhIO) leads to the extremely reactive ferryl oxidant [(L1 )(Cl)FeIV =O]+ with a cis disposition of the chlorido and oxido coligands, as observed in non-heme halogenase enzymes. Experimental data indicate that, with cyclohexane as substrate, there is selective formation of chlorocyclohexane, the halogenation being initiated by C-H abstraction and the result of a rebound of the ensuing radical to an iron-bound Cl- . The time-resolved formation of the halogenation product indicates that this primarily results from s PhIO oxidation of an initially formed oxido-bridged diiron(III) resting state. The high yield of up to >70 % (stoichiometric reaction) as well as the differing reactivities of free Fe2+ and Fe3+ in comparison with [(L1 )FeII Cl2 ] indicate a high complex stability of the bispidine-iron complexes. DFT analysis shows that, due to a large driving force and small triplet-quintet gap, [(L1 )(Cl)FeIV =O]+ is the most reactive small-molecule halogenase model, that the FeIII /radical rebound intermediate has a relatively long lifetime (as supported by experimentally observed cage escape), and that this intermediate has, as observed experimentally, a lower energy barrier to the halogenation than the hydroxylation product; this is shown to primarily be due to steric effects.
Collapse
Affiliation(s)
- Katharina Bleher
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Dieter Faltermeier
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Ashutosh Gupta
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Marion Kerscher
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Saskia Krieg
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Bodo Martin
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Gunasekaran Velmurugan
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Shuyi Yang
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| |
Collapse
|
39
|
Munshi S, Sinha A, Yiga S, Banerjee S, Singh R, Hossain MK, Haukka M, Valiati AF, Huelsmann RD, Martendal E, Peralta R, Xavier F, Wendt OF, Paine TK, Nordlander E. Hydrogen-atom and oxygen-atom transfer reactivities of iron(IV)-oxo complexes of quinoline-substituted pentadentate ligands. Dalton Trans 2022; 51:870-884. [PMID: 34994361 DOI: 10.1039/d1dt03381f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of iron(II) complexes with the general formula [FeII(L2-Qn)(L)]n+ (n = 1, L = F-, Cl-; n = 2, L = NCMe, H2O) have been isolated and characterized. The X-ray crystallographic data reveals that metal-ligand bond distances vary with varying ligand field strengths of the sixth ligand. While the complexes with fluoride, chloride and water as axial ligand are high spin, the acetonitrile-coordinated complex is in a mixed spin state. The steric bulk of the quinoline moieties forces the axial ligands to deviate from the Fe-Naxial axis. A higher deviation/tilt is noted for the high spin complexes, while the acetonitrile coordinated complex displays least deviation. This deviation from linearity is slightly less in the analogous low-spin iron(II) complex [FeII(L1-Qn)(NCMe)]2+ of the related asymmetric ligand L1-Qn due to the presence of only one sterically demanding quinoline moiety. The two iron(II)-acetonitrile complexes [FeII(L2-Qn)(NCMe)]2+ and [FeII(L1-Qn)(NCMe)]2+ generate the corresponding iron(IV)-oxo species with higher thermal stability of the species supported by the L1-Qn ligand. The crystallographic and spectroscopic data for [FeIV(O)(L1-Qn)](ClO4)2 bear resemblance to other crystallographically characterized S = 1 iron(IV)-oxo complexes. The hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactivities of both the iron(IV)-oxo complexes were investigated, and a Box-Behnken multivariate optimization of the parameters for catalytic oxidation of cyclohexane by [FeII(L2-Qn)(NCMe)]2+ using hydrogen peroxide as the terminal oxidant is presented. An increase in the average Fe-N bond length in [FeII(L1-Qn)(NCMe)]2+ is also manifested in higher HAT and OAT rates relative to the other reported complexes of ligands based on the N4Py framework. The results reported here confirm that the steric influence of the ligand environment is of critical importance for the reactivity of iron(IV)-oxo complexes, but additional electronic factors must influence the reactivity of iron-oxo complexes of N4Py derivatives.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Arup Sinha
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| | - Solomon Yiga
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Reena Singh
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Md Kamal Hossain
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Box 35, FI-400 14, Jyväskylä, Finland
| | - Andrei Felipe Valiati
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Ricardo Dagnoni Huelsmann
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Edmar Martendal
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Rosely Peralta
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Fernando Xavier
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Ola F Wendt
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Tapan K Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
40
|
Mandal D, Katoch A. Effect of Substituent on C-H Activation Catalysed by a nonheme Fe(IV)O Complex: A Computational Investigation of Reactivity and Hydrogen Tunneling. Dalton Trans 2022; 51:11641-11649. [DOI: 10.1039/d2dt01529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A density functional theory investigation has been presented here to address the C-H activation reactivity and the influence of quantum mechanical tunneling catalyzed by a non-heme iron(IV)-Oxo complex viz. [FeIVOdpaq-X]+...
Collapse
|
41
|
Isegawa M, Matsumoto T, Ogo S. Hydrogen evolution, electron-transfer, and hydride-transfer reactions in a nickel-iron hydrogenase model complex: a theoretical study of the distinctive reactivities for the conformational isomers of nickel-iron hydride. Dalton Trans 2021; 51:312-323. [PMID: 34897337 DOI: 10.1039/d1dt03582g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen fuel is a promising alternative to fossil fuel. Therefore, efficient hydrogen production is crucial to elucidate the distinctive reactivities of metal hydride species, the intermediates formed during hydrogen activation/evolution in the presence of organometallic catalysts. This study uses density functional theory (DFT) to investigate the isomerizations and reactivities of three nickel-iron (NiFe) hydride isomers synthesized by mimicking the active center of NiFe hydrogenase. Hydride transfer within these complexes, rather than a chemical reaction between the complexes, converts the three hydrides internally. Their reactivities, including their electron-transfer, hydride-transfer and proton-transfer reactions, are investigated. The bridging hydride complex exhibits a higher energy level for the highest occupied molecular orbital (HOMO) than the terminal hydride during the electron-transfer reaction. This energy level indicates that the bridging hydride is more easily oxidized and is more susceptible to electron transfer than the terminal hydride. Regarding the hydride-transfer reaction between the NiFe hydride complex and methylene blue, the terminal hydrides exhibit larger hydricity and lower reaction barriers than the bridging hydride complexes. The results of energy decomposition analysis indicate that the structural deformation energy of the terminal hydride in the transition state is smaller than that of the bridging hydride complex, which lowers the reaction barrier of hydride transfer in the terminal hydride. To produce hydrogen, the rate-determining step is represented by the protonation of the hydride, and the terminal hydrides are thermodynamically and kinetically superior to the bridging ones. The differences in the reactivities of the hydride isomers ensure the precise control of hydrogen, and the theoretical calculations can be applied to design catalysts for hydrogen activation/production.
Collapse
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Takahiro Matsumoto
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
42
|
Karmalkar DG, Seo MS, Lee YM, Kim Y, Lee E, Sarangi R, Fukuzumi S, Nam W. Deeper Understanding of Mononuclear Manganese(IV)-Oxo Binding Brønsted and Lewis Acids and the Manganese(IV)-Hydroxide Complex. Inorg Chem 2021; 60:16996-17007. [PMID: 34705465 DOI: 10.1021/acs.inorgchem.1c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of Lewis acidic metal ions and Brønsted acid at the metal-oxo group of high-valent metal-oxo complexes enhances their reactivities significantly in oxidation reactions. However, such a binding of Lewis acids and proton at the metal-oxo group has been questioned in several cases and remains to be clarified. Herein, we report the synthesis, characterization, and reactivity studies of a mononuclear manganese(IV)-oxo complex binding triflic acid, {[(dpaq)MnIV(O)]-HOTf}+ (1-HOTf). First, 1-HOTf was synthesized and characterized using various spectroscopic techniques, including resonance Raman (rRaman) and X-ray absorption spectroscopy/extended X-ray absorption fine structure. In particular, in rRaman experiments, we observed a linear correlation between the Mn-O stretching frequencies of 1-HOTf (e.g., νMn-O at ∼793 cm-1) and 1-Mn+ (Mn+ = Ca2+, Zn2+, Lu3+, Al3+, or Sc3+) and the Lewis acidities of H+ and Mn+ ions, suggesting that H+ and Mn+ bind at the metal-oxo moiety of [(dpaq)MnIV(O)]+. Interestingly, a single-crystal structure of 1-HOTf was obtained by X-ray diffraction analysis, but the structure was not an expected Mn(IV)-oxo complex but a Mn(IV)-hydroxide complex, [(dpaq)MnIV(OH)](OTf)2 (4), with a Mn-O bond distance of 1.8043(19) Å and a Mn-O stretch at 660 cm-1. More interestingly, 4 reverted to 1-HOTf upon dissolution, demonstrating that 1-HOTf and 4 are interconvertible depending on the physical states, such as 1-HOTf in solution and 4 in isolated solid. The reactivity of 1-HOTf was investigated in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions and then compared with those of 1-Mn+ complexes; an interesting correlation between the Mn-O stretching frequencies of 1-HOTf and 1-Mn+ and their reactivities in the OAT and HAT reactions is reported for the first time in this study.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
43
|
Berger MB, Walker AR, Vázquez-Montelongo EA, Cisneros GA. Computational investigations of selected enzymes from two iron and α-ketoglutarate-dependent families. Phys Chem Chem Phys 2021; 23:22227-22240. [PMID: 34586107 PMCID: PMC8516722 DOI: 10.1039/d1cp03800a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA alkylation is used as the key epigenetic mark in eukaryotes, however, most alkylation in DNA can result in deleterious effects. Therefore, this process needs to be tightly regulated. The enzymes of the AlkB and Ten-Eleven Translocation (TET) families are members of the Fe and alpha-ketoglutarate-dependent superfamily of enzymes that are tasked with dealkylating DNA and RNA in cells. Members of these families span all species and are an integral part of transcriptional regulation. While both families catalyze oxidative dealkylation of various bases, each has specific preference for alkylated base type as well as distinct catalytic mechanisms. This perspective aims to provide an overview of computational work carried out to investigate several members of these enzyme families including AlkB, ALKB Homolog 2, ALKB Homolog 3 and Ten-Eleven Translocate 2. Insights into structural details, mutagenesis studies, reaction path analysis, electronic structure features in the active site, and substrate preferences are presented and discussed.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, USA
| | | | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| |
Collapse
|
44
|
Li XX, Lu X, Park JW, Cho KB, Nam W. Nonheme Iron Imido Complexes Bearing a Non-Innocent Ligand: A Synthetic Chameleon Species in Oxidation Reactions. Chemistry 2021; 27:17495-17503. [PMID: 34590742 DOI: 10.1002/chem.202103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/07/2022]
Abstract
High-valent iron-imido complexes can perform C-H activation and sulfimidation reactions, but are far less studied than the more ubiquitous iron-oxo species. As case studies, we have looked at a recently published iron(V)-imido ligand π-cation radical complex, which is formally an iron(VI)-imido complex [FeV (NTs)(TAML+. )] (1; NTs=tosylimido), and an iron(V)-imido complex [FeV (NTs)(TAML)]- (2). Using a theoretical approach, we found that they have multiple energetically close-lying electromers, sometimes even without changing spin states, reminiscent of the so-called Compound I in Cytochrome P450. When studying their reactivity theoretically, it is indeed found that their electronic structures may change to perform efficient oxidations, emulating the multi-spin state reactivity in FeIV O systems. This is actually in contrast to the known [FeV (O)(TAML)]- species (3), where the reactions occur only on the ground spin state. We also looked into the whole reaction pathway for the C-H bond activation of 1,4-cyclohexadiene by these intermediates to reproduce the experimentally observed products, including steps that usually attract no interest (neither theoretically nor experimentally) due to their non-rate-limiting status and fast reactivity. A new "clustering non-rebound mechanism" is presented for this C-H activation reaction.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
45
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
46
|
Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chem Rev 2021; 121:9927-10000. [PMID: 34260198 DOI: 10.1021/acs.chemrev.1c00347] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
48
|
Deutscher J, Gerschel P, Warm K, Kuhlmann U, Mebs S, Haumann M, Dau H, Hildebrandt P, Apfel UP, Ray K. A bioinspired oxoiron(IV) motif supported on a N 2S 2 macrocyclic ligand. Chem Commun (Camb) 2021; 57:2947-2950. [PMID: 33621306 DOI: 10.1039/d1cc00250c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.
Collapse
Affiliation(s)
- Jennifer Deutscher
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Philipp Gerschel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Uwe Kuhlmann
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Haumann
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Ulf-Peter Apfel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany and Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
49
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C-H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021; 60:6752-6756. [PMID: 33348460 PMCID: PMC7985879 DOI: 10.1002/anie.202015896] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 11/12/2022]
Abstract
S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).
Collapse
Affiliation(s)
- Katrin Warm
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Alice Paskin
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Uwe Kuhlmann
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC)Stiftstraße 34–3645470MülheimGermany
| | - Marcel Swart
- Institut de Química Computacional i CatàlisiUniversitat de GironaCampus Montilivi (Ciències)Maria Aurèlia Capmany i Farnés, 6917003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Michael Haumann
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Holger Dau
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Peter Hildebrandt
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Kallol Ray
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
50
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C−H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Alice Paskin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Uwe Kuhlmann
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC) Stiftstraße 34–36 45470 Mülheim Germany
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi Universitat de Girona Campus Montilivi (Ciències) Maria Aurèlia Capmany i Farnés, 69 17003 Girona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Michael Haumann
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|