1
|
Raghunath G, Chen YC, Marin M, Wu H, Melikyan GB. SERINC5-Mediated Restriction of HIV-1 Infectivity Correlates with Resistance to Cholesterol Extraction but Not with Lipid Order of Viral Membrane. Viruses 2022; 14:v14081636. [PMID: 35893701 PMCID: PMC9332783 DOI: 10.3390/v14081636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Serine incorporator 5 (SER5) is a protein that upon incorporation into virions inhibits HIV-1 infectivity by interfering with the ability of the Env glycoprotein to promote viral fusion. The mechanisms by which SER5 antagonizes HIV-1 fusion are not well understood. A recent study of SER5's structure revealed a lipid-binding pocket, suggesting the ability to sequester lipids. This finding, along with the well-documented modulation of HIV-1 infectivity by viral lipids, especially cholesterol, prompted our examination of SER5's effect on the general lipid order of the HIV-1 membrane. Pseudoviruses bearing the SER5-sensitive HXB2-Env and containing SER5 or SER2, a control protein that lacks antiviral activity, were analyzed using two distinct lipid-order probes. We show that SER5 incorporation does not noticeably affect the lipid order of pseudoviruses. Although viral cholesterol extraction reduces HIV-1 infectivity, SER5+ viruses are less sensitive to cholesterol extraction than the control samples. In contrast, the virus' sensitivity to cholesterol oxidation was not affected by SER5 incorporation. The hydrolytic release of sphingomyelin-sequestered cholesterol had a minimal impact on the apparent resistance to cholesterol extraction. Based on these results, we propose that a subpopulation of more stable Env glycoproteins responsible for the residual infectivity of SER5+ viruses is less sensitive to the cholesterol content of the viral membrane.
Collapse
Affiliation(s)
- Gokul Raghunath
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Yen-Cheng Chen
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Hui Wu
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
2
|
Global Increases in Human Immunodeficiency Virus Neutralization Sensitivity Due to Alterations in the Membrane-Proximal External Region of the Envelope Glycoprotein Can Be Minimized by Distant State 1-Stabilizing Changes. J Virol 2022; 96:e0187821. [PMID: 35289647 DOI: 10.1128/jvi.01878-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ([gp120/gp41]3) into more "open" conformations. HIV-1 Env on the viral membrane is maintained in a State-1 conformation that resists binding and neutralization by commonly elicited antibodies. Premature triggering of Env before the virus engages a target cell typically leads to increased susceptibility to spontaneous inactivation or ligand-induced neutralization. Here, we showed that single amino acid substitutions in the gp41 membrane-proximal external region (MPER) of a primary HIV-1 strain resulted in viral phenotypes indicative of premature triggering of Env to downstream conformations. Specifically, the MPER changes reduced viral infectivity and globally increased virus sensitivity to poorly neutralizing antibodies, soluble CD4, a CD4-mimetic compound, and exposure to cold. In contrast, the MPER mutants exhibited decreased sensitivity to the State 1-preferring inhibitor, BMS-806, and to the PGT151 broadly neutralizing antibody. Depletion of cholesterol from virus particles did not produce the same State 1-destabilizing phenotypes as MPER alterations. Notably, State 1-stabilizing changes in Env distant from the MPER could minimize the phenotypic effects of MPER alteration but did not affect virus sensitivity to cholesterol depletion. Thus, membrane-proximal gp41 elements contribute to the maintenance of the pretriggered Env conformation. The conformationally disruptive effects of MPER changes can be minimized by distant State 1-stabilizing Env modifications, a strategy that may be useful in preserving the native pretriggered state of Env. IMPORTANCE The pretriggered shape of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) is a major target for antibodies that can neutralize many strains of the virus. An effective HIV-1 vaccine may need to raise these types of antibodies, but this goal has proven difficult. One reason is that the pretriggered shape of Env is unstable and dependent on interactions near the viral membrane. Here, we showed that the membrane-proximal external region (MPER) of Env plays an important role in maintaining Env in a pretriggered shape. Alterations in the MPER resulted in global changes in Env conformation that disrupted its pretriggered shape. We also found that these disruptive effects of MPER changes could be minimized by distant Env modifications that stabilized the pretriggered shape. These modifications may be useful for preserving the native shape of Env for structural and vaccine studies.
Collapse
|
3
|
Liu CH, Huang SJ, Yu TY. Cholesterol Modulates the Interaction between HIV-1 Viral Protein R and Membrane. MEMBRANES 2021; 11:784. [PMID: 34677550 PMCID: PMC8539443 DOI: 10.3390/membranes11100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022]
Abstract
Being a major metabolite for maintaining cellular homeostasis, as well as an important structural component in lipid membrane, cholesterol also plays critical roles in the life cycles of some viruses, including human immunodeficiency virus-1 (HIV-1). The involvement of cholesterol in HIV-1 infectivity, assembly and budding has made it an important research target. Viral protein R (Vpr) is an accessory protein of HIV-1, which is involved in many major events in the life cycle of HIV-1. In addition to its multi-functional roles in the HIV-1 life cycle, it is shown to interact with lipid membrane and form a cation-selective channel. In this work, we examined the effect of cholesterol on the interaction of Vpr and lipid membrane. Using calcein release assay, we found that the membrane permeability induced by the membrane binding of Vpr was significantly reduced in the presence of cholesterol in membrane. In addition, using solid-state NMR (ssNMR) spectroscopy, Vpr was shown to experience multiple chemical environments in lipid membrane, as indicated by the broad line shape of carbonyl 13C resonance of Cys-76 residue ranging from 165-178 ppm, which can be attributed to the existence of complex Vpr-membrane environments. We further showed that the presence of cholesterol in membrane will alter the distribution of Vpr in the complex membrane environments, which may explain the change of the Vpr induced membrane permeability in the presence of cholesterol.
Collapse
Affiliation(s)
- Chun-Hao Liu
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan;
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 300044, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Oregano Oil and Its Principal Component, Carvacrol, Inhibit HIV-1 Fusion into Target Cells. J Virol 2020; 94:JVI.00147-20. [PMID: 32461309 DOI: 10.1128/jvi.00147-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Oregano essential oil has long been known for its health-promoting benefits. Here, we report its activity against viral replication. Oregano oil was found to specifically inhibit lentiviruses, such as human and simian immunodeficiency viruses (HIV and SIV), irrespective of virus tropism, but not hepatitis C virus, adenovirus 5 (ADV5), Zika virus, and influenza (H1N1) virus. Oregano oil's most abundant components, carvacrol and its isomer, thymol, were shown to block virus-target cell fusion while not perturbing other stages of the virus life cycle. We detected changes in virus particle density, suggesting that cholesterol depletion from the HIV-1 envelope membrane reduces virus entry. Furthermore, infection was rescued by adding exogenous cholesterol. The evolution of viral resistance to carvacrol supported this mechanism of action with the identification of mutations in the viral gp41 fusion protein that counteracted cholesterol depletion. In addition, resistance to carvacrol emerged later than typically observed for other clinically used drugs, strengthening its antiviral potential. Structure-activity relationship studies revealed key motifs of carvacrol and thymol required for HIV neutralization and identified previously unknown active analogs. Carvacrol was also shown to additively cooperate with antiretroviral therapy. In sum, oregano oil and improved carvacrol and thymol analogs could be considered to supplement current HIV therapeutics.IMPORTANCE Oregano essential oil has multiple benefits in traditional medicine, cosmetics, and food industries. Carvacrol and its analog, thymol, are well-described components of oregano oil. Here, we show that these compounds inhibit HIV-target cell fusion independently of viral tropism. Our results suggest that carvacrol and thymol alter the cholesterol content of the viral membrane, blocking HIV-1 entry into the target cell. Resistance to carvacrol has selected for viruses with mutations in the viral envelope glycoprotein, gp41. This protein is known for its interaction with cholesterol present in membrane lipid rafts. Together, these results demonstrate the potential of therapies targeting the viral envelope membrane, and oregano oil is a safe supplement to antiretrovirals, potentially delaying disease progression and resistance development.
Collapse
|
5
|
Salimi H, Johnson J, Flores MG, Zhang MS, O'Malley Y, Houtman JC, Schlievert PM, Haim H. The lipid membrane of HIV-1 stabilizes the viral envelope glycoproteins and modulates their sensitivity to antibody neutralization. J Biol Chem 2019; 295:348-362. [PMID: 31757809 DOI: 10.1074/jbc.ra119.009481] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022] Open
Abstract
The envelope glycoproteins (Envs) of HIV-1 are embedded in the cholesterol-rich lipid membrane of the virus. Chemical depletion of cholesterol from HIV-1 particles inactivates their infectivity. We observed that diverse HIV-1 strains exhibit a range of sensitivities to such treatment. Differences in sensitivity to cholesterol depletion could not be explained by variation in Env components known to interact with cholesterol, including the cholesterol-recognition motif and cytoplasmic tail of gp41. Using antibody-binding assays, measurements of virus infectivity, and analyses of lipid membrane order, we found that depletion of cholesterol from HIV-1 particles decreases the conformational stability of Env. It enhances exposure of partially cryptic epitopes on the trimer and increases sensitivity to structure-perturbing treatments such as antibodies and cold denaturation. Substitutions in the cholesterol-interacting motif of gp41 induced similar effects as depletion of cholesterol. Surface-acting agents, which are incorporated into the virus lipid membrane, caused similar effects as disruption of the Env-cholesterol interaction. Furthermore, substitutions in gp120 that increased structural stability of Env (i.e. induced a "closed" conformation of the trimer) increased virus resistance to cholesterol depletion and to the surface-acting agents. Collectively, these results indicate a critical contribution of the viral membrane to the stability of the Env trimer and to neutralization resistance against antibodies. Our findings suggest that the potency of poorly neutralizing antibodies, which are commonly elicited in vaccinated individuals, may be markedly enhanced by altering the lipid composition of the viral membrane.
Collapse
Affiliation(s)
- Hamid Salimi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jacklyn Johnson
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Manuel G Flores
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Michael S Zhang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Yunxia O'Malley
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jon C Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
6
|
Darvish A, Lee JS, Peng B, Saharia J, Sundaram RVK, Goyal G, Bandara N, Ahn CW, Kim J, Dutta P, Chaiken I, Kim MJ. Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis 2019; 40:776-783. [PMID: 30151981 PMCID: PMC7400684 DOI: 10.1002/elps.201800311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Enveloped viruses fuse with cells to transfer their genetic materials and infect the host cell. Fusion requires deformation of both viral and cellular membranes. Since the rigidity of viral membrane is a key factor in their infectivity, studying the rigidity of viral particles is of great significance in understating viral infection. In this paper, a nanopore is used as a single molecule sensor to characterize the deformation of pseudo-type human immunodeficiency virus type 1 at sub-micron scale. Non-infective immature viruses were found to be more rigid than infective mature viruses. In addition, the effects of cholesterol and membrane proteins on the mechanical properties of mature viruses were investigated by chemically modifying the membranes. Furthermore, the deformability of single virus particles was analyzed through a recapturing technique, where the same virus was analyzed twice. The findings demonstrate the ability of nanopore resistive pulse sensing to characterize the deformation of a single virus as opposed to average ensemble measurements.
Collapse
Affiliation(s)
- Armin Darvish
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Bin Peng
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Ramalingam Venkat Kalyana Sundaram
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Nuwan Bandara
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Chi Won Ahn
- Nano-Materials Laboratory, National NanoFab Center, Daejeon, Republic of Korea
| | - Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, Incheon, Republic of Korea
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
7
|
Aneja R, Grigoletto A, Nangarlia A, Rashad AA, Wrenn S, Jacobson JM, Pasut G, Chaiken I. Pharmacokinetic stability of macrocyclic peptide triazole HIV-1 inactivators alone and in liposomes. J Pept Sci 2019; 25:e3155. [PMID: 30809901 DOI: 10.1002/psc.3155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Previously, we reported the discovery of macrocyclic peptide triazoles (cPTs) that bind to HIV-1 Env gp120, inhibit virus cell infection with nanomolar potencies, and cause irreversible virion inactivation. Given the appealing virus-killing activity of cPTs and resistance to protease cleavage observed in vitro, we here investigated in vivo pharmacokinetics of the cPT AAR029b. AAR029b was investigated both alone and encapsulated in a PEGylated liposome formulation that was designed to slowly release inhibitor. Pharmacokinetic analysis in rats showed that the half-life of FITC-AAR029b was substantial both alone and liposome-encapsulated, 2.92 and 8.87 hours, respectively. Importantly, liposome-encapsulated FITC-AAR029b exhibited a 15-fold reduced clearance rate from serum compared with the free FITC-cPT. This work thus demonstrated both the in vivo stability of cPT alone and the extent of pharmacokinetic enhancement via liposome encapsulation. The results obtained open the way to further develop cPTs as long-acting HIV-1 inactivators against HIV-1 infection.
Collapse
Affiliation(s)
- Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Steven Wrenn
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Departments of Medicine and Neuroscience and Center of Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Kim JH, Singh A, Del Poeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 2017; 130:2682-2695. [PMID: 28655854 DOI: 10.1242/jcs.201731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Ordered lipid domains (rafts) in plasma membranes have been hypothesized to participate in endocytosis based on inhibition of endocytosis by removal or sequestration of cholesterol. To more carefully investigate the role of the sterol in endocytosis, we used a substitution strategy to replace cholesterol with sterols that show various raft-forming abilities and chemical structures. Both clathrin-mediated endocytosis of transferrin and clathrin-independent endocytosis of clustered placental alkaline phosphatase were measured. A subset of sterols reversibly inhibited both clathrin-dependent and clathrin-independent endocytosis. The ability of a sterol to support lipid raft formation was necessary for endocytosis. However, it was not sufficient, because a sterol lacking a 3β-OH group did not support endocytosis even though it had the ability to support ordered domain formation. Double bonds in the sterol rings and an aliphatic tail structure identical to that of cholesterol were neither necessary nor sufficient to support endocytosis. This study shows that substitution using a large number of sterols can define the role of sterol structure in cellular functions. Hypotheses for how sterol structure can similarly alter clathrin-dependent and clathrin-independent endocytosis are discussed.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashutosh Singh
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Deborah A Brown
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
The Role of Caveolin 1 in HIV Infection and Pathogenesis. Viruses 2017; 9:v9060129. [PMID: 28587148 PMCID: PMC5490806 DOI: 10.3390/v9060129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022] Open
Abstract
Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.
Collapse
|