1
|
Polat MS, Nadaroglu H. Utilizing Copper Nanoclusters as a Fluorescent Probe for Quantitative Monitoring of Doxorubicin Anticancer Drug. J Fluoresc 2025; 35:3507-3518. [PMID: 38842793 DOI: 10.1007/s10895-024-03779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Monitoring the amount of chemotherapeutic drugs in biological fluids is extremely important for dose adjustment or control of side effects during the treatment process. In this study, copper nanoclusters (Cu NCs) were synthesized via a one-pot method using ammonium citrate as the reducing agent. Cu NCs exhibited bright blue fluorescence, good optical properties and outstanding photostability. The produced Cu NCs were characterized in detail by UV‒vis absorption, fluorescence spectroscopy and transmission electron microscopy (TEM). The produced Cu NCs showed a high quantum yield of 0.97. A fluorescence system was used for doxorubicin (DOX) determination using Cu NCs as a nanoprobe. The presence of DOX decreased the fluorescence intensity of the CuNCs at 445 nm but increased the fluorescence intensity of the CuNCs at 619 nm. As a result, quantitative detection of DOX can be achieved by measuring the ratio of fluorescence intensities at 445 and 619 nm (F619/F445). The fluorescence quenching activity of the Cu NCs was determined to have a linear relationship with the amount of DOX anticancer drug in the range of 1-15 ppb, and the usability of the Cu NCs as a sensor for detection in biological fluids was demonstrated. It was determined that this method can be used to measure the amount of DOX in biological samples effectively.
Collapse
Affiliation(s)
- Muhammed Seyid Polat
- Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, Erzurum, 25240, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, Erzurum, 25240, Turkey.
- Department of Food Technology, Erzurum Vocational College of Technical Sciences, Ataturk University, Erzurum, 25240, Turkey.
| |
Collapse
|
2
|
Lv Y, Yang X, Song Y, Yang D, Zheng K, Zhou S, Xie H, Guo R, Tang S. The Correlation Between Essential Amino Acid Tryptophan, Lysine, Phenylalanine and Chemotherapy of Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241286872. [PMID: 39435510 PMCID: PMC11497521 DOI: 10.1177/15330338241286872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 10/23/2024] Open
Abstract
To investigate the differences in serum tryptophan, lysine, and phenylalanine levels in breast cancer patients, the correlation between the three amino acids with the chemotherapy regimen, and their significance in the clinical diagnosis and treatment of breast cancer.Clinical data were collected from the Department of Breast Surgery at Yunnan Cancer Hospital, encompassing 216 cases from July to December 2020, including 91 healthy individuals, 38 with benign tumors, and 87 with cancer. Amino acid levels were measured using liquid chromatography-tandem mass spectrometry. Statistical analyses, such as the Kruskal-Wallis H-test and Wilcoxon test, were conducted to compare the levels of these amino acids across the healthy group, benign tumor group, and breast cancer group. The χ2 test and Fisher's exact probability method were employed to assess the relationship between amino acid levels and breast cancer stage, grade, and chemotherapy regimen.The results indicated that there were significant differences in serum lysine (H = 36.13, P < .001) and phenylalanine (H = 34.03, P < .001) levels among the three groups. However, tryptophan levels did not show statistically significant variances. Specifically, lysine and phenylalanine levels were significantly different when comparing the healthy group with the breast cancer group and the benign tumor group with the breast cancer group. These differences were not significant when comparing the healthy group with the benign tumor group. Furthermore, there were no statistically significant distinctions observed in lysine (F = 0.836, P > .05) and phenylalanine (F = 1.466, P > .05) levels across different conventional chemotherapy regimens among the breast cancer cases studied.Serum lysine and phenylalanine levels might serve as potential biomarkers for breast cancer, and the choice of chemotherapy regimen is unlikely to impact significant changes in these amino acid levels.
Collapse
Affiliation(s)
- Yafeng Lv
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xuan Yang
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Ying Song
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Dechun Yang
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Kai Zheng
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Shaoqiang Zhou
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Hanhui Xie
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Rong Guo
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Shicong Tang
- Department of Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
3
|
Bispo DSC, Correia M, Carneiro TJ, Martins AS, Reis AAN, de Carvalho ALMB, Marques MPM, Gil AM. Impact of Conventional and Potential New Metal-Based Drugs on Lipid Metabolism in Osteosarcoma MG-63 Cells. Int J Mol Sci 2023; 24:17556. [PMID: 38139388 PMCID: PMC10743680 DOI: 10.3390/ijms242417556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This work investigated the mechanisms of action of conventional drugs, cisplatin and oxaliplatin, and the potentially less deleterious drug Pd2Spermine (Spm) and its Pt(II) analog, against osteosarcoma MG-63 cells, using nuclear-magnetic-resonance metabolomics of the cellular lipidome. The Pt(II) chelates induced different responses, namely regarding polyunsaturated-fatty-acids (increased upon cisplatin), suggesting that cisplatin-treated cells have higher membrane fluidity/permeability, thus facilitating cell entry and justifying higher cytotoxicity. Both conventional drugs significantly increased triglyceride levels, while Pt2Spm maintained control levels; this may reflect enhanced apoptotic behavior for conventional drugs, but not for Pt2Spm. Compared to Pt2Spm, the more cytotoxic Pd2Spm (IC50 comparable to cisplatin) induced a distinct phospholipids profile, possibly reflecting enhanced de novo biosynthesis to modulate membrane fluidity and drug-accessibility to cells, similarly to cisplatin. However, Pd2Spm differed from cisplatin in that cells had equivalent (low) levels of triglycerides as Pt2Spm, suggesting the absence/low extent of apoptosis. Our results suggest that Pd2Spm acts on MG-63 cells mainly through adaptation of cell membrane fluidity, whereas cisplatin seems to couple a similar effect with typical signs of apoptosis. These results were discussed in articulation with reported polar metabolome adaptations, building on the insight of these drugs' mechanisms, and particularly of Pd2Spm as a possible cisplatin substitute.
Collapse
Affiliation(s)
- Daniela S. C. Bispo
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Marlene Correia
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Ana S. Martins
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Aliana A. N. Reis
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| |
Collapse
|
4
|
Gallo M, Ferrari E, Terrazzan A, Brugnoli F, Spisni A, Taccioli C, Aguiari G, Trentini A, Volinia S, Keillor JW, Bergamini CM, Bianchi N, Pertinhez TA. Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines. FEBS J 2023; 290:5411-5433. [PMID: 37597264 DOI: 10.1111/febs.16931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Italy
| | | | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | | | | |
Collapse
|
5
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
6
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
7
|
Cheng LL. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR IN BIOMEDICINE 2023; 36:e4684. [PMID: 34962004 DOI: 10.1002/nbm.4684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HRMAS) NMR, an approach for intact biological material analysis discovered more than 25 years ago, has been advanced by many technical developments and applied to many biomedical uses. This article provides a history of its discovery, first by explaining the key scientific advances that paved the way for HRMAS NMR's invention, and then by turning to recent developments that have profited from applying and advancing the technique during the last 5 years. Developments aimed at directly impacting healthcare include HRMAS NMR metabolomics applications within studies of human disease states such as cancers, brain diseases, metabolic diseases, transplantation medicine, and adiposity. Here, the discussion describes recent HRMAS NMR metabolomics studies of breast cancer and prostate cancer, as well as of matching tissues with biofluids, multimodality studies, and mechanistic investigations, all conducted to better understand disease metabolic characteristics for diagnosis, opportune windows for treatment, and prognostication. In addition, HRMAS NMR metabolomics studies of plants, foods, and cell structures, along with longitudinal cell studies, are reviewed and discussed. Finally, inspired by the technique's history of discoveries and recent successes, future biomedical arenas that stand to benefit from HRMAS NMR-initiated scientific investigations are presented.
Collapse
Affiliation(s)
- Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Beeraka NM, Zhang J, Zhao D, Liu J, A U C, Vikram Pr H, Shivaprakash P, Bannimath N, Manogaran P, Sinelnikov MY, Bannimath G, Fan R. Combinatorial Implications of Nrf2 Inhibitors with FN3K Inhibitor: In vitro Breast Cancer Study. Curr Pharm Des 2023; 29:2408-2425. [PMID: 37861038 DOI: 10.2174/0113816128261466231011114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Platinum derivatives are chemotherapeutic agents preferred for the treatment of cancers including breast cancer. Oxaliplatin is an anticancer drug that is in phase II studies to treat metastatic breast cancer. However, its usage is constrained by chemoresistance and dose-related side effects. OBJECTIVE The objective of this study is to examine the combinatorial efficacy of brusatol, an Nrf2 blocker, with oxaliplatin (a proven FN3K blocker in our study) in mitigating breast cancer growth in vitro. METHODS We performed cytotoxicity assays, combination index (CI) analysis, colony formation assays, apoptosis assays, and Western blotting. RESULTS Results of our study described the chemosensitizing efficacy of brusatol in combination with lowdose oxaliplatin against breast cancer through synergistic effects in both BT-474 and T47D cells. A significant mitigation in the migration rate of these cancer cells was observed with the combination regimen, which is equivalent to the IC-50 dose of oxaliplatin (125 μM). Furthermore, ROS-mediated and apoptotic modes of cell death were observed with a combinatorial regimen. Colony formation of breast cancer cell lines was mitigated with a combinatorial regimen of bursatol and oxaliplatin than the individual treatment regimen. FN3K expression downregulated with oxaliplatin in T47D cells. The mitigation of FN3K protein expression with a combination regimen was not observed but the Nrf2 downstream antioxidant signaling proteins were significantly downregulated with a combination regimen similar to individual drug regimens. CONCLUSION Our study concluded the combination efficacy of phytochemicals like brusatol in combination with low-dose oxaliplatin (FN3K blocker), which could enhance the chemosensitizing effect in breast cancer and minimize the overall dose requirement of oxaliplatin.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| | - Chinnappa A U
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Xenone Healthcare Pvt. Ltd, #318, Third Floor, US Complex, Jasola, New Delhi 110076, India
| | - Priyanka Shivaprakash
- Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Namitha Bannimath
- Department of Pharmacology and Toxicology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Sinelab Biomedical Research Center, Minnesota 55905, USA
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| |
Collapse
|
9
|
Stefàno E, De Castro F, De Luca E, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Synthesis and Comparative Evaluation of the Cytotoxic Activity of Cationic Organometallic Complexes of the Type [Pt(η1-CH2-CH2-OR)(DMSO)(phen)]+ (R = Me, Et, Pr, Bu). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Chong KH, Chang YJ, Hsu WH, Tu YT, Chen YR, Lee MC, Tsai KW. Breast Cancer with Increased Drug Resistance, Invasion Ability, and Cancer Stem Cell Properties through Metabolism Reprogramming. Int J Mol Sci 2022; 23:ijms232112875. [PMID: 36361665 PMCID: PMC9658063 DOI: 10.3390/ijms232112875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is a heterogeneous disease, and the survival rate of patients with breast cancer strongly depends on their stage and clinicopathological features. Chemoradiation therapy is commonly employed to improve the survivability of patients with advanced breast cancer. However, the treatment process is often accompanied by the development of drug resistance, which eventually leads to treatment failure. Metabolism reprogramming has been recognized as a mechanism of breast cancer resistance. In this study, we established a doxorubicin-resistant MCF-7 (MCF-7-D500) cell line through a series of long-term doxorubicin in vitro treatments. Our data revealed that MCF-7-D500 cells exhibited increased multiple-drug resistance, cancer stemness, and invasiveness compared with parental cells. We analyzed the metabolic profiles of MCF-7 and MCF-7-D500 cells through liquid chromatography−mass spectrometry. We observed significant changes in 25 metabolites, of which, 21 exhibited increased levels (>1.5-fold change and p < 0.05) and 4 exhibited decreased levels (<0.75-fold change and p < 0.05) in MCF-7 cells with doxorubicin resistance. These results suggest the involvement of metabolism reprogramming in the development of drug resistance in breast cancer, especially the activation of glycolysis, the tricarboxylic acid (TCA) cycle, and the hexamine biosynthesis pathway (HBP). Furthermore, most of the enzymes involved in glycolysis, the HBP, and the TCA cycle were upregulated in MCF-7-D500 cells and contributed to the poor prognosis of patients with breast cancer. Our findings provide new insights into the regulation of drug resistance in breast cancer, and these drug resistance-related metabolic pathways can serve as targets for the treatment of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Kian-Hwee Chong
- Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Yao-Jen Chang
- Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Surgery, School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
| | - Wei-Hsin Hsu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Ya-Ting Tu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Yi-Ru Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
- Correspondence: or ; Tel.: +886-2-66289779 (ext. 5796); Fax: +886-2-66281258
| |
Collapse
|
11
|
1H HR-MAS NMR Based Metabolic Profiling of Lung Cancer Cells with Induced and De-Induced Cisplatin Resistance to Reveal Metabolic Resistance Adaptations. Molecules 2021; 26:molecules26226766. [PMID: 34833859 PMCID: PMC8625954 DOI: 10.3390/molecules26226766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022] Open
Abstract
Cisplatin (cisPt) is an important drug that is used against various cancers, including advanced lung cancer. However, drug resistance is still a major ongoing problem and its investigation is of paramount interest. Here, a high-resolution magic angle spinning (HR-MAS) NMR study is presented deciphering the metabolic profile of non-small cell lung cancer (NSCLC) cells and metabolic adaptations at different levels of induced cisPt-resistance, as well as in their de-induced counterparts (cells cultivated in absence of cisPt). In total, fifty-three metabolites were identified and quantified in the 1H-HR-MAS NMR cell spectra. Metabolic adaptations to cisPt-resistance were detected, which correlated with the degree of resistance. Importantly, de-induced cell lines demonstrated similar metabolic adaptations as the corresponding cisPt-resistant cell lines. Metabolites predominantly changed in cisPt resistant cells and their de-induced counterparts include glutathione and taurine. Characteristic metabolic patterns for cisPt resistance may become relevant as biomarkers in cancer medicine.
Collapse
|
12
|
López-Barrera LD, Díaz-Torres R, Martínez-Rosas JR, Salazar AM, Rosales C, Ramírez-Noguera P. Modification of Proliferation and Apoptosis in Breast Cancer Cells by Exposure of Antioxidant Nanoparticles Due to Modulation of the Cellular Redox State Induced by Doxorubicin Exposure. Pharmaceutics 2021; 13:pharmaceutics13081251. [PMID: 34452212 PMCID: PMC8399704 DOI: 10.3390/pharmaceutics13081251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In this report, we investigated whether the use of chitosan-carrying-glutathione nanoparticles (CH-GSH NPs) can modify proliferation and apoptosis, and reduce cell damage induced by doxorubicin on breast cancer cells. Doxorubicin is a widely used antineoplasic agent for the treatment of various types of cancer. However, it is also a highly toxic drug because it induces oxidative stress. Thus, the use of antioxidant molecules has been considered to reduce the toxicity of doxorubicin. CH-GSH NPs were characterized in size, zeta potential, concentration, and shape. When breast cancer cells were treated with CH-GSH nanoparticles, they were localized in the cellular cytoplasm. Combined doxorubicin exposure with nanoparticles increased intracellular GSH levels. At the same time, decreasing levels of reactive oxygen species and malondialdehyde were observed and modified antioxidant enzyme activity. Levels of the Ki67 protein were evaluated as a marker of cell proliferation and the activity of the Casp-3 protein related to cell apoptosis was measured. Our data suggests that CH-GSH NPs can modify cell proliferation by decreasing Ki67 levels, induce apoptosis by increasing caspase-3 activity, and reduce the oxidative stress induced by doxorubicin in breast cancer cells by modulating molecules associated with the cellular redox state. CH-GSH NPs could be used to reduce the toxic effects of this antineoplastic. Considering these results, CH-GSH NPs represent a novel delivery system offering new opportunities in pharmacy, material science, and biomedicine.
Collapse
Affiliation(s)
- Laura Denise López-Barrera
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico; (L.D.L.-B.); (J.R.M.-R.)
| | - Roberto Díaz-Torres
- Departamento de Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico;
| | - Joselo Ramón Martínez-Rosas
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico; (L.D.L.-B.); (J.R.M.-R.)
| | - Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico;
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico;
| | - Patricia Ramírez-Noguera
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico; (L.D.L.-B.); (J.R.M.-R.)
- Correspondence: ; Tel.: +52-5623-19-99 (ext. 3-9429)
| |
Collapse
|
13
|
Martins AS, Batista de Carvalho ALM, Marques MPM, Gil AM. Response of Osteosarcoma Cell Metabolism to Platinum and Palladium Chelates as Potential New Drugs. Molecules 2021; 26:4805. [PMID: 34443394 PMCID: PMC8401043 DOI: 10.3390/molecules26164805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
This paper reports the first metabolomics study of the impact of new chelates Pt2Spm and Pd2Spm (Spm = Spermine) on human osteosarcoma cellular metabolism, compared to the conventional platinum drugs cisplatin and oxaliplatin, in order to investigate the effects of different metal centers and ligands. Nuclear Magnetic Resonance metabolomics was used to identify meaningful metabolite variations in polar cell extracts collected during exposure to each of the four chelates. Cisplatin and oxaliplatin induced similar metabolic fingerprints of changing metabolite levels (affecting many amino acids, organic acids, nucleotides, choline compounds and other compounds), thus suggesting similar mechanisms of action. For these platinum drugs, a consistent uptake of amino acids is noted, along with an increase in nucleotides and derivatives, namely involved in glycosylation pathways. The Spm chelates elicit a markedly distinct metabolic signature, where inverse features are observed particularly for amino acids and nucleotides. Furthermore, Pd2Spm prompts a weaker response from osteosarcoma cells as compared to its platinum analogue, which is interesting as the palladium chelate exhibits higher cytotoxicity. Putative suggestions are discussed as to the affected cellular pathways and the origins of the distinct responses. This work demonstrates the value of untargeted metabolomics in measuring the response of cancer cells to either conventional or potential new drugs, seeking further understanding (or possible markers) of drug performance at the molecular level.
Collapse
Affiliation(s)
- Ana S. Martins
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
14
|
Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell 2020; 80:384-395. [PMID: 32997964 PMCID: PMC7655528 DOI: 10.1016/j.molcel.2020.09.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Metabolism reprogramming is critical for both cancer progression and effective immune responses in the tumor microenvironment. Amino acid metabolism in different cells and their cross-talk shape tumor immunity and therapy efficacy in patients with cancer. In this review, we focus on multiple amino acids and their transporters, solute carrier (SLC) members. We discuss their involvement in regulation of immune responses in the tumor microenvironment and assess their associations with cancer immunotherapy, chemotherapy, and radiation therapy, and we review their potential as targets for cancer therapy. We stress the necessity to understand individual amino acids and their transporters in different cell subsets, the molecular intersection between amino acid metabolism, and effective T cell immunity and its relevance in cancer therapies.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Nong Q, Zhang C, Liu Q, Xie R, Dong M. Effect of daunorubicin on acute promyelocytic leukemia cells using nuclear magnetic resonance spectroscopy-based metabolomics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103382. [PMID: 32344291 DOI: 10.1016/j.etap.2020.103382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine several key metabolites as potential biomarkers of daunorubicin (DNR) treatment of acute promyelocytic leukemia (APL) using APL blasts and NB4 cells. Samples which were obtained from 16 newly diagnosed APL patients and human APL NB4 cell lines were exposed to increasing concentrations of DNR (0 μM, 0.1 μM, 0.5 μM and 1.0 μM). Electron microscopy and Nuclear Magnetic Resonance (NMR) spectroscopy confirmed that there were clear differences between controls and DNR-treated groups, with the resultant models having excellent predictive and discriminative abilities. Four metabolites meeting the biomarker requirements were identified. KEGG analyses revealed that these biomarkers were associated with the metabolism of fat, choline, and glucose. These findings offered vital information about the effects of chemotherapies on the whole body biochemistry which might be important for monitoring apoptosis and injury to cells in order to reduce chemotherapies-induced side effects.
Collapse
Affiliation(s)
- Qingwei Nong
- Department of Hematology, The Affiliated Hospital of Gulin Medical University, Guilin, China
| | - Cong Zhang
- Department of Ultrasonic Medicine, The Affiliated First Hospital of Harbin Medical University, Harbin, China
| | - Qinghao Liu
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Xie
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Min Dong
- Department of Hematology, The Affiliated Hospital of Gulin Medical University, Guilin, China.
| |
Collapse
|
16
|
Maria RM, Altei WF, Selistre-de-Araujo HS, Colnago LA. Impact of chemotherapy on metabolic reprogramming: Characterization of the metabolic profile of breast cancer MDA-MB-231 cells using 1H HR-MAS NMR spectroscopy. J Pharm Biomed Anal 2017; 146:324-328. [PMID: 28915495 DOI: 10.1016/j.jpba.2017.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
Doxorubicin, cisplatin, and tamoxifen are part of many chemotherapeutic regimens. However, studies investigating the effect of chemotherapy on the metabolism of breast cancer cells are still limited. We used 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to study the metabolic profile of human breast cancer MDA-MB-231 cells either untreated (control) or treated with tamoxifen, cisplatin, and doxorubicin. 1H HR-MAS NMR single pulse spectra evidenced signals from all mobile cell compounds, including fatty acids (membranes), water-soluble proteins, and metabolites. NMR spectra showed that phosphocholine (i.e., a biomarker of breast cancer malignant transformation) signals were stronger in control than in treated cells, but significantly decreased upon treatment with tamoxifen/cisplatin. NMR spectra acquired with Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence were interpreted only qualitatively because signal areas were attenuated according to their transverse relaxation times (T2). The CPMG method was used to identify soluble metabolites such as organic acids, amino acids, choline and derivatives, taurine, guanidine acetate, tyrosine, and phenylalanine. The fatty acid variations observed by single pulse as well as the lactate, acetate, glycine, and phosphocholine variations observed through CPMG 1H HR-MAS NMR have potential to characterize both responder and non-responder tumors in a molecular level. Additionally, we emphasized that comparable tumors (i.e., with the same origin, in this case breast cancer) may respond totally differently to chemotherapy. Our observations reinforce the theory that alterations in cellular metabolism may contribute to the development of a malignant phenotype and cell resistance.
Collapse
Affiliation(s)
- Roberta M Maria
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
| | - Wanessa F Altei
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, Caixa Postal 676, São Carlos, SP, 13565-905, Brazil
| | - Heloisa S Selistre-de-Araujo
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, Caixa Postal 676, São Carlos, SP, 13565-905, Brazil
| | - Luiz A Colnago
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
17
|
Zhang C, Wang X, Li X, Zhao N, Wang Y, Han X, Ci C, Zhang J, Li M, Zhang Y. The landscape of DNA methylation-mediated regulation of long non-coding RNAs in breast cancer. Oncotarget 2017; 8:51134-51150. [PMID: 28881636 PMCID: PMC5584237 DOI: 10.18632/oncotarget.17705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Although systematic studies have identified a host of long non-coding RNAs (lncRNAs) which are involved in breast cancer, the knowledge about the methyla-tion-mediated dysregulation of those lncRNAs remains limited. Here, we integrated multi-omics data to analyze the methylated alteration of lncRNAs in breast invasive carcinoma (BRCA). We found that lncRNAs showed diverse methylation patterns on promoter regions in BRCA. LncRNAs were divided into two categories and four subcategories based on their promoter methylation patterns and expression levels be-tween tumor and normal samples. Through cis-regulatory analysis and gene ontology network, abnormally methylated lncRNAs were identified to be associated with can-cer regulation, proliferation or expression of transcription factors. Competing endog-enous RNA network and functional enrichment analysis of abnormally methylated lncRNAs showed that lncRNAs with different methylation patterns were involved in several hallmarks and KEGG pathways of cancers significantly. Finally, survival analysis based on mRNA modules in networks revealed that lncRNAs silenced by high methylation were associated with prognosis significantly in BRCA. This study enhances the understanding of aberrantly methylated patterns of lncRNAs and pro-vides a novel insight for identifying cancer biomarkers and potential therapeutic tar-gets in breast cancer.
Collapse
Affiliation(s)
- Chunlong Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Xinyu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuecang Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150081, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaole Han
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ce Ci
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jian Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Meng Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|