1
|
Wang T, Su E. Guardians of Future Food Safety: Innovative Applications and Advancements in Anti-biofouling Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21973-21985. [PMID: 39332908 DOI: 10.1021/acs.jafc.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Biofilm formation is a widespread natural phenomenon that poses a substantial threat to food microbiological safety, with direct implications for consumer health. To combat this challenge effectively, one promising strategy involves the development of functional anti-biofouling layers on food-contact surfaces to deter microbial adhesion. Herein, we explore the methodologies for fabricating both hydrophilic and hydrophobic anti-biofouling materials, along with a detailed examination of their inherent antiadhesive mechanisms. Furthermore, we provide concise insights into exemplary applications of anti-biofouling materials within the context of the food industry. This comprehensive analysis not only advances our understanding of biofilm prevention but also sets the stage for innovative developments in anti-biofouling materials and their future applications in food science. These advancements hold the potential to significantly enhance food microbiological safety, ensuring that consumers can confidently enjoy food products of the highest standards in terms of hygiene and quality.
Collapse
Affiliation(s)
- Tao Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Yu W, Lu X, Xiong L, Teng J, Chen C, Li B, Liao BQ, Lin H, Shen L. Thiol-Ene Click Reaction in Constructing Liquid Separation Membranes for Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310799. [PMID: 38213014 DOI: 10.1002/smll.202310799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
In the evolving landscape of water treatment, membrane technology has ascended to an instrumental role, underscored by its unmatched efficacy and ubiquity. Diverse synthesis and modification techniques are employed to fabricate state-of-the-art liquid separation membranes. Click reactions, distinguished by their rapid kinetics, minimal byproduct generation, and simple reaction condition, emerge as a potent paradigm for devising eco-functional materials. While the metal-free thiol-ene click reaction is acknowledged as a viable approach for membrane material innovation, a systematic elucidation of its applicability in liquid separation membrane development remains conspicuously absent. This review elucidates the pre-functionalization strategies of substrate materials tailored for thiol-ene reactions, notably highlighting thiolation and introducing unsaturated moieties. The consequential implications of thiol-ene reactions on membrane properties-including trade-off effect, surface wettability, and antifouling property-are discussed. The application of thiol-ene reaction in fabricating various liquid separation membranes for different water treatment processes, including wastewater treatment, oil/water separation, and ion separation, are reviewed. Finally, the prospects of thiol-ene reaction in designing novel liquid separation membrane, including pre-functionalization, products prediction, and solute-solute separation membrane, are proposed. This review endeavors to furnish invaluable insights, paving the way for expanding the horizons of thiol-ene reaction application in liquid separation membrane fabrication.
Collapse
Affiliation(s)
- Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyi Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liping Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
3
|
Zeng X, Xu Z, Li H, Xiong Y, Ding Y, Xu L, Liu S. Characterization and Flame-Retardant Properties of Cobalt-Coordinated Cyclic Phosphonitrile in Thermoplastic Polyurethane Composites. Molecules 2024; 29:1869. [PMID: 38675689 PMCID: PMC11054824 DOI: 10.3390/molecules29081869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Halogen-free organophosphorus flame retardants have promising application prospects due to their excellent safety and environmental protection properties. A cobalt-coordinated cyclic phosphonitrile flame retardant (Co@CPA) was synthesized via a hydrothermal method using hexachlorocyclotriphosphonitrile (HCCP), 5-amino-tetrazolium (5-AT), and cobalt nitrate hexahydrate (Co(NO3)2∙6H2O) as starting materials. The structure was characterized using Fourier transform infrared (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Thermoplastic polyurethane (TPU) composites were prepared by incorporating 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphame-10-oxide (ODOPB), Co@CPA, and silicon dioxide (SiO2) via melt blending. The flame-retardant performance and thermal stability of the TPU composites were evaluated through limiting oxygen index (LOI), vertical combustion (UL-94), TG, and cone calorimetric (CCT) tests. SEM and Raman spectroscopy were used to analyze the surface morphology and structure of the residual carbon. A synergistic flame-retardant effect of ODOPB and Co@CPA was observed, with the most effective flame retardancy achieved at a TPU:ODOPB:Co@CPA:SiO2 ratio of 75:16:8:1. This composition exhibited an LOI value of 26.5% and achieved a V-0 rating in the UL-94 test. Furthermore, compared to pure TPU, the composite showed reductions in total heat release, CO production, and CO2 production by 6.6%, 39.4%, and 48.9%, respectively. Our research findings suggest that Co@CPA demonstrates outstanding performance, with potential for further expansion in application areas. Different metal-based cyclic phosphonitrile compounds are significant in enriching phosphorus-based fine chemicals.
Collapse
Affiliation(s)
- Xiangcong Zeng
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi Xu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haoxun Li
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Xiong
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yigang Ding
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lili Xu
- School of Technology Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shengpeng Liu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
4
|
Berglin M, Cavanagh JP, Caous JS, Thakkar BS, Vasquez JM, Stensen W, Lyvén B, Svendsen JS, Svenson J. Flexible and Biocompatible Antifouling Polyurethane Surfaces Incorporating Tethered Antimicrobial Peptides through Click Reactions. Macromol Biosci 2024; 24:e2300425. [PMID: 38009664 DOI: 10.1002/mabi.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for "click on demand" attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms.
Collapse
Affiliation(s)
- Mattias Berglin
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, 413 90, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Josefin Seth Caous
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | | | - Jeddah Marie Vasquez
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Benny Lyvén
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - John-Sigurd Svendsen
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Johan Svenson
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| |
Collapse
|
5
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Surface functionalization of polyurethanes: A critical review. Adv Colloid Interface Sci 2024; 325:103100. [PMID: 38330882 DOI: 10.1016/j.cis.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Synthetic polymers, particularly polyurethanes (PUs), have revolutionized bioengineering and biomedical devices due to their customizable mechanical properties and long-term stability. However, the inherent hydrophobic nature of PU surfaces arises common issues such as high friction, strong protein adsorption, and thrombosis, especially in the physiological environment of blood contact. To overcome these issues, researchers have explored various modification techniques to improve the surface biofunctionality of PUs. In this review, we have systematically summarized several typical surface modification methods including surface plasma modification, surface oxidation-induced grafting polymerization, isocyanate-based chemistry coupling, UV-induced surface grafting polymerization, adhesives-assisted attachment strategy, small molecules-bridge grafting, solvent evaporation technique, and hydrogen bonding interaction. Correspondingly, the advantages, limitations, and future prospects of these surface modification methods were discussed. This review provides an important guidance or tool for developing surface functionalized PUs in the fields of bioengineering and medical devices.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Zuo Y, Lei L, Huang K, Hao Q, Zhao C, Liu H. Improving the in vivo stability and sensor lifetime with new blend membranes on CGM sensors. RSC APPLIED POLYMERS 2024; 2:880-890. [DOI: 10.1039/d4lp00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
PDMS/HT outer membrane-coated CGM sensors can extend the in vivo lifetime to 28 days.
Collapse
Affiliation(s)
- Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ke Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Meng D, Wang H, Li Y, Liu J, Sun J, Gu X, Wang H, Zhang S. Constructing lignin based nanoparticles towards flame retardant thermoplastic polyurethane composites with improved mechanical and oxidation resistant properties. Int J Biol Macromol 2023; 253:126570. [PMID: 37648133 DOI: 10.1016/j.ijbiomac.2023.126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
A multifunctional lignin derivative nanoparticle (C-P-Lignin) was synthesized by grafting phenyl dichloro sphosphineoxid and 1, 4-dimethoxyacetylene stepwise on the lignin, then it was applied to prepare the thermoplastic polyurethane (TPU) composite with improved mechanical properties, oxidation resistance, and flame retardancy. The tensile strength, the elongation at break, and the toughness of the TPU/2C-P-Lignin sample reached 28.3 MPa, 941 %, and 139.0 MJ/m2 respectively, which were increased by 39.0 %, 3.4 %, and 33.9 % respectively compared with that of the control TPU sample. The anti-fatigue property was also improved. More importantly, the mechanism of the improved mechanical properties was also calculated and simulated by FTIR and Materials Studio software. The TPU/2C-P-Lignin sample exhibited superior oxidation resistance during the process of photoaging and thermal oxidative aging. Furthermore, the peak heat release rate and the smoke production rate for theTPU/2C-P-Lignin sample was reduced by 50.0 % and 53.8 % compared with that of the control TPU. The reason was that the C-P-Lignin is conducive to the formation of uniformly distributed carbon layers. It is expected that this work can provide a new method for expanding the utilization of waste wood as a multifunctional lignin-based filler to improve fire safety and extend the service life of TPU polymers.
Collapse
Affiliation(s)
- Dan Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hailiang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchun Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Haiqiao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
9
|
Zhang Z, Wang L, Liu J, Yu H, Zhang X, Yin J, Luan S, Shi H. Water-Triggered Segment Orientation of Long-Lasting Anti-Biofouling Polyurethane Coatings on Biomedical Catheters via Solvent Exchange Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304379. [PMID: 37365958 DOI: 10.1002/smll.202304379] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Indexed: 06/28/2023]
Abstract
The formation of biofilm and thrombus on medical catheters poses a significant life-threatening concern. Hydrophilic anti-biofouling coatings upon catheter surfaces with complex shapes and narrow lumens are demonstrated to have the potential in reducing complications. However, their effectiveness is constrained by poor mechanical stability and weak substrate adhesion. Herein, a novel zwitterionic polyurethane (SUPU) with strong mechanical stability and long-term anti-biofouling is developed by controlling the ratio of sulfobetaine-diol and ureido-pyrimidinone. Once immersed in water, as-synthesized zwitterionic coating (SUPU3 SE) would undergo a water-driven segment reorientation to obtain much higher durability than its direct drying one, even under various extreme treatments, including acidic solution, abrasion, ultrasonication, flushing, and shearing, in PBS at 37 °C for 14 days. Moreover, SUPU3 SE coating could achieve a 97.1% of exceptional reducing protein fouling, complete prevention of cell adhesion, and long-lasting anti-biofilm performance even after 30 days. Finally, the good anti-thrombogenic formations of SUPU3 SE coating with bacterial treatment are validated in blood circulation through an ex vivo rabbit arteriovenous shunt model. This work provides a facile approach to fabricating stable hydrophilic coating through a simple solvent exchange to reduce thrombosis and infection of biomedical catheters.
Collapse
Affiliation(s)
- Zhenyan Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jiaying Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huan Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
10
|
Zhao J, Chen J, Zheng X, Lin Q, Zheng G, Xu Y, Lin F. Urushiol-Based Benzoxazine Containing Sulfobetaine Groups for Sustainable Marine Antifouling Applications. Polymers (Basel) 2023; 15:polym15102383. [PMID: 37242960 DOI: 10.3390/polym15102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Benzoxazine resins are new thermosetting resins with excellent thermal stability, mechanical properties, and a flexible molecular design, demonstrating promise for applications in marine antifouling coatings. However, designing a multifunctional green benzoxazine resin-derived antifouling coating that combines resistance to biological protein adhesion, a high antibacterial rate, and low algal adhesion is still challenging. In this study, a high-performance coating with a low environmental impact was synthesized using urushiol-based benzoxazine containing tertiary amines as the precursor, and a sulfobetaine moiety into the benzoxazine group was introduced. This sulfobetaine-functionalized urushiol-based polybenzoxazine coating (poly(U-ea/sb)) was capable of clearly killing marine biofouling bacteria adhered to the coating surface and significantly resisting protein attachment. poly(U-ea/sb) exhibited an antibacterial rate of 99.99% against common Gram negative bacteria (e.g., Escherichia coli and Vibrio alginolyticus) and Gram positive bacteria (e.g., Staphylococcus aureus and Bacillus sp.), with >99% its algal inhibition activity, and it effectively prevented microbial adherence. Here, a dual-function crosslinkable zwitterionic polymer, which used an "offensive-defensive" tactic to improve the antifouling characteristics of the coating was presented. This simple, economic, and feasible strategy provides new ideas for the development of green marine antifouling coating materials with excellent performance.
Collapse
Affiliation(s)
- Jing Zhao
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Jipeng Chen
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Xiaoxiao Zheng
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Qi Lin
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Guocai Zheng
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Yanlian Xu
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Fengcai Lin
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
11
|
Mao H, Zhang Q, Lin L, He X, Wang L. A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions. Polymers (Basel) 2023; 15:1270. [PMID: 36904510 PMCID: PMC10007035 DOI: 10.3390/polym15051270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Polyurethanes with self-healing and reprocessing capabilities are promising in eco-friendly applications. Here, a self-healable and recyclable zwitterionic polyurethane (ZPU) was developed by introducing ionic bonds between protonated ammonium groups and sulfonic acid moieties. The structure of the synthesized ZPU was characterized by FTIR and XPS. The thermal, mechanical, self-healing and recyclable properties of ZPU were also investigated in detail. Compared with cationic polyurethane (CPU), ZPU shows similar thermal stability. The physical cross-linking network formed between zwitterion groups can dissipate strain energy as a weak dynamic bond, endowing ZPU with outstanding mechanical and elastic recovery properties, including the high tensile strength of 7.38 MPa, high elongation at a break of 980%, and fast elastic recovery ability. Additionally, ZPU exhibits a healing efficiency of over 93% at 50 °C for 1.5 h as a result of the dynamic reconstruction of reversible ionic bonds. Furthermore, ZPU can be well reprocessed by solution casting and hot-pressing with a recovery efficiency above 88%. The excellent mechanical properties, fast repairing capability, and good recyclability not only enable polyurethane with a promising application in protective coatings for textiles and paints but also make it a superior candidate as stretchable substrates for wearable electronic devices and strain sensors.
Collapse
Affiliation(s)
- Haiyan Mao
- School of Textile & Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | | | | | | | - Lili Wang
- School of Textile & Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
12
|
Nikam SP, Hsu YH, Marks JR, Mateas C, Brigham NC, McDonald SM, Guggenheim DS, Ruppert D, Everitt JI, Levinson H, Becker ML. Anti-adhesive bioresorbable elastomer-coated composite hernia mesh that reduce intraperitoneal adhesions. Biomaterials 2023; 292:121940. [PMID: 36493714 DOI: 10.1016/j.biomaterials.2022.121940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Intraperitoneal adhesions (IAs) are a major complication arising from abdominal repair surgeries, including hernia repair procedures. Herein, we fabricated a composite mesh device using a macroporous monofilament polypropylene mesh and a degradable elastomer coating designed to meet the requirements of this clinical application. The degradable elastomer was synthesized using an organo-base catalyzed thiol-yne addition polymerization that affords independent control of degradation rate and mechanical properties. The elastomeric coating was further enhanced by the covalent tethering of antifouling zwitterion molecules. Mechanical testing demonstrated the elastomer forms a robust coating on the polypropylene mesh does not exhibit micro-fractures, cracks or mechanical delamination under cyclic fatigue testing that exceeds peak abdominal loads (50 N/cm). Quartz crystal microbalance measurements showed the zwitterionic functionalized elastomer further reduced fibrinogen adsorption by 73% in vitro when compared to unfunctionalized elastomer controls. The elastomer exhibited degradation with limited tissue response in a 10-week murine subcutaneous implantation model. We also evaluated the composite mesh in an 84-day study in a rabbit cecal abrasion hernia adhesion model. The zwitterionic composite mesh significantly reduced the extent and tenacity of IAs by 94% and 90% respectively with respect to uncoated polypropylene mesh. The resulting composite mesh device is an excellent candidate to reduce complications related to abdominal repair through suppressed fouling and adhesion formation, reduced tissue inflammation, and appropriate degradation rate.
Collapse
Affiliation(s)
- Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Jessica R Marks
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Catalin Mateas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Natasha C Brigham
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | | | - Dana S Guggenheim
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - David Ruppert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University, Durham, NC, 27708, United States
| | - Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States; Department of Orthopaedic Surgery, Duke University, Durham, NC, 27708, United States; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
13
|
Wang D, Gao Y, Gao S, Huang H, Min F, Li Y, Seeger S, Jin J, Chu Z. Antifouling superhydrophilic porous glass membrane based on sulfobetaine prepared by thiol−ene click chemistry for high-efficiency oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Huang Z, Zhang D, Gu Q, Miao J, Cen X, Golodok RP, Savich VV, Ilyushchenko AP, Zhou Z, Wang R. One-step coordination of metal-phenolic networks as antibacterial coatings with sustainable and controllable copper release for urinary catheter applications. RSC Adv 2022; 12:15685-15693. [PMID: 35685702 PMCID: PMC9132196 DOI: 10.1039/d2ra01675c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) draw great concern due to increased demand for urinary catheters in hospitalization. Encrustation caused by urinary pathogens, especially Proteus mirabilis, results in blocking of the catheter lumen and further infections. In this study, a facile and low-cost surface modification strategy of urinary catheters was developed using one-step coordination of tannic acid (TA) and copper ions. The copper content of the coating could be manipulated by the number of TA-Cu (TC) layers, and the coating released copper in a pH-responsive manner. The coating exhibited high antibacterial efficiency (killed >99% of planktonic bacteria, and reduced biofilm coverage to <1% after 24 h) due to the synergistic antimicrobial effect of TA and copper ions. In vivo study with a rabbit model indicated that with two TC layers, the coated catheter could effectively inhibit bacterial growth in urine and colonization on the surface, and reduce encrustation formation. In addition, the TC-coated catheter exhibited better tissue compatibility compared to the unmodified catheter, probably due to the antibacterial performance of the coating. Such a straightforward coating strategy with good in vitro and in vivo antibacterial properties and biocompatibility holds great promise for combating CAUTIs in clinical practice.
Collapse
Affiliation(s)
- Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| | - Dawei Zhang
- Department of Urology, The Southwest Hospital, Army Medical University No. 30 Gaotanyan Street, Shapingba District Chongqing 400038 China
| | - Qinwei Gu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| | - Xiao Cen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section, South Renmin Road Chengdu 610041 China
| | - Robert Petrovich Golodok
- SSI O V Roman Powder Metallurgy Institute, National Academy of Sciences of Belarus Minsk 220005 Belarus
| | - Vadim Victorovich Savich
- SSI O V Roman Powder Metallurgy Institute, National Academy of Sciences of Belarus Minsk 220005 Belarus
| | | | - Zhansong Zhou
- Department of Urology, The Southwest Hospital, Army Medical University No. 30 Gaotanyan Street, Shapingba District Chongqing 400038 China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| |
Collapse
|
15
|
Wang K, Arado T, Huner A, Seol H, Liu X, Wang H, Hassan L, Suresh K, Kim S, Cheng G. Thermoplastic zwitterionic elastomer with critical antifouling properties. Biomater Sci 2022; 10:2892-2906. [PMID: 35446327 DOI: 10.1039/d2bm00190j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermoplastic elastomers are widely used in the medical industry for advanced medical and healthcare products, helping millions of patients achieve a better quality of life. Yet, microbial contamination and material-associated biofilms on devices remain a critical challenge because it is challenging for currently available materials to provide critical antifouling properties, thermoplasticity, and elastic properties simultaneously. We developed a highly flexible zwitterionic thermoplastic polyurethane with critical antifouling properties. A series of poly((diethanolamine ethyl acetate)-co-poly(tetrahydrofuran)-co-(1,6-diisocyanatohexane)) (PCB-PTHFUs) were synthesized. The PCB-PTHFUs exhibit a breaking strain of more than 400%, a high resistance to fibroblast cells for 24 h, and the excellent ability to prevent biofilm formation for up to three weeks. This study lays a foundation for clarifying the structure-function relationships of zwitterionic polymers. This thermoplastic PCB-PTHFU platform, with its unmatched antifouling properties and high elasticity, has potential for implanted medical devices and a broad spectrum of applications that suffer from biofouling, such as material-associated infection.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Theo Arado
- University of Chicago Laboratory Schools, Chicago, IL 60637, USA
| | - Ardith Huner
- University of Chicago Laboratory Schools, Chicago, IL 60637, USA
| | - Hyang Seol
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Xuan Liu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Huifeng Wang
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Karthika Suresh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Sangil Kim
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
16
|
Zhang Z, Liu L, Xu D, Zhang R, Shi H, Luan S, Yin J. Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
17
|
Ma Z, Sun J, Dong X, Gan D, Peng W, Li Y, Qian W, Liu P, Shen J. Zwitterionic/active ester block polymers as multifunctional coating for polyurethane-based substrates. J Mater Chem B 2022; 10:3687-3695. [DOI: 10.1039/d2tb00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial associated infection, blood coagulation, and tissue adhesion are severe issues associated with biomedical implants & devices in clinic applications. Here, we report a general strategy to simultaneously tackle these...
Collapse
|
18
|
Li X, Ye F, Ouyang J, Chen Z, Yang X. Phase structure and transition behavior of zwitterionic polyurethane containing sulfobetaine. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Liu F, Qu W, Zhang J, Liu J, Zhu Q, Yue T, Xu X, Ma N, Ma J, Sun Y, Tang Y, Zhang W, Chu PK. Cationic Alternating Polypeptide Fixed on Polyurethane at Multiple Sites for Excellent Antibacterial and Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10657-10667. [PMID: 34449220 DOI: 10.1021/acs.langmuir.1c00997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial infection and blockage are severe problems for polyurethane (PU) catheters and there is an urgent demand for surface-functionalized polyurethane. Herein, a cationic alternating copolymer comprising allyl-substituted ornithine and glycine (allyl-substituted poly(Orn-alter-Gly)) with abundant carbon-carbon double bond functional groups (C═C) is designed. Polyurethane is prepared with a large quantity of C═C groups (PU-D), and different amounts of allyl-substituted poly(Orn-alter-Gly) are grafted onto the PU-D surface (PU-D-2%AMPs and PU-D-20%AMPs) via the C═C functional groups. The chemical structures of the allyl-substituted poly(Orn-alter-Gly) and polyurethane samples (PU, PU-D, PU-D-2%AMPs, and PU-D-20%AMPs) are characterized and the results reveal that allyl-substituted poly(Orn-alter-Gly) is decorated on the polyurethane. PU-D-20%AMPs shows excellent antibacterial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus because of the high surface potential caused by cationic allyl-substituted poly(Orn-alter-Gly), and it also exhibits excellent long-term antibacterial activity and antibiofilm properties. PU-D-20%AMPs also has excellent antifouling properties because the cationic copolymer is fixed at multiple reactive sites, thus avoiding the formation of movable long chain brush. A strong surface hydration barrier is also formed to prevent adsorption of proteins and ions, and in vivo experiments reveal excellent biocompatibility. This flexible strategy to prepare dual-functional polyurethane surfaces with antibacterial and antifouling properties has large potential in biomedical implants.
Collapse
Affiliation(s)
- Fuqiang Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiongqiong Zhu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Yue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangmei Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junhui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Sun
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Tang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Chiong JA, Tran H, Lin Y, Zheng Y, Bao Z. Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101233. [PMID: 34014619 PMCID: PMC8292855 DOI: 10.1002/advs.202101233] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 05/02/2023]
Abstract
Through advances in molecular design, understanding of processing parameters, and development of non-traditional device fabrication techniques, the field of wearable and implantable skin-inspired devices is rapidly growing interest in the consumer market. Like previous technological advances, economic growth and efficiency is anticipated, as these devices will enable an augmented level of interaction between humans and the environment. However, the parallel growing electronic waste that is yet to be addressed has already left an adverse impact on the environment and human health. Looking forward, it is imperative to develop both human- and environmentally-friendly electronics, which are contingent on emerging recyclable, biodegradable, and biocompatible polymer technologies. This review provides definitions for recyclable, biodegradable, and biocompatible polymers based on reported literature, an overview of the analytical techniques used to characterize mechanical and chemical property changes, and standard policies for real-life applications. Then, various strategies in designing the next-generation of polymers to be recyclable, biodegradable, or biocompatible with enhanced functionalities relative to traditional or commercial polymers are discussed. Finally, electronics that exhibit an element of recyclability, biodegradability, or biocompatibility with new molecular design are highlighted with the anticipation of integrating emerging polymer chemistries into future electronic devices.
Collapse
Affiliation(s)
- Jerika A. Chiong
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Helen Tran
- Department of ChemistryUniversity of TorontoTorontoONM5S 3H6Canada
| | - Yangju Lin
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| | - Yu Zheng
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Zhenan Bao
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| |
Collapse
|
21
|
Xu B, Han F, Pei X, Liu X, Zhang J, Cheng J, Zhao J. Thermoplastic polyurethane with good mechanical and processing performances via blocking and deblocking of isocyanates. J Appl Polym Sci 2021. [DOI: 10.1002/app.51315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bowen Xu
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Feilong Han
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Xuqiang Pei
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Xin Liu
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Jingbo Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| |
Collapse
|
22
|
Liu Y, Mao S, Zhu L, Chen S, Wu C. Based on tannic acid and thermoresponsive microgels design a simple and high-efficiency multifunctional antibacterial coating. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Karayilan M, Clamen L, Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules 2021; 22:223-261. [PMID: 33405900 DOI: 10.1021/acs.biomac.0c01525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ocular applications of polymeric materials have been widely investigated for medical diagnostics, treatment, and vision improvement. The human eye is a vital organ that connects us to the outside world so when the eye is injured, infected, or impaired, it needs immediate medical treatment to maintain clear vision and quality of life. Moreover, several essential parts of the eye lose their functions upon aging, causing diminished vision. Modern polymer science and polymeric materials offer various alternatives, such as corneal and scleral implants, artificial ocular lenses, and vitreous substitutes, to replace the damaged parts of the eye. In addition to the use of polymers for medical treatment, polymeric contact lenses can provide not only vision correction, but they can also be used as wearable electronics. In this Review, we highlight the evolution of polymeric materials for specific ocular applications such as intraocular lenses and current state-of-the-art polymeric systems with unique properties for contact lens, corneal, scleral, and vitreous body applications. We organize this Review paper by following the path of light as it travels through the eye. Starting from the outside of the eye (contact lenses), we move onto the eye's surface (cornea and sclera) and conclude with intraocular applications (intraocular lens and vitreous body) of mostly synthetic polymers and several biopolymers. Initially, we briefly describe the anatomy and physiology of the eye as a reminder of the eye parts and their functions. The rest of the Review provides an overview of recent advancements in next-generation contact lenses and contact lens sensors, corneal and scleral implants, solid and injectable intraocular lenses, and artificial vitreous body. Current limitations for future improvements are also briefly discussed.
Collapse
Affiliation(s)
- Metin Karayilan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Liane Clamen
- Adaptilens, LLC, Boston, Massachusetts 02467, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|