1
|
Yan X, Mu H, He Y, Guo K, Jiang P, Wang W, Shu Q, Deng H, Liu A, Ge W, Cheng S, Li N, Cao Z, Zheng X, Ai F, Guo L. Self-synergy-powered Ni/Fe nanocube-based cholesterol detection with dual modes. Talanta 2025; 291:127860. [PMID: 40054223 DOI: 10.1016/j.talanta.2025.127860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Nanoenzyme-leveraged multimode detection would benefit enhancing sensitivity and mitigating detection error. Moreover, multienzyme-like nanozymes hold tremendous potential in sensing by offering synergistic effects and cascaded catalysis. Herein, cost-effective multienzymic Ni/Fe nanocubes (Ni/FeNCs) were synthesized via a facile co-precipitation, and verified to catalyze H2O2 decomposition as peroxidase (POD) and catalase (CAT) mimics. Thereby, a dual-mode sensing platform based on Ni/FeNC and cholesterol oxidase (ChOx) was developed for cholesterol detection. Utilizing the H2O2 produced via the oxidation of cholesterol catalyzed by ChOx, OH•/O2•- radicals and O2 were formed efficiently via Ni/FeNCs-based H2O2 decomposition, facilitating the generation of chemiluminescence (CL) and fluorescence signals. For CL assay, an Ni/FeNC-luminol-H2O2 CL system was fabricated, where both POD-mimic-mediated radical decomposition of H2O2 and ferricyanide ions in Ni/FeNCs could induce CL reaction with respective mechanism. Notably, these two CL processes were both deduced to be enhanced by in-situ generated O2. This dual-catalyzed luminol CL system, involving self-cascade catalysis of ferricyanogen and CAT mimic as well as the self-synergy between POD-like and CAT-like activities of Ni/FeNCs, was proposed for the first time, and able to boost CL signal. To generate fluorescent signal, o-phenylenediamine was introduced, and oxidized by both OH•/O2•- and O2 produced via POD/CAT-mimic-mediated H2O2 decomposition to 2,3-diaminophenazinc, which could quench the fluorescence of WS2 quantum dots via internal filtration effect. The Ni/FeNC-based dual-mode assay is applicable and flexible for cholesterol detection. Particularly, the low-cost Ni/FeNC is a promising candidate of luminol-H2O2 CL system due to its dual-CL-mechanism involving self-cascade and synergistic catalysis.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China; Jiangxi Province Key Laboratory of New Drug Evaluation and Transformation, Nanchang, 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Yun He
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Kangyi Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Pengyan Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Qinglei Shu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Huangying Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, PR China
| | - Ahua Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Wenkai Ge
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Na Li
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Zhijua Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, PR China
| | - Liang Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Sino German Joint Research Institute, Nanchang University, Nanchang, 330047, PR China; Jiangxi Provincial Key Laboratory of Agrofood Safety and Quality, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
2
|
Zhao RN, Ke YY, Sun HY, Quan C, Xu Q, Li J, Guan JQ, Zhang YM. Achievements and challenges in glucose oxidase-instructed multimodal synergistic antibacterial applications. Microbiol Res 2025; 297:128149. [PMID: 40187057 DOI: 10.1016/j.micres.2025.128149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Glucose oxidase (GOx) with unique catalytic properties and inherent biocompatibility can effectively oxidize both endogenous and exogenous glucose with oxygen (O2) into gluconic acid and hydrogen peroxide (H2O2). Accordingly, the GOx-based catalytic chemistry offers new possibilities for designing and constructing multimodal synergistic antibacterial systems. The consumption of glucose permanently downregulates bacterial cell metabolism by blocking essential energy supplies, inhibiting their growth and survival. Additionally, the production of gluconic acid could downregulates the pH within the bacterial infection microenvironment, enhancing the production of hydroxyl radicals (∙OH) from H2O2 via enhanced Fenton or Fendon-like reactions and triggering the pH-responsive release of drugs. Furthermore, the generated H2O2 in situ avoids the addition of exogenous hydrogen peroxide. Therefore, it is possible to design GOx-based multimodal antibacterial synergistic therapies by combining GOx-instructed cascade reactions with other therapeutic approaches such as chemodynamic therapies (CDT), hypoxia-activated prodrugs, photosensitizers, and stimuli-responsive drug release. Such multimodal strategies are expected to exhibit better therapeutic effects than single therapeutic modes. This tutorial review highlights recent advancements in GOx-instructed multimodal synergistic antibacterial systems, focusing on design philosophy and construction strategies. Current challenges and future prospects for advancing GOx-based multimodal antibacterial synergistic therapies are discussed.
Collapse
Affiliation(s)
- Rui-Nan Zhao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Yi-Yin Ke
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Hui-Yan Sun
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Qingsong Xu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China.
| | - Jing-Qi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China.
| | - Yan-Mei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
3
|
Isho RD, Sher Mohammed NM, Idrees SA. Bimetallic oxide (CoNi 2O 4) nanozyme as ROS independent for ascorbic acid detection with computational study. Talanta 2025; 295:128315. [PMID: 40378764 DOI: 10.1016/j.talanta.2025.128315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Herein, spinel CoNi2O4 nanoflowers (NFs) were successfully synthesized by a two-step hydrothermal annealing process and testified to have intrinsic enzyme mimic activities. The CoNi2O4 NFs can effectively oxidize the chromogenic substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) to ox-TMB showing catalytic behavior that follows enzyme kinetics of Michaelis-Menten equation with a low constant (Km = 0.0143 mM). Innovatively, experimental data and Density Functional Theory (DFT) calculations disclosed the stable structure and mechanism of spinal CoNi2O4NFs, which demonstrated oxidase-like activity and reactive oxygen species independence across a wide temperature range. Accordingly, a colorimetric biosensor for rapid and sensitive detection of ascorbic acid (AA) was successfully developed, displaying excellent stability, selectivity, sensitivity and low limit of detection (0.44 μM). This biosensor was applied to vitamin C capsules and fresh lemon fruit, showing favorable reproducibility and feasibility. DFT and molecular modeling (MD) calculations indicate a cobalt atom as the optimal site for catalytic conversion, while the amine group in the TMB molecule is the optimal nucleophilic attack site.
Collapse
Affiliation(s)
- Ramya D Isho
- Department of Chemistry, College of Science, University of Zakho, Duhok City, Kurdistan Region, Iraq
| | - Nidhal M Sher Mohammed
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok City, Kurdistan Region, Iraq.
| | - Shinwar A Idrees
- Department of Chemistry, College of Science, University of Zakho, Duhok City, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Bharti K, Dalal S, Tyagi A, K Sadhu K. Dual Activities of Flower-Like Gold-Iron Oxide Nanozyme for Peroxidase-Mimicking and Glucose Detection. Chem Asian J 2025; 20:e202401479. [PMID: 39714968 DOI: 10.1002/asia.202401479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Nanozymes, constituting of inorganic nanomaterials, are the sustainable and cost-effective alternatives of the naturally abundant enzymes. For more than a decade, nanozymes have shown astonishingly enhanced enzymatic activity as compared to its naturally occurring counterpart and emerged as a potential platform in biomedical science. The current study reports a novel flower shaped gold-iron oxide nanocomposite prepared via a facile and green solution phase redox mediated synthesis. The precursor gold salt conversion to nanometallic Au(0) is mediated by iron metal powder, which acts both as reductant and metal source in the resultant gold nanoparticle decorated iron oxide nanocomposite. Calcination of the synthesized nanocomposites leads to morphological evolution into unique flower shape with improved homogeneity between gold and iron components along with metal surface exposure. The gold-iron oxide nanocomposites have been utilized first time for peroxidase mimicking study and exhibit enhanced catalytic activity at 25 °C with low Michaelis-Menten constant (Km) and higher maximum reaction velocity (Vmax) as compared to the natural enzyme Horseradish peroxidase (HRP). In addition, combined assembly of this nanozyme with natural enzyme glucose oxidase also serves a potential platform for the visible colorimetric detection and quantification of glucose with limit of detection (LOD) of 15 μM.
Collapse
Affiliation(s)
- Kanika Bharti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Sancharika Dalal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Avni Tyagi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| |
Collapse
|
5
|
Chen X, Wang W, Hu Y, Sun J, Zhang L, Chen Y, Liu J, Yu Y, Li J, Ge S. In Situ Assembled Metal-Phenolic Nanozyme Biointerfaces Revitalize Stem Cells and Optimize Diabetic Implant Osseointegration. Adv Healthc Mater 2025; 14:e2404804. [PMID: 39935069 DOI: 10.1002/adhm.202404804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Indexed: 02/13/2025]
Abstract
The hyperglycemic microenvironment of diabetes inevitably leads to the accumulated reactive oxygen species (ROS) and impairs the function of stem cells, thereby impeding the process of osseointegration after implant placement. In this study, a self-assembled metal-phenolic nanozyme coating is presented for alleviating diabetic oxidative stress and improving osseointegration at implant interfaces. The antioxidant-like enzyme activity is induced by phenolic ligand-metal charge transfer (LMCT) during the coordination of epigallocatechin-3-gallate (EGCG) with copper phosphate nanosheets (Cu NS). The metal-phenolic nanozyme biointerfaces exhibits scavenging activity against a range of free radicals and facilitated the adhesion, migration, and osteogenic differentiation of stem cells, thereby enhancing the osseointegration of implants in diabetic rats. Additionally, the nanozyme coating strategy inhibits bacterial invasion and supports the adhesion of soft tissue cells. This study provides a prospective approach for surface modification to safeguard and enhance the osseointegration of implants in diabetic subjects.
Collapse
Affiliation(s)
- Xinxiao Chen
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Weijia Wang
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yuhan Hu
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jiao Sun
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Liguo Zhang
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yi Chen
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jin Liu
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yang Yu
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jianhua Li
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Shaohua Ge
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| |
Collapse
|
6
|
Zhang Y, Yu W, Zhang L, Li P. Nanozyme-based visual diagnosis and therapeutics for myocardial infarction: The application and strategy. J Adv Res 2025; 70:187-201. [PMID: 38657902 PMCID: PMC11976412 DOI: 10.1016/j.jare.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a heart injury caused by ischemia and low oxygen conditions. The occurrence of MI lead to the activation of a large number of neutrophils and macrophages, inducing severe inflammatory injury. Meanwhile, the inflammatory response produces much more free radicals, further exacerbating the inflammatory response and tissue damage. Efforts are being dedicated to developing antioxidants and enzymes, as well as small molecule drugs, for treating myocardial ischemia. However, poor pharmacokinetics and potential side effects limit the clinical application of these drugs. Recent advances in nanotechnology have paved new pathways in biomedical and healthcare environments. Nanozymes exhibit the advantages of biological enzymes and nanomaterials, including with higher catalytic activity and stability than natural enzymes. Thus, nanozymes provide new possibilities for the diagnosis and treatment of oxidative stress and inflammation-related diseases. AIM OF REVIEW We describe the application of nanozymes in the diagnosis and therapy of MI, aiming to bridge the gap between the diagnostic and therapeutic needs of MI. KEY SCIENTIFIC CONCEPTS OF REVIEW We describe the application of nanozymes in the diagnosis and therapy of MI, and discuss the new strategies for improving the diagnosis and treatment of MI. We review in detail the applications of nanozymes to achieve highly sensitive detection of biomarkers of MI. Due to their unique enzyme catalytic capabilities, nanozymes have the ability to sensitively detect biomolecules through colorimetric, fluorescent, and electrochemical assays. In addition, nanozymes exhibit excellent antioxidase-mimicking activity to treat MI by modulating reduction/oxidation (REDOX) homeostasis. Nanozymes can also passively or actively target MI tissue sites, thereby protecting ischemic myocardial tissue and reducing the infarct area. These innovative applications of nanozymes in the field of biomedicine have shown promising results in the diagnosis and treatment of MI, offering a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Zhao Y, Cheng J, Li Z, Wang J, Chen X. Nanozymes in Biomedical Applications: Innovations Originated From Metal-Organic Frameworks. Adv Healthc Mater 2025; 14:e2402066. [PMID: 39319491 DOI: 10.1002/adhm.202402066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Nanozymes exhibit significant potential in medical theranostics, environmental protection, energy development, and biopharmaceuticals due to their exceptional catalytic performance. Compared with natural enzymes, nanozymes have the advantages of simple preparation and purification, convenient production and low cost. Therefore, it is very important to prepare nanozymes quickly and efficiently, which not only helps to expand their application scope, but also can further exert their great potential in various fields. Metal-organic frameworks (MOF) materials serve as versatile substrates for constructing nanozymes, offering unique advantages like adjustable structure, high specific surface area, and porous channels. MOF coordination nodes constructed from metal ions or metal clusters have unique properties that can be leveraged to tailor nanozyme characteristics for different applications. This review describes and analyzes recent methods for constructing nanozymes using MOF materials, and explores their application prospects in biomedicine. By expounding the preparation techniques and biomedical applications of nanozymes, this review aims to inspire researchers to develop innovative nanozyme materials and explore new application directions.
Collapse
Affiliation(s)
- Yuewu Zhao
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junjie Cheng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhen Li
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Jine Wang
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
8
|
Bhagat P, Upadhyay LSB. A review towards sustainable analyte detection: Biomimetic inspiration in biosensor technology. J Biotechnol 2025; 398:51-65. [PMID: 39615792 DOI: 10.1016/j.jbiotec.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
The branch of biomimetics has witnessed a profound impact on the field of biosensor technology, reflected in sustainable analyte detection. A vast array of biosensor platforms with improved/upgraded performance have been developed and reported. No wonder the motivation from the field of biomimetics has a huge impact on generating detection systems with escalated degrees of manipulation and tunability at different levels. More recently, biomimetic biosensor technology has found potential in constructing bio-inspired materials such as aptamers, MIPs, nanozymes, DNAzymes, Synzymes, etc. to be integrated with biosensor fabrication. The establishment of a sensing setup is not limited to the bioreceptor fabrication; the construction of transducing element using biomimetic material have been reported too. Moreover, to serve a biosensing of target analyte from a fatal diseased sample different biomimetic architectures can be designed that mimic in-vivo microenvironmental surroundings to get an exact microenvironment equivalent to natural conditions leading towards designing of a precise treatment strategy. This research area is ever-evolving as there is a scope for upgradation and refinement due to advancing technologies including nanotechnology, biomimetic nanomaterials, microfluidics, optical sensors, etc. This review is an attempt to comprehend and juxtapose the very primary innovations in the field of biomimetic biosensor technology to realize its comprehensive and wide-range scope and possibilities.
Collapse
Affiliation(s)
- Pratistha Bhagat
- National Institute of Technology, Raipur, Department of Biotechnology, Raipur, Chhattisgarh 492010, India.
| | - Lata Sheo Bachan Upadhyay
- National Institute of Technology, Raipur, Department of Biotechnology, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
9
|
Ke W, Kuang G, Gu C, Wang J, Jiang X, Zhu R, Wang H, Zhang Z. Enzyme cascade nanozyme based colorimetric sensor for detection of uric acid as a biomarker of hyperuricemia. Mikrochim Acta 2025; 192:85. [PMID: 39812877 DOI: 10.1007/s00604-024-06946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
A Cr-doped VO2 nanobelt (Cr/VO2) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO2 for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (H2O2) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO2 exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃. Thus, the reaction catalyzed by Cr/VO2 can be carried out at room temperature, greatly simplifying the testing process. This enzyme cascade nanozyme based colorimetric assay enables the selective and simple detection of uric acid within 30 min with a detection limit of only 0.34 μM, and has an observable potential in clinical applications.
Collapse
Affiliation(s)
- Wenrui Ke
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guochen Kuang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chuangqi Gu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Junhao Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiao Jiang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Rongjiao Zhu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | - Haiyuan Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | - Zhen Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
10
|
Wang R, Hastings WJ, Saliba JG, Bao D, Huang Y, Maity S, Kamal Ahmad OM, Hu L, Wang S, Fan J, Ning B. Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution. ACS NANO 2025; 19:73-100. [PMID: 39704725 PMCID: PMC11752498 DOI: 10.1021/acsnano.4c11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Spatial omics methods are extensions of traditional histological methods that can illuminate important biomedical mechanisms of physiology and disease by examining the distribution of biomolecules, including nucleic acids, proteins, lipids, and metabolites, at microscale resolution within tissues or individual cells. Since, for some applications, the desired resolution for spatial omics approaches the nanometer scale, classical tools have inherent limitations when applied to spatial omics analyses, and they can measure only a limited number of targets. Nanotechnology applications have been instrumental in overcoming these bottlenecks. When nanometer-level resolution is needed for spatial omics, super resolution microscopy or detection imaging techniques, such as mass spectrometer imaging, are required to generate precise spatial images of target expression. DNA nanostructures are widely used in spatial omics for purposes such as nucleic acid detection, signal amplification, and DNA barcoding for target molecule labeling, underscoring advances in spatial omics. Other properties of nanotechnologies include advanced spatial omics methods, such as microfluidic chips and DNA barcodes. In this review, we describe how nanotechnologies have been applied to the development of spatial transcriptomics, proteomics, metabolomics, epigenomics, and multiomics approaches. We focus on how nanotechnology supports improved resolution and throughput of spatial omics, surpassing traditional techniques. We also summarize future challenges and opportunities for the application of nanotechnology to spatial omics methods.
Collapse
Affiliation(s)
- Ruixuan Wang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Waylon J. Hastings
- Department
of Psychiatry and Behavioral Science, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Julian G. Saliba
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Duran Bao
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanyu Huang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Sudipa Maity
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Omar Mustafa Kamal Ahmad
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Logan Hu
- Groton
School, 282 Farmers Row, Groton, Massachusetts 01450, United States
| | - Shengyu Wang
- St.
Margaret’s Episcopal School, 31641 La Novia Avenue, San
Juan Capistrano, California92675, United States
| | - Jia Fan
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Bo Ning
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
11
|
Panferov VG, Zhang W, D'Abruzzo N, Wang S, Liu J. Kinetic Profiling of Oxidoreductase-Mimicking Nanozymes: Impact of Multiple Activities, Chemical Transformations, and Colloidal Stability. ACS NANO 2024; 18:34870-34883. [PMID: 39666441 DOI: 10.1021/acsnano.4c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In contrast to homogeneous enzyme catalysis, nanozymes are nanosized heterogeneous catalysts that perform reactions on a rigid surface. This fundamental difference between enzymes and nanozymes is often overlooked in kinetic studies and practical applications. In this article, using 14 nanozymes of various compositions (core@shell, metal-organic frameworks, metal, and metal oxide nanoparticles), we systematically demonstrate that nontypical features of nanozymes, such as multiple catalytic activities, chemical transformations, and aggregation, need to be considered in nanozyme catalysis. Ignoring these features results in the inaccurate quantification of catalytic activity. Neglecting the multiple activities led to a six-time underestimation of Mn2O3 oxidation activity and mischaracterization of this material as a low-active peroxidase-mimicking nanozyme. Additionally, overlooking chemical stability during catalytic reactions led to the reporting of high peroxidase-mimicking activity for Au@Ag nanoparticles, which, in reality, exhibited no intrinsic activity and oxidized the substrate through the leakage of Ag+ ions. Ignoring the chemical stability of Au@Prussian Blue nanoparticles may lead to more than four times overestimation of peroxidase-mimicking activity after just 24 h of storage. Finally, disregarding the colloidal stability of nanozymes led to a five-time inaccuracy in catalytic activity. These findings underscore the necessity of optimizing procedures to account for these factors in nanozyme kinetic measurements, which will in turn ensure more reliable biosensors and the success of other practical applications.
Collapse
Affiliation(s)
- Vasily G Panferov
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia
| | - Wenjun Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Nicholas D'Abruzzo
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Sihan Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Solangi NH, Karri RR, Mubarak NM, Mazari SA, Sharma BP. Holistic insights into carbon nanotubes and MXenes as a promising route to bio-sensing applications. NANOSCALE 2024; 16:21216-21263. [PMID: 39470605 DOI: 10.1039/d4nr03008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Essential biosensor use has become increasingly important in drug discovery and recognition, biomedicine, food safety, security, and environmental research. It directly contributed to the development of specialized, reliable diagnostic instruments known as biosensors, which use biological sensing components. Traditional biosensors have poor performance, so scientists need to develop advanced biosensors with promising selectivity, sensitivity, stability, and reusability. These are all parameter modifications associated with the characteristics of the sensing material. Carbon nanotubes (CNTs) and MXenes are promising as targeted sensing agents in advanced functional materials because of their promising chemical and physical properties and limited toxic effects. Based on available data and sensing performance, MXene is better for biosensing applications than CNTs. Because of their large specific surface area (SSA), superior electrical conductivity, and adaptable surface chemistry that facilitates simple functionalization and robust interactions with biomolecules, MXenes are typically regarded as the superior option for biosensors. Additionally, because of their hydrophilic nature, they are more suited to biological settings, which increases their sensitivity and efficacy in identifying biological targets. MXenes are more suitable for biosensing applications due to their versatility and compatibility with aquatic environments, even if CNTs have demonstrated stability and muscular mechanical strength. However, MXenes offer better thermal stability, which is crucial for applications in diverse temperature environments. This study reviews and compares the biosensing capabilities, synthesis methods, unique properties, and toxicity of CNTs and MXenes. Both nanomaterials effectively detect various pollutants in food, biological substances, and human bodies, making them invaluable in environmental monitoring and medical diagnostics. In conclusion, CNTs work better for biosensors that must be strong, flexible, and long-lasting under different conditions. MXenes, on the other hand, work better when chemical flexibility and compatibility with wet environments are essential.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- State Key Laboratory of Chemical Resource Engineering and College of Chemistry, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, PR China
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Faculty of Engineering, INTI International University, 71800, Nilai, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan.
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
V G S, Mangalsana H, Vernekar A. Breaking Barriers in Photothermal Tumor Therapy: A Cascade of Strain-Engineered Nanozyme in Action. ChemMedChem 2024; 19:e202400443. [PMID: 39267496 DOI: 10.1002/cmdc.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Indexed: 09/17/2024]
Abstract
Cancer, a deadly and constantly evolving disease, has always been difficult to treat due to the complexity of the tumor microenvironment (TME). Cancer nanomedicines are proving to be a much better alternative for treatment due to their stability and ability to provide an efficient targeted therapy. An amorphous alloy bimetallene with an introduction of 2 % tensile strain with photothermal multiple enzyme-like catalytic activity is being presented here that functions as a TME-responsive nanozyme. Labeled as RhRu, this bimetallene, under acidic conditions, functions as oxidase (OXD) - like, peroxidase (POD) - like and catalase (CAT) - like enzymes, by producing radicals and disrupting the tumor cells. This effect is enhanced especially upon irradiation of laser and introduction of tensile strain in its heterophase boundaries. This current highlight discusses the strain engineering tactic of la-RhRu bimetallene and its potency as an anti-tumor therapeutic.
Collapse
Affiliation(s)
- Srinidhi V G
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Huidrom Mangalsana
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Chen S, Zhang K, Chen C, Liu F, Zeng L, Yang X, An X, Wang L, Dai T. Iron Single-Atom Nanozyme with Inflammation-Suppressing for Inhibiting Multidrug-Resistant Bacterial Infection and Facilitating Wound Healing. ACS Biomater Sci Eng 2024; 10:7206-7216. [PMID: 39425636 DOI: 10.1021/acsbiomaterials.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Infection with drug-resistant bacteria and the formation of biofilms are the main factors contributing to wound healing insufficiency. Antibacterial agents with enzyme-like properties have exhibited considerable potential for efficient eradication of drug-resistant microorganisms due to their superior sensitivities and minimal side effects. In this work, we prepared a kind of Fe-centered single-atom nanozyme (Fe-SAzyme) with high biocompatibility and stability via a facile one-pot hydrothermal method, which was suitable for the treatment of wounds infected with drug-resistant bacteria. The Fe-SAzyme exhibited remarkable peroxidase-like catalytic activities, catalyzing the conversion of hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH), which could not only damage bacterial cells but also inhibit, disrupt, and eradicate the formation of bacterial biofilms. Thus, Fe-SAzyme demonstrated a broad-spectrum antibacterial performance capable of effectively eliminating multidrug-resistant bacteria. The coexistence of ferrous (Fe2+) and ferric (Fe3+) ions in Fe-SAzyme conferred the nanozyme with anti-inflammatory activity, effectively suppressing excessive inflammation. Meanwhile, Fe-SAzyme could significantly downregulate inflammatory cytokines tumor necrosis factor-α and interleukin-1β and upregulate growth factors VEGF and epidermal growth factor, which can prevent bacterial infection, mitigate inflammation, promote fibroblast proliferation, and improve wound closure. Thus, Fe-SAzyme had shown favorable therapeutic efficiency in promoting bacteria-infected wound healing. This study provides Fe-SAzyme as a promising candidate for the development of new strategies to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Shiwen Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Kaiyan Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Chaoxi Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Fan Liu
- Yancheng Technician College Jiangsu Province, Yancheng, Jiangsu 224005, China
| | - Lin Zeng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xiaolong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xiaofang An
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Lu Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Tao Dai
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, Sichuan 614401, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Zhang Q, Wang Z, Shen S, Wang J, Cao J, Deng Y, Meng H, Ma L. Integrating enzyme-nanoparticles bring new prospects for the diagnosis and treatment of immune dysregulation in periodontitis. Front Cell Infect Microbiol 2024; 14:1494651. [PMID: 39554809 PMCID: PMC11564189 DOI: 10.3389/fcimb.2024.1494651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Enzymes play a significant role in mediating inflammatory and immune responses in periodontitis. Effective diagnosis, timely treatment, and continuous management of periodontal enzymes are essential to prevent undesirable consequences; however, this remains a significant challenge. Nanoparticles (NPs) have attracted significant attention in biomedicine because of their advantageous nanosized effects. NPs are conjugated with specific enzyme substrates at responsive sites that are triggered by periodontitis enzyme biomarkers, leading to functional or characteristic changes. In contrast, NPs with enzyme-mimetic activities exhibit catalytic activity, effectively destroying pathogenic biofilms and modulating the immune response in periodontitis. The unique properties of enzyme-targeting NPs have enabled the development of biosensors and fluorescent probes capable of identifying enzyme biomarkers associated with periodontitis. Enzyme-responsive and enzyme-mimetic NPs both exert therapeutic applications in the treatment of periodontitis. In this review, we provide a comprehensive overview of the enzymes associated with periodontitis, the mechanisms of enzyme-responsive and enzyme-mimetic NPs, recent advancements in the use of NPs for detecting these enzymes, and the therapeutic applications of NPs in targeting or mimicking enzyme functions. We also discuss the challenges and prospects of using NPs in the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhiyi Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Shijiao Shen
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Junzhe Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Jun Cao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| | - Yongqiang Deng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - He Meng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Khan N, Ahmad M, Sun W, Shah NS, Asad M, Shah M, Ullah R, Ibrahim MA, Badshah A, Nishan U. Optical detection of uric acid based on a citric acid functionalized copper-doped biochar nanozyme. RSC Adv 2024; 14:33007-33018. [PMID: 39435001 PMCID: PMC11492199 DOI: 10.1039/d4ra05976j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Uric acid is the end product of purine metabolism and is a key biomarker for various diseases. Under normal conditions, there is a balance between its production and excretion. Its higher concentration can cause inflammation and severe pain, which makes it necessary to monitor its level for the diagnosis, management, and treatment of various pathological conditions. The current work reports on the synthesis of a copper-doped biochar (Cu@BC) nanocomposite and its functionalization with citric acid. The synthesis of the mimic enzyme was confirmed through various spectroscopic techniques. The nanozyme catalyzes hydrogen peroxide to oxidize tetramethylbenzidine (TMB) with an optical change from colorless to blue-green. This optical transformation was confirmed through a UV-vis spectrophotometer, which gave an expected λ max of 652 nm characteristic of TMBoxi. The incorporation of uric acid into this reaction mixture resulted in the reduction of TMBoxi to TMBred, accompanied by an optical change from blue-green to colorless, which was again confirmed with a UV-vis spectrophotometer. The fabricated sensor's performance was finely-tuned to report on its various key components. The best response was achieved at 2 mg of the nanozyme, pH 6, time 150 seconds, TMB, and hydrogen peroxide 0.9 and 1.5 mM, respectively. Under the above-mentioned optimized conditions, the fabricated sensor detected uric acid in the range of 1-90 μM with limits of detection and quantification of 0.17 and 0.58 μM, respectively, with an R 2 of 0.997. The proposed sensor was highly selective and successfully detected uric acid in real sample solutions.
Collapse
Affiliation(s)
- Noaman Khan
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Mansoor Ahmad
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Wei Sun
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Noor S Shah
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus 22060 Pakistan
| | - Muhammad Asad
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan 66000 Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Amir Badshah
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| |
Collapse
|
17
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
18
|
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, Dash SL, Sarangi MK. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chem Biodivers 2024; 21:e202401326. [PMID: 39041292 DOI: 10.1002/cbdv.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The nanozymes (NZs) are the artificial catalyst deployed for biosensing with their uniqueness (high robustness, surface tenability, inexpensive, and stability) for obtaining a better response/miniaturization of the varied sensors than their traditional ancestors. Nowadays, nanomaterials with their broadened scale such as metal-organic frameworks (MOFs), and metals/metal oxides are widely engaged in generating NZ-based biosensors (BS). Diverse strategies like fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and electrochemical sensing principles were implemented for signal transduction of NZs. Despite broad advantages, numerous encounters (like specificity, feasibility, stability, and issues in scale-up) are affecting the potentialities of NZs-based BS, and thus need prior attention for a promising exploration for a revolutionary outcome in advanced theranostics. This review includes different types of NZs, and the progress of numerous NZs tailored bio-sensing techniques in detecting abundant bio analytes for theranostic purposes. Further, the discussion highlighted some recent challenges along with their progressive way of possibly overcoming followed by commercial outbreaks.
Collapse
Affiliation(s)
- Abdul Sayeed Khan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Sudhir Kumar Sahu
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Santosh Kumar Dash
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Tankadhar Mishra
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Amiya Ranjan Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Damodar Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | | | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| |
Collapse
|
19
|
Swain S, Lin TY, Chou IH, Liu SC, Mallick BC, Lin HY, Huang CH. Photoactive nanocatalysts as DTT-assisted BSA-AuNCs with enhanced oxidase-mimicking ability for sensitive fluorometric detection of antioxidants. J Nanobiotechnology 2024; 22:585. [PMID: 39342215 PMCID: PMC11438146 DOI: 10.1186/s12951-024-02850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Redox imbalance and oxidative stress are increasingly recognized as significant factors in health disorders such as neurodegenerative disorders, premature aging and cancer. However, detecting antioxidant levels that is crucial for managing oxidative stress, can be challenging due to existing assays' limitations, such as insensitivity to thiol-containing antioxidants. This study presents a simple fluorescence-based assay for antioxidant detection employing the enhanced photocatalytic oxidase-like activity of dithiothreitol (DTT)-assisted bovine serum albumin (BSA)-stabilized gold nanoclusters (DTT@BSA-AuNCs). The reported nanozyme exhibits remarkable stability, versatility, and catalytic activity. Under LED irradiation, DTT@BSA-AuNCs generate singlet oxygen, which converts non-fluorescent thiamine to fluorescent thiochrome, utilizing dissolved oxygen for catalysis. Antioxidants inhibit thiochrome formation, leading to fluorescence quenching. This method enables sensitive detection of antioxidants such as ascorbic acid and glutathione with limits of detection of 0.08 µM and 0.32 µM, respectively, under neutral pH, outperforming previous studies. The assay successfully detects antioxidants in human saliva and cancer cell models. The DTT@BSA-AuNCs-based assay offers a cost-effective, sensitive, and straightforward approach for detecting antioxidants in biological samples, facilitating improved monitoring of oxidative stress in various diseases.
Collapse
Affiliation(s)
- Sanskruti Swain
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ting-Yi Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - I-Hsuan Chou
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Bikash C Mallick
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Ying Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Jacob E, Mathew D, Benny L, Varghese A. Emerging Nanomaterials as Versatile Nanozymes: A New Dimension in Biomedical Research. Top Curr Chem (Cham) 2024; 382:28. [PMID: 39141170 DOI: 10.1007/s41061-024-00473-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
The enzyme-mimicking nature of versatile nanomaterials proposes a new class of materials categorized as nano-enzymes, ornanozymes. They are artificial enzymes fabricated by functionalizing nanomaterials to generate active sites that can mimic enzyme-like functions. Materials extend from metals and oxides to inorganic nanoparticles possessing intrinsic enzyme-like properties. High cost, low stability, difficulty in separation, reusability, and storage issues of natural enzymes can be well addressed by nanozymes. Since 2007, more than 100 nanozymes have been reported that mimic enzymes like peroxidase, oxidase, catalase, protease, nuclease, hydrolase, superoxide dismutase, etc. In addition, several nanozymes can also exhibit multi-enzyme properties. Vast applications have been reported by exploiting the chemical, optical, and physiochemical properties offered by nanozymes. This review focuses on the reported nanozymes fabricated from a variety of materials along with their enzyme-mimicking activity involving tuning of materials such as metal nanoparticles (NPs), metal-oxide NPs, metal-organic framework (MOF), covalent organic framework (COF), and carbon-based NPs. Furthermore, diverse applications of nanozymes in biomedical research are discussed in detail.
Collapse
Affiliation(s)
- Evin Jacob
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India
| | - Denno Mathew
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India
| | - Libina Benny
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India
| | - Anitha Varghese
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
21
|
Ma X, Cui Y, Zhu K, Zhu X, Zhang L, Guo L, Feng L, Zhang J, Wang Y, Xia L. The impact of hollow core-shell nanozymes in biosensing: A case study of p-Fe 3O 4@PDA@ZIF-67. Anal Chim Acta 2024; 1309:342701. [PMID: 38772662 DOI: 10.1016/j.aca.2024.342701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.
Collapse
Affiliation(s)
- Xiangyu Ma
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Yaoying Cui
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Kexing Zhu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Xiufang Zhu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Lijing Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Liming Guo
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Liangdong Feng
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Jiadong Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| |
Collapse
|
22
|
Patil PD, Karvekar A, Salokhe S, Tiwari MS, Nadar SS. When nanozymes meet enzyme: Unlocking the dual-activity potential of integrated biocomposites. Int J Biol Macromol 2024; 271:132357. [PMID: 38772461 DOI: 10.1016/j.ijbiomac.2024.132357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Integrating enzymes and nanozymes in various applications is a topic of significant interest. The researchers have explored the encapsulation of enzymes using diverse nanostructures to create nanomaterial-enzyme hybrids. These nanomaterials introduce unique properties that contribute to the additional activity along with the stabilization of enzymes in immobilized form, enabling a cascade of second-order reactions. This review centers on dual-activity nanozymes, providing insights into their applications in biosensors and biocatalysis. These applications leverage the enhanced catalytic activity and stability offered by dual-activity nanozymes. These nanozymes find promising applications in fields like bioremediation, offering eco-friendly solutions for mitigating environmental pollution while showing potential in medical diagnostics. The review delves into various techniques for creating enzyme-nanozyme hybrid catalysts, including adsorption, encapsulation, and incorporation methods. The review also addresses the challenges that must be overcome, such as overlapping catalytic surfaces and disparities in reaction rates in multi-enzyme cascade reactions. It concludes by presenting strategies to tackle these issues and offers insights into the field's promising future, suggesting that machine learning may drive further advancements in enzyme-nanozyme integration. This comprehensive exploration illuminates the present and charts a promising course for future innovations in the seamless integration of enzymes and nanozymes, heralding a new era of catalytic possibilities.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Aparna Karvekar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Sakshi Salokhe
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
23
|
Shao L, Wang X, Du X, Yin S, Qian Y, Yao Y, Yang L. Application of Multifunctional Nanozymes in Tumor Therapy. ACS OMEGA 2024; 9:15753-15767. [PMID: 38617672 PMCID: PMC11007812 DOI: 10.1021/acsomega.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Tumors are one of the main diseases threatening human life and health. The emergence of nanotechnology in recent years has introduced a novel therapeutic avenue for addressing tumors. Through the amalgamation of nanotechnology's inherent attributes with those of natural enzymes, nanozymes have demonstrated the ability to initiate catalytic reactions, modulate the biological microenvironment, and facilitate the adoption of multifaceted therapeutic approaches, thereby exhibiting considerable promise in the realm of cancer treatment. In this Review, the application of nanozymes in chemodynamic therapy, radiotherapy, photodynamic therapy, photothermal therapy, and starvation therapy are summarized. Moreover, a detailed discussion regarding the mechanism of conferring physiotherapeutic functionality upon catalytic nanosystems is provided. It is posited that this innovative catalytic treatment holds significant potential to play a crucial role within the domain of nanomedicine.
Collapse
Affiliation(s)
- Lihua Shao
- Department
of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xueyuan Wang
- College of
Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Xiao Du
- Department
of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing
Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Shaoping Yin
- School of
Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, China
| | - Yun Qian
- Dermatologic
Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Yawen Yao
- Department
of Pharmaceutics, School of Pharmacy, China
Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lin Yang
- College of
Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
24
|
Shome A, Ali S, Haydar MS, Sarkar K, Roy S, Adhikary P, Roy MN. Synthesis of Spherical Mn 2O 3 Nanozymes from Different Green Precursors for their Innovative Applications in Catalytic Properties and Bioactivity. ACS Biomater Sci Eng 2024; 10:1734-1742. [PMID: 38330433 DOI: 10.1021/acsbiomaterials.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Here, spherical Mn2O3 nanozymes were synthesized via a one-step green method using different green precursors, and their physicochemical properties and biological activities were monitored with various green precursors. Powder X-ray diffraction (PXRD) was performed to determine the crystalline properties and phases involved in the formation of cubic Mn2O3 nanozymes. The synthesized nanozymes were spherical and examined by SEM and FESEM studies. All of the samples synthesized using different green precursors exhibited different sizes but similar spherical shapes. Moreover, all green-synthesized nanozymes catalyzed the oxidation reaction of the chromogenic substrate 3,3'5,5' tetramethylbenzidine (TMB) in the absence of H2O2, and A2 (lemon-mediated Mn2O3 nanozymes), which the followed Michaelis-Menten kinetics, showed the best activity. Therefore, A2 (lemon-mediated nanozyme) showed oxidase-mimicking activity with distinct Km and Vmax values calculated by the Lineweaver-Burk plot. Furthermore, the current nanozymes demonstrated a significant ability to kill both Gram-negative and Gram-positive bacteria as well as effectively destroy biofilms under physiological conditions. Moreover, the green-mediated nanozymes also displayed ROS-scavenging activity. Our nanozymes exhibited scavenging activity toward OH and O2-• radicals and metal chelation activity, which were investigated colorimetrically. Therefore, these nanozymes might be used as effective antibacterial agents and also for the consumption of reactive oxygen species.
Collapse
Affiliation(s)
- Ankita Shome
- Department of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Md Salman Haydar
- Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Kushankur Sarkar
- Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Prakriti Adhikary
- Department of Physics, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| |
Collapse
|
25
|
Liu C, Hu J, Yang W, Shi J, Chen Y, Fan X, Gao W, Cheng L, Luo QY, Zhang M. Carbon dot enhanced peroxidase-like activity of platinum nanozymes. NANOSCALE 2024; 16:4637-4646. [PMID: 38314787 DOI: 10.1039/d3nr04964g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As one of the most intriguing nanozymes, the platinum (Pt) nanozyme has attracted tremendous research interest due to its various catalytic activities but its application is still limited by its poor colloidal stability and low affinity to substrates. Here, we design a highly stable Pt@carbon dot (Pt@CD) hybrid nanozyme with enhanced peroxidase (POD)-like activity (specific activity of 1877 U mg-1). The Pt@CDs catalyze the decomposition of hydrogen peroxide (H2O2) to produce singlet oxygen and hydroxyl radicals and exhibit high affinity to H2O2 and high specificity to 3,3',5,5'-tetramethyl-benzidine. We reveal that both the hydroxyl and carbonyl groups of CDs could coordinate with Pt2+ and then regulate the charge state of the Pt nanozyme, facilitating the formation of Pt@CDs and improving the POD-like activity of Pt@CDs. Colorimetric detection assays based on Pt@CDs for H2O2, dopamine, and glucose with a satisfactory detection performance are achieved. Moreover, the Pt@CDs show a H2O2-involving antibacterial effect by destroying the cell membrane. Our findings provide new opportunities for designing hybrid nanozymes with desirable stability and catalytic performance by using CDs as nucleating templates and stabilizers.
Collapse
Affiliation(s)
- Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, P. R. China
| | - Wenwen Yang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China.
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, P. R. China
| | - Jinyu Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P.R. China
| | - Yiming Chen
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| | - Xing Fan
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wenhui Gao
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| | - Liangliang Cheng
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| | - Qing-Ying Luo
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| |
Collapse
|
26
|
Zhang Y, Wu L, Yang J, Li G, Deng K, Huang H. A platinum glutamate acid complex as a peroxidase mimic: high activity, controllable chemical modification, and application in biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1093-1101. [PMID: 38284245 DOI: 10.1039/d3ay02121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Recent strides in nanotechnology have given rise to nanozymes, nanomaterials designed to emulate enzymatic functions. Despite their promise, challenges such as batch-to-batch variability and limited atomic utilization persist. This study introduces Pt(Glu)2, a platinum glutamic acid complex, as a versatile small-molecule peroxidase mimic. Synthesized through a straightforward method, Pt(Glu)2 exhibits robust catalytic activity and stability. Steady-state kinetics reveal a lower Km value compared to that of natural enzymes, signifying strong substrate affinity. Pt(Glu)2 was explored for controllable chemical modification and integration into cascade reactions with natural enzymes, surpassing other nanomaterials. Its facile synthesis and seamless integration enhance cascade reactions beyond the capabilities of nanozymes. In biosensing applications, Pt(Glu)2 enabled simultaneous detection of cholesterol and alkaline phosphatase in human serum with high selectivity and sensitivity. These findings illustrate the potential of small molecule mimetics in catalysis and biosensing, paving the way for their broader applications.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lexian Wu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jing Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Guoming Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
27
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
28
|
Ge Z, Zhao Y, Li J, Si Z, Du W, Su H. Multifunctional molecularly imprinted nanozymes with improved enrichment and specificity for organic and inorganic trace compounds. NANOSCALE 2024; 16:2608-2620. [PMID: 38226643 DOI: 10.1039/d3nr03968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Although nanozymes exhibit properties superior to those of natural enzymes and conventional engineered enzymes, the development of highly specific nanozymes remains a challenge. New yolk-shell Fe3O4 molecularly imprinted (MIP@void@Fe3O4) nanozymes with peroxidase-like activity were developed by modelling the substrate channels of natural enzymes through molecular imprinting techniques and interfacial affinity modifications in this study. To establish a platform technology for the adsorption and determination of inorganic and organic contaminants, lead ion (Pb2+) and diazinon (DIZ), respectively, were selected as imprinting templates, and a hollow mesoporous shell was synthesized. The as-prepared MIP@void@Fe3O4 nanozymes, characterized using TEM, HRTEM, SEM, FT-IR, TGA, VSM and XPS, not only affirmed the successful fabrication of a magnetic nanoparticle with a unique hollow core-shell structure but also facilitated an exploration of the interfacial bonding mechanisms between Fe3O4 and other shell layers. The enrichment of the MIP@void@Fe3O4 nanozymes due to imprinting was approximately 5 times higher than the local substrate concentration and contributed to the increased activity. Based on selective and competitive recognition experiments, the synthesized nanozymes could selectively recognize organic and inorganic targets with the lowest detection limits (LOD) of 6.6 × 10-9 ppm for Pb2+ and 5.13 × 10-11 M for DIZ. Therefore, the proposed biosensor is expected to be a potent tool for trace pollutant detection, which provides a rational design for more advanced and subtle methods to bridge the activity gap between natural enzymes and nanozymes.
Collapse
Affiliation(s)
- Zhanyi Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Jiayi Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zhaobo Si
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Wenbo Du
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
29
|
Yang X, Bi Z, Yin C, Zhang S, Song D, Huang H, Li Y. A colorimetric sensor array based on peroxidase activity nanozyme for the highly efficient differential sensing of tea polyphenols and Tieguanyin adulteration. Food Chem 2024; 432:137265. [PMID: 37657343 DOI: 10.1016/j.foodchem.2023.137265] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Tieguanyin (TGY) is one of top ten famous teas in China, but in the process of brand building there is the phenomenon of falsehood, thus harming the interests of consumers. To solve theadulterate problem of TGY, a colorimetric sensor array (CSA) based onperoxidase activity of nanozyme was constructed. Nanozymes can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to 3,3',5,5'-tetramethyl -[1,1'-bis(cyclohexyl)]-2,2',5,5'-tetraene-4,4'-diimine (oxTMB), while the tea polyphenols (TPs) can inhibit this process, and the degree of inhibition varies significantly with the reaction time. We selected two nanozymesand three reaction time points to construct CSA. It can successfully distinguish TPsin TGY. The discriminative analysiscan achieve: (1)distinction between TGY and adulterated tea, (2)discrimination of TGY in various seasons and seasonal adulteration in different degrees. The method constructed in this work is promising for both the class and quality differentiation of TGY and other teas with TPs as the main activity.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Shuyi Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
30
|
Chakraborty S, Kolay S, Maity S, Patra A. Copper Nanoclusters as Multienzymes Mimic Activities of Oxidase and Ascorbic Acid Oxidase in the Presence of Imidazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:317-324. [PMID: 38103254 DOI: 10.1021/acs.langmuir.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Artificial nanoenzymes based on metal nanoclusters have received great attention for multienzyme activities nowadays. In this work, pepsin-capped copper NCs (Cu-Pep NCs) are used as oxidase, ascorbic acid oxidase (AAO), and peroxidase mimics, and their activities are enhanced by the introduction of imidazole. The oxidase activity increased almost 7.5-fold, while 5-fold and 2-fold increases were observed for the peroxidase and AAO-like activity, respectively. The enhanced radical formation in the presence of imidazole moieties facilitates the enzymatic activity of the Cu-Pep-NCs/Imid system. This work describes the different enzymatic activities of the NCs, paving a new way for artificial nanoenzymes having enhanced activities.
Collapse
Affiliation(s)
- Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
31
|
Dadakhani S, Dehghan G, Khataee A. A robust and facile label-free method for highly sensitive colorimetric detection of ascorbic acid in fresh fruits based on peroxidase-like activity of modified FeCo-LDH@WO 3 nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123016. [PMID: 37354854 DOI: 10.1016/j.saa.2023.123016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Many compounds such as amino acids and oligonucleotides have been shown to effectively change peroxidase-like activity of nanoparticles. While a few studies have focused on mimicking the active site of natural enzymes on nanozymes and thus increasing their substrate affinity. Therefore, in this work, the surface of FeCo@WO3 nanocomposite was modified using guanosine triphosphate (GTP) to mimic the histidine of peroxidase enzyme's active site and its modification was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). Then, the peroxidase-mimicking activity of the modified nanocomposite was tested using a colorimetric method, based on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). It was found that GTP improves the activity of FeCo@WO3 as a natural peroxidase active site's distal histidine residue. Ascorbic acid (AA) is a powerful antioxidant that induces the reduction of blue color (oxidized TMB) ox-TMB to colorless TMB. The colorimetric method was applied for the sensitive detection of AA in common fruits. The linear range of AA was 10-100 μM with a limit of detection (LOD) of 0.27 μM, which provides a rapid and sensitive method for testing AA in the field of food analysis.
Collapse
Affiliation(s)
- Sonya Dadakhani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
32
|
Mao YW, Zhang X, Li HB, Pei S, Wang AJ, Zhao T, Jin Z, Feng JJ. Confined synthesis of ternary FeCoMn single-atom nanozyme in N-doped hollow mesoporous carbon nanospheres for synergistic chemotherapy and chemodynamic cancer therapy. BIOMATERIALS ADVANCES 2023; 154:213618. [PMID: 37725871 DOI: 10.1016/j.bioadv.2023.213618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Recently, nanozymes show increasing biological applications and promising possibilities for therapeutic intervention, while their mediated therapeutic outcomes are severely compromised due to their insufficient catalytic activity and specificity. Herein, ternary FeCoMn single atoms were incorporated into N-doped hollow mesoporous carbon nanospheres by in situ confinement pyrolysis at 800 °C as high-efficiency nanozyme. The confinement strategy endows the as-prepared nanozyme with the enhanced catalase- and oxidase-like activities. Specifically, the FeCoMn TSAs/N-HCSs nanozyme can decompose intracellular H2O2 to generate O2 and subsequently convert O2 to cytotoxic superoxide radicals (O2∙-), which can initiate cascade enzymatic reactions in tumor microenvironment (TME) for chemodynamic therapy (CDT). Moreover, the cancer therapy was largely enhanced by loading with doxorubicin (DOX). Impressively, the FeCoMn TSAs/N-HCSs nanozyme-mediated CDT and the DOX-induced chemotherapy endow the DOX@FeCoMn TSAs/N-HCSs with effective tumor inhibition, showing the superior therapeutic efficacy.
Collapse
Affiliation(s)
- Yan-Wen Mao
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Heng-Bo Li
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Song Pei
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zhigang Jin
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
33
|
Chai TQ, Chen GY, Chen LX, Wang JL, Zhang CY, Yang FQ. Adenine phosphate-Cu nanozyme with multienzyme mimicking activity for efficient degrading phenolic compounds and detection of hydrogen peroxide, epinephrine and glutathione. Anal Chim Acta 2023; 1279:341771. [PMID: 37827670 DOI: 10.1016/j.aca.2023.341771] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND With the development of nanotechnology, various nanomaterials with enzyme-like activity (nanozymes) have been reported. Due to their superior properties, nanozymes have shown important application potential in the fields of bioanalysis, disease detection, and environmental remediation. However, only a few nanomaterials with multi-enzyme mimicry activity have been reported. In this study, a novel multienzyme mimic was synthesized through a simple and rapid preparation protocol by coordinating copper ions with N3, N6 (amino), N7, and N9 on adenine phosphate. RESULTS The prepared adenine phosphate-Cu complex exhibits significant peroxidase, laccase, and oxidase mimicking activities. The Michaelis-Menten constant (Km) and the maximal velocity (Vmax) values of the peroxidase, laccase, and oxidase mimicking activities of AP-Cu nanozyme are 0.052 mM, 0.14 mM, and 2.49 mM; and 0.552 μM min-1, 6.70 μM min-1, and 2.24 μM min-1, respectively. Then, based on its laccase mimicking activity, the nanozyme was applied in the degradation of phenolic compounds. The calculated kinetic constant for the degradation of 2,4-dichlorophenol is 0.468 min-1 and the degradation efficiency of 2,4-dichlorophenol (0.1 mM) reaches 96.14% at 7 min. Finally, based on the multienzyme mimicking activity of adenine phosphate-Cu nanozyme, simple colorimetric sensing methods with high sensitivity and good selectivity were developed for the detection of hydrogen peroxide, epinephrine, and glutathione in the ranges of 20.0-200.0 μM (R2 = 0.9951), 5.0-100.0 μM (R2 = 0.9970), and 5.0-200.0 μM (R2 = 0.9924) with the limits of quantitation of 20.0 μM, 5.0 μM, and 5.0 μM, respectively. SIGNIFICANCE In short, the synthesis of nanozymes with multi-enzyme mimicry activity through coordination between copper ions and small molecule mimicry enzymes provides new ideas for the design and research of multi-enzyme mimics.
Collapse
Affiliation(s)
- Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Chun-Yan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
34
|
Shukla AK, Morya V, Datta B. Bacteria-derived topologies of Cu 2O nanozymes exert a variable antibacterial effect. RSC Adv 2023; 13:28767-28772. [PMID: 37790108 PMCID: PMC10543649 DOI: 10.1039/d3ra05411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The ability of bacteria to facilitate fabrication of nanomaterials has been adapted towards bacterial sensing applications. In this work, we fabricate spherical, cubic and truncated octahedron topologies of Cu2O nanoparticles via E. coli-facilitated redox reaction in an electrochemical setup. The Cu2O nanoparticles exhibit cytochrome c oxidase-like activity with the spherical topology displaying higher catalytic rate compared to the other geometries. The topology-dependent catalytic behavior of Cu2O nanoparticles has not been reported previously. The Cu2O nanozymes also display E. coli killing activity in a topology-correlated manner. The E. coli mediated redox reaction in an electrochemical setup is being reported for the first time for synthesis of different topologies of Cu2O which also exert a variable antibacterial effect.
Collapse
Affiliation(s)
- Ashish Kumar Shukla
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Vinod Morya
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| |
Collapse
|
35
|
Wang T, Wu Q, Wang Z, Hu X, Mao X. Engineering hetero-structural iron nanozyme decorated liposome with a self-cascade catalysis performance. Biomater Sci 2023; 11:6167-6176. [PMID: 37503826 DOI: 10.1039/d3bm00885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Metal-based enzyme mimics are considered as acceptable agents in fabricating heterogeneous biocomposites through valency integrations because of their biomedical or biological properties. As the basic substitute, it delights us to utilize Fe3O4 nanoparticles (NPs) as metallic enzymes and overcome the limitation of peroxide-like enzymatic activity in physiological conditions. In this work, we present the fabrication of a soy phosphatidylcholine/Fe3O4@Ag/GOx (SFAG) biocomposite as a cascade enzyme, which exhibits a peroxidase-like property in kinetic processes, as shown from an analysis of the glucose detection processes. We also explored the mechanism of an ultrasound & microfluidic approach for the synthesis of SFAG. The resultant SFAG implies a characteristic absorption peak (652 nm), size (55 μm), and surface charge (-32.93 ± 2.58 mV). This is utilized to confirm the peroxidase-like activity by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 under physiological conditions. But also, SFAG conveys a positive effect on the peroxidase-like activity at pH = 5.8, 7.4, and 8.0. The Michaelis-Menten parameters (Km) and the Vmax values of H2O2 are 1.914 mM and 1.429 × 10-7 M s-1, which further confirms the catalytic performances of the SFAG structure. The established platform was also used successfully for the determination of glucose in PBS and diluted synthetic blood with excellent sensitivity and stability. The relative selection and sensitivity show that the SFAG structure has a great possibility as a cascade metallic enzyme in chemokinetic works.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Panferov VG, Zherdev AV, Dzantiev BB. Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review. BIOSENSORS 2023; 13:866. [PMID: 37754100 PMCID: PMC10526817 DOI: 10.3390/bios13090866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA's rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA's sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions.
Collapse
Affiliation(s)
- Vasily G. Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| |
Collapse
|
37
|
Singh N, Sherin GR, Mugesh G. Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Next-Generation Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202301232. [PMID: 37083312 DOI: 10.1002/anie.202301232] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/22/2023]
Abstract
Nanozymes, nanomaterials with enzyme-mimicking activity, have attracted tremendous interest in recent years owing to their ability to replace natural enzymes in various biomedical applications, such as biosensing, therapeutics, drug delivery, and bioimaging. In particular, the nanozymes capable of regulating the cellular redox status by mimicking the antioxidant enzymes in mammalian cells are of great therapeutic significance in oxidative-stress-mediated disorders. As the distinction of physiological oxidative stress (oxidative eustress) and pathological oxidative stress (oxidative distress) occurs at a fine borderline, it is a great challenge to design nanozymes that can differentially sense the two extremes in cells, tissues and organs and mediate appropriate redox chemical reactions. In this Review, we summarize the advances in the development of redox-active nanozymes and their biomedical applications. We primarily highlight the therapeutic significance of the antioxidant and prooxidant nanozymes in various disease model systems, such as cancer, neurodegeneration, and cardiovascular diseases. The future perspectives of this emerging area of research and the challenges associated with the biomedical applications of nanozymes are described.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Current address: Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 171 65, Solna, Sweden
| | - G R Sherin
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
38
|
Wang Q, Liu J, He L, Liu S, Yang P. Nanozyme: a rising star for cancer therapy. NANOSCALE 2023; 15:12455-12463. [PMID: 37462391 DOI: 10.1039/d3nr01976d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In recent years, nanozymes have attracted enormous attention due to their effectiveness in promoting various catalytic reactions. To date, thousands of nanozymes have been discovered, including oxidase-like nanozymes, peroxidase-like nanozymes, and catalase-like nanozymes, covering noble metal, transition metal, and carbon nanomaterials. These nanozymes have been widely applied in various fields, including environmental protection, biosensing and nanomedicine. There are many reviews about this rising star being used in analytical chemistry. However, few works about nanozymes were related to cancer therapy. In this study, we comprehensively summarize the latest research advances on the strategies for cancer therapy based on different nanozymes. With traditional cancer treatment (including chemotherapy, radiotherapy, phototherapy), nanozyme catalytic therapy exhibited a synergistic effect for limiting the growth of tumors. Opportunities and trends for nanozymes in future cancer therapy are also discussed.
Collapse
Affiliation(s)
- Qingqing Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Liangcan He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China.
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| |
Collapse
|
39
|
Nguyen D, Yan G, Chen TY, Do LH. Variations in Intracellular Organometallic Reaction Frequency Captured by Single-Molecule Fluorescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202300467. [PMID: 37285476 PMCID: PMC10526727 DOI: 10.1002/anie.202300467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Studies of organometallic reactions in living cells commonly rely on ensemble-averaged measurements, which can obscure the detection of reaction dynamics or location-specific behavior. This information is necessary to guide the design of bioorthogonal catalysts with improved biocompatibility, activity, and selectivity. By leveraging the high spatial and temporal resolution of single-molecule fluorescence microscopy, we have successfully captured single-molecule events promoted by Ru complexes inside live A549 human lung cells. By observing individual allylcarbamate cleavage reactions in real-time, our results revealed that they occur with greater frequency inside the mitochondria than in the non-mitochondria regions. The estimated turnover frequency of the Ru complexes was at least 3-fold higher in the former than the latter. These results suggest that organelle specificity is a critical factor to consider in intracellular catalyst design, such as in developing metallodrugs for therapeutic applications.
Collapse
Affiliation(s)
- Dat Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Guangjie Yan
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| | - Loi H Do
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| |
Collapse
|
40
|
Xing H, Zhu Y, Xu D, Wu R, Xing X, Li LS. DNA tetrahedron-mediated triplex molecular switch for extracellular pH monitoring. Anal Chim Acta 2023; 1265:341336. [PMID: 37230576 DOI: 10.1016/j.aca.2023.341336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
This study aimed to construct a novel DNA triplex molecular switch modified with DNA tetrahedron (DTMS-DT) with sensitive response to extracellular pH using a DNA tetrahedron as the anchoring unit and DNA triplex as the response unit. The results showed that the DTMS-DT had desirable pH sensitivity, excellent reversibility, outstanding anti-interference ability, and good biocompatibility. Confocal laser scanning microscopy suggested that the DTMS-DT could not only be stably anchored on the cell membrane but also be employed to dynamically monitor the change in extracellular pH. Compared with the reported probes for extracellular pH monitoring, the designed DNA tetrahedron-mediated triplex molecular switch exhibited higher cell surface stability and brought the pH-responsive unit closer to the cell membrane surface, making the results more reliable. In general, developing the DNA tetrahedron-based DNA triplex molecular switch is helpful for understanding and illustrating the pH dependent cell behaviors and disease diagnostics.
Collapse
Affiliation(s)
- Huanhuan Xing
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yazhen Zhu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Dangdang Xu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
41
|
Biswas R, Ghosh D, Das S, Chatterjee S, Bhaduri SN, Bhaumik A, Biswas P. Copper Immobilized over 2D Hexagonal SBA-15 for Electrochemical and Colorimetric Sulfite Sensing. Inorg Chem 2023. [PMID: 37418702 DOI: 10.1021/acs.inorgchem.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Sulfite (SO32-) is considered a highly toxic anion for living organisms. Herein, we report the synthesis of copper immobilized over a 2D hexagonally ordered mesoporous silica material CuMS as an electrochemical and colorimetric dual-technique-based sensing platform for sulfite detection. The immobilization of copper on silica was achieved through the bis[3-(triethoxysilyl)propyl]tetrasulfide (TEPTS) ligand. Morphological and physical properties of the material were confirmed by several characterization techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 sorption, and X-ray photoelectron spectroscopy. The CuMS material retained mesoporosity with a narrow pore size distribution (D ≈ 5.4 nm) and a high Brunauer-Emmett-Teller surface area of 682 m2 g-1 after the immobilization of copper. The prepared catalyst shows promising electrocatalytic activity toward sulfite oxidation. A linear variation in the peak current was obtained for SO32- oxidation in the 0.2-15 mM range with a high sensitivity of 62.08 μA cm-2, under optimum experimental conditions. The limit of detection (LOD) was found to be 1.14 nM. CuMS also shows excellent activity toward colorimetric detection of sulfite anions with an LOD of 0.4 nM. The proposed sensor shows high selectivity toward the sulfite anion, even in the presence of common interferents. The detection of sulfite in white wine with excellent recovery demonstrates the practical applicability of this sensor.
Collapse
Affiliation(s)
- Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Samarpita Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Sauvik Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| |
Collapse
|
42
|
Cai Y, Zhou J, Huang J, Zhou W, Wan Y, Cohen Stuart MA, Wang J. Rational design of polymeric nanozymes with robust catalytic performance via copper-ligand coordination. J Colloid Interface Sci 2023; 645:458-465. [PMID: 37156154 DOI: 10.1016/j.jcis.2023.04.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Incorporating copper (Cu) ions into polymeric particles can be a straightforward strategy for mimicking copper enzymes, but it is challenging to simultaneously control the structure of the nanozyme and of the active sites. In this report, we present a novel bis-ligand (L2) containing bipyridine groups connected by a tetra-ethylene oxide (4EO) spacer. In phosphate buffer the Cu-L2 mixture forms coordination complexes that (at proper composition) can bind polyacrylic acid (PAA) to produce catalytically active polymeric nanoparticles with well-defined structure and size, which we refer to as 'nanozymes'. Manipulating the L2/Cu mixing ratio and using phosphate as a co-binding motif, cooperative copper centres are realized that exhibit promoted oxidation activity. The structure and activity of the so-designed nanozymes remain stable upon increasing temperature and over multiple cycles of application. Increasing ionic strength causes enhanced activity, a response also seen for natural tyrosinase. By means of our rational design we obtain nanozymes with optimized structure and active sites that in several respects outperform natural enzymes. This approach therefore demonstrates a novel strategy for developing functional nanozymes, which may well stimulate the application of this class of catalysts.
Collapse
Affiliation(s)
- Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jianan Huang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
43
|
Jiao C, Zhu Y, Ji T, Cai X, Wang J. Yolk-shell structured nanoreactor Au@Co 3O 4/CeO 2@mSiO 2 with superior peroxidase-like activity as nanozyme for ultra-sensitive colorimetric biosensing. Talanta 2023; 260:124571. [PMID: 37141824 DOI: 10.1016/j.talanta.2023.124571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
For yolk-shell structured nanoreactors, multiple active components can be precisely positioned on core and/or shell that can afford more exposed accessible active sites, and the internal voids can guarantee sufficient contact of reactants and catalysts. In this work, a unique yolk-shell structured nanoreactor Au@Co3O4/CeO2@mSiO2 was fabricated and applied as nanozyme for biosensing. The Au@Co3O4/CeO2@mSiO2 exhibited superior peroxidase-like activity with a lower Michaelis constant (Km) and a higher affinity to H2O2. The enhanced peroxidase-like activity was attributed to the unique structure and the synergistic effects between the multiple active components. Colorimetric essays were developed based on Au@Co3O4/CeO2@mSiO2 for the ultra-sensitive sensing of glucose in the range of 3.9 nM-1.03 mM with the limit of detection as low as 3.2 nM. In the detection of glucose-6-phosphate dehydrogenase (G6PD), the cooperation between G6PD and Au@Co3O4/CeO2@mSiO2 triggered the redox cycling between NAD+ and NADH, thereby achieving the amplification of the signal and enhancing the sensitivity of the assay. The assay showed superior performance as compared to other methods with linear response of 5.0 × 10-3-15 mU mL-1 and lower detection limit of 3.6 × 10-3 mU mL-1. The fabricated novel multi-enzyme catalytical cascade reaction system allowed rapid and sensitive biodetection, demonstrating its potential in biosensors and biomedical applications.
Collapse
Affiliation(s)
- Chaonan Jiao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Ying Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Tongkai Ji
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Jing Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| |
Collapse
|
44
|
Geng X, Xue R, Liang F, Liu Y, Wang Y, Li J, Huang Z. Synergistic effect of silver nanoclusters and graphene oxide on visible light-driven oxidase-like activity: Construction of a sustainable nanozyme for total antioxidant capacity detection. Talanta 2023; 259:124565. [PMID: 37084604 DOI: 10.1016/j.talanta.2023.124565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The high cost and low reusability of natural enzymes greatly limit their application in biosensing. In this work, a sustainable nanozyme with light-driven oxidase-like activity was fabricated by integrating protein-capped silver nanoclusters (AgNCs) with graphene oxide (GO) through multiple non-covalent interactions. The prepared AgNCs/GO nanozyme could effectively catalyze the oxidation of various chromogenic substrates by activating dissolved O2 to reactive oxygen species under visible light irradiation. Moreover, the oxidase-like activity of AgNCs/GO could be well controlled by switching on and off the visible light source. Compared with natural peroxidase and most of other oxidase-mimicking nanozymes, AgNCs/GO possessed improved catalytic activity owing to the synergistic effect between AgNCs and GO. More importantly, AgNCs/GO showed outstanding stability against precipitation, pH (2.0-8.0), temperature (10-80 °C), and storage and could be reused at least 6 cycles without obvious loss in catalytic activity. On this basis, AgNCs/GO nanozyme was used to develop a colorimetric assay for the determination of total antioxidant capacity in human serum, which had the merits of high sensitivity, low cost, and good safety. This work holds a promising prospect in developing sustainable nanozymes for biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoyu Geng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruisong Xue
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Feng Liang
- China-Japan Union Hospital, Jilin University, Changchun, 130021, China
| | - Yanmei Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuanyuan Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jinshuo Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
45
|
Zhu Y, Liao Y, Zou J, Cheng J, Pan Y, Lin L, Chen X. Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300750. [PMID: 37058076 DOI: 10.1002/smll.202300750] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials with enzyme-mimicking properties, coined as nanozymes, are a promising alternative to natural enzymes owing to their remarkable advantages, such as high stability, easy preparation, and favorable catalytic performance. Recently, with the rapid development of nanotechnology and characterization techniques, single atom nanozymes (SAzymes) with atomically dispersed active sites, well-defined electronic and geometric structures, tunable coordination environment, and maximum metal atom utilization are developed and exploited. With superior catalytic performance and selectivity, SAzymes have made impressive progress in biomedical applications and are expected to bridge the gap between artificial nanozymes and natural enzymes. Herein, the recent advances in SAzyme preparation methods, catalytic mechanisms, and biomedical applications are systematically summarized. Their biomedical applications in cancer therapy, oxidative stress cytoprotection, antibacterial therapy, and biosensing are discussed in depth. Furthermore, to appreciate these advances, the main challenges, and prospects for the future development of SAzymes are also outlined and highlighted in this review.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yaxin Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Junjie Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
46
|
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. BIOSENSORS 2023; 13:bios13040461. [PMID: 37185536 PMCID: PMC10136715 DOI: 10.3390/bios13040461] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
This review highlights the recent advancements in the field of nanozymes and their applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-mimicking components in biosensing systems has led to improved performance and miniaturization of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface tunability, make them an attractive alternative to traditional enzymes in biosensing applications. Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and metal-organic frameworks, for the development of nanozyme-based biosensors. Different sensing strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented using nanozymes as signal-producing components. Despite the numerous advantages, there are also challenges associated with nanozyme-based biosensors, including stability and specificity, which need to be addressed for their wider applications. The future of nanozyme-based biosensors looks promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the accuracy and sensitivity of diagnostic tools.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
47
|
Yuan X, Cheng S, Chen L, Cheng Z, Liu J, Zhang H, Yang J, Li Y. Iron oxides based nanozyme sensor arrays for the detection of active substances in licorice. Talanta 2023; 258:124407. [PMID: 36871515 DOI: 10.1016/j.talanta.2023.124407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
With the increasing applications of traditional Chinese medicines worldwide, authenticity identification and quality control are significant for them to go global. Licorice is a kind of medicinal material with various functions and wide applications. In this work, colorimetric sensor arrays based on iron oxide nanozymes were constructed to discriminate active indicators in licorice. Fe2O3, Fe3O4, and His-Fe3O4 nanoparticles were synthesized by a hydrothermal method, possessing excellent peroxidase-like activity that can catalyze the oxidation of 3,3',5,5' -tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue product. When licorice active substances were introduced in the reaction system, they showed competitive effect on peroxidase-mimicking activity of nanozymes, resulting in inhibitory effect on the oxidation of TMB. Based on this principle, four licorice active substances including glycyrrhizic acid, liquiritin, licochalcone A, and isolicoflavonol with the concentration ranging from 1 μM to 200 μM were successfully discriminated by the proposed sensor arrays. This work supplies a low cost, rapid and accurate method for multiplex discrimination of active substances to guarantee the authenticity and quality of licorice, which is also expected to be applied to distinguish other substances.
Collapse
Affiliation(s)
- Xiaohua Yuan
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Shaochun Cheng
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Linyi Chen
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Ziyu Cheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Liu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Jiao Yang
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Yingchun Li
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Liu Y, Yan X, Wei H. Medical Nanozymes for Therapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
49
|
Ali S, Sikdar S, Basak S, Roy D, Das D, Haydar MS, Ghosh NN, Roy K, Mandal P, Roy MN. Intrinsic Light-Activated Oxidase Mimicking Activity of Conductive Polyaniline Nanofibers: A Class of Metal-Free Nanozyme. ACS APPLIED BIO MATERIALS 2022; 5:5518-5531. [PMID: 36367462 DOI: 10.1021/acsabm.2c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In recent decades, studies have focused on inorganic nanozymes to overcome the intrinsic drawbacks of bioenzymes due to the demands of improving the reaction conditions and lack of robustness to harsh environmental factors. Many biochemical reactions catalyzed by enzymes require light activation. Light-activated nanozymes have distinct advantages, including being regulated by light stimuli, activating the molecular oxygen to produce reactive oxygen species (ROS) without interfering supplementary oxidants, and often showing a synergistic effect to catalyze some challenging reactions. Only a few studies have been done on this connection. Therefore, it is still a big challenge to develop a nanozyme regulated by light activation. Herein, we uncovered the light-activated oxidase mimicking activity of a conducting polymer polyaniline nanofibers (PANI-NFs). PANI-NFs exhibit intrinsic light-activated brilliant oxidase-like activity, can catalyze the colorless tetramethyl benzidine (TMB) to produce a blue product TMBox, and have a distinct Km = 0.087 mM and a high Vmax = 2.32 μM min-1 value, measured by using Hanes-Woolf kinetics. We also report the light-activated oxidase activity of some other renowned carbocatalysts graphene oxide and graphitic carbon nitride and compare them with PANI-NFs. This type of property shown by the conductive polymer is amazing. The density functional theory is used to verify the stability and the mode of adsorption of the PANI NFs-TMB composite, which corroborates the experimental results. Furthermore, the current nanozyme demonstrated a significant ability to kill both Gram-negative and Gram-positive bacteria as well as effectively destroy biofilms under physiological conditions. We believe that this work provides the motivation to create a link between optoelectronics and biological activity in the near future.
Collapse
Affiliation(s)
- Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Suranjan Sikdar
- Department of Chemistry, Government General Degree College at Kushmandi, Dakshin Dinajpur733121, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling734013, India
| | - Dipayan Das
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri734013, West Bengal, India
| | - Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri734013, West Bengal, India
| | | | - Kanak Roy
- Department of Chemistry, Alipurduar University, Alipurduar736122, India
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri734013, West Bengal, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling734013, India.,Department of Chemistry, Alipurduar University, Alipurduar736122, India
| |
Collapse
|
50
|
Omar NA, Jabbar HS. NiFe2O4 nanoparticles as nanozymes, a new colorimetric probe for 2,4-dichlorophenoxyacetic acid herbicide detection. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|