1
|
Zhang Q, Kuang G, Li W, Zhao Y. Cryo-Inactivated Cancer Cells Derived Magnetic Micromotors for Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e04986. [PMID: 40405693 DOI: 10.1002/advs.202504986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Indexed: 05/24/2025]
Abstract
Immunotherapy represents a highly promising modality in cancer treatment, with substantial advancements in therapeutic strategies. The primary challenge lies in enhancing the efficacy of immunotherapy approaches. Here, novel cryo-inactivated cancer cells (CICC) derived magnetic micromotors (CICC@FeMnP) are reported for tumor synergistic immunotherapy. Through the magnetic control, the CICC@FeMnP micromotors can on-demand target and accumulate at the tumor site. The FeMnP can induce ferroptosis and then trigger immunogenic cell death of tumor cells. The CICC containing the whole cancer antigen can conduct vaccination effects. Together with the Mn2+-mediated cGAS-STING pathway to stimulate the immune response, substantial anti-tumor immune effects can be achieved. Importantly, the CICC@FeMnP micromotors not only facilitate the establishment of a collaborative anti-tumor immune network to enhance effective tumoricidal immunity but also induce long-lasting immune memory effects. These results contribute to the inhibition of tumor progression, recurrence and lung metastasis, thereby prolonging the overall survival of tumor-bearing mice. This work underscores the potential of an engineered biohybrid micromotor system as an alternative therapeutic approach in immunotherapy to enhance efficacy against tumors.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Gaizhen Kuang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenzhao Li
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Song S, Han H, Wang J, Pu Y, Shao J, Xie J, Che H, van Hest JCM, Cao S. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem Sci 2025; 16:7106-7129. [PMID: 40206551 PMCID: PMC11976864 DOI: 10.1039/d4sc08283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Polymersome-based nanomotors represent a cutting-edge development in nanomedicine, merging the unique vesicular properties of polymersomes with the active propulsion capabilities of synthetic nanomotors. As a vesicular structure enclosed by a bilayer membrane, polymersomes can encapsulate both hydrophilic and hydrophobic cargoes. In addition, their physical-chemical properties such as size, morphology, and surface chemistry are highly tunable, which makes them ideal for various biomedical applications. The integration of motility into polymersomes enables them to actively navigate biological environments and overcome physiological barriers, offering significant advantages over passive delivery platforms. Recent breakthroughs in fabrication techniques and motion control strategies, including chemically, enzymatically, and externally driven propulsion, have expanded their potential for drug delivery, biosensing, and therapeutic interventions. Despite these advancements, key challenges remain in optimizing propulsion efficiency, biocompatibility, and in vivo stability to translate these systems into clinical applications. In this perspective, we discuss recent advancements in the preparation and motion control strategies of polymersome-based nanomotors, as well as their biomedical-related applications. The molecular design, fabrication approaches, and nanomedicine-related utilities of polymersome-based nanomotors are highlighted, to envisage the future research directions and further development of these systems into effective, precise, and smart nanomedicines capable of addressing critical biomedical challenges.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz Mainz 55128 Germany
| | - Hao Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Yubin Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu 610041 China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
3
|
Ma H, Li RF, Yu ZL. Micro/nanomotors in targeted drug delivery: Advances, challenges, and future directions. Int J Pharm 2025; 674:125471. [PMID: 40090636 DOI: 10.1016/j.ijpharm.2025.125471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The therapeutic efficacy of drugs is highly dependent on their successful delivery to the target site. However, achieving targeted drug delivery to diseased areas remains a significant challenge. Current drug delivery systems based on nanocarriers often suffer from inefficiencies due to their lack of intrinsic propulsion and active targeting capabilities. Micro/nanomotors (MNMs), which are miniature machines capable of converting chemical or external energy into mechanical energy, offer a promising solution. Unlike traditional nanoparticles (NPs) that rely on passive diffusion through blood circulation, MNMs exhibit active locomotion, providing a significant advantage in future drug delivery applications. This review primarily focuses on the progress in research of MNMs in the realm of drug delivery. We present a succinct overview of MNMs and subsequently classify them based on their modes of mobility. Then we comprehensively summarize the applications of micro/nanomotor-based drug delivery systems in the treatment of various diseases, including cancer, bacterial infections, cardiovascular diseases, and others. Based on the current research status, we summarize the potential challenges, possible solutions, and prospect several key directions for future studies in active-targeted drug delivery using MNMs. Future research should focus on improving motor delivery efficiency, biosafety measures, productivity, and maneuverability.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Rui-Fang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| |
Collapse
|
4
|
An Y, Ji C, Zhang H, Jiang Q, Maitz MF, Pan J, Luo R, Wang Y. Engineered Cell Membrane Coating Technologies for Biomedical Applications: From Nanoscale to Macroscale. ACS NANO 2025; 19:11517-11546. [PMID: 40126356 DOI: 10.1021/acsnano.4c16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cell membrane coating has emerged as a promising strategy for the surface modification of biomaterials with biological membranes, serving as a cloak that can carry more functions. The cloaked biomaterials inherit diverse intrinsic biofunctions derived from different cell sources, including enhanced biocompatibility, immunity evasion, specific targeting capacity, and immune regulation of the regenerative microenvironment. The intrinsic characteristics of biomimicry and biointerfacing have demonstrated the versatility of cell membrane coating technology on a variety of biomaterials, thus, furthering the research into a wide range of biomedical applications and clinical translation. Here, the preparation of cell membrane coatings is emphasized, and different sizes of coated biomaterials from nanoscale to macroscale as well as the engineering strategies to introduce additional biofunctions are summarized. Subsequently, the utilization of biomimetic membrane-cloaked biomaterials in biomedical applications is discussed, including drug delivery, imaging and phototherapy, cancer immunotherapy, anti-infection and detoxification, and implant modification. In conclusion, the latest advancements in clinical and preclinical studies, along with the multiple benefits of cell membrane-coated nanoparticles (NPs) in biomimetic systems, are elucidated.
Collapse
Affiliation(s)
- Yongqi An
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Junqiang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu, 610065, China
| |
Collapse
|
5
|
Wang S, Liu Y, Sun S, Gui Q, Liu W, Long W. Living material-derived intelligent micro/nanorobots. Biomater Sci 2025; 13:1379-1397. [PMID: 39927456 DOI: 10.1039/d4bm01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Living materials, which include various types of cells, organelles, and biological components from animals, plants, and microorganisms, have become central to recent investigations in micro and nanorobotics. Living material-derived intelligent micro/nanorobots (LMNRs) are self-propelled devices that combine living materials with synthetic materials. By harnessing energy from external physical fields or biological sources, LMNRs can move autonomously and perform various biomedical functions, such as drug delivery, crossing biological barriers, medical imaging, and disease treatment. This review, from a biomimetic strategy perspective, summarized the latest advances in the design and biomedical applications of LMNRs. It provided a comprehensive overview of the living materials used to construct LMNRs, including mammalian cells, plants, and microorganisms while highlighting their biological properties and functions. Lastly, the review discussed the major challenges in this field and offered suggestions for future research that may help facilitate the clinical application of LMNRs in the near future.
Collapse
Affiliation(s)
- Shuhuai Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Shuangjiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qinyi Gui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
6
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
7
|
Qin YS, Yi J, Chen YJ, Zhang W, Tang SF. Recent Advances in Micro/Nanomotor for the Therapy and Diagnosis of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11443-11468. [PMID: 39648908 DOI: 10.1021/acsami.4c15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Atherosclerotic cardiovascular disease poses a significant global public health threat with a high incidence that can result in severe mortality and disability. The lack of targeted effects from traditional therapeutic drugs on atherosclerosis may cause damage to other organs and tissues, necessitating the need for a more focused approach to address this dilemma. Micro/nanomotors are self-propelled micro/nanoscale devices capable of converting external energy into autonomous movement, which offers advantages in enhancing penetration depth and retention while increasing contact area with abnormal sites, such as atherosclerotic plaque, inflammation, and thrombosis, within blood vessel walls. Recent studies have demonstrated the crucial role micro/nanomotors play in treating atherosclerotic cardiovascular disease. Hence, this review highlights the recent progress of micro/nanomotor technology in atherosclerotic cardiovascular disease, including the effective promotion of micro/nanomotors in the circulatory system, overcoming hemorheological barriers, targeting the atherosclerotic plaque microenvironment, and targeting intracellular drug delivery, to facilitate atherosclerotic plaque localization and therapy. Furthermore, we also describe the potential application of micro/nanomotors in the imaging of vulnerable plaque. Finally, we discuss key challenges and prospects for treating atherosclerotic cardiovascular disease while emphasizing the importance of designing individualized management strategies specific to its causes and microenvironmental factors.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| | - Juan Yi
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou 545006, China
| | - Yan-Jun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou 545006, China
| | - Shi-Fu Tang
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| |
Collapse
|
8
|
Nandhakumar P, Sun L, Li Z, Cheung C, Nguyen L, Ding S, Gao W, Zhang L, Wang J. Biomimetic Cell Membrane Layers for the Detection of Insulin and Glucagon. Anal Chem 2024; 96:19812-19821. [PMID: 39620950 DOI: 10.1021/acs.analchem.4c05347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The growing need for reliable and rapid insulin testing to enhance glycemic management has spurred intensive exploration of new insulin-binding bioreceptors and innovative biosensing platforms for detecting this hormone, along with glucagon, in biological samples. Here, by leveraging the native protein receptors on the HepG2 cell membrane, we construct a simple and chemical-free biomimetic molecular recognition layer for the detection of insulin and glucagon. Unlike traditional affinity sensors, which require lengthy surface modifications on the electrochemical transducers and use of two different capture antibodies to recognize each analyte, this new biomimetic sensing strategy employs a simple drop-casting of a natural cell membrane recognition layer onto the electrochemical transducer. This approach allows for the concurrent capture and detection of both insulin and glucagon. We investigate the presence of insulin and glucagon receptors on the HepG2 cell membrane and demonstrate its multiplexing bioelectronic sensing capabilities through the binding of the captured insulin and glucagon to enzyme-tagged signaling antibodies. This new molecular recognition layer offers highly sensitive simultaneous detection of insulin and glucagon under decentralized conditions, holding considerable promise for the management of diabetes and the development of diverse biomimetic diagnostic platforms.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhengxing Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Christopher Cheung
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ly Nguyen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Shichao Ding
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Zhang J, Yang L, Zeng H, Zhao Z, Han Y, Zhao Y, Qu S, Gong Z, Wang Z, Bai Y, Zhao Q. Targeted Reprogramming of Pathogenic Fibroblast Genes at the 3'-Untranslated Regions by DNA Nanorobots for Periodontitis. ACS NANO 2024; 18:22139-22152. [PMID: 39110572 DOI: 10.1021/acsnano.4c05475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Periodontitis, with its persistent nature, causes significant distress for most sufferers. Current treatments, such as mechanical cleaning and surgery, often fail to fully address the underlying overactivation of fibroblasts that drives this degradation. Targeting the post-transcriptional regulation of fibroblasts, particularly at the 3'-untranslated regions (3'UTR) of pathogenic genes, offers a therapeutic strategy for periodontitis. Herein, we developed a DNA nanorobot for this purpose. This system uses a dynamic DNA nanoframework to incorporate therapeutic microRNAs through molecular recognition and covalent bonds, facilitated by DNA monomers modified with disulfide bonds. The assembled-DNA nanoframework is encapsulated in a cell membrane embedded with a fibroblast-targeting peptide. By analyzing the 3'UTR regions of pathogenic fibroblast genes FOSB and JUND, we identified the therapeutic microRNA as miR-1-3p and integrated it into this system. As expected, the DNA nanorobot delivered the internal components to fibroblasts by the targeting peptide and outer membrane that responsively releases miR-1-3p under intracellular glutathione. It resulted in a precise reduction of mRNA and suppression of protein function in pathogenic genes, effectively reprogramming fibroblast behavior. Our results confirm that this approach not only mitigates the inflammation but also promotes tissue regeneration in periodontal models, offering a promising therapeutic avenue for periodontitis.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zifan Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yue Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yilong Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zijian Gong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ziming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
10
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
11
|
Liu W, Nie H, Li H, Liu Y, Tian M, Wang S, Yang Y, Long W. Engineered platelet cell motors for boosted cancer radiosensitization. J Colloid Interface Sci 2024; 658:540-552. [PMID: 38128197 DOI: 10.1016/j.jcis.2023.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Design of engineered cells to target and deliver nanodrugs to the hard-to-reach regions has become an exciting research area. However, the limited penetration and retention of cell-based carriers in tumor tissue restricted their therapeutic efficiency. Inspired by the enhanced delivery behavior of mobile micro/nanomotors, herein, urease-powered platelet cell motors (PLT@Au@Urease) capable of active locomotion, tumor targeting, and radiosensitizers delivery were designed for boosting radiosensitization. The engineered platelet cell motors were constructed by in situ synthesis and loading of radiosensitizers gold nanoparticles in platelets, and then conjugation with urease as the engine. Under physiological concentration of urea, thrust around PLT@Au@Urease motors can be generated via the biocatalytic reactions of urease, leading to rapid tumor cell targeting and enhanced cellular uptake of radiosensitizers. Encouragingly, in comparison with engineered PLT without propulsion capability (PLT@Au), the self-propelled PLT@Au@Urease motors could significantly increase intracellular ROS level and exacerbate nuclear DNA damage induced by γ-radiation, resulting in a remarkably high sensitization enhancement rate (1.89) than that of PLT@Au (1.08). In vivo experiments with 4 T1-bearing mice demonstrated that PLT@Au@Urease in combination with radiation therapy possessed good antitumor performance. Such an intelligent cell motor would provide a promising approach to enhance radiosensitization and broaden the applications of cell motor-based delivery systems.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hongmei Nie
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - He Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Maoye Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Shuhuai Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuwei Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
12
|
Wu Z, Cai H, Tian C, Ao Z, Jiang L, Guo F. Exploiting Sound for Emerging Applications of Extracellular Vesicles. NANO RESEARCH 2024; 17:462-475. [PMID: 38712329 PMCID: PMC11073796 DOI: 10.1007/s12274-023-5840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Lei Jiang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
13
|
Glahn-Martínez B, Jurado-Sánchez B, Benito-Peña E, Escarpa A, Moreno-Bondi MC. Magnetic Janus micromotors for fluorescence biosensing of tacrolimus in oral fluids. Biosens Bioelectron 2024; 244:115796. [PMID: 37922810 DOI: 10.1016/j.bios.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Tacrolimus (FK506) is a macrolide lactone immunosuppressive drug that is commonly used in transplanted patients to avoid organ rejection. FK506 exhibits high inter- and intra-patient pharmacokinetic variability, making monitoring necessary for organ graft survival. This work describes the development of a novel bioassay for monitoring FK506. The bioassay is based on using polycaprolactone-based (PCL) magnetic Janus micromotors and a recombinant chimera receptor that incorporates the immunophilin tacrolimus binding protein 1A (FKBP1A) tagged with Emerald Green Fluorescent Protein (EmGFP). The approach relies on a fluorescence competitive bioassay between the drug and the micromotors decorated with a carboxylated FK506 toward the specific site of the fluorescent immunophilin. The proposed homogeneous assay could be performed in a single step without washing steps to separate the unbound receptor. The proposed approach fits the therapeutic requirements, showing a limit of detection of 0.8 ng/mL and a wide dynamic range of up to 90 ng/mL. Assay selectivity was evaluated by measuring the competitive inhibition curves with other immunosuppressive drugs usually co-administered with FK506. The magnetic propulsion mechanism allows for efficient operation in raw samples without damaging the biological binding receptor (FKBP1A-EmGFP). The enhanced target recognition and micromixing strategies hold considerable potential for FK506 monitoring in practical clinical use.
Collapse
Affiliation(s)
- Bettina Glahn-Martínez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28805, Madrid, Spain; Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28805, Madrid, Spain; Chemical Research Institute "Andres M. del Rio", University of Alcala, Alcala de Henares, Madrid, E28805, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28805, Madrid, Spain; Chemical Research Institute "Andres M. del Rio", University of Alcala, Alcala de Henares, Madrid, E28805, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
14
|
Chen B, Sun H, Zhang J, Xu J, Song Z, Zhan G, Bai X, Feng L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304607. [PMID: 37653591 DOI: 10.1002/smll.202304607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.
Collapse
Affiliation(s)
- Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zeyu Song
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guangdong Zhan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
15
|
Adhalrao SB, Jadhav KR, Patil PL, Kadam VJ, Nirmal MK. Engineering Platelet Membrane Imitating Nanoparticles for Targeted Therapeutic Delivery. Curr Pharm Biotechnol 2024; 25:1230-1244. [PMID: 37539932 DOI: 10.2174/1389201024666230804140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 08/05/2023]
Abstract
Platelet Membrane Imitating Nanoparticles (PMINs) is a novel drug delivery system that imitates the structure and functionality of platelet membranes. PMINs imitate surface markers of platelets to target specific cells and transport therapeutic cargo. PMINs are engineered by incorporating the drug into the platelet membrane and encapsulating it in a nanoparticle scaffold. This allows PMINs to circulate in the bloodstream and bind to target cells with high specificity, reducing off-target effects and improving therapeutic efficacy. The engineering of PMINs entails several stages, including the separation and purification of platelet membranes, the integration of therapeutic cargo into the membrane, and the encapsulation of the membrane in a nanoparticle scaffold. In addition to being involved in a few pathological conditions including cancer, atherosclerosis, and rheumatoid arthritis, platelets are crucial to the body's physiological processes. This study includes the preparation and characterization of platelet membrane-like nanoparticles and focuses on their most recent advancements in targeted therapy for conditions, including cancer, immunological disorders, atherosclerosis, phototherapy, etc. PMINs are a potential drug delivery system that combines the advantages of platelet membranes with nanoparticles. The capacity to create PMMNs with particular therapeutic cargo and surface markers provides new possibilities for targeted medication administration and might completely change the way that medicine is practiced. Despite the need for more studies to optimize the engineering process and evaluate the effectiveness and safety of PMINs in clinical trials, this technology has a lot of potential.
Collapse
Affiliation(s)
- Shradha B Adhalrao
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Kisan R Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Prashant L Patil
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Vilasrao J Kadam
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - M Kasekar Nirmal
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| |
Collapse
|
16
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
17
|
Zheng J, Huang R, Lin Z, Chen S, Yuan K. Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility. Pharmaceutics 2023; 16:44. [PMID: 38258055 PMCID: PMC10821023 DOI: 10.3390/pharmaceutics16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such "tiny robots" show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China;
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Shaoqi Chen
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
18
|
Luan J, Kuijken PF, Chen W, Wang D, Charleston LA, Wilson DA. Microfluidic Design of Streamlined Alginate Hydrogel Micromotors with Run and Tumble Motion Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304995. [PMID: 37828568 DOI: 10.1002/advs.202304995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Indexed: 10/14/2023]
Abstract
Autonomous micromotors demonstrate remarkable advancements in biomedical applications. A noteworthy example is streamlined motors, which display enhanced movement efficiency with low fluid-resistance. However, existing streamlined motors, primarily constructed from inorganic materials, present challenges due to their complex fabrication procedures and lack of a soft interface for interaction with biological systems. Herein, a novel design of biodegradable streamlined alginate hydrogel micromotors with a teardrop shape by microfluidics is introduced. The platform enables the high-throughput fabrication of monodisperse micromotors with varied dimensions. By incorporating Pt-coated Fe3 O4 nanoparticles, micromotors are equipped with dual capabilities of catalytic propulsion and accurate magnetic guidance. Through precisely tuning the localization regions of catalysts within the micromotors, the streamlined hydrogel micromotors not only exhibit enhanced propelling efficiency, but also accomplish distinct motion patterns of run and tumble. The design provides insights for developing advanced micromotors capable of executing intricate tasks across diverse application scenarios.
Collapse
Affiliation(s)
- Jiabin Luan
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter F Kuijken
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wen Chen
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Danni Wang
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Levy A Charleston
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Daniela A Wilson
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
19
|
Yang M, Zhang Y, Mou F, Cao C, Yu L, Li Z, Guan J. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. SCIENCE ADVANCES 2023; 9:eadk7251. [PMID: 38019908 PMCID: PMC10686566 DOI: 10.1126/sciadv.adk7251] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Biocompatible swarming magnetic nanorobots that work in blood vessels for safe and efficient targeted thrombolytic therapy in vivo are demonstrated. This is achieved by using magnetic beads elaborately grafted with heparinoid-polymer brushes (HPBs) upon the application of an alternating magnetic field B(t). Because of the dense surface charges bestowed by HPBs, the swarming nanorobots demonstrate reversible agglomeration-free reconfigurations, low hemolysis, anti-bioadhesion, and self-anticoagulation in high-ionic-strength blood environments. They are confirmed in vitro and in vivo to perform synergistic thrombolysis efficiently by "motile-targeting" drug delivery and mechanical destruction. Moreover, upon the completion of thrombolysis and removal of B(t), the nanorobots disassemble into dispersed particles in blood, allowing them to safely participate in circulation and be phagocytized by immune cells without apparent organ damage or inflammatory lesion. This work provides a rational multifaceted HPB biointerfacing design strategy for biomedical nanorobots and a general motile platform to deliver drugs for targeted therapies.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yaoyu Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Department of Orthopedics, General Hospital of Chinese PLA Central Theater Command, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Chuan Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Lingxia Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zhi Li
- Department of Orthopedics, General Hospital of Chinese PLA Central Theater Command, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, P. R. China
| |
Collapse
|
20
|
Valdés Gómez A, Sevilla FJ. Fractional and scaled Brownian motion on the sphere: The effects of long-time correlations on navigation strategies. Phys Rev E 2023; 108:054117. [PMID: 38115432 DOI: 10.1103/physreve.108.054117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
We analyze fractional Brownian motion and scaled Brownian motion on the two-dimensional sphere S^{2}. We find that the intrinsic long-time correlations that characterize fractional Brownian motion collude with the specific dynamics (navigation strategies) carried out on the surface giving rise to rich transport properties. We focus our study on two classes of navigation strategies: one induced by a specific set of coordinates chosen for S^{2} (we have chosen the spherical ones in the present analysis), for which we find that contrary to what occurs in the absence of such long-time correlations, nonequilibrium stationary distributions are attained. These results resemble those reported in confined flat spaces in one and two dimensions [Guggenberger et al. New J. Phys. 21, 022002 (2019)1367-263010.1088/1367-2630/ab075f; Vojta et al. Phys. Rev. E 102, 032108 (2020)2470-004510.1103/PhysRevE.102.032108]; however, in the case analyzed here, there are no boundaries that affect the motion on the sphere. In contrast, when the navigation strategy chosen corresponds to a frame of reference moving with the particle (a Frenet-Serret reference system), then the equilibrium distribution on the sphere is recovered in the long-time limit. For both navigation strategies, the relaxation times toward the stationary distribution depend on the particular value of the Hurst parameter. We also show that on S^{2}, scaled Brownian motion, distinguished by a time-dependent diffusion coefficient with a power-scaling, is independent of the navigation strategy finding a good agreement between the analytical calculations obtained from the solution of a time-dependent diffusion equation on S^{2}, and the numerical results obtained from our numerical method to generate ensemble of trajectories.
Collapse
Affiliation(s)
- Adriano Valdés Gómez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Alcaldía Coyoacán, C.P. 04510 Ciudad Universitaria, Ciudad de México, México
- BBVA AI Factory México
| | - Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
21
|
Wang Q, Jermyn S, Quashie D, Gatti SE, Katuri J, Ali J. Magnetically actuated swimming and rolling erythrocyte-based biohybrid micromotors. RSC Adv 2023; 13:30951-30958. [PMID: 37876656 PMCID: PMC10591291 DOI: 10.1039/d3ra05844a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Erythrocytes are natural multifunctional biomaterials that can be engineered for use as micro robotic vectors for therapeutic applications. Erythrocyte based micromotors offer several advantages over existing bio-hybrid micromotors, but current control mechanisms are often complex, utilizing multiple external signals, such as tandem magnetic and acoustic fields to achieve both actuation and directional control. Further, existing actuation methods rely on proximity to a substrate to achieve effective propulsion through symmetry breaking. Alternatively, control mechanisms only requiring the use of a single control input may aid in the translational use of these devices. Here, we report a simple scalable technique for fabricating erythrocyte-based magnetic biohybrid micromotors and demonstrate the ability to control two modes of motion, surface rolling and bulk swimming, using a single uniform rotating magnetic field. While rolling exploits symmetry breaking from the proximity of a surface, bulk swimming relies on naturally occurring shape asymmetry of erythrocytes. We characterize swimming and rolling kinematics, including step-out frequencies, propulsion velocity, and steerability in aqueous solutions using open-loop control. The observed dynamics may enable the development of future erythrocyte micromotor designs and control strategies for therapeutic applications.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Sophie Jermyn
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Sarah Elizabeth Gatti
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
- Department of Biomedical Engineering, Vanderbilt University College of Engineering Nashville Tennessee 37235 USA
| | - Jaideep Katuri
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| |
Collapse
|
22
|
Li J, Zhou H, Liu C, Zhang S, Du R, Deng Y, Zou X. Biomembrane‐inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMicro/nanorobots are promising for a wide range of biomedical applications (such as targeted tumor, thrombus, and infection therapies in hard‐to‐reach body sites) because of their tiny size and high maneuverability through the actuation of external fields (e.g., magnetic field, light, ultrasound, electric field, and/or heat). However, fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes. To address this issue, researchers have attempted to develop various cytomembrane‐camouflaged micro/nanorobots by two means: (1) direct coating of micro/nanorobots with cytomembranes derived from living cells and (2) the swallowing of micro/nanorobots by living immunocytes via phagocytosis. The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis, but also endows them with new characteristics or functionalities, such as prolonging propulsion in biofluids, targeting diseased areas, or neutralizing bacterial toxins. In this review, we comprehensively summarize the recent advances and developments of cytomembrane‐camouflaged medical micro/nanorobots. We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials, and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots. We aim to bridge the gap between cytomembrane‐cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane‐camouflaged micro/nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology Beijing Institute of Technology Beijing China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Chun Liu
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shuailong Zhang
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Ran Du
- School of Materials Science & Engineering Key Laboratory of High Energy Density Materials of the Ministry of Education Beijing Institute of Technology Beijing China
| | - Yulin Deng
- School of Life Science Beijing Institute of Technology Beijing China
| | - Xuenong Zou
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
23
|
Yuan Q, Mao D, Tang X, Liu C, Zhang R, Deng J, Zhu X, Li W, Man Q, Sun F. Biological effect abundance analysis of hemolytic pathogens based on engineered biomimetic sensor. Biosens Bioelectron 2023; 237:115502. [PMID: 37423067 DOI: 10.1016/j.bios.2023.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Conventional pathogen detection strategies based on the molecular structure or chemical characteristics of biomarkers can only provide the "physical abundance" of microorganisms, but cannot reflect the "biological effect abundance" in the true sense. To address this issue, we report an erythrocyte membrane-encapsulated biomimetic sensor cascaded with CRISPR-Cas12a (EMSCC). Taking hemolytic pathogens as the target model, we first constructed an erythrocyte membrane-encapsulated biomimetic sensor (EMS). Only hemolytic pathogens with biological effects can disrupt the erythrocyte membrane (EM), resulting in signal generation. Then the signal was amplified by cascading CRISPR-Cas12a, and more than 6.67 × 104-fold improvement in detection sensitivity compared to traditional erythrocyte hemolysis assay was achieved. Notably, compared with polymerase chain reaction (PCR) or enzyme linked immunosorbent assay (ELISA)-based quantification methods, EMSCC can sensitively respond to the pathogenicity change of pathogens. For the detection of simulated clinical samples based on EMSCC, we obtained an accuracy of 95% in 40 samples, demonstrating its potential clinical value.
Collapse
Affiliation(s)
- Qianqin Yuan
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, PR China
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Runchi Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jie Deng
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Qiuhong Man
- Department of Clinical Laboratory Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200080, PR China.
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
24
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
25
|
Tang X, Yang Y, Zheng M, Yin T, Huang G, Lai Z, Zhang B, Chen Z, Xu T, Ma T, Pan H, Cai L. Magnetic-Acoustic Sequentially Actuated CAR T Cell Microrobots for Precision Navigation and In Situ Antitumor Immunoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211509. [PMID: 36807373 DOI: 10.1002/adma.202211509] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Indexed: 05/05/2023]
Abstract
Despite its clinical success, chimeric antigen receptor T (CAR T)-cell immunotherapy remains limited in solid tumors, owing to the harsh physical barriers and immunosuppressive microenvironment. Here a CAR-T-cell-based live microrobot (M-CAR T) is created by decorating CAR T with immunomagnetic beads using click conjugation. M-CAR Ts are capable of magnetic-acoustic actuation for precision targeting and in situ activation of antitumor immune responses. Sequential actuation endows M-CAR Ts with magnetically actuated anti-flow and obstacle avoidance as well as tissue penetration driven by acoustic propulsion, enabling efficient migration and accumulation in artificial tumor models. In vivo, sequentially actuated M-CAR Ts achieves long-distance targeting and accumulate at the peritumoural area under programmable magnetic guidance, and subsequently acoustic tweezers actuate M-CAR Ts to migrate into deep tumor tissues, resulting in a 6.6-fold increase in accumulated exogenous CD8+ CAR T cells compared with that without actuation. Anti-CD3/CD28 immunomagnetic beads stimulate infiltrated CAR T proliferation and activation in situ, significantly enhancing their antitumor efficacy. Thus, this sequential-actuation-guided cell microrobot combines the merits of autonomous targeting and penetration of intelligent robots with in situ T-cell immunoactivation, and holds considerable promise for precision navigation and cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaofan Tang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ye Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhengyu Lai
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tiantian Xu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Teng Ma
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
26
|
Huang D, Cai L, Li N, Zhao Y. Ultrasound-trigged micro/nanorobots for biomedical applications. SMART MEDICINE 2023; 2:e20230003. [PMID: 39188275 PMCID: PMC11235770 DOI: 10.1002/smmd.20230003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 08/28/2024]
Abstract
Micro- and nanorobots (MNRs) propelled by external actuations have broad potential in biomedical applications. Among the numerous external excitations, ultrasound (US) features outstanding practical significance with merits of its noninvasiveness, tunability, penetrability, and biocompatibility. Attributing to various physiochemical effects of US, it can propel the MNRs with sophisticated structures through asymmetric acoustic streaming, bubble oscillation, and so on. In this review, we introduce several advanced and representative US-propelled MNRs with inhomogeneous density distribution, asymmetric shape, hollow cavity, etc. The potential biomedical applications of these cutting-edge MNRs are also presented, including intracellular delivery, harmful substances collection, and so on. Furthermore, we conclude the advantages and limitations of US-propelled MNRs and prospect their future developments in multidisciplinary fields.
Collapse
Affiliation(s)
- Danqing Huang
- Institute of Translational MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Lijun Cai
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Ning Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Institute of Translational MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
27
|
Maria-Hormigos R, Mayorga-Martinez CC, Kinčl T, Pumera M. Nanostructured Hybrid BioBots for Beer Brewing. ACS NANO 2023; 17:7595-7603. [PMID: 37043825 PMCID: PMC10134490 DOI: 10.1021/acsnano.2c12677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The brewing industry will amass a revenue above 500 billion euros in 2022, and the market is expected to grow annually. This industrial process is based on a slow sugar fermentation by yeast (commonly Saccharomyces cerevisiae). Herein, we encapsulate yeast cells into a biocompatible alginate (ALG) polymer along Fe3O4 nanoparticles to produce magneto/catalytic nanostructured ALG@yeast-Fe3O4 BioBots. Yeast encapsulated in these biocompatible BioBots keeps their biological activity (growth, reproduction, and catalytic fermentation) essential for brewing. Catalytic fermentation of sugars into CO2 gas caused a continuous oscillatory motion of the BioBots in the solution. This BioBot motion is employed to enhance the beer fermentation process compared to static-free yeast cells. When the process is finished, magnetic actuation of BioBots is employed for their retrieval from the beer samples, which avoids the need of additional filtration steps. All in all, we demonstrate how an industrial process such as beer production can be benefited by miniaturized autonomous magneto/catalytic BioBots.
Collapse
Affiliation(s)
- Roberto Maria-Hormigos
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, Brno, 612 00 Czech Republic
| | - Carmen C. Mayorga-Martinez
- Center
for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Tomáš Kinčl
- Department
of Biotechnology, University of Chemistry
and Technology Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, Brno, 612 00 Czech Republic
- Center
for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Czech Republic
- Faculty
of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 708 00 Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, 40402 Taichung, Taiwan
- E-mail: ,
| |
Collapse
|
28
|
Vasdev N, Pawar B, Gupta T, Mhatre M, Tekade RK. A Bird's Eye View of Various Cell-Based Biomimetic Nanomedicines for the Treatment of Arthritis. Pharmaceutics 2023; 15:1150. [PMID: 37111636 PMCID: PMC10146206 DOI: 10.3390/pharmaceutics15041150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Arthritis is the inflammation and tenderness of the joints because of some metabolic, infectious, or constitutional reasons. Existing arthritis treatments help in controlling the arthritic flares, but more advancement is required to cure arthritis meticulously. Biomimetic nanomedicine represents an exceptional biocompatible treatment to cure arthritis by minimizing the toxic effect and eliminating the boundaries of current therapeutics. Various intracellular and extracellular pathways can be targeted by mimicking the surface, shape, or movement of the biological system to form a bioinspired or biomimetic drug delivery system. Different cell-membrane-coated biomimetic systems, and extracellular-vesicle-based and platelets-based biomimetic systems represent an emerging and efficient class of therapeutics to treat arthritis. The cell membrane from various cells such as RBC, platelets, macrophage cells, and NK cells is isolated and utilized to mimic the biological environment. Extracellular vesicles isolated from arthritis patients can be used as diagnostic tools, and plasma or MSCs-derived extracellular vesicles can be used as a therapeutic target for arthritis. Biomimetic systems guide the nanomedicines to the targeted site by hiding them from the surveillance of the immune system. Nanomedicines can be functionalized using targeted ligand and stimuli-responsive systems to reinforce their efficacy and minimize off-target effects. This review expounds on various biomimetic systems and their functionalization for the therapeutic targets of arthritis treatment, and discusses the challenges for the clinical translation of the biomimetic system.
Collapse
Affiliation(s)
| | | | | | | | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opposite Air Force Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
29
|
Zhang B, Pan H, Chen Z, Yin T, Zheng M, Cai L. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. SCIENCE ADVANCES 2023; 9:eadc8978. [PMID: 36812317 PMCID: PMC9946363 DOI: 10.1126/sciadv.adc8978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/26/2023] [Indexed: 05/28/2023]
Abstract
A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
31
|
Shivalkar S, Chowdhary P, Afshan T, Chaudhary S, Roy A, Samanta SK, Sahoo AK. Nanoengineering of biohybrid micro/nanobots for programmed biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113054. [PMID: 36446238 DOI: 10.1016/j.colsurfb.2022.113054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule. It holds the potential to change the landscape in various areas of biomedical including early diagnosis of disease, therapeutics, imaging, or precision surgery. The propulsion mechanism of the biohybrid micro/nanobots can be both fuel-based and fuel-free, but the most effective and easiest way to propel these micro/nanobots is via enzymes. Micro/nanobots possess the feature to adsorb/functionalize chemicals or drugs at their surfaces thus offering the scope of delivering drugs at the targeted locations. They also have shown immense potential in intracellular sensing of biomolecules and molecular events. Moreover, with recent progress in the material development and processing is required for enhanced activity and robustness the fabrication is done via various advanced techniques to avoid self-degradation and cause cellular toxicity during autonomous movement in biological medium. In this review, various approaches of design, architecture, and performance of such micro/nanobots have been illustrated along with their potential applications in controlled cargo release, therapeutics, intracellular sensing, and bioimaging. Furthermore, it is also foregrounding their advancement offering an insight into their future scopes, opportunities, and challenges involved in advanced biomedical applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| | - Pallabi Chowdhary
- Department of Biotechnology, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Tayyaba Afshan
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
32
|
Fang Z, Fang J, Gao C, Gao R, Lin P, Yu W. Recent trends in platelet membrane-cloaked nanoparticles for application of inflammatory diseases. Drug Deliv 2022; 29:2805-2814. [PMID: 36047245 PMCID: PMC9448372 DOI: 10.1080/10717544.2022.2117434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Platelets are multifunctional effectors of inflammatory responses and inseparable from the occurrence and development of various inflammatory diseases. The platelet membrane (PM) is integrated onto the surface of a nano-drug delivery system to form the PM-cloaked nanoparticles (PM@NPs), which can increase the biocompatibility of the nano-drug delivery system and mitigate adverse drug reactions. Owing to the strong affinity of immune regulation and adhesion-related antigens on the surface of PM to the focal sites of inflammatory diseases, which endows PM@NPs with the potential to actively target lesions and improve the therapeutic efficacy of drugs for inflammatory diseases. Based on latest developments in PM biomimetic technique and nanomedicine for the treatment of inflammatory diseases, this paper mainly elaborates three aspects: advantages of PM@NPs, experimental foundation of PM biomimetic nanotechnology, and applications of PM@NPs to the treatment of inflammatory diseases. The aim is to provide reference for the development and application of PM@NPs and novel insights into the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Fang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jie Fang
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, China
| | - Chunxiao Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Rui Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Peihong Lin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
33
|
Chesnitskiy AV, Gayduk AE, Seleznev VA, Prinz VY. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7781. [PMID: 36363368 PMCID: PMC9653604 DOI: 10.3390/ma15217781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, there has been explosive growth in the number of investigations devoted to the development and study of biomimetic micro- and nanorobots. The present review is dedicated to novel bioinspired magnetic micro- and nanodevices that can be remotely controlled by an external magnetic field. This approach to actuate micro- and nanorobots is non-invasive and absolutely harmless for living organisms in vivo and cell microsurgery, and is very promising for medicine in the near future. Particular attention has been paid to the latest advances in the rapidly developing field of designing polymer-based flexible and rigid magnetic composites and fabricating structures inspired by living micro-objects and organisms. The physical principles underlying the functioning of hybrid bio-inspired magnetic miniature robots, sensors, and actuators are considered in this review, and key practical applications and challenges are analyzed as well.
Collapse
Affiliation(s)
- Anton V. Chesnitskiy
- Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | | | | | | |
Collapse
|
34
|
Li T, Liu Z, Hu J, Chen L, Chen T, Tang Q, Yu B, Zhao B, Mao C, Wan M. A Universal Chemotactic Targeted Delivery Strategy for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206654. [PMID: 36122571 DOI: 10.1002/adma.202206654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Above 50% of deaths can be attributed to chronic inflammatory diseases; thus, the construction of drug delivery systems based on effective interaction of inflammatory factors with chemotactic nanoparticles is meaningful. Herein, a zwitterion-based artificial chemotactic nanomotor is proposed for universal precise targeting strategy in vivo, where the high level of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in inflammatory sites are used as a chemoattractant. Multidimensional static models, dynamic models, and in vivo models are established to evaluate chemotactic performance. The results show that the upregulated ROS and iNOS can induce the chemotaxis of nanomotors to diseased tissues in inflammation-related disease models. Further, mesoscale hydrodynamics simulations are performed to explain the chemotactic behavior of the nanomotors. Such a chemotactic delivery strategy is expected to improve delivery efficiency and may be applicable to a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tiantian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qianqian Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bixia Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
35
|
Dai Z, Zhao T, Song N, Pan K, Yang Y, Zhu X, Chen P, Zhang J, Xia C. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front Pharmacol 2022; 13:1026386. [PMID: 36330089 PMCID: PMC9623298 DOI: 10.3389/fphar.2022.1026386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are blood cells that are primarily produced by the shedding of megakaryocytes in the bone marrow. Platelets participate in a variety of physiological and pathological processes in vivo, including hemostasis, thrombosis, immune-inflammation, tumor progression, and metastasis. Platelets have been widely used for targeted drug delivery therapies for treating various inflammatory and tumor-related diseases. Compared to other drug-loaded treatments, drug-loaded platelets have better targeting, superior biocompatibility, and lower immunogenicity. Drug-loaded platelet therapies include platelet membrane coating, platelet engineering, and biomimetic platelets. Recent studies have indicated that platelet extracellular vesicles (PEVs) may have more advantages compared with traditional drug-loaded platelets. PEVs are the most abundant vesicles in the blood and exhibit many of the functional characteristics of platelets. Notably, PEVs have excellent biological efficacy, which facilitates the therapeutic benefits of targeted drug delivery. This article provides a summary of platelet and PEVs biology and discusses their relationships with diseases. In addition, we describe the preparation, drug-loaded methods, and specific advantages of platelets and PEVs targeted drug delivery therapies for treating inflammation and tumors. We summarize the hot spots analysis of scientific articles on PEVs and provide a research trend, which aims to give a unique insight into the development of PEVs research focus.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Nan Song
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Chen Xia
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| |
Collapse
|
36
|
Yan B. Actuators for Implantable Devices: A Broad View. MICROMACHINES 2022; 13:1756. [PMID: 36296109 PMCID: PMC9610948 DOI: 10.3390/mi13101756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The choice of actuators dictates how an implantable biomedical device moves. Specifically, the concept of implantable robots consists of the three pillars: actuators, sensors, and powering. Robotic devices that require active motion are driven by a biocompatible actuator. Depending on the actuating mechanism, different types of actuators vary remarkably in strain/stress output, frequency, power consumption, and durability. Most reviews to date focus on specific type of actuating mechanism (electric, photonic, electrothermal, etc.) for biomedical applications. With a rapidly expanding library of novel actuators, however, the granular boundaries between subcategories turns the selection of actuators a laborious task, which can be particularly time-consuming to those unfamiliar with actuation. To offer a broad view, this study (1) showcases the recent advances in various types of actuating technologies that can be potentially implemented in vivo, (2) outlines technical advantages and the limitations of each type, and (3) provides use-specific suggestions on actuator choice for applications such as drug delivery, cardiovascular, and endoscopy implants.
Collapse
Affiliation(s)
- Bingxi Yan
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation. Commun Biol 2022; 5:1093. [PMID: 36241769 PMCID: PMC9568603 DOI: 10.1038/s42003-022-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Surface attachment of bacteria is the first step of biofilm formation and is often mediated and coordinated by the extracellular appendages, flagellum and pili. The model organism Caulobacter crescentus undergoes an asymmetric division cycle, giving rise to a motile "swarmer cell" and a sessile "stalked cell", which is attached to the surface. In the highly polarized predivisional cell, pili and flagellum, which are assembled at the pole opposite the stalk, are both activated before and during the process of cell separation. We explored the interplay of flagellum and active pili by growing predivisional cells on colloidal beads, creating a bacteria-on-a-bead system. Using this set-up, we were able to simultaneously visualize the bacterial motility and analyze the dynamics of the flagellum and pili during cell separation. The observed activities of flagellum and pili at the new cell pole of the predivisional cell result in a cooperating interplay of the appendages during approaching and attaching to a surface. Even in presence of a functioning flagellum, pili are capable of surface attachment and keeping the cell in position. Moreover, while flagellar rotation decreases the average attachment time of a single pilus, it increases the overall attachment rate of pili in a synergetic manner.
Collapse
|
38
|
Abstract
Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility. Microbots have attracted attention due to an ability to reach places and perform tasks which are not possible with conventional techniques in a wide range of applications. Here, the authors review the recent work in the field on the fabrication, application and actuation of 3D printed microbots offering a view of the direction of future microbot research.
Collapse
|
39
|
Vargas E, Zhang F, Ben Hassine A, Ruiz-Valdepeñas Montiel V, Mundaca-Uribe R, Nandhakumar P, He P, Guo Z, Zhou Z, Fang RH, Gao W, Zhang L, Wang J. Using Cell Membranes as Recognition Layers to Construct Ultrasensitive and Selective Bioelectronic Affinity Sensors. J Am Chem Soc 2022; 144:17700-17708. [DOI: 10.1021/jacs.2c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eva Vargas
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Amira Ben Hassine
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Victor Ruiz-Valdepeñas Montiel
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Rodolfo Mundaca-Uribe
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ponnusamy Nandhakumar
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Putian He
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Zhongyuan Guo
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
41
|
Sun L, Li M, Yang J, Li J. Cell Membrane-Coated Nanoparticles for Management of Infectious Diseases: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
42
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|
43
|
Li Y, Wu J, Oku H, Ma G. Polymer‐Modified Micromotors with Biomedical Applications: Promotion of Functionalization. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yanan Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- Division of Molecular Science Graduate School of Science and Engineering Gunma University Gunma 376-8515 Japan
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hiroyuki Oku
- Division of Molecular Science Graduate School of Science and Engineering Gunma University Gunma 376-8515 Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
44
|
Liu X, Gao Q, Wu S, Qin H, Zhang T, Zheng X, Li B. Optically Manipulated Neutrophils as Native Microcrafts In Vivo. ACS CENTRAL SCIENCE 2022; 8:1017-1027. [PMID: 35912340 PMCID: PMC9336151 DOI: 10.1021/acscentsci.2c00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As the first line of host defense against invading pathogens, neutrophils have an inherent phagocytosis capability for the elimination of foreign agents and target loading upon activation, as well as the ability to transmigrate across blood vessels to the infected tissue, making them natural candidates to execute various medical tasks in vivo. However, most of the existing neutrophil-based strategies rely on their spontaneous chemotactic motion, lacking in effective activation, rapid migration, and high navigation precision. Here, we report an optically manipulated neutrophil microcraft in vivo through the organic integration of endogenous neutrophils and scanning optical tweezers, functioning as a native biological material and wireless remote controller, respectively. The neutrophil microcrafts can be remotely activated by light and then navigated to the target position along a designated route, followed by the fulfillment of its task in vivo, such as active intercellular connection, targeted delivery of nanomedicine, and precise elimination of cell debris, free from the extra construction or modification of the native neutrophils. On the basis of the innate immunologic function of neutrophils and intelligent optical manipulation, the proposed neutrophil microcraft might provide new insight for the construction of native medical microdevices for drug delivery and precise treatment of inflammatory diseases.
Collapse
|
45
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|
46
|
Song X, Fu W, Cheang UK. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022; 25:104507. [PMID: 35720266 PMCID: PMC9201018 DOI: 10.1016/j.isci.2022.104507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
To realize the potential to use micro/nanorobots for targeted cancer therapy, it is important to improve their biocompatibility and targeting ability. Here, we report on drug-loaded magnetic microrobots capable of polarizing macrophages into the antitumor phenotype to target and inhibit cancer cells. In vitro tests demonstrated that the microrobots have good biocompatibility with normal cells and immune cells. Positively charged DOX was loaded onto the surface of microrobots via electrostatic interactions and exhibited pH-responsive release behavior. The nano-smooth surfaces of the microrobots activated M1 polarization of macrophages, thus activating their intrinsic targeting and antitumor abilities toward cancer cells. Through dual targeting from magnetic guidance and M1 macrophages, the microrobots were able to target and kill cancer cells in a 3D tumor spheroid culture assay. These findings demonstrate a way to improve the tumor-targeting and antitumor abilities of microrobots through the combined use of magnetic control, macrophages, and pH-responsive drug release.
Collapse
Affiliation(s)
- Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Fu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
47
|
Rahman MM, Garudadri T, Das S. Role of Surface Tension in Microrobot Penetration in Membranes. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2022; 2022:10.1109/marss55884.2022.9870474. [PMID: 37521089 PMCID: PMC10387354 DOI: 10.1109/marss55884.2022.9870474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.
Collapse
Affiliation(s)
- Md Mahmudur Rahman
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA. He is now with Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458 USA
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
48
|
Cong Z, Tang S, Xie L, Yang M, Li Y, Lu D, Li J, Yang Q, Chen Q, Zhang Z, Zhang X, Wu S. Magnetic-Powered Janus Cell Robots Loaded with Oncolytic Adenovirus for Active and Targeted Virotherapy of Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201042. [PMID: 35452560 DOI: 10.1002/adma.202201042] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/09/2022] [Indexed: 02/05/2023]
Abstract
A unique robotic medical platform is designed by utilizing cell robots as the active "Trojan horse" of oncolytic adenovirus (OA), capable of tumor-selective binding and killing. The OA-loaded cell robots are fabricated by entirely modifying OA-infected 293T cells with cyclic arginine-glycine-aspartic acid tripeptide (cRGD) to specifically bind with bladder cancer cells, followed by asymmetric immobilization of Fe3 O4 nanoparticles (NPs) on the cell surface. OA can replicate in host cells and induce cytolysis to release the virus progeny to the surrounding tumor sites for sustainable infection and oncolysis. The asymmetric coating of magnetic NPs bestows the cell robots with effective movement in various media and wireless manipulation with directional migration in a microfluidic device and bladder mold under magnetic control, further enabling steerable movement and prolonged retention of cell robots in the mouse bladder. The biorecognition of cRGD and robust, controllable propulsion of cell robots work synergistically to greatly enhance their tissue penetration and anticancer efficacy in the 3D cancer spheroid and orthotopic mouse bladder tumor model. Overall, this study integrates cell-based microrobots with virotherapy to generate an attractive robotic system with tumor specificity, expanding the operation scope of cell robots in biomedical community.
Collapse
Affiliation(s)
- Zhaoqing Cong
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Songsong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Leiming Xie
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Ming Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Dongdong Lu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Qingxin Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Qiwei Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Zhiqiang Zhang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
- South China Hospital, Shenzhen University, Shenzhen, 518116, P. R. China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515000, P. R. China
| |
Collapse
|
49
|
From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures. Nat Commun 2022; 13:2812. [PMID: 35589767 PMCID: PMC9120507 DOI: 10.1038/s41467-022-30554-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Chemically propelled micropumps are promising wireless systems to autonomously drive fluid flows for many applications. However, many of these systems are activated by nocuous chemical fuels, cannot operate at high salt concentrations, or have difficulty for controlling flow directionality. In this work we report on a self-driven polymer micropump fueled by salt which can trigger both radial and unidirectional fluid flows. The micropump is based on the cation-exchanger Nafion, which produces chemical gradients and local electric fields capable to trigger interfacial electroosmotic flows. Unidirectional pumping is predicted by simulations and achieved experimentally by nanostructuring Nafion into microarrays with a fine tune modulation of surrounding surface zeta potentials. Nafion micropumps work in a wide range of salt concentrations, are reusable, and can be fueled by different salt cations. We demonstrate that they work with the common water-contaminant cadmium, using the own capture of this ion as fuel to drive fluid pumping. Thus, this system has potential for efficient and fast water purification strategies for environmental remediation. Unidirectional Nafion pumps also hold promise for effective analyte delivery or preconcentration for (bio)sensing assays. Chemically propelled micropumps are wireless fluid flow driving systems with many potential applications. Here, the authors report a self-driven reusable Nafion micropump fueled by different salt cations in a wide range of concentrations that triggers both radial and unidirectional flows, showing efficient water remediation capabilities.
Collapse
|
50
|
Meisami AH, Abbasi M, Mosleh-Shirazi S, Azari A, Amani AM, Vaez A, Golchin A. Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 2022; 926:175011. [PMID: 35568064 DOI: 10.1016/j.ejphar.2022.175011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Cancer overlooks are globally one of the most dangerous and life-threatening tribulations. While significant advances have been made in the targeted delivery of anti-cancer medications over the last few years, several challenges, such as low efficacy and strong toxic effects, remain to be addressed. Micro/nanomotors have been thoroughly studied for both effective cancer detection and treatment, as demonstrated by significant advancements in the architecture of smart and functional micro/nanomotor biomedical systems. Able to self-propelled within fluid media, micro/nanomotors have attractive vehicles to maximize the efficacy of tumor delivery. Here, we present the current developments in the delivery, detection, and imaging-guided treatment of micro/nanomotors in the clinical field, including cancer-related specific targeted drug delivery, and then discuss the barriers and difficulties encountered by micro/nanomotors throughout the medical process. Furthermore, this paper addresses the potential growth of micro/nanomotors for medical applications, and sets out the current drawbacks and future research directions for more advancement.
Collapse
Affiliation(s)
- Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Arezo Azari
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|