1
|
Arcinas AJ, Larson EJ, Buchhalter EP, Dunn ZD, Wang H, Singh AN, Barrientos RC, Ukaegbu O, Mukherjee M, Appiah-Amponsah E, Regalado EL. Two-dimensional size exclusion reversed-phase liquid chromatography for quantitative analysis of L1 proteins in complex vaccine matrices. J Chromatogr A 2025; 1748:465851. [PMID: 40086145 DOI: 10.1016/j.chroma.2025.465851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
The quantitation of the major capsid protein L1 is an important metric during the pharmaceutical manufacturing of human papilloma virus (HPV) vaccines, as they are critical components of virus like particles (VLPs) that form the core of the drug product. During the production of VLPs, the L1 protein is present in multiple states, including monomer, multimer, fully formed VLPs and aggregate species, whose expression levels provides an important read-out of upstream productivity and downstream purification efficiency through the measurement of step yields. However, quantitation of total L1 protein is challenging not only due to its presence in multiple states, but also due to the matrix complexity and purification stage of the samples, which spans complex cell lysate to cleaner post purification material. Current analytical methods typically implemented for L1 quantitation includes direct UV measurement (such as SoloVPE), which is robust and easily deployed, but best suited to analysis of purified samples. Automated capillary electrophoresis techniques such as Simple Western are well established but dependent on reproducible binding to accessible L1 epitopes and potentially susceptible to antibody lot to lot reproducibility which may pose an operational risk. Mass spectrometry-based techniques provide excellent sensitivity and characterization advantages but are challenging to deploy in a manufacturing setting. Additionally, conventional one-dimensional liquid chromatography separation of L1 from host cell protein or cellular components is ineffective particularly in high-complexity lysate samples and intermediates prior to chromatographic purification steps. Herein, we present a sample preparation strategy and analytical method that is capable of total L1 quantitation regardless of its multimeric state and is compatible with sample matrices ranging from crude lysate to purified samples, without the use of complicated and serotype-specific reagents. We employ reduction and heat-denaturation during sample preparation to simplify the multimeric states of L1 to its monomer form and utilize two-dimension liquid chromatography (2D-LC) with first dimension (1D) size exclusion and peak heart-cutting to second dimension (2D) reversed-phase separation modes coupled to diode array and fluorescence detectors. In addition, a reliable method for total L1 quantitation in multiple process intermediate steps (upstream and downstream) is demonstrated with evaluation of analytical figures of merit including limit of quantitation, linearity, and repeatability.
Collapse
Affiliation(s)
- Arthur J Arcinas
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA.
| | - Eli J Larson
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Eric P Buchhalter
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA
| | - Zachary D Dunn
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Andrew N Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Ophelia Ukaegbu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Malini Mukherjee
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA
| | - Emmanuel Appiah-Amponsah
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| |
Collapse
|
2
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Garcia BDG. Unraveling microplastic behavior in simulated digestion: Methods, insights, and standardization. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138340. [PMID: 40273860 DOI: 10.1016/j.jhazmat.2025.138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Despite the rapid expansion of in vitro digestion studies on microplastics (MPs), the field remains fragmented due to inconsistent methodologies, varying analytical approaches, and a lack of standardized protocols. These discrepancies hinder cross-study comparisons, complicate risk assessments, and limit the applicability of in vitro models for understanding MP fate and pollutant interactions in the gastrointestinal environment. A comprehensive synthesis is needed to assess progress, identify research gaps, and establish a unified research direction. This review systematically evaluates 85 studies (2020-2024), consolidating key findings and methodological challenges. It examines disparities in digestion protocols, fluid compositions, and exposure conditions, assessing how factors such as pH, enzyme activity, residence time, and temperature shape MPs' behavior and physicochemical transformations. Key findings on bio-corona formation, structural modifications, contaminant bioaccessibility, and interactions with digestive enzymes are synthesized to provide a clearer picture of MP behavior during digestion. With the field remains dominated by studies on polystyrene and polyethylene MPs in human-based models, inconsistencies persist, highlighting the urgent need for standardized methodologies. By addressing these gaps, this review lays a critical foundation for improving reproducibility, advancing standardization efforts, and strengthening exposure assessments, ultimately enhancing our understanding of MP ingestion risks to human health.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; CIITEC - IPN. Centro de Investigación e Innovación Tecnológica, Cda. de Cecati s/n, Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| | - Berenice Dafne Garcia Garcia
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| |
Collapse
|
3
|
Wang D, Xiong Y, Sheng Q, Huang Y, Qing G. Theoretical Calculations in Separation Science for Analytical Chemistry: Applications and Insights. Chem Asian J 2025:e202500006. [PMID: 40202415 DOI: 10.1002/asia.202500006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Separation and enrichment are critical steps in analytical detection, necessitating advanced materials with high selectivity and adsorption capacity for target compounds. In order to improve separation efficiency and selectivity, computational simulation could elucidate interaction mechanisms and analyze potential adsorption/desorption processes, providing a theoretical foundation for the optimization and design of separation materials. Recently, computational simulation has become an indispensable and crucial mean in separation science for analytical chemistry. Using various simulation software, researchers could investigate the structures, properties, and performance of separation materials at multiple levels and scales. In this review, we summarize the applications of computational simulations in the field of separation science, focusing on the separation of polar molecules, geometric isomers, enantiomer compounds, and post-translationally modified peptides. These calculation methods include quantum chemistry, molecular docking, molecular dynamics simulations, high-throughput screening, and machine learning. Finally, we discuss the current challenges and potential breakthroughs in computational simulation, aiming to offer valuable insights for researchers dedicated to computational simulation, material development, and separation applications.
Collapse
Affiliation(s)
- Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- Dalian Lingshui Bay Laboratory, Dalian, 116023, P.R. China
| | - Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R.China
| | - Yi Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R.China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
4
|
Vudatha KK, Sundararajan R, Nalla LV, Gajula SNR. Next-Generation Chromatography: Covalent Organic Frameworks in Biomedical Analysis. J Sep Sci 2025; 48:e70148. [PMID: 40252231 PMCID: PMC12009129 DOI: 10.1002/jssc.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Chromatography, a cornerstone technique in analytical chemistry, continues to evolve with the emergence of novel stationary phases. Covalent organic frameworks (COFs) have garnered significant attention due to their unique properties and versatile applications. COFs, composed of covalently linked organic building blocks, exhibit high surface area, tunable porosity, and exceptional chemical stability. These attributes make them next-generation chromatographic techniques that leverage novel materials and methodologies to achieve significant improvements in separation efficiency, selectivity, speed, and/or sensitivity compared to traditional methods. COF stationary phases demonstrate remarkable selectivity for small molecules, peptides, proteins, and nucleic acids. Their use in drug discovery, metabolomics, proteomics, and clinical diagnostics is gaining momentum. In this review, we explored their synthesis strategies, emphasizing the design principles that enable tailoring of their physicochemical properties. Further, we discuss the immobilization of COFs onto solid supports, ensuring their compatibility with existing chromatographic systems. Furthermore, we highlighted case studies where COFs outperformed traditional stationary phases, improving sensitivity and resolution. We delve into the integration of COFs as stationary phases in biomedical analysis and explore various strategies for utilizing COFs as stationary phases in chromatographic separations.
Collapse
Affiliation(s)
- Kesava Kumar Vudatha
- Department of Pharmaceutical AnalysisGITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Raja Sundararajan
- GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Lakshmi Vineela Nalla
- Department of PharmacologyGITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical AnalysisGITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| |
Collapse
|
5
|
Liang X, Zhong Z, Deng J, Zhang R. In-situ formation of deep eutectic supramolecule based extraction method coupled to valve switching ion chromatography mass spectrometry for the determination of aminoglycosides in meat. J Chromatogr A 2025; 1745:465757. [PMID: 39951950 DOI: 10.1016/j.chroma.2025.465757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
A novel extraction methodology was developed for extracting nine aminoglycosides (AGs) from meats based on the in-situ formation of deep eutectic supramolecule between analytes and gallic acid. Good chromatographic separation was achieved on a cation-exchange column utilizing solely a diluted organic acid as the eluent. A matrix-switching system was created to divert common inorganic cations from the column effluent to waste, reducing conductance peak values by 99.8 % and mitigating ion suppression in high-resolution electrospray ionization. The methodology was validated and exhibited excellent linearity across a concentration range of 20-800 μg L-1, with correlation coefficients (r) ranging from 0.9982 to 0.9997. The limits of detection and quantification were in the range of 7.1-13.8 μg kg-1 and 22.8-44.0 μg kg-1, respectively. The method was applied to the analysis of nine AGs in forty-five samples, attaining recovery values ranging from 89.1 % to 102.1 % with relative standard deviations of 1.9 %-6.4 %. The study provides a reliable procedure that complies with the requirements of the EU's official methods of analysis for identifying and quantifying the restricted and prohibited substances. The method simplifies operations and shortens extraction times by ingeniously integrating various techniques. It also eliminates the need for toxic reagents and streamlines operations compared to the conventional liquid chromatography. The results showed that IC-MS is a convenient and selective complementary approach to other modes of chromatography for determining multiple AGs in complex samples.
Collapse
Affiliation(s)
- Xuxia Liang
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou 510440, China
| | - Zhixiong Zhong
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Jianchao Deng
- Department of Food Engineering and Quality Safety, South China Sea Fisheries Research Institute, Guangzhou 510310, China
| | - Runkun Zhang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China.
| |
Collapse
|
6
|
Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A 2025; 1744:465733. [PMID: 39893917 DOI: 10.1016/j.chroma.2025.465733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The resin-based column continues to be the dominant incumbent in bioprocess chromatography. While alternative formats such as membrane-, monolith- and fiber-based chromatography are more visible than before, each still plays minor roles. The reasons for this are complex and some of these are explained in this paper. However, the fact remains that membrane chromatography has come a long way since its early days of development. The main advantage of membrane chromatography continues to be its convection dominant transport mechanism, the resultant benefit being fast and scalable separation. Also, resolution obtained with properly designed devices could be comparable or even better than resin-based chromatography. Significant progress has been made in new membrane development, membrane characterization, device design and novel applications development. A wider range of new membrane matrices, ligands, and ligand-matrix linking chemistries are now available. New membrane modules, formats, and process configurations have also helped improve membrane performance. However, some significant challenges still exist, and these need to be addressed if membrane chromatography is to become more mainstream in the field of bioprocessing. Also, membrane chromatography has significant potential for application in analytical separations and this space has hardly been explored. In this paper, the advances in the areas of membrane preparation, device design and process development are reviewed. A high-level cost analysis is presented and the role of process design in membrane chromatography is discussed.
Collapse
Affiliation(s)
- Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
7
|
Cave JR, Makarov AA, Pirrone GF. Strategies for automated affinity purification-resin screening for non-traditional biopharmaceuticals in the discovery space. J Pharm Biomed Anal 2025; 255:116637. [PMID: 39705847 DOI: 10.1016/j.jpba.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Biotherapeutics occupy a significant portion of the pharmaceutical pipeline and are projected to continue growing in sales and scope. Further, the field is advancing novel and more complex molecules beyond monoclonal antibodies including multi-target proteins, engineered proteins and bioconjugates. In this aspect, the development of increasingly advanced and challenging therapies necessitates a commiserate degree of innovation to develop automated methods for resin screening, purification, and analytics in the discovery space to quickly identify liabilities and rank candidates with minimal impact on developmental resources. In this work, we introduce an automated resin screening platform tailored to small scale production runs for clone evaluation and process development in the biologics discovery space. The complex characteristics of these novel therapies requires empirical testing of resin to ensure optimal recovery of high-quality material for evaluation to inform on cell line development and future downstream process and analytical method development. This workflow enables the purification of milligrams of protein material for analytical testing and identifies ideal resins to leverage downstream as a candidate quickly progresses. This workflow was validated using a research monoclonal antibody and applied to a novel bispecific fusion protein to evaluate resin performance with respect to recovery, purity and impact on higher-order structure.
Collapse
Affiliation(s)
- Jordan R Cave
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA
| | - Alexey A Makarov
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA.
| | - Gregory F Pirrone
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA.
| |
Collapse
|
8
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
9
|
Imiołek M, Fekete S, Rudaz S, Guillarme D. Ion exchange chromatography of biotherapeutics: Fundamental principles and advanced approaches. J Chromatogr A 2025; 1742:465672. [PMID: 39805233 DOI: 10.1016/j.chroma.2025.465672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Ion exchange chromatography (IEX) is an important analytical technique for the characterization of biotechnology-derived products, such as monoclonal antibodies (mAbs) and more recently, cell and gene therapy products such as messenger ribonucleic acid (mRNA) and adeno-associated viruses (AAVs). This review paper first outlines the basic principles and separation mechanisms of IEX for charge variant separation of biotherapeutics, and examines the different elution modes based on salt or pH gradients. It then highlights several recent trends when applying IEX for the characterization of biotechnology-derived products, including: i) the effective use of pH gradients, ii) the improvement of selectivity by using organic solvents in the mobile phase, multi-step gradients, or by combining ion pairing and ion exchange, and iii) the increase in analytical throughput using ultra-short columns or automated screening of conditions. The review also discusses the incorporation of IEX into multidimensional liquid chromatography setups, integrating it with other chromatographic dimensions for the analysis of complex biotherapeutic products. It also covers the coupling of IEX with mass spectrometry (MS), ion mobility spectrometry (IMS), and multi-angle light scattering (MALS) to identify the various species contained in complex biotherapeutic samples. In conclusion, IEX is considered today as an essential technique in the analytical toolbox for the characterization and quality control of biotechnology-derived products. It offers a unique separation mechanism and can be coupled with highly informative detectors, such as MS and MALS.
Collapse
Affiliation(s)
| | | | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
10
|
Li H, Cheng J, Ge H, Sun J, Chen Z, Ren J, Du Y, Xu D, Yuan Z. Dopamine-supported HPLC post-column derivatization to fluorescence: Simultaneous and sensitive detection of eight tea polyphenols. Food Chem 2025; 464:141582. [PMID: 39406143 DOI: 10.1016/j.foodchem.2024.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
The effective differentiation and detection of multiple tea polyphenols are often challenging due to their subtle structural similarities. Although post-column derivatization HPLC strategies are commonly employed to distinguish multiple targets, the short physical distance between chromatographic column and detector limits reaction time, thereby reducing the derivatization efficiency. Dopamine (DA) reacts rapidly with resorcinol to form fluorescent azamonardine products, making fast fluorometric derivatization of tea polyphenols containing resorcinol motifs possible. In this study, a DA-driven rapid and post-column fluorescence derivatization method has been applied to sensitively detect eight tea polyphenols. This method is based on fluorescence derivatization and possesses low background interference, high sensitivity, and excellent reproducibility. Moreover, the practical application of this proposed fluorometric derivatization platform was further validated by simultaneous identification of multiple tea polyphenols in different tea samples. This work has great potential to become an alternative to the National Standard method for tea polyphenols determination.
Collapse
Affiliation(s)
- Hongchen Li
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Jing Cheng
- Technology Center of Changsha Customs, Hunan Academy of Inspection and Quarantine, Changsha 410004, China
| | - Hanbing Ge
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingbo Sun
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Zihan Chen
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yi Du
- Analysis Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Zhiqin Yuan
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
11
|
Chabala OR, Haque Md S, Thirumoorthy DAK. Stability-Indicating Liquid Chromatographic Method Development for the Simultaneous Determination of Amitriptyline Hydrochloride and Propranolol Hydrochloride in Tablet Dosage Form. J Chromatogr Sci 2025; 63:bmae060. [PMID: 39722496 DOI: 10.1093/chromsci/bmae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Indexed: 12/28/2024]
Abstract
The combination of the tricyclic antidepressant amitriptyline hydrochloride (AMH) and the non-selective beta-adrenergic blocker propranolol hydrochloride (PPH) is used for migraine prophylaxis. Higher doses of AMH trigger cardiac arrhythmias, anxiety, tachycardia, convulsions, hyperglycemia and anticholinergic side effects. The combined dosage formulation of AMH and PPH leads to drug-drug interactions; causes sedation, xerostomia, dysuria, insomnia and bradycardia; and results in patient non-compliance. The quantification of AMH and PPN becomes essential, especially for combination formulations, in addition to regular quality control to avoid clinical issues. Considering these facts into account, the reverse-phase -high-performance liquid chromatography (RP-HPLC) method was developed in accordance with International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use Q2(R1) guidelines for the simultaneous determination of AMH and PPH. The HPLC separation was performed on an HPLC system (Shimadzu, Japan, Prominence I series 2030C) using a Shimadzu Shim-Pack GIST C18 column (100 mm × 4.6 mm, 5 μ), which was equipped with an ultraviolet detector at the isosbestic point 238 nm. The mixture of acetonitrile and orthophosphoric acid (pH 3.5) in a ratio of 35:65 v/v with a flow rate of 0.75 mL/min was used as the mobile phase. The regression coefficients of AMH (r2 > 0.998) and PPH (r2 > 0.999) show good linearity between peak areas and drug concentration ranges. The limits of detection (AMH = 0.67 μg/mL, PPH = 0.67 μg/mL) and limits of quantification (AMH = 2.04 μg/mL, PPH = 2.05 μg/mL) demonstrated the higher detection sensitivity of the proposed method.
Collapse
Affiliation(s)
- Obi Reddy Chabala
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - Simon Haque Md
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - Durai Ananda Kumar Thirumoorthy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643 001, Tamil Nadu, India
| |
Collapse
|
12
|
Zakaria N, El-Sayed ASA, Ali MG. Phytochemical fingerprinting of phytotoxins as a cutting-edge approach for unveiling nature's secrets in forensic science. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:1. [PMID: 39747712 PMCID: PMC11695570 DOI: 10.1007/s13659-024-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
The integration of phytochemistry into forensic science has emerged as a groundbreaking frontier, providing unprecedented insights into nature's secrets through the precise application of phytochemical fingerprinting of phytotoxins as a cutting-edge approach. This study explores the dynamic intersection of phytochemistry and forensic science, highlighting how the unique phytochemical profiles of toxic plants and their secondary metabolites, serve as distinctive markers for forensic investigations. By utilizing advanced techniques such as Ultra-High-Performance Liquid Chromatography (UHPLC) and High-Resolution Mass Spectrometry (HRMS), the detection and quantification of plant-derived are made more accurate in forensic contexts. Real-world case studies are presented to demonstrate the critical role of plant toxins in forensic outcomes and legal proceedings. The challenges, potential, and future prospects of integrating phytochemical fingerprinting of plant toxins into forensic science were discussed. This review aims to illuminate phytochemical fingerprinting of plant toxins as a promising tool to enhance the precision and depth of forensic analyses, offering new insights into the complex stories embedded in plant toxins.
Collapse
Affiliation(s)
- Nabil Zakaria
- Phytochemistry lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Mostafa G Ali
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
He L, Li A, Yu P, Qin S, Tan HY, Zou D, Wu H, Wang S. Therapeutic peptides in the treatment of digestive inflammation: Current advances and future prospects. Pharmacol Res 2024; 209:107461. [PMID: 39423954 DOI: 10.1016/j.phrs.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Digestive inflammation is a widespread global issue that significantly impacts quality of life. Recent advances have highlighted the unique potential of therapeutic peptides for treating this condition, owing to their specific bioactivity and high specificity. By specifically targeting key proteins involved in the pathological process and modulating biomolecular functions, therapeutic peptides offer a novel and promising approach to managing digestive inflammation. This review explores the development history, pharmacological characteristics, clinical applications, and regulatory mechanisms of therapeutic peptides in treating digestive inflammation. Additionally, the review addresses pharmacokinetics and quality control methods of therapeutic peptides, focusing on challenges such as low bioavailability, poor stability, and difficulties in delivery. The role of modern biotechnologies and nanotechnologies in overcoming these challenges is also examined. Finally, future directions for therapeutic peptides and their potential impact on clinical applications are discussed, with emphasis placed on their significant role in advancing medical and therapeutic practices.
Collapse
Affiliation(s)
- Liangliang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Aijing Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Yu
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Shumin Qin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR
| | - Denglang Zou
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China.
| | - Haomeng Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shuai Wang
- Chinese Medicine Guangdong Laboratory, Hengqin, China; School of Pharmaceutical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Ďuriš M, Hradski J, Szucs R, Masár M. Microchip isotachophoresis for green and sustainable pharmaceutical quality control: Method validation and application to complex pharmaceutical formulations. J Chromatogr A 2024; 1729:465055. [PMID: 38852265 DOI: 10.1016/j.chroma.2024.465055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Universal microchip isotachophoresis (μITP) methods were developed for the determination of cationic and anionic macrocomponents (active pharmaceutical ingredients and counterions) in cardiovascular drugs marketed in salt form, amlodipine besylate and perindopril erbumine. The developed methods are characterized by low reagent and sample consumption, waste production and energy consumption, require only minimal sample preparation and provide fast analysis. The greenness of the proposed methods was assessed using AGREE. An internal standard addition was used to improve the quantitative parameters of μITP. The proposed methods were validated according to the ICH guideline. Linearity, precision, accuracy and specificity were evaluated for each of the studied analytes and all set validation criteria were met. Good linearity was observed in the presence of matrix and in the absence of matrix, with a correlation coefficient of at least 0.9993. The developed methods allowed precise and accurate determination of the studied analytes, the RSD of the quantitative and qualitative parameters were less than 1.5% and the recoveries ranged from 98 to 102%. The developed μITP methods were successfully applied to the determination of cationic and anionic macrocomponents in six commercially available pharmaceutical formulations.
Collapse
Affiliation(s)
- Marta Ďuriš
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Jasna Hradski
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia.
| | - Roman Szucs
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| |
Collapse
|
15
|
Li P, Wu DR, Yip SH, Sun D, Pawluczyk J, Smith A, Kempson J, Mathur A. Large-scale purification of a deprotected macrocyclic peptide by supercritical fluid chromatography (SFC) integrated with liquid chromatography in discovery chemistry. J Chromatogr A 2024; 1730:465112. [PMID: 38972253 DOI: 10.1016/j.chroma.2024.465112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
A macrocyclic peptide A was successfully purified in large quantities (∼30 g) in >95 % purity by an integrated two-step orthogonal purification process combining supercritical fluid chromatography (SFC) with medium-pressure reverse-phase liquid chromatography (MP-RPLC). MP-RPLC was used to fractionate the crude peptide A, remove unwanted trifluoroacetic acid (TFA) originating from the peptide A cleavage off the resin, and convert the peptide A into ammonium acetate salt form, prior to the final purification by SFC. A co-solvent of methanol/acetonitrile containing ammonium acetate and water in CO2 was developed on a Waters BEH 2-Ethylpyridine column. The developed SFC method was readily scaled up onto a 5 cm diameter column to process multi-gram quantities of the MP-RPLC fraction to reach > 95 % purity with a throughput/productivity of 0.96 g/h. The incorporation of SFC with MP-RPLC has been demonstrated to have a broader application in other large-scale polypeptide purifications.
Collapse
Affiliation(s)
- Peng Li
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Shiuhang Henry Yip
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA.
| | - Dawn Sun
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Joseph Pawluczyk
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Aaron Smith
- Spectrix, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - James Kempson
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Arvind Mathur
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| |
Collapse
|
16
|
Ji C, Ma Y, Xie Y, Guo J, Ba H, Zhou Z, Zhao K, Yang M, He X, Zheng W. Isolation and purification of carbohydrate components in functional food: a review. RSC Adv 2024; 14:23204-23214. [PMID: 39045398 PMCID: PMC11265275 DOI: 10.1039/d4ra02748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.
Collapse
Affiliation(s)
- Chao Ji
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Ying Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Yuxin Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Junli Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Haoran Ba
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Zheng Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Kongxiang Zhao
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs Tianjin 300387 China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| |
Collapse
|
17
|
Yang S, Sun M. Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (2013-2023): A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857901 DOI: 10.1021/acs.jafc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cannabis-infused edibles are food products infused with a cannabis extract. These edibles include baked goods, candies, and beverages, offering an alternative way to consume cannabis instead of smoking or vaporizing it. Ensuring the accurate detection of cannabis-infused edibles and identification of any contaminants is crucial for public health and safety. This is particularly important for compliance with legal regulations as these substances can have significant psychoactive effects, especially on unsuspecting consumers such as children or individuals with certain medical conditions. Using efficient extraction methods can greatly improve detection accuracy, ensuring that the concentration of cannabinoids in edibles is measured correctly and adheres to dosage guidelines and legal limits. This review comprehensively examines the preparation and extraction techniques for cannabinoid edibles. It covers methods such as solid-phase extraction, enhanced matrix removal-lipid, QuEChERS, dissolution and dispersion techniques, liquid-phase extraction, and other emerging methodologies along with analytical techniques for cannabinoid analysis. The main analytical techniques employed for the determination of cannabinoids include liquid chromatography (LC), gas chromatography (GC), direct analysis in real time (DART), and mass spectrometry (MS). The application of these extraction and analytical techniques is further demonstrated through their use in analyzing specific edible samples, including oils, candies, beverages, solid coffee and tea, snacks, pet food, and contaminated products.
Collapse
Affiliation(s)
- Siyun Yang
- Department of Biology, Kean University, Union, New Jersey 07083, United States
| | - Mingjing Sun
- Department of Chemistry and Physics, Kean University, Union, New Jersey 07083, United States
| |
Collapse
|
18
|
Gohar MS, Rahman TU, Bahadur A, Ali A, Alharthi S, Al-Shaalan NH. Development and Validation of Novel HPLC Methods for Quantitative Determination of Vitamin D3 in Tablet Dosage Form. Pharmaceuticals (Basel) 2024; 17:505. [PMID: 38675464 PMCID: PMC11054345 DOI: 10.3390/ph17040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the present work, an efficient isocratic HPLC method was developed for the precise and accurate estimation of vitamin D3 in tablet form. The chromatographic conditions comprised an L3 silica column (5 µm in particle size, 4.6 mm × 250 mm) with a mobile phase n-hexane/ethyl acetate (85:15 v/v) with a flow rate of 2.0 mL/min and a detection wavelength of 292 nm. The new methodology was validated for accuracy, precision, specificity, robustness, and quantification limits according to an official monograph of USP/BP and ICH guidelines. The peak areas of the six replicates of the homogeneous sample were recorded. The mean value obtained was 67,301, and the relative standard deviation (RSD) was 0.1741. The linearity and range were in the acceptable bounds, i.e., 0.999, which was calculated using regression line analysis. The results show that the method is truly acceptable as the RSD, as the flow rate was 0.81%, while for the mobile phase composition, it was 0.72%, which lies in the acceptable range. The limit of detection (LOD) and the limit of quantification (LOQ) values were 0.0539 µg/mL and 0.1633 µg/mL, respectively. The % RSD of the intra and inter-day precision of the method was deemed acceptable according to the international commission for harmonization guidelines. The developed method has potential to be used for the detection and quantification of vitamin D3 during routine analysis for tablets in dosage form.
Collapse
Affiliation(s)
- Muhammad Saqib Gohar
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Azad Jammu & Kashmir 12080, Pakistan; (M.S.G.); (T.U.R.)
| | - Taj Ur Rahman
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Azad Jammu & Kashmir 12080, Pakistan; (M.S.G.); (T.U.R.)
| | - Ali Bahadur
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad 46000, Pakistan;
| | - Ashraf Ali
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Research Center of Basic Sciences, Engineering and High Altitude, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
19
|
Rahman M, Marzullo B, Holman SW, Barrow M, Ray AD, O’Connor PB. Advancing PROTAC Characterization: Structural Insights through Adducts and Multimodal Tandem-MS Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:285-299. [PMID: 38197777 PMCID: PMC10853971 DOI: 10.1021/jasms.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are specialized molecules that bind to a target protein and a ubiquitin ligase to facilitate protein degradation. Despite their significance, native PROTACs have not undergone tandem mass spectrometry (MS) analysis. To address this gap, we conducted a pioneering investigation on the fragmentation patterns of two PROTACs in development, dBET1 and VZ185. Employing diverse cations (sodium, lithium, and silver) and multiple tandem-MS techniques, we enhanced their structural characterization. Notably, lithium cations facilitated comprehensive positive-mode coverage for dBET1, while negative polarity mode offered richer insights. Employing de novo structure determination on 2DMS data from degradation studies yielded crucial insights. In the case of VZ185, various charge states were observed, with [M + 2H]2+ revealing fewer moieties than [M + H]+ due to charge-related factors. Augmenting structural details through silver adducts suggested both charge-directed and charge-remote fragmentation. This comprehensive investigation identifies frequently dissociated bonds across multiple fragmentation techniques, pinpointing optimal approaches for elucidating PROTAC structures. The findings contribute to advancing our understanding of PROTACs, pivotal for their continued development as promising therapeutic agents.
Collapse
Affiliation(s)
- Mohammed Rahman
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Bryan Marzullo
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Stephen W. Holman
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 4TF, U.K.
| | - Mark Barrow
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Andrew D. Ray
- New
Modalities and Parenteral Development, Pharmaceutical Technology &
Development, Operations, AstraZeneca, Macclesfield, SK10 4TF, U.K.
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| |
Collapse
|
20
|
Redón L, Subirats X, Chapel S, Januarius T, Broeckhoven K, Rosés M, Cabooter D, Desmet G. Comprehensive analysis of the effective and intra-particle diffusion of weakly retained compounds in silica hydrophilic interaction liquid chromatography columns. J Chromatogr A 2024; 1713:464529. [PMID: 38029660 DOI: 10.1016/j.chroma.2023.464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
A detailed analysis of intra-particle volumes and layer thicknesses and their effect on the diffusion of solutes in hydrophilic interaction liquid chromatography (HILIC) was made. Pycnometric measurements and the retention volume of deuterated mobile phase constituents (water and acetonitrile) were used to estimate the void volume inside the column, including not only the volume of the mobile phase but also part of the enriched water solvent acting as the stationary phase in HILIC. The mobile phase (hold-up) volume accessible to non-retained components was estimated using a homologous series approach. The joint analysis of the different approaches indicated the formation of enriched water layers on the hydrophobic silica mesopore walls with a thickness varying significantly with mobile phase composition. The maximal thickness of the enriched water layers, which corresponded to the minimum void volume accessible to unretained solutes, marked a transition in the retention behavior of the studied analytes. Discrepancies between deuterated solvent measurements and pycnometry were explained by the existence of an irreplaceable water layer adsorbed on the silica surface. Regarding the diffusion behavior in HILIC, peak parking experiments were used to interpret the influence of the acetonitrile content on the effective diffusion coefficient Deff. A systematic decrease in Deff and molecular diffusion Dm was observed with decreasing acetonitrile concentration, primarily attributed to variations in mobile phase viscosity. Notably, Deff/Dm remained nearly unaffected by variations in mobile phase composition. Finally, the effective medium theory was used to make a comprehensive analysis of Dpart/Dm to study the contribution to band broadening when the solute resides in the mesopores. The obtained data unveiled a curvature with a minimum corresponding to conditions of maximum water-layer thickness and retention. For the weakly retained compounds (k' < 0.5) the Dpart/Dm-values were found to be relatively high (order of 0.35-0.5), which directly reflects the high γsDs/Dm-values that were observed (order 0.35-7).
Collapse
Affiliation(s)
- Lídia Redón
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Xavier Subirats
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Soraya Chapel
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Timothy Januarius
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Ken Broeckhoven
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Martí Rosés
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Deirdre Cabooter
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
21
|
Kensert A, Desmet G, Cabooter D. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography. J Chromatogr A 2024; 1713:464570. [PMID: 38101304 DOI: 10.1016/j.chroma.2023.464570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Artificial intelligence and machine learning techniques are increasingly used for different tasks related to method development in liquid chromatography. In this study, the possibilities of a reinforcement learning algorithm, more specifically a deep deterministic policy gradient algorithm, are evaluated for the selection of scouting runs for retention time modeling. As a theoretical exercise, it is investigated whether such an algorithm can be trained to select scouting runs for any compound of interest allowing to retrieve its correct retention parameters for the three-parameter Neue-Kuss retention model. It is observed that three scouting runs are generally sufficient to retrieve the retention parameters with an accuracy (mean relative percentage error MRPE) of 1 % or less. When given the opportunity to select additional scouting runs, this does not lead to a significantly improved accuracy. It is also observed that the agent tends to give preference to isocratic scouting runs for retention time modeling, and is only motivated towards selecting gradient scouting runs when penalized (strongly) for large analysis/gradient times. This seems to reinforce the general power and usefulness of isocratic scouting runs for retention time modeling. Finally, the best results (lowest MRPE) are obtained when the agent manages to retrieve retention time data for % ACN at elution of the compound under consideration that spread the entire relevant range of ACN (5 % ACN to 95 % ACN) as well as possible, i.e., resulting in retention data at a low, intermediate and high % ACN. Based on the obtained results, we believe reinforcement learning holds great potential to automate and rationalize method development in liquid chromatography in the future.
Collapse
Affiliation(s)
- Alexander Kensert
- University of Leuven (KU Leuven), Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium; Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Deirdre Cabooter
- University of Leuven (KU Leuven), Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Thissen J, Klassen MD, Constantinidis P, Hacker MC, Breitkreutz J, Teutenberg T, Fischer B. Online Coupling of Size Exclusion Chromatography to Capillary Enhanced Raman Spectroscopy for the Analysis of Proteins and Biopharmaceutical Drug Products. Anal Chem 2023; 95:17868-17877. [PMID: 38050672 DOI: 10.1021/acs.analchem.3c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The online coupling of size exclusion chromatography (SEC) to capillary enhanced Raman spectroscopy (CERS) based on a liquid core waveguide (LCW) flow cell was applied for the first time to assess the higher-order structure of different proteins. This setup allows recording of Raman spectra of the monomeric protein within complex mixtures, since SEC enables the separation of the monomeric protein from matrix components such as excipients of a biopharmaceutical product and higher molecular weight species (e.g., aggregates). The acquired Raman spectra were used for structural elucidation of well characterized proteins such as bovine serum albumin, hen egg white lysozyme, and β-lactoglobulin and of the monoclonal antibody rituximab in a medicinal product. Additionally, the CERS detection of the disaccharide sucrose, which is used as a stabilizing excipient, was quantified to achieve a limit of detection (LOD) of 120 μg and a limit of quantification (LOQ) of 363 μg injected on the column.
Collapse
Affiliation(s)
- Jana Thissen
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin D Klassen
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
| | - Philipp Constantinidis
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thorsten Teutenberg
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Ntorkou M, Tsanaktsidou E, Chachlioutaki K, Fatouros DG, Markopoulou CK. In Vitro Permeability Study of Homotaurine Using a High-Performance Liquid Chromatography with Fluorescence Detection Pre-Column Derivatization Method. Molecules 2023; 28:7086. [PMID: 37894565 PMCID: PMC10609320 DOI: 10.3390/molecules28207086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Homotaurine (HOM) is considered a promising drug for the treatment of Alzheimer's and other neurodegenerative diseases. In the present work, a new high-performance liquid chromatography with fluorescence detection (HPLC-FLD) (λex. = 340 nm and λem. = 455 nm) method was developed and validated for the study of substance permeability in the central nervous system (CNS). Analysis was performed on a RP-C18 column with a binary gradient elution system consisting of methanol-potassium phosphate buffer solution (pH = 7.0, 0.02 M) as mobile phase. Samples of homotaurine and histidine (internal standard) were initially derivatized with ortho-phthalaldehyde (OPA) (0.01 M), N-acetylcysteine (0.01 M) and borate buffer (pH = 10.5; 0.05 M). To ensure the stability and efficiency of the reaction, the presence of different nucleophilic reagents, namely (a) 2-mercaptoethanol (2-ME), (b) N-acetylcysteine (NAC), (c) tiopronin (Thiola), (d) 3-mercaptopropionic acid (3-MPA) and (e) captopril, was investigated. The method was validated (R2 = 0.9999, intra-day repeatability %RSD < 3.22%, inter-day precision %RSD = 1.83%, limits of detection 5.75 ng/mL and limits of quantification 17.43 ng/mL, recovery of five different concentrations 99.75-101.58%) and successfully applied to investigate the in vitro permeability of homotaurine using Franz diffusion cells. The apparent permeability (Papp) of HOM was compared with that of memantine, which is considered a potential therapeutic drug for various CNSs. Our study demonstrates that homotaurine exhibits superior permeability through the simulated blood-brain barrier compared to memantine, offering promising insights for enhanced drug delivery strategies targeting neurological conditions.
Collapse
Affiliation(s)
- Marianna Ntorkou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.N.); (E.T.)
| | - Eleni Tsanaktsidou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.N.); (E.T.)
| | - Konstantina Chachlioutaki
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.C.); (D.G.F.)
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.C.); (D.G.F.)
| | - Catherine K. Markopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.N.); (E.T.)
| |
Collapse
|
24
|
Dahlseid T, Florea A, Schulte G, Cash K, Xu X, Tattersall P, Wang Q, Stoll D. Changes in the cis-trans isomer selectivity of a reversed-phase liquid chromatography column during use with acidic mobile phase conditions. J Chromatogr A 2023; 1708:464371. [PMID: 37725873 DOI: 10.1016/j.chroma.2023.464371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Reversed-phase liquid chromatography (RPLC) is the analytical tool of choice for monitoring process-related organic impurities and degradants in pharmaceutical materials. Its popularity is due to its general ease-of-use, high performance, and reproducibility in most cases, all of which have improved as the technique has matured over the past few decades. Nevertheless, in our work we still occasionally observe situations where RPLC methods are not as robust as we would like them to be in practice due to variations in stationary phase chemistry between manufactured batches (i.e., lot-to-lot variability), and changes in stationary phase chemistry over time. Over the last three decades several models of RPLC selectivity have been developed and used to quantify and rationalize the effects of numerous parameters (e.g., effect of bonded phase density) on separation selectivity. The Hydrophobic Subtraction Model (HSM) of RPLC selectivity has been used extensively for these purposes; currently the publicly available database of column parameters contains data for 750 columns. In this work we explored the possibility that the HSM could be used to better understand the chemical basis of observed differences in stationary phase selectivity when they occur - for example, lot-to-lot variations or changes in selectivity during column use. We focused our attention on differences and changes in the observed selectivity for a pair of cis-trans isomers of a pharmaceutical intermediate. Although this is admittedly a challenging case, we find that the observed changes in selectivity are not strongly correlated with HSM column parameters, suggesting that there is a gap in the information provided by the HSM with respect to cis-trans isomer selectivity specifically. Further work with additional probe molecules showed that larger changes in cis-trans isomer selectivity were observed for pairs of molecules with greater molecular complexity, compared to the selectivity changes observed for simpler molecules. These results do not provide definitive answers to questions about the chemical basis of changes in stationary phase chemistry that lead to observed differences in cis-trans isomer selectivity. However, the results do provide important insights about the critical importance of molecular complexity when choosing probe compounds and indicate opportunities to develop improved selectivity models with increased sensitivity for cis-trans isomer selectivity.
Collapse
Affiliation(s)
- Tina Dahlseid
- Department of Chemistry, Gustavus Adolphus College, 800W College Ave, St Peter, MN 56082 USA
| | - Alexandru Florea
- Department of Chemistry, Gustavus Adolphus College, 800W College Ave, St Peter, MN 56082 USA
| | - Grace Schulte
- Department of Chemistry, Gustavus Adolphus College, 800W College Ave, St Peter, MN 56082 USA
| | - Kathryn Cash
- Department of Chemistry, Gustavus Adolphus College, 800W College Ave, St Peter, MN 56082 USA
| | - Xuejun Xu
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Dr, New Brunswick, NJ 08903 USA
| | - Peter Tattersall
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Dr, New Brunswick, NJ 08903 USA
| | - Qinggang Wang
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Dr, New Brunswick, NJ 08903 USA
| | - Dwight Stoll
- Department of Chemistry, Gustavus Adolphus College, 800W College Ave, St Peter, MN 56082 USA.
| |
Collapse
|
25
|
Liu H, Wu Z, Chen J, Wang J, Qiu H. Recent advances in chiral liquid chromatography stationary phases for pharmaceutical analysis. J Chromatogr A 2023; 1708:464367. [PMID: 37714014 DOI: 10.1016/j.chroma.2023.464367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Chirality is a common phenomenon in nature. Different enantiomers of chiral drug compounds have obvious differences in their effects on the human body. Therefore, the separation of chiral drugs plays an extremely important role in the safe utilization of drugs. High-performance liquid chromatography (HPLC) is an effective tool for the separation and analysis of compounds, in which the chromatographic packing plays a key role in the separation. Chiral pharmaceutical separation and analysis in HPLC rely on chiral stationary phases (CSPs). Thus, various CSPs are being developed to meet the needs of chiral drug separation and analysis. In this review, recent developments in CSPs, including saccharides (cyclodextrin, cellulose, amylose and chitosan), macrocycles (macrocyclic glycopeptides, pillar[n]arene and polyamide) and porous organic materials (metal-organic frameworks, covalent organic frameworks, and porous organic cages), for pharmaceutical analysis in HPLC were summarized, the advantages and disadvantages of various stationary phases were introduced, and their development prospects were discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhihai Wu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
26
|
Redón L, Safar Beiranvand M, Subirats X, Rosés M. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships. Anal Chim Acta 2023; 1277:341672. [PMID: 37604624 DOI: 10.1016/j.aca.2023.341672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The Abraham's solvation parameter model, based on linear solvation energy relationships (LSER), allows the accurate characterization of the selectivity of chromatographic systems according to solute-solvent interactions (polarizability, dipolarity, hydrogen bonding, and cavity formation). However, this method, based on multilinear regression analysis, requires the measurement of the retention factors of a considerably high number of compounds, turning it into a time-consuming low throughput method. Simpler methods such as Tanaka's scheme are preferred. In the present work, the Abraham's model is revisited to develop a fast and reliable method, similar to the one proposed by Tanaka, for the characterization of columns employed in reversed-phase liquid chromatography and particularly in hydrophilic interaction liquid chromatography. For this purpose, pairs of compounds are carefully selected in order to have in common all molecular descriptors except for a specific one (for instance, similar molecular volume, dipolarity, polarizability, and hydrogen bonding basicity features, but different hydrogen bonding acidity). Thus, the selectivity factor of a single pair of test compounds can provide information regarding the extent of the dissimilar solute-solvent interactions and their influence on chromatographic retention. The proposed characterization method includes the determination of the column hold-up volume and Abraham's cavity term by means of the injection of four alkyl ketone homologues. Therefore, five chromatographic runs in a reversed-phase column (four pairs of test solutes and a mixture of four homologues) are enough to characterize the selectivity of a chromatographic system. Tanaka's method is also analyzed from the LSER point of view.
Collapse
Affiliation(s)
- Lídia Redón
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Mahmoud Safar Beiranvand
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Xavier Subirats
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Martí Rosés
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
27
|
De Fauw K, Umelo IA, Teng X, Vlyminck S, Rivera G, Brigé A, Delangle A. Theoretical charge plots as a tool for targeted and accelerated ion exchange chromatography method development of NANOBODY Ⓡ molecules. J Chromatogr A 2023; 1705:464137. [PMID: 37356365 DOI: 10.1016/j.chroma.2023.464137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
NANOBODYⓇ molecules are an innovative class of biotherapeutics based on heavy chain only VHH immunoglobulins. Much like canonical antibodies, they are prone to the formation of charge variants and other post-translational modifications, which can potentially impact their critical quality attributes. Therefore, establishing high-resolution product-specific methods, such as IEX chromatography, is essential for evaluating the purity of these molecules. However, due to the lower surface charge of NANOBODYⓇ molecules, their charge-based elution behavior can differ considerably from that of classical antibodies, resulting in a more extensive method development set-up for these smaller molecules. Using an initial pH screening gradient based on theoretical protein charge plots, we investigated the IEX retention behavior of eight NANOBODYⓇ molecules with a wide range of pI values (pI 5.0 to 10.0). Our findings reveal that the charge-based chromatographic behavior of NANOBODYⓇ molecules cannot be solely attributed to the isoelectric point (pI) of the protein. Rather, a molecule-specific charge threshold was identified as a critical parameter for NANOBODYⓇ molecule retention. Furthermore, the protein charge plot also showed that NANOBODYⓇ molecule elution can be characterized by a charge plateau where the net charge of the protein remains constant over a certain pH range (∼ pH 5.5 to pH 8.0), further challenging the paradigm that elution pH and pI are fixed values. The application of this theoretical approach using protein charge plots to define NANOBODYⓇ molecule charge threshold and charge plateau parameters, can reduce overall IEX method development turnaround time by at least 2-fold.
Collapse
Affiliation(s)
- Ken De Fauw
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Ijeoma A Umelo
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Xia Teng
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Silke Vlyminck
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Gustavo Rivera
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Ann Brigé
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Aurélie Delangle
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium.
| |
Collapse
|
28
|
Recchia MJJ, Baumeister TUH, Liu DY, Linington RG. MultiplexMS: A Mass Spectrometry-Based Multiplexing Strategy for Ultra-High-Throughput Analysis of Complex Mixtures. Anal Chem 2023; 95:11908-11917. [PMID: 37530514 PMCID: PMC11093148 DOI: 10.1021/acs.analchem.3c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
High-throughput chemical analysis of natural product mixtures lags behind developments in genome sequencing technologies and laboratory automation, leading to a disconnect between library-scale chemical and biological profiling that limits new molecule discovery. Here, we report a new orthogonal sample multiplexing strategy that can increase mass spectrometry-based profiling up to 30-fold over traditional methods. Profiled pooled samples undergo subsequent computational deconvolution to reconstruct peak lists for each sample in the set. We validated this approach using in silico experiments and demonstrated a high assignment precision (>97%) for large, pooled samples (r = 30), particularly for infrequently occurring metabolites of relevance in drug discovery applications. Requiring only 5% of the previously required MS acquisition time, this approach was repeated in a recent biological activity profiling study on 925 natural product extracts, leading to the rediscovery of all previously reported bioactive metabolites. This new method is compatible with MS data from any instrument vendor and is supported by an open-source software package: https://github.com/liningtonlab/MultiplexMS.
Collapse
Affiliation(s)
| | | | - Dennis Y. Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
29
|
Ahmed MA, Ghiasvand A, Quirino JP. Dynamic in situ growth of bonded-phase silica nanospheres on silica capillary inner walls for open-tubular liquid chromatography. Anal Bioanal Chem 2023; 415:4923-4934. [PMID: 37351669 PMCID: PMC10386930 DOI: 10.1007/s00216-023-04798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Silica nanospheres (SNS) were grown on the inner walls of silica capillaries through a dynamic in situ nucleation process to prepare a highly porous and large accessible surface area substrate. The SNS were then functionalized with octadecyl (C18), 3-aminopropyltriethoxysilane (APTES), beta-cyclodextrin (β-CD), and amino groups to develop robust and efficient chromatographic stationary phases. The modified silica capillaries were exploited for open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) applications. The prepared stationary phases were compared to conventional capillaries in terms of separation performance. The synthesis process was optimized, and the bonded-phase stationary phases were characterized by the electron microscopy technique. The effects of different solvents, additives, and functional groups on the geometry and chromatographic resolving power of the SNS were envisaged. The capillaries modified with octadecyl groups were evaluated for the separation of non-steroidal anti-inflammatory drugs, phenones, alkenylbenzenes, and enantiomers of chlorophenoxy herbicides. As an application instance, an SNS-C18-coated capillary was utilized for the separation of alkenylbenzenes from clove extract and protein digest medium, through OT-LC and OT-CEC techniques, respectively. The β-CD functionalized capillary was applied for the OT-CEC separation of a dichlorprop racemic mixture.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
- Department of Analytical Chemistry, Lorestan University, Khoramabad, Iran.
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
| |
Collapse
|
30
|
Lin Z, Wang Q, Zhou Y, Shackman JG. Trapping mode two-dimensional liquid chromatography for quantitative low-level impurity enrichment in pharmaceutical development. J Chromatogr A 2023; 1700:464043. [PMID: 37172541 DOI: 10.1016/j.chroma.2023.464043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Trapping mode two-dimensional liquid chromatography (2D-LC) has recently found applications in pharmaceutical analysis to clean, refocus, and enrich analytes. Given its enrichment capability, 2D-LC with multiple trappings is appealing for low-level impurity monitoring that cannot be solved by single dimensional LC (1D-LC) or unenriched 2D-LC analysis. However, the quantitative features of multi-trapping 2D-LC remain largely unknown at impurity levels from parts-per-million (ppm) to 0.15% (w/w). We present a simple heart-cutting trapping mode 2D-LC workflow using only common components and software found in typical off-the-shelf 1D-LC instruments. This robust, turn-key system's quantitative capabilities were evaluated using a variety of standard markers, demonstrating linear enrichment for up to 20 trapping cycles and achieving a recovery of over 97.0%. Next, the trapping system was applied to several real-world low-level impurity pharmaceutical case studies including (1) the identification of two unknown impurities at sub-ppm levels resulting in material discoloration, (2) the discovery of a new impurity at 0.05% (w/w) co-eluted with a known impurity, making the undesired summation above the target specification, and (3) the quantification of a potential mutagenic impurity at 10-ppm level in a poorly soluble substrate. The recovery in all studies was better than 97.0% with RSD lower than 3.0%, demonstrating accuracy and precision of the 2D-LC trapping workflow. As no specialized equipment or software is required, we envision that the system could be used to develop low-impurity monitoring methods suitable for validation and potential execution in quality-control laboratories.
Collapse
Affiliation(s)
- Ziqing Lin
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA.
| | - Qinggang Wang
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA
| | - Yiyang Zhou
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA
| | - Jonathan G Shackman
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA
| |
Collapse
|
31
|
Jørgensen AK, Ong JJ, Parhizkar M, Goyanes A, Basit AW. Advancing non-destructive analysis of 3D printed medicines. Trends Pharmacol Sci 2023; 44:379-393. [PMID: 37100732 DOI: 10.1016/j.tips.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023]
Abstract
Pharmaceutical 3D printing (3DP) has attracted significant interest over the past decade for its ability to produce personalised medicines on demand. However, current quality control (QC) requirements for traditional large-scale pharmaceutical manufacturing are irreconcilable with the production offered by 3DP. The US Food and Drug Administration (FDA) and the UK Medicines and Healthcare Products Regulatory Agency (MHRA) have recently published documents supporting the implementation of 3DP for point-of-care (PoC) manufacturing along with regulatory hurdles. The importance of process analytical technology (PAT) and non-destructive analytical tools in translating pharmaceutical 3DP has experienced a surge in recognition. This review seeks to highlight the most recent research on non-destructive pharmaceutical 3DP analysis, while also proposing plausible QC systems that complement the pharmaceutical 3DP workflow. In closing, outstanding challenges in integrating these analytical tools into pharmaceutical 3DP workflows are discussed.
Collapse
Affiliation(s)
- Anna Kirstine Jørgensen
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Maryam Parhizkar
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| |
Collapse
|
32
|
Zaid A, Hassan NH, Marriott PJ, Wong YF. Comprehensive Two-Dimensional Gas Chromatography as a Bioanalytical Platform for Drug Discovery and Analysis. Pharmaceutics 2023; 15:1121. [PMID: 37111606 PMCID: PMC10140985 DOI: 10.3390/pharmaceutics15041121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last decades, comprehensive two-dimensional gas chromatography (GC×GC) has emerged as a significant separation tool for high-resolution analysis of disease-associated metabolites and pharmaceutically relevant molecules. This review highlights recent advances of GC×GC with different detection modalities for drug discovery and analysis, which ideally improve the screening and identification of disease biomarkers, as well as monitoring of therapeutic responses to treatment in complex biological matrixes. Selected recent GC×GC applications that focus on such biomarkers and metabolite profiling of the effects of drug administration are covered. In particular, the technical overview of recent GC×GC implementation with hyphenation to the key mass spectrometry (MS) technologies that provide the benefit of enhanced separation dimension analysis with MS domain differentiation is discussed. We conclude by highlighting the challenges in GC×GC for drug discovery and development with perspectives on future trends.
Collapse
Affiliation(s)
- Atiqah Zaid
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Norfarizah Hanim Hassan
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC 3800, Australia
| | - Yong Foo Wong
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
33
|
Gozdzialski L, Wallace B, Hore D. Point-of-care community drug checking technologies: an insider look at the scientific principles and practical considerations. Harm Reduct J 2023; 20:39. [PMID: 36966319 PMCID: PMC10039693 DOI: 10.1186/s12954-023-00764-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Drug checking is increasingly being explored outside of festivals and events to be an ongoing service within communities, frequently integrated within responses to illicit drug overdose. The choice of instrumentation is a common question, and the demands on these chemical analytical instruments can be challenging as illicit substances may be more complex and include highly potent ingredients at trace levels. The answer remains nuanced as the instruments themselves are not directly comparable nor are the local demands on the service, meaning implementation factors heavily influence the assessment and effectiveness of instruments. In this perspective, we provide a technical but accessible introduction to the background of a few common drug checking methods aimed at current and potential drug checking service providers. We discuss the following tools that have been used as part of the Vancouver Island Drug Checking Project in Victoria, Canada: immunoassay test strips, attenuated total reflection IR-absorption spectroscopy, Raman spectroscopy from powder samples, surface-enhanced Raman scattering in a solution of colloidal gold nanoparticles, and gas chromatography-mass spectrometry. Using four different drug mixtures received and tested at the service, we illustrate the strengths, limitations, and capabilities of such instruments, and expose the scientific theory to give further insight into their analytical results. Each case study provides a walk-through-style analysis for a practical comparison between data from several different instruments acquired on the same sample. Ideally, a single instrument would be able to achieve all of the objectives of drug checking. However, there is no clear instrument that ticks every box; low cost, portable, rapid, easy-to-use and provides highly sensitive identification and accurate quantification. Multi-instrument approaches to drug checking may be required to effectively respond to increasingly complex and highly potent substances demanding trace level detection and the potential for quantification.
Collapse
Affiliation(s)
- Lea Gozdzialski
- Department of Chemistry, University of Victoria, Victoria, V8W 3V6, Canada
| | - Bruce Wallace
- School of Social Work, University of Victoria, Victoria, V8W 2Y2, Canada
- Canadian Institute for Substance Use Research, University of Victoria, Victoria, V8W 2Y2, Canada
| | - Dennis Hore
- Department of Chemistry, University of Victoria, Victoria, V8W 3V6, Canada.
- Canadian Institute for Substance Use Research, University of Victoria, Victoria, V8W 2Y2, Canada.
- Department of Computer Science, University of Victoria, Victoria, V8W 3P6, Canada.
| |
Collapse
|
34
|
Compact capillary high performance liquid chromatography system for pharmaceutical on-line reaction monitoring. Anal Chim Acta 2023; 1247:340903. [PMID: 36781255 DOI: 10.1016/j.aca.2023.340903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Due to their size, conventional high performance liquid chromatographs (HPLCs) are difficult to place close to a reaction vessel within a pharmaceutical manufacturing or development site. Typically, long transfer lines are required to move sample from the reactor to the HPLC for analysis and high solvent usage is required. However, herein a compact and modular separation system has been developed to enable co-location of an HPLC with a small-scale reactor for reaction monitoring in the synthesis of active pharmaceutical ingredients. Using a framework based on capillary HPLC, a compact gradient separation system with a fully modular architecture is described. A custom miniature diode-array detector with a linear dynamic range (up to 1500 mAU at 210 nm) was integrated and evaluated for on-line reaction monitoring. In evaluating system suitability, average peak area %RSD of <3%, and an average retention time %RSD of <0.7%, were achieved. To demonstrate practical utility, the compact system was coupled directly to an on-line lab-scale flow through reactor for continuous reaction monitoring in the laboratory fume hood, where a study of the 3rd Bourne reaction was used to compare the performance of the compact system with a commercially available process HPLC instrument (Waters PATROL UPLC). Further, 33 off-line samples from a continuous crystallization reactor were analysed and it was found that the developed compact HPLC system showed equivalent quantitative performance to an Agilent 1290 Infinity II HPLC system.
Collapse
|
35
|
Chin S, Cruz K, Goyon A, Venkatramani CJ, Yehl PM, Kurita KL. Two-dimensional reversed phase-normal phase liquid chromatography for simultaneous achiral-chiral analysis to support high-throughput experimentation. J Chromatogr A 2023; 1692:463820. [PMID: 36796276 DOI: 10.1016/j.chroma.2023.463820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Typical chromatographic analysis of chiral compounds requires the use of achiral methods to evaluate impurities or related substances along with separate methods to evaluate chiral purity. The use of two-dimensional liquid chromatography (2D-LC) to support simultaneous achiral-chiral analysis has become increasingly advantageous in the field of high-throughput experimentation where low reaction yields or side reactions can lead to challenging direct chiral analysis. Advancements in multi-dimensional chromatography have led to the development of robust 2D-LC instrumentation with reversed phase solvent systems (RPLC-RPLC) enabling this simultaneous analysis, eliminating the need to purify crude reaction mixtures to determine stereoselectivity. However, when chiral RPLC cannot separate a chiral impurity from the desired product, there are few viable commercial options. The coupling of NPLC to RPLC (RPLC-NPLC) continues to remain elusive due to solvent immiscibility between the two solvent systems. This solvent incompatibility leads to lack of retention, band broadening, poor resolution, poor peak shapes, and baseline issues in the second dimension. A study was conducted to understand the effect of various water-containing injections on NPLC and applied to the development of robust RPLC-NPLC methods. Following thoughtful consideration and modifications to the design of a 2D-LC system in regards to mobile phase selection, sample loop sizing, targeted mixing, and solvent compatibility, proof of concept has been demonstrated with the development of reproducible RPLC-NPLC 2D-LC methods to perform simultaneous achiral-chiral analysis. Second dimension NPLC method performance proved comparable to corresponding 1D-NPLC methods with excellent percent difference in enantiomeric excess results ≤ 1.09% and adequate limits of quantitation down to 0.0025 mg/mL for injection volumes of 2 µL, or 5 ng on-column.
Collapse
Affiliation(s)
- Steven Chin
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Karissa Cruz
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Alexandre Goyon
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Cadapakam J Venkatramani
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Peter M Yehl
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Kenji L Kurita
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
36
|
Funari CS, Rinaldo D, Bolzani VS, Verpoorte R. Reaction of the Phytochemistry Community to Green Chemistry: Insights Obtained Since 1990. JOURNAL OF NATURAL PRODUCTS 2023; 86:440-459. [PMID: 36638830 DOI: 10.1021/acs.jnatprod.2c00501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review article aims to study how phytochemists have reacted to green chemistry insights since 1990, the year when the U.S. Environmental Protection Agency launched the "Pollution Prevention Act". For each year in the period 1990 to 2019, three highly cited phytochemistry papers that provided enough information about the experimental procedures utilized were sampled. The "greenness" of these procedures was assessed, particularly for the use of solvents. The highly hazardous diethyl ether, benzene, and carbon tetrachloride did not appear in the papers sampled after 2010. Advances in terms of sustainability were observed mainly in the extraction stage. Similar progress was not observed in purification procedures, where chloroform, dichloromethane, and hexane regularly have been employed. Since replacing such solvents in purification procedures should be a major goal, potential alternative approaches are discussed. Moreover, some current initiatives toward a more sustainable phytochemical research considering aspects other than only solvents are highlighted. Although some advances have been achieved, it is believed that natural products chemists can play a major role in developing a novel ecological paradigm in chemistry. To contribute to this objective, six principles for performing natural products chemistry consistent with the guidelines of green chemistry are proposed.
Collapse
Affiliation(s)
- Cristiano S Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), 18610-034Botucatu, Brazil
| | - Daniel Rinaldo
- Green Biotech Network, School of Sciences, São Paulo State University (UNESP), 17033-360Bauru, Brazil
| | - Vanderlan S Bolzani
- NuBBE, Institute of Chemistry, São Paulo State University (UNESP), 14800-900Araraquara, Brazil
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, PO Box 9505, 2300RALeiden, The Netherlands
| |
Collapse
|
37
|
Comprehensive UHPLC- and CE-based methods for engineered Cas9 characterization. Talanta 2023; 252:123780. [DOI: 10.1016/j.talanta.2022.123780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
|
38
|
Xiang H, Xu P, Qiu H, Wen W, Zhang A, Tong S. Two-dimensional chromatography in screening of bioactive components from natural products. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1161-1176. [PMID: 35934878 DOI: 10.1002/pca.3168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Screening and analysis of bioactive components from natural products is a fundamental part of new drug development and innovation. Two-dimensional (2D) chromatography has been demonstrated to be an effective method for screening and preparation of specific bioactive components from complex natural products. OBJECTIVE To collect details of application of 2D chromatography in screening of natural product bioactive components and to outline the research progress of different separation mechanisms and strategies. METHODOLOGY Three screening strategies based on 2D chromatography are reviewed, including traditional separation-based screening, bioactivity-guided screening and affinity chromatography-based screening. Meanwhile, in order to cover these aspects, selections of different separation mechanisms and modes are also presented. RESULTS Compared with traditional one-dimensional (1D) chromatography, 2D chromatography has unique advantages in terms of peak capacity and resolution, and it is more effective for screening and identifying bioactive components of complex natural products. CONCLUSION Screening of natural bioactive components using 2D chromatography helps separation and analysis of complex samples with greater targeting and relevance, which is very important for development of innovative drug leads.
Collapse
Affiliation(s)
- Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ailian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
39
|
Synthesis of C8F13-SiO2 stationary phase for chromatographic separation of highly polar compounds. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Huang Y, Xu Q, Lu H, Li Z, Wu Y. A rapid and sensitive UPLC-MS/MS method for simultaneous determination of four potential mutagenic impurities at trace levels in ripretinib drug substance. RSC Adv 2022; 12:25617-25622. [PMID: 36199346 PMCID: PMC9455223 DOI: 10.1039/d2ra04505b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
In the synthesis of ripretinib, a new oral tyrosine kinase inhibitor, impurities could arise directly from starting materials, reagents and intermediates. Among these process impurities, four specific intermediate impurities were found to contain the structural alerts of primary aromatic amine and aldehyde groups, triggering the concern of potential mutagenic impurities (PMIs). Two complementary (quantitative) structure-activity relationship [(Q)SAR] evaluation systems (expert rule-based and statistics-based) were subsequently employed to assess and classify the mutagenic risk of the four known impurities. The Sarah prediction results of these four impurities were all positive and they were categorized as class 3, where the threshold of toxicological concern (TTC) of 1.5 μg d-1 would apply. Hereby, a rapid and sensitive UPLC-MS/MS method was developed for the simultaneous and trace level quantification of the four PMIs in ripretinib drug substance. The separation was achieved on a C18 column under the optimized gradient elution program consuming only nine minutes and the four PMIs were all well separated from ripretinib so that they could be easily diverted to waste via a switch valve. The time-segmented multiple reaction monitoring (MRM) mode further improved the sensitivity and allowed for the quantification of the four PMIs as low as 10% of the acceptable limit. The method was fully validated, and proved sufficient in terms of selectivity, sensitivity, linearity, precision and accuracy. The factors involved in the method development and pathways for fragment ions of the four PMIs were also discussed and the study will contribute to risk management of PMIs present in ripretinib.
Collapse
Affiliation(s)
- Yiwen Huang
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| | - Qi Xu
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| | - Hui Lu
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| | - Zhong Li
- Yantai Institute of Materia Medica, Yantai Branch, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Yantai Shangdong Province 264000 China
| | - Yang Wu
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| |
Collapse
|
41
|
Vanhoenacker G, Sandra P, Sandra K. Minimizing the Risk of Missing Critical Sample Information by Using Two-Dimensional Liquid Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.vg2884v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Analytical requirements in the biopharmaceutical, pharmaceutical, and food industries, among several others, are more demanding than ever. Chromatographic techniques are great tools to acquire detailed information on a vast number of molecules and sample types. The present challenge in research and development (R&D), as well as in quality control (QC) laboratories, is to collect as much sample information as possible. However, even with the current one-dimensional (1D) analytical portfolio, it is not possible to fully ensure that all the relevant information from a sample has been captured. This article illustrates the power of an online two-dimensional liquid chromatographic (2D-LC) setup to unravel the complexity of biopharmaceutical and pharmaceutical samples. This technology tremendously increases the resolving power in all areas where LC is applied and drastically reduces the risk of missing information about the sample.
Collapse
|
42
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
43
|
Ladikan O, Silyavka E, Mitrofanov A, Laptenkova A, Shilovskikh V, Kolonitckii P, Ivanov N, Remezov A, Fedorova A, Khripun V, Pestova O, Podolskaya EP, Sukhodolov NG, Selyutin AA. Thin Films of Lanthanide Stearates as Modifiers of the Q-Sense Device Sensor for Studying Insulin Adsorption. ACS OMEGA 2022; 7:24973-24981. [PMID: 35910105 PMCID: PMC9330115 DOI: 10.1021/acsomega.1c07300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
This article presents new possibilities of using thin films of lanthanide stearates as sorbent materials. Modification of the Q-sense device resonator with monolayers of lanthanide stearates by the Langmuir-Schaeffer method made it possible to study the process of insulin protein adsorption on the surface of new thin-film sorbents. The resulting films were also characterized by compression isotherms, chemical analysis, scanning electron microscopy, and mass spectrometry. The transition of stearic acid to salt was recorded by IR spectroscopy. Using the LDI MS method, the main component of thin films, lanthanide distearate, was established. The presence of Eu2+ in thin films was revealed. In the case of europium stearate, the maximum value of insulin adsorption was obtained, -1.67·10-10 mole/cm2. The findings suggest the possibility of using thin films of lanthanide stearates as a sorption material for the proteomics determination of the quantitative protein content in complex fluid systems by specific adsorption on modified surfaces and isolation of such proteins from complex mixtures.
Collapse
Affiliation(s)
- Olga Ladikan
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena Silyavka
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrei Mitrofanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Anastasia Laptenkova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vladimir Shilovskikh
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Petr Kolonitckii
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Nikita Ivanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrey Remezov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Anna Fedorova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vassily Khripun
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Olga Pestova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina P. Podolskaya
- Golikov
Research Center of Toxicology, Bekhtereva Street 1, 192019 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Nikolai G. Sukhodolov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Artem A. Selyutin
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
44
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Recent trends in pharmaceutical analysis to foster modern drug discovery by comparative in-silico profiling of drugs and related substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Nurani LH, Riswanto FDO, Windarsih A, Edityaningrum CA, Guntarti A, Rohman A. Use of chromatographic-based techniques and chemometrics for halal authentication of food products: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Laela Hayu Nurani
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Florentinus Dika Octa Riswanto
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Campus III Paingan, Universitas Sanata Dharma, Yogyakarta, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | | | - Any Guntarti
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
47
|
Deidda R, Dispas A, De Bleye C, Hubert P, Ziemons É. Critical review on recent trends in cannabinoid determination on cannabis herbal samples: From chromatographic to vibrational spectroscopic techniques. Anal Chim Acta 2022; 1209:339184. [DOI: 10.1016/j.aca.2021.339184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
|
48
|
Wang G, Chen Y, Lv W, Pan C, Zhang H, Chen H, Chen X. Enantioseparation in capillary eletrochromatography by covalent organic framework coating prepared in situ. J Chromatogr A 2022; 1670:462943. [DOI: 10.1016/j.chroma.2022.462943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
|
49
|
Haidar Ahmad IA, Kiffer A, Barrientos RC, Losacco GL, Singh A, Shchurik V, Wang H, Mangion I, Regalado EL. In Silico Method Development of Achiral and Chiral Tandem Column Reversed-phase Liquid Chromatography for Multicomponent Pharmaceutical Mixtures. Anal Chem 2022; 94:4065-4071. [PMID: 35199987 DOI: 10.1021/acs.analchem.1c05551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve multicomponent mixtures by serially coupling columns on readily available one-dimensional separation systems without specialized user training. Yet, adoption of this technique remains limited, mainly due to the difficulty in identifying optimal selectivity out of many possible tandem column combinations. At this point, method development and optimization require laborious "hit-or-miss" experimentation and "blind" screening when investigating different column selectivity without standard analytes. As a result, many chromatography practitioners end up combining two columns of similar selectivity, limiting the scope and potential of tandem column LC as a mainstay for industrial applications. To circumvent this challenge, we herein introduce a straightforward in silico multifactorial approach as a framework to expediently map the separation landscape across multiple tandem columns (achiral and chiral) and eluent combinations (isocratic and gradient elution) under reversed-phase LC conditions. Retention models were built using commercially available LC simulator software showcasing less than 2% difference between experimental and simulated retention times for analytes of interest in multicomponent pharmaceutical mixtures (e.g., metabolites and cyclic peptides).
Collapse
Affiliation(s)
- Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Alaina Kiffer
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Andrew Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Vladimir Shchurik
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
50
|
Camperi J, Moshref M, Dai L, Lee HY. Physicochemical and Functional Characterization of Differential CRISPR-Cas9 Ribonucleoprotein Complexes. Anal Chem 2022; 94:1432-1440. [PMID: 34958212 DOI: 10.1021/acs.analchem.1c04795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Advances in gene-editing technology enable efficient, targeted ex vivo engineering of different cell types, which offer a potential therapeutic platform for most challenging disease areas. CRISPR-Cas9 is a widely used gene-editing tool in therapeutic applications. The quality of gene-editing reagents (i.e., Cas9 nuclease, single guide (sg)RNA) is associated with the final cellular product quality as they can impact the gene-editing accuracy and efficiency. To assess the impact of the quality of Cas9 protein and sgRNA in the formation of a Cas9 ribonucleoprotein (RNP) complex, stability, and functional activities, we developed a size exclusion chromatography method that utilizes multiple detectors and an in vitro DNA cleavage assay using anion-exchange chromatography. Using these methods, we characterized the formation and stability of Cas9 RNP complexes associated with Cas9 and sgRNA characteristics as well as their functional activities. Multi-angle light scattering characterization showed different types and levels of aggregates in different source sgRNA materials, which contribute to form different Cas9 RNP complexes. The aggregations irreversibly dissociated at high temperatures. When the Cas9 RNP complexes derived from non-heated and heated sgRNAs were characterized, the data showed that specific RNP peaks were impacted. The Cas9 RNP complexes derived from the heated sgRNA retained their biological function and cleaved the double-strand target DNA at a higher rate. This work provides new tools to characterize the Cas9 RNP complex formation, stability, and functional activity and provides insights into sgRNA properties and handling procedures to better control the Cas9 RNP complex formation.
Collapse
Affiliation(s)
- Julien Camperi
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Maryam Moshref
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ho Young Lee
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|