1
|
Wang L, Zeng Y, Gao W, Shen P, Han P, Zhang Z. Interrogation of Structure-Activity Relationships in Charge Variants of Therapeutic IgG2s Enabled by Free-Flow Isoelectric Focusing Fractionation. BioDrugs 2025:10.1007/s40259-025-00718-0. [PMID: 40263152 DOI: 10.1007/s40259-025-00718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Recombinant immunoglobulin G2 (IgG2) antibodies are effective neutralization agents or antagonists with high medical value because of their high specificity, long half-life, and absent effector functions. During biopharmaceutical process development, charge heterogeneity and bioactivity alternation related to charge variation should be investigated to understand the structure-activity relationship (SAR) in therapeutic antibodies. Isoelectric focusing can provide fine resolution for the charge heterogeneity profiling of IgG2, while ion exchange chromatography cannot achieve effective separation of IgG2 charge variants. In-depth investigation of charge heterogeneity requires a fractionation tool to enrich and isolate acidic and basic variants. OBJECTIVES This study aims to investigate the structural origins and functional implications of charge heterogeneity in two therapeutic IgG2 antibodies, including an anti-receptor activator of nuclear factor κ-B ligand (RANKL) biosimilar of denosumab and an innovative anti-CD73 IgG2 (H-mab), using free-flow isoelectric focusing (FF-IEF). METHODS Charge variants of denosumab and H-mab were fractionated using FF-IEF, followed by characterization of isolated IgG2 charge variants to establish the SAR between charge-related antibody modifications and bioactivities. The investigation incorporated in silico 3D modeling of the FcRn-IgG2 Fc complex and the CD73-Fab complex to facilitate the SAR interrogation of these two IgG2s. RESULTS The acidic charge variants of denosumab were driven primarily by N-glycan sialylation and deamidation in the Fc region, showing negligible effects on biological functions except for a reproducible reduction in FcRn binding affinity. In contrast, the basic charge variants of H-mab were associated with D99-succinimide formation in the heavy chain complementarity-determining region 3 (CDR3), significantly impairing binding and enzymatic inhibition activities. CONCLUSIONS This study underscores the irreplaceable role of FF-IEF in both biosimilar and innovative therapeutic pipelines, highlighting the importance of monitoring charge heterogeneity and understanding SAR in therapeutic IgG2 antibodies.
Collapse
Affiliation(s)
- Lingyu Wang
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, 201600, China
| | - Yajun Zeng
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, 201600, China
| | - Wenyuan Gao
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, 201600, China
| | - Pengcheng Shen
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, 201600, China
| | - Ping Han
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, 201600, China
| | - Zhongli Zhang
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, 201600, China.
| |
Collapse
|
2
|
Fischer MS, Rogers HT, Chapman EA, Jin S, Ge Y. Native Top-Down Proteomics of Endogenous Protein Complexes Enabled by Online Two-Dimensional Liquid Chromatography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645965. [PMID: 40236213 PMCID: PMC11996319 DOI: 10.1101/2025.03.28.645965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Protein complexes are essential for virtually all biological processes, yet their structural characterization remains a major challenge due to their heterogeneous, dynamic nature and the complexity of the proteome. Native top-down mass spectrometry (nTDMS) has emerged as a powerful tool for comprehensive structural characterization of purified protein complexes, but its application to endogenous protein complexes in the proteome is challenging and typically requires labor-intensive and time-consuming prefractionation. Here, for the first time, we develop a nondenaturing online two-dimensional liquid chromatography (2D-LC) method for native top-down proteomics (nTDP), enabling high-throughput structural analysis of endogenous protein complexes. The automated, online interfacing of size-exclusion and mixed-bed ion-exchange chromatography achieves high coverage of endogenous protein complexes. We further develop a multistage nTDMS approach that enables comprehensive structural characterization within the chromatographic timescale, capturing intact non-covalent complexes, released subunits/cofactors, and backbone fragments. Our analysis detected 133 native proteoforms and endogenous protein complexes (up to 350 kDa) from human heart tissue in less than two hours. Such technological leaps in high-throughput structural characterization of endogenous protein complexes will advance large-scale nTDP studies in health and disease.
Collapse
|
3
|
Füssl F, Coleman K, Bones J. Anion exchange chromatography coupled to mass spectrometry for deciphering the complexity of a highly glycosylated fusion protein ("protein HGF"). J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124484. [PMID: 39919409 DOI: 10.1016/j.jchromb.2025.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Fc-fusion proteins are medicines developed for the treatment of complex diseases which feature enhanced pharmacokinetic properties compared to other therapeutic protein formats. A commonly used strategy for the extension of protein half-life in circulation is the introduction of negative charges on the protein, preferably through N- and O-glycans equipped with negatively charged sialic acid moieties. While enhancing pharmacokinetics, the presence of many glycosylation sites can coincide with a considerable protein heterogeneity, which renders analytical characterisation increasingly difficult. In this work, we demonstrate that the complexity of a highly glycosylated intact Fc-fusion protein can be well resolved using mass spectrometry (MS)-friendly anion exchange chromatography (AEX) with pH gradient elution. The application of the developed method allowed for the separation of 9 clear chromatographic peaks and the acquisition of high-quality protein spectra and thus, MS detection of intact protein isoforms. The resulting data enabled the identification of 268 protein features which represents a ∼ 25-fold increase in detected forms compared to output that could be obtained by simple size exclusion chromatography-mass spectrometry. The underlying cause for the separation selectivity observed in AEX was found to be differential protein sialylation while varying numbers of hexose and N-acetylglucosamine units on glycans were identified as other major contributors to the high heterogeneity observed.
Collapse
Affiliation(s)
- Florian Füssl
- Characterisation and Comparability Laboratory, National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland
| | - Keith Coleman
- Analytical Chemistry Manufacturing Control, Global Quality Control & Analytical Sciences, Bristol Myers Squibb, Cruiserath Road, Mulhuddart, Dublin 15, Ireland
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
4
|
Imiołek M, Fekete S, Rudaz S, Guillarme D. Ion exchange chromatography of biotherapeutics: Fundamental principles and advanced approaches. J Chromatogr A 2025; 1742:465672. [PMID: 39805233 DOI: 10.1016/j.chroma.2025.465672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Ion exchange chromatography (IEX) is an important analytical technique for the characterization of biotechnology-derived products, such as monoclonal antibodies (mAbs) and more recently, cell and gene therapy products such as messenger ribonucleic acid (mRNA) and adeno-associated viruses (AAVs). This review paper first outlines the basic principles and separation mechanisms of IEX for charge variant separation of biotherapeutics, and examines the different elution modes based on salt or pH gradients. It then highlights several recent trends when applying IEX for the characterization of biotechnology-derived products, including: i) the effective use of pH gradients, ii) the improvement of selectivity by using organic solvents in the mobile phase, multi-step gradients, or by combining ion pairing and ion exchange, and iii) the increase in analytical throughput using ultra-short columns or automated screening of conditions. The review also discusses the incorporation of IEX into multidimensional liquid chromatography setups, integrating it with other chromatographic dimensions for the analysis of complex biotherapeutic products. It also covers the coupling of IEX with mass spectrometry (MS), ion mobility spectrometry (IMS), and multi-angle light scattering (MALS) to identify the various species contained in complex biotherapeutic samples. In conclusion, IEX is considered today as an essential technique in the analytical toolbox for the characterization and quality control of biotechnology-derived products. It offers a unique separation mechanism and can be coupled with highly informative detectors, such as MS and MALS.
Collapse
Affiliation(s)
| | | | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
5
|
Chen ZZ, Dufresne J, Bowden P, Miao M, Marshall JG. Trypsin Digestion Conditions of Human Plasma for Observation of Peptides and Proteins from Tandem Mass Spectrometry. ACS OMEGA 2024; 9:41343-41354. [PMID: 39398168 PMCID: PMC11465567 DOI: 10.1021/acsomega.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
Previous meta-analysis indicated that plasma or serum proteome groups using various experimental conditions detected different peptides from the same plasma proteins, which is strong evidence for the veracity of blood fluid LC-ESI-MS/MS but also evidences that the trypsin digestion step is a key source of variation in plasma proteomics. Agreement between different digestion conditions and MS/MS algorithms may serve as an independent confirmation of the validity of the LC-ESI-MS/MS analysis of plasma peptides. Plasma contains a high percentage of albumin held together by multiple disulfide bonds; hence, reduction and/or alkylation may greatly enhance the digestion efficiency of albumin. Plasma proteins were precipitated in 90% acetonitrile, collected over quaternary amine resin, and eluted in NaCl prior to digestion treatments. To determine the effect of trypsin digestion methods, the plasma proteins were digested in 600 mM urea and 5% acetonitrile with trypsin alone, or reduced with 2 mM DTT followed by trypsin, or DTT followed by 15 mM iodoacetamide and then trypsin. The resulting peptides were analyzed by LC-ESI-MS/MS with a linear quadrupole ion trap (LIT). The MS/MS spectra were directly fit to peptides by the X!TANDEM and SEQUEST algorithms. Blank noise injections served as the analytical control, and 30 million random MS/MS served as the statistical control. Digesting human plasma with DTT reduction, or reduction and alkylation, resulted in a dramatic increase in the number and observation frequency of albumin peptides. In contrast, digestion with trypsin alone suppressed the observation of albumin, and instead, many low abundance plasma and cellular proteins showed higher observation frequency. Digestion with trypsin alone increased the observation frequency of APOC1, ACAN, ATRN, CPB2, GP2, GPX3, HBA1, PAPD5, PKD1, and many cellular proteins. After correction against noise and random controls, SEQUEST showed good agreement with the true positive plasma proteins identified by X!TANDEM and resulted in an R-squared of 0.5238 with an F-statistic of 10,930 on 9,935 protein gene symbols with a p-value < 2.2e-16. Digestion of plasma with trypsin alone avoids the complete digestion of albumin and permits the enhanced detection of some other cellular proteins from plasma. Different digestion approaches were complimentary and together resulted in a more comprehensive plasma proteome. The protein FDR q-values, the modest effect of background and Monte Carlo correction, and the significant STRING analysis were all consistent with the high fidelity of the rigorous X!TANDEM algorithm. In contrast, SEQUEST required significant correction against noise and statistical controls and selection of high cross correlation (XCorr) scores to show good agreement with X!TANDEM. There was qualitative and quantitative agreement between plasma proteins digested without alkylation from the orbital ion trap (OIT) versus the LIT instrument that showed highly significant regression against the X!TANDEM OIT monoisotopic results, those from heavy isotopes and other masses from X!TANDEM, and with those from MaxQuant. There was significant qualitative and quantitative agreement between the complementary digestion conditions consistent with the good fidelity of plasma analysis by LC-ESI-MS/MS with a sensitive linear ion trap.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Jaimie Dufresne
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Peter Bowden
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Ming Miao
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - John G. Marshall
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| |
Collapse
|
6
|
Sarin D, Kumar S, Rathore AS. Titer and charge-based heterogeneity multiattribute monitoring of mAbs in cell culture harvest using 2D ProA CEX MS. Talanta 2024; 276:126232. [PMID: 38749159 DOI: 10.1016/j.talanta.2024.126232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Robust monitoring of heterogeneity in biopharmaceutical development is crucial for producing safe and efficacious biotherapeutic products. Multiattribute monitoring (MAM) has emerged as an efficient tool for monitoring of mAb heterogeneities like deamidation, sialylation, glycosylation, and oxidation. Conventional biopharma analysis during mAb development relies on use of one-dimensional methods for monitoring titer and charge-based heterogeneity using non-volatile solvents without direct coupling with mass spectrometry (MS). This approach requires analysis of mAb harvest by ProA for titer estimation followed by separate cation exchange chromatography (CEX) analysis of the purified sample for estimating charge-based heterogeneity. This can take up to 60-90 min due to the required fraction collection and buffer exchange steps. In this work, a native two-dimensional liquid chromatography (2DLC) mass spectrometry method has been developed with Protein A chromatography in the first dimension for titer estimation and cation exchange chromatography (CEX) in the second dimension for charge variant analysis. The method uses volatile salts for both dimensions and enables easy coupling to MS. The proposed 2DLC method exhibits a charge variant profile that is similar to that observed via the traditional methods and takes only 15 min for mass identification of each variant. A total of six charge variants were separated by the CEX analysis after titer estimation, including linearity assessment from 5 μg to 160 μg of injected mAb sample. The proposed method successfully estimated charge variants for the mAb innovator and 4 of its biosimilars, showcasing its applicability for biosimilarity exercises. Hence, the 2D ProA CEX MS method allows direct titer and charge variant estimation of mAbs in a single workflow.
Collapse
Affiliation(s)
- Deepika Sarin
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
7
|
Yan Y, Xing T, Huang X, Peng W, Wang S, Li N. Affinity-Resolved Size Exclusion Chromatography Coupled to Mass Spectrometry: A Novel Tool to Study the Attribute-and-Function Relationship in Therapeutic Monoclonal Antibodies. Anal Chem 2024; 96:11716-11724. [PMID: 38986034 PMCID: PMC11270518 DOI: 10.1021/acs.analchem.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Assessment of critical quality attributes (CQAs) is an important aspect during the development of therapeutic monoclonal antibodies (mAbs). Attributes that affect either the target binding or Fc receptor engagement may have direct impacts on the drug safety and efficacy and thus are considered as CQAs. Native size exclusion chromatography (SEC)-based competitive binding assay has recently been reported and demonstrated significant benefits compared to conventional approaches for CQA identification, owing to its faster turn-around and higher multiplexity. Expanding on the similar concept, we report the development of a novel affinity-resolved size exclusion chromatography-mass spectrometry (AR-SEC-MS) method for rapid CQA evaluation in therapeutic mAbs. This method features wide applicability, fast turn-around, high multiplexity, and easy implementation. Using the well-studied Fc gamma receptor III-A (FcγRIIIa) and Fc interaction as a model system, the effectiveness of this method in studying the attribute-and-function relationship was demonstrated. Further, two case studies were detailed to showcase the application of this method in assessing CQAs related to antibody target binding, which included unusual N-linked glycosylation in a bispecific antibody and Met oxidation in a monospecific antibody, both occurring within the complementarity-determining regions (CDRs).
Collapse
Affiliation(s)
- Yuetian Yan
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tao Xing
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaoxiao Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Wenjing Peng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
8
|
Fischer MS, Rogers HT, Chapman EA, Chan HJ, Krichel B, Gao Z, Larson EJ, Ge Y. Online Mixed-Bed Ion Exchange Chromatography for Native Top-Down Proteomics of Complex Mixtures. J Proteome Res 2024; 23:2315-2322. [PMID: 38913967 PMCID: PMC11344481 DOI: 10.1021/acs.jproteome.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Native top-down mass spectrometry (nTDMS) allows characterization of protein structure and noncovalent interactions with simultaneous sequence mapping and proteoform characterization. The majority of nTDMS studies utilize purified recombinant proteins, with significant challenges hindering application to endogenous systems. To perform native top-down proteomics (nTDP), where endogenous proteins from complex biological systems are analyzed by nTDMS, it is essential to separate proteins under nondenaturing conditions. However, it remains difficult to achieve high resolution with MS-compatible online chromatography while preserving protein tertiary structure and noncovalent interactions. Herein, we report the use of online mixed-bed ion exchange chromatography (IEC) to enable separation of endogenous proteins from complex mixtures under nondenaturing conditions, preserving noncovalent interactions for nTDP analysis. We have successfully detected large proteins (>146 kDa) and identified endogenous metal-binding and oligomeric protein complexes in human heart tissue lysate. The use of a mixed-bed stationary phase allowed retention and elution of proteins over a wide range of isoelectric points without altering the sample or mobile phase pH. Overall, our method provides a simple online IEC-MS platform that can effectively separate proteins from complex mixtures under nondenaturing conditions and preserve higher-order structure for nTDP applications.
Collapse
Affiliation(s)
- Matthew S. Fischer
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Holden T. Rogers
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Emily A. Chapman
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Boris Krichel
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
- School of Life Sciences, University of Siegen, Adolf-Reichwein Str. 2a, Siegen, Germany, 57076
| | - Zhan Gao
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
| | - Eli J. Larson
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin - 1111 Highland Ave., Madison, WI, USA 53705
| |
Collapse
|
9
|
Zhai Z, Mavridou D, Damian M, Mutti FG, Schoenmakers PJ, Gargano AFG. Characterization of Complex Proteoform Mixtures by Online Nanoflow Ion-Exchange Chromatography-Native Mass Spectrometry. Anal Chem 2024; 96:8880-8885. [PMID: 38771719 PMCID: PMC11154664 DOI: 10.1021/acs.analchem.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
The characterization of proteins and complexes in biological systems is essential to establish their critical properties and to understand their unique functions in a plethora of bioprocesses. However, it is highly difficult to analyze low levels of intact proteins in their native states (especially those exceeding 30 kDa) with liquid chromatography (LC)-mass spectrometry (MS). Herein, we describe for the first time the use of nanoflow ion-exchange chromatography directly coupled with native MS to resolve mixtures of intact proteins. Reference proteins and protein complexes with molecular weights between 10 and 150 kDa and a model cell lysate were separated using a salt-mediated pH gradient method with volatile additives. The method allowed for low detection limits (0.22 pmol of monoclonal antibodies), while proteins presented nondenatured MS (low number of charges and limited charge state distributions), and the oligomeric state of the complexes analyzed was mostly kept. Excellent chromatographic separations including the resolution of different proteoforms of large proteins (>140 kDa) and a peak capacity of 82 in a 30 min gradient were obtained. The proposed setup and workflows show great potential for analyzing diverse proteoforms in native top-down proteomics, opening unprecedented opportunities for clinical studies and other sample-limited applications.
Collapse
Affiliation(s)
- Ziran Zhai
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Despoina Mavridou
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Matteo Damian
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter J. Schoenmakers
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Andrea F. G. Gargano
- Analytical
Chemistry Group and Biocatalysis Group, Van’t Hoff Institute
for Molecular Sciences (HIMS), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Van’t Hoff Institute for
Molecular Sciences (HIMS), University of
Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Wang L, Wu H, Cao T, Li H, Shen P, Lu L, Zhang Z. Identification of structural origins of complex charge heterogeneity in therapeutic ACE2Fc fusion protein facilitated by free-flow isoelectric focusing. Eur J Pharm Biopharm 2024; 198:114248. [PMID: 38467335 DOI: 10.1016/j.ejpb.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Fc Fusion protein represents a versatile molecular platform with considerable potential as protein therapeutics of which the charge heterogeneity should be well characterized according to regulatory guidelines. Angiotensin-converting enzyme 2 Fc fusion protein (ACE2Fc) has been investigated as a potential neutralizing agent to various coronaviruses, including the lingering SARS-CoV-2, as this coronavirus must bind to ACE2 to allow for its entry into host cells. ACE2Fc, an investigational new drug developed by Henlius (Shanghai China), has passed the Phase I clinical trial, but its huge amount of charge isoforms and complicated charge heterogeneity posed a challenge to charge variant investigation in pharmaceutical development. We employed offline free-flow isoelectric focusing (FF-IEF) fractionation, followed by detailed characterization of enriched ACE2Fc fractions, to unveil the structural origins of charge heterogeneity in ACE2Fc expressed by recombinant CHO cells. We adopted a well-tuned 3-component separation medium for ACE2Fc fractionation, the highest allowable voltage to maximize the FF-IEF separation window and a mild Protein A elution method for preservation of protein structural integrity. Through peptide mapping and other characterizations, we revealed that the intricate profiles of ACE2Fc charge heterogeneity are mainly caused by highly sialylated multi-antenna N-glycosylation. In addition, based on fraction characterization and in silico glycoprotein model analysis, we discovered that the large acidic glycans at N36, N73, and N305 of ACE2Fc were able to decrease the binding activity towards Spike (S) protein of SARS-CoV-2. Our study exemplifies the value of FF-IEF in highly complex fusion protein characterization and revealed a quantitative sialylation-activity relationship in ACE2Fc.
Collapse
Affiliation(s)
- Lingyu Wang
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai 201600, China
| | - Hai Wu
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai 201600, China
| | - Ting Cao
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai 201600, China
| | - Hongyang Li
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai 201600, China
| | - Pengcheng Shen
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai 201600, China
| | - Lihong Lu
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai 201600, China
| | - Zhongli Zhang
- Department of Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai 201600, China.
| |
Collapse
|
12
|
Kumar S, Peruri V, Rathore AS. An Online Two-Dimensional Approach to Characterizing the Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using a 2D-CEX-AEX-MS Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2801-2810. [PMID: 37994779 DOI: 10.1021/jasms.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Assessment of product quality attributes such as charge heterogeneity is an upmost requisite for the release of a monoclonal antibody (mAb). Analytical techniques, such as cation-exchange chromatography (CEX), accomplish this, causing the mAb to separate into acidic, main species, and basic variants. Here, an online volatile-salt-containing two-dimensional liquid chromatography (2D-LC) method coupled with mass spectrometry (MS) was performed to characterize the charge heterogeneity of mAbs using CEX chromatography in the first dimension (D1) and anion-exchange chromatography (AEX) in the second dimension (D2). The main peak of the CEX profile of D1 was transferred through a 2D heart-cut method to D2 for further analysis by the AEX-MS method. In the CEX method, mAb A showed 10 distinct variants, while the AEX method resulted in eight variants. However, a total of 13 variants were successfully resolved for mAb A in the 2D method. Similarly, mAb B exhibited seven variants in the CEX method and four variants in the AEX method, but the 2D-LC method revealed a total of nine variants for mAb B. Likewise, mAb C displayed seven variants in CEX and seven variants in AEX, whereas the 2D-LC method unveiled a total of 11 variants for mAb C. Additionally, native MS analysis revealed that the resolved charge variants were identified as amidation, oxidation, and isomerization of Asp variants in the main peak, which were not resolved in stand-alone methods. The present study demonstrates how 2D-LC can assist in identifying minor variations in charge distribution or conformation of mAb variants that would otherwise not be picked up by a single analytical method alone.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vineela Peruri
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
14
|
Füssl F, Millán-Martín S, Bones J, Carillo S. Cation exchange chromatography on a monodisperse 3 µm particle enables extensive analytical similarity assessment of biosimilars. J Pharm Biomed Anal 2023; 234:115534. [PMID: 37343453 DOI: 10.1016/j.jpba.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Biosimilarity assessment requires extensive characterization and comparability exercises to investigate product quality attributes of an originator product and its potential biosimilar(s) and to highlight any differences between them. Performing a thorough comparison allows a shortened approval path, which also eliminates lengthy and expensive clinical trials, ensuring comparable product quality and efficacy but at lower drug prices. The wide variety of analytical methods available for biosimilar assessment ranges from biological to analytical assays, each providing orthogonal information to fully characterize biosimilar candidates. Intact native mass spectrometry (MS) has been shown to be an excellent tool for detection and monitoring of important quality attributes such as N-glycosylation, deamidation, sequence truncation and higher order structures. When combined with efficient upfront separation methods, simplification of the proteoform heterogeneity and associated complexity prior to MS analysis can be achieved. Native mass spectrometry can provide robust and accurate results within short analysis times and requires minimal sample preparation. In this study we report the use of a monodisperse strong cation exchange chromatography phase hyphenated with Orbitrap mass spectrometry (SCX-MS) to compare the best-selling biopharmaceutical product Humira® with 7 commercially approved biosimilar products. SCX-MS analysis allowed for the identification of previously described as well as so far unreported proteoforms and their relative quantitation across all samples, revealing differences in N-glycosylation and lysine truncation, as well as unique features for some products such as sialylation and N-terminal clipping. SCX-MS analysis, powered by a highly efficient separation column, enabled deep and efficient analytical comparison of biosimilar products.
Collapse
Affiliation(s)
- Florian Füssl
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Silvia Millán-Martín
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland.
| |
Collapse
|
15
|
Bhattacharya S, Joshi S, Rathore AS. A native multi-dimensional monitoring workflow for at-line characterization of mAb titer, size, charge, and glycoform heterogeneities in cell culture supernatant. J Chromatogr A 2023; 1696:463983. [PMID: 37054641 DOI: 10.1016/j.chroma.2023.463983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
With growing maturity of the biopharmaceutical industry, new modalities entering the therapeutic design space and increasing complexity of formulations such as combination therapy, the demands and requirements on analytical workflows have also increased. A recent evolution in newer analytical workflows is that of multi-attribute monitoring workflows designed on chromatography-mass spectrometry (LC-MS) platform. In comparison to traditional one attribute per workflow paradigm, multi-attribute workflows are designed to monitor multiple critical quality attributes through a single workflow, thus reducing the overall time to information and increasing efficiency and throughput. While the 1st generation multi-attribute workflows focused on bottom-up characterization following peptide digestion, the more recent workflows have been focussing on characterization of intact biologics, preferably in native state. So far intact multi-attribute monitoring workflows suitable for comparability, utilizing single dimension chromatography coupled with MS have been published. In this study, we describe a native multi-dimensional multi-attribute monitoring workflow for at-line characterization of monoclonal antibody (mAb) titer, size, charge, and glycoform heterogeneities directly in cell culture supernatant. This has been achieved through coupling ProA in series with size exclusion chromatography in 1st dimension followed by cation exchange chromatography in the 2nd dimension. Intact paired glycoform characterization has been achieved through coupling 2D-LC with q-ToF-MS. The workflow with a single heart cut can be completed in 25 mins and utilizes 2D-liquid chromatography (2D-LC) to maximize separation and monitoring of titer, size as well as charge variants.
Collapse
Affiliation(s)
- Sanghati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Srishti Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
16
|
Guimaraes GJ, Leach FE, Bartlett MG. Microflow Liquid Chromatography – Multi-Emitter Nanoelectrospray Mass Spectrometry of Oligonucleotides. J Chromatogr A 2023; 1696:463976. [PMID: 37054634 DOI: 10.1016/j.chroma.2023.463976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
While the most sensitive LC-MS methods for oligonucleotide analysis contain ion-pairs in the mobile phase, these modifiers have been associated with instrument contamination and ion suppression. Typically, entire LC-MS systems are reserved for oligonucleotide LC-MS when using ion-pairing buffers. To overcome these limitations, numerous HILIC methods, liberated from ion-pairs, have been recently developed. Since ion-pairs play a role in analyte desorption from ESI droplets, their removal from mobile phases tend to impact method sensitivity. An effective way to recover MS sensitivity is to reduce the LC flow rate and therefore reduce ESI droplet size. With a focus on MS sensitivity, this study investigates the applicability of a microflow LC- nanoelectrospray MS platform in oligonucleotide ion-pair RP and HILIC LC-MS methods. The platform is effective and substantially increased the MS sensitivity of HILIC methods. Furthermore, LC method development for both types of separations provide insight into microflow chromatography of oligonucleotides, an under investigated chromatographic scale.
Collapse
|