1
|
Tran HA, Maraldo A, Ho TT, Thai MT, van Hilst Q, Joukhdar H, Kordanovski M, Sahoo JK, Hartsuk O, Santos M, Wise SG, Kaplan DL, Do TN, Kilian KA, Lim KS, Rnjak‐Kovacina J. Probing the Interplay of Protein Self-Assembly and Covalent Bond Formation in Photo-Crosslinked Silk Fibroin Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407923. [PMID: 39548941 PMCID: PMC12019910 DOI: 10.1002/smll.202407923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Covalent crosslinking of silk fibroin via native tyrosine residues has been extensively explored; however, while these materials are very promising for biomedical, optical, soft robotics, and sensor applications, their structure and mechanical properties are unstable over time. This instability results in spontaneous silk self-assembly and stiffening over time, a process that is poorly understood. This study investigates the interplay between self-assembly and di-tyrosine bond formation in silk hydrogels photo-crosslinked using ruthenium (Ru) and sodium persulfate (SPS) with visible light. The effects of silk concentration, molecular weight, Ru/SPS concentration, and solvent conditions are examined. The Ru/SPS system enables rapid crosslinking, achieving gelation within seconds and incorporating over 90% of silk into the network, even at very low protein concentrations (≥0.75% wt/v). A model emerges where silk self-assembly both before and after crosslinking affects protein phase separation, mesoscale structure, and dynamic changes in the hydrogel network over time. Silk concentration has the greatest impact on hydrogel properties, with higher silk concentration hydrogels experiencing two orders of magnitude increase in stiffness within 1 week. This new understanding and ability to tune hydrogel properties and dynamic stiffening aids in developing advanced materials for 4D biofabrication, sensing, 3D cancer models, drug delivery, and soft robotics.
Collapse
Affiliation(s)
- Hien A. Tran
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Anton Maraldo
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Trinh Thi‐Phuong Ho
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- College of Engineering & Computer Science and VinUni‐Illinois Smart Health CenterHanoi100000Vietnam
| | - Quinn van Hilst
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Habib Joukhdar
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Marija Kordanovski
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Onur Hartsuk
- Department of Biomedical EngineeringTufts UniversityBostonMA02155USA
| | - Miguel Santos
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Steven G. Wise
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts UniversityBostonMA02155USA
| | - Thanh Nho Do
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kristopher A. Kilian
- School of ChemistryUniversity of New South WalesSydneyNSW2052Australia
- Australian Center for NanomedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South Wales SydneySydneyNSW2052Australia
- School of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesSydneyNSW2052Australia
| | - Khoon S. Lim
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Center for NanomedicineUniversity of New South WalesSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringSydneyNSW2052Australia
| |
Collapse
|
2
|
Fitzpatrick DP, Browne E, Kealey C, Brady D, Kavanagh S, Devery S, Gately N. The Effects of Encapsulating Bioactive Irish Honey into Pluronic-Based Thermoresponsive Hydrogels and Potential Application in Soft Tissue Regeneration. Gels 2025; 11:215. [PMID: 40136920 PMCID: PMC11941932 DOI: 10.3390/gels11030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Honey has been recognised for centuries for its potential therapeutic properties, and its application in wound healing has gained attention due to its antimicrobial, anti-inflammatory, and regenerative properties. With the rapid increase in multidrug resistance, there is a need for new or alternative approaches to traditional antibiotics. This paper focuses on the physicochemical changes that occur when formulating honey into Pluronic F127 hydrogels. The manual incorporation of honey, irrespective of quality type, presented the amelioration of Pluronic's capacity to undergo sol-gel transitions, as investigated by parallel plate rheology. This novel finding was attributed to the formation of fractal aggregates via the hydrogen-bonding-induced irreversible aggregation of honey-PF127 micelles, which subsequently dominate the entire hydrogel system to form a gel. The hydrogen bonding of micelles was identified through Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Light Scattering (DLS). This is the first known study to provide physicochemical insight into the effects that honey incorporation has on the thermogelation capacity of Pluronic F127 hydrogels for downstream dermal wound applications.
Collapse
Affiliation(s)
- Daniel P. Fitzpatrick
- PRISM Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Applied Polymer Technologies (APT), Technological University of the Shannon, N37HD6 Athlone, Co. Westmeath, Ireland
| | - Emma Browne
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Carmel Kealey
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Damien Brady
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Science and Health, South East Technological University, R93V960 Carlow, Co. Carlow, Ireland
| | - Siobhan Kavanagh
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Sinead Devery
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Noel Gately
- PRISM Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Applied Polymer Technologies (APT), Technological University of the Shannon, N37HD6 Athlone, Co. Westmeath, Ireland
| |
Collapse
|
3
|
Demiray EB, Sezgin Arslan T, Derkus B, Arslan YE. A Facile Strategy for Preparing Flexible and Porous Hydrogel-Based Scaffolds from Silk Sericin/Wool Keratin by In Situ Bubble-Forming for Muscle Tissue Engineering Applications. Macromol Biosci 2025; 25:e2400362. [PMID: 39427341 PMCID: PMC11827552 DOI: 10.1002/mabi.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Indexed: 10/22/2024]
Abstract
In the present study, it is aimed to fabricate a novel silk sericin (SS)/wool keratin (WK) hydrogel-based scaffolds using an in situ bubble-forming strategy containing an N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) coupling reaction. During the rapid gelation process, CO2 bubbles are released by activating the carboxyl groups in sericin with EDC and NHS, entrapped within the gel, creating a porous cross-linked structure. With this approach, five different hydrogels (S2K1, S4K2, S2K4, S6K3, and S3K6) are constructed to investigate the impact of varying sericin and keratin ratios. Analyses reveal that more sericin in the proteinaceous mixture reinforced the hydrogel network. Additionally, the hydrogels' pore size distribution, swelling ratio, wettability, and in vitro biodegradation rate, which are crucial for the applications of biomaterials, are evaluated. Moreover, biocompatibility and proangiogenic properties are analyzed using an in-ovo chorioallantoic membrane assay. The findings suggest that the S4K2 hydrogel exhibited the most promising characteristics, featuring an adequately flexible and highly porous structure. The results obtained by in vitro assessments demonstrate the potential of S4K2 hydrogel in muscle tissue engineering. However, further work is necessary to improve hydrogels with an aligned structure to meet the features that can fully replace muscle tissue for volumetric muscle loss regeneration.
Collapse
Affiliation(s)
- Elif Beyza Demiray
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| | - Tugba Sezgin Arslan
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara UniversityAnkara06100Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| |
Collapse
|
4
|
Adorno GR, Timmer KB, Chang RASH, Shi J, Rogers SA, Harley BAC. Shaping the mechanical properties of a gelatin hydrogel interface via amination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618299. [PMID: 39464090 PMCID: PMC11507719 DOI: 10.1101/2024.10.14.618299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Injuries to musculoskeletal interfaces, such as the tendon-to-bone insertion of the rotator cuff, present significant physiological and clinical challenges for repair due to complex gradients of structure, composition, and cellularity. Advances in interface tissue engineering require stratified biomaterials able to both provide local instructive signals to support multiple tissue phenotypes while also reducing the risk of strain concentrations and failure at the transition between dissimilar materials. Here, we describe adaptation of a thiolated gelatin (Gel-SH) hydrogel via selective amination of carboxylic acid subunits on the gelatin backbone. The magnitude and kinetics of HRP-mediated primary crosslinking and carbodiimide-mediated secondary crosslinking reactions can be tuned through amination and thiolation of carboxylic acid subunits on the gelatin backbone. We also show that a stratified biomaterial comprised of mineralized (bone-mimetic) and non-mineralized (tendon-mimetic) collagen scaffold compartments linked by an aminated Gel-SH hydrogel demonstrate improved mechanical performance and reduced strain concentrations. Together, these results highlight significant mechanical advantages that can be derived from modifying the gelatin macromer via controlled amination and thiolation and suggest an avenue for tuning the mechanical performance of hydrogel interfaces within stratified biomaterials.
Collapse
|
5
|
Timmer KB, Killian ML, Harley BAC. Paracrine signals influence patterns of fibrocartilage differentiation in a lyophilized gelatin hydrogel for applications in rotator cuff repair. Biomater Sci 2024; 12:4806-4822. [PMID: 39150417 PMCID: PMC11404831 DOI: 10.1039/d4bm00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected via a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application. Here we report in vitro behavior of human mesenchymal stem cells (hMSCs) within thiolated gelatin (Gel-SH) hydrogels in response to chondrogenic stimuli as well as paracrine signals derived from MSC-seeded bone and tendon scaffold compartments. Chondrogenic differentiation media promoted upregulation of cartilage and entheseal fibrocartilage matrix markers COL2, COLX, and ACAN as well as the enthesis-associated transcription factors SCX, SOX9, and RUNX2 in hMSCs within Gel-SH. Similar effects were observed in response to TGF-β3 and BMP-4, enthesis-associated growth factors known to play a role in entheseal development and maintenance. Conditioned media generated by hMSCs seeded in tendon- and bone-mimetic collagen scaffolds influenced patterns of gene expression regarding enthesis-relevant growth factors, matrix markers, and tendon-to-bone transcription factors for hMSCs within the material. Together, these findings demonstrate that a Gel-SH hydrogel provides a permissive environment for enthesis tissue engineering and highlights the significance of cellular crosstalk between adjacent compartments within a spatially graded biomaterial.
Collapse
Affiliation(s)
- Kyle B Timmer
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Quadrado RFN, Zhai Z, Zavadinack M, Klassen G, Iacomini M, Edgar KJ, Fajardo AR. All-polysaccharide, self-healing, pH-sensitive, in situ-forming hydrogel of carboxymethyl chitosan and aldehyde-functionalized hydroxyethyl cellulose. Carbohydr Polym 2024; 336:122105. [PMID: 38670749 DOI: 10.1016/j.carbpol.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
In situ forming hydrogels are promising for biomedical applications, especially in drug delivery. The precursor solution can be injected at the target site, where it undergoes a sol-gel transition to afford a hydrogel. In this sense, the most significant characteristic of these hydrogels is fast gelation behavior after injection. This study describes an all-polysaccharide, rapidly in situ-forming hydrogel composed of carboxymethyl chitosan (CMCHT) and hydroxyethyl cellulose functionalized with aldehyde groups (HEC-Ald). The HEC-Ald was synthesized through acetal functionalization, followed by acid deprotection. This innovative approach avoids cleavage of pyran rings, as is inherent in the periodate oxidation approach, which is the most common method currently employed for adding aldehyde groups to polysaccharides. The resulting hydrogel exhibited fast stress relaxation, self-healing properties, and pH sensitivity, which allowed it to control the release of an encapsulated model drug in response to the medium pH. Based on the collected data, the HEC-Ald/CMCHT hydrogels show promise as pH-sensitive drug carriers.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, USA
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
7
|
Zong L, Xu H, Zhang H, Tu Z, Zhang X, Wang S, Li M, Feng Y, Wang B, Li L, Xie X, He Z, Pu X. A review of matrix metalloproteinase-2-sensitive nanoparticles as a novel drug delivery for tumor therapy. Int J Biol Macromol 2024; 262:130043. [PMID: 38340921 DOI: 10.1016/j.ijbiomac.2024.130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Matrix metalloproteinase-2 (MMP-2)-responsive nanodrug vehicles have garnered significant attention as antitumor drug delivery systems due to the extensive research on matrix metalloproteinases (MMPs) within the tumor extracellular matrix (ECM). These nanodrug vehicles exhibit stable circulation in the bloodstream and accumulate specifically in tumors through various mechanisms. Upon reaching tumor tissues, their structures are degraded in response to MMP-2 within the ECM, resulting in drug release. This controlled drug release significantly increases drug concentration within tumors, thereby enhancing its antitumor efficacy while minimizing side effects on normal organs. This review provides an overview of MMP-2 characteristics, enzyme-sensitive materials, and current research progress regarding their application as MMP-2-responsive nanodrug delivery system for anti-tumor drugs, as well as considering their future research prospects. In conclusion, MMP-2-sensitive drug delivery carriers have a broad application in all kinds of nanodrug delivery systems and are expected to become one of the main means for the clinical development and application of nanodrug delivery systems in the future.
Collapse
Affiliation(s)
- Lanlan Zong
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hongliang Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Huiqi Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ziwei Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Zhang
- Department of Pharmacy, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai City, Hebei Province 054001, China
| | - Shumin Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Meigui Li
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Yu Feng
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Binke Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Luhui Li
- Medical School, Henan Technical Institute, Kaifeng, Henan 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China.
| | - Zhonggui He
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China.
| |
Collapse
|
8
|
Dimmitt N, Lin CC. Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions. Macromolecules 2024; 57:1556-1568. [PMID: 38435678 PMCID: PMC10903513 DOI: 10.1021/acs.macromol.3c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
The inverse electron demand Diels-Alder (iEDDA) reactions are highly efficient click chemistry increasingly utilized in bioconjugation, live cell labeling, and the synthesis and modification of biomaterials. iEDDA click reactions have also been used to cross-link tetrazine (Tz) and norbornene (NB) modified macromers [e.g., multiarm poly(ethylene glycol) or PEG]. In these hydrogels, Tz-NB adducts exhibit stable supramolecular interactions with a high hydrolytic stability. Toward engineering a new class of PEG-based click hydrogels with highly adaptable properties, we previously reported a new group of NB-derivatized PEG macromers via reacting hydroxyl-terminated PEG with carbic anhydride (CA). In this work, we show that hydrogels cross-linked by PEGNBCA or its derivatives exhibited fast and tunable hydrolytic degradation. Here, we show that PEGNBCA (either mono- or octafunctional) and its dopamine or tyramine conjugated derivatives (i.e., PEGNB-D and PEGNB-T) readily cross-link with 4-arm PEG-Tz to form a novel class of multifunctional iEDDA click hydrogels. Through modularly adjusting the macromers with unstable and stable iEDDA click-induced supramolecular interactions (iEDDA-CSI), we achieved highly tunable degradation, with full degradation in less than 2 weeks to over two months. We also show that secondary enzymatic reactions could dynamically stiffen these hydrogels. These hydrogels could also be spatiotemporally photopatterned through visible light-initiated photochemistry. Finally, the iEDDA-CSI hydrogels post ester hydrolysis displayed shear-thinning and self-healing properties, enabling injectable delivery.
Collapse
Affiliation(s)
- Nathan
H. Dimmitt
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
9
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
10
|
Herrada-Manchón H, Fernández MA, Aguilar E. Essential Guide to Hydrogel Rheology in Extrusion 3D Printing: How to Measure It and Why It Matters? Gels 2023; 9:517. [PMID: 37504396 PMCID: PMC10379134 DOI: 10.3390/gels9070517] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Rheology plays a crucial role in the field of extrusion-based three-dimensional (3D) printing, particularly in the context of hydrogels. Hydrogels have gained popularity in 3D printing due to their potential applications in tissue engineering, regenerative medicine, and drug delivery. The rheological properties of the printing material have a significant impact on its behaviour throughout the 3D printing process, including its extrudability, shape retention, and response to stress and strain. Thus, understanding the rheological characteristics of hydrogels, such as shear thinning behaviour, thixotropy, viscoelasticity, and gelling mechanisms, is essential for optimising the printing process and achieving desired product quality and accuracy. This review discusses the theoretical foundations of rheology, explores different types of fluid and their properties, and discusses the essential rheological tests necessary for characterising hydrogels. The paper emphasises the importance of terminology, concepts, and the correct interpretation of results in evaluating hydrogel formulations. By presenting a detailed understanding of rheology in the context of 3D printing, this review paper aims to assist researchers, engineers, and practitioners in the field of hydrogel-based 3D printing in optimizing their printing processes and achieving desired product outcomes.
Collapse
Affiliation(s)
- Helena Herrada-Manchón
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda, Jardín Botánico 1345, 33203 Gijón, Spain
| | - Manuel Alejandro Fernández
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda, Jardín Botánico 1345, 33203 Gijón, Spain
| | - Enrique Aguilar
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto Universitario de Química Organometálica "Enrique Moles", Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
11
|
Suman K, Shanbhag S, Joshi YM. Large amplitude oscillatory shear study of a colloidal gel near the critical state. J Chem Phys 2023; 158:054907. [PMID: 36754789 DOI: 10.1063/5.0129416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A system undergoing sol-gel transition passes through a unique point, known as the critical gel state, where it forms the weakest space spanning percolated network. We investigate the nonlinear viscoelastic behavior of a colloidal dispersion at the critical gel state using large amplitude oscillatory shear rheology. The colloidal gel at the critical point is subjected to oscillatory shear flow with increasing strain amplitude at different frequencies. We observe that the first harmonic of the elastic and viscous moduli exhibits a monotonic decrease as the material undergoes a linear to nonlinear transition. We analyze the stress waveform across this transition and obtain the nonlinear moduli and viscosity as a function of frequency and strain amplitude. The analysis of the nonlinear moduli and viscosities suggests intracycle strain stiffening and intracycle shear thinning in the colloidal dispersion. Based on the insights obtained from the nonlinear analysis, we propose a potential scenario of the microstructural changes occurring in the nonlinear region. We also develop an integral model using the time-strain separable Kaye-Bernstein-Kearsley-Zapas constitutive equation with a power-law relaxation modulus and damping function obtained from experiments. The proposed model with a slight adjustment of the damping function inferred using a spectral method, compares well with experimental data at all frequencies.
Collapse
Affiliation(s)
- Khushboo Suman
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sachin Shanbhag
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, USA
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
12
|
Vieira S, Silva-Correia J, Reis RL, Oliveira JM. Engineering Hydrogels for Modulation of Material-Cell Interactions. Macromol Biosci 2022; 22:e2200091. [PMID: 35853666 DOI: 10.1002/mabi.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, make this 3D hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Dikshit K, Bruns CJ. Chemorheological Monitoring of Cross-Linking in Slide-ring Gels Derived From α-cyclodextrin Polyrotaxanes. Front Chem 2022; 10:923775. [PMID: 35928212 PMCID: PMC9344045 DOI: 10.3389/fchem.2022.923775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Despite hundreds of studies involving slide-ring gels derived from cyclodextrin (CD)-based polyrotaxanes (PRs), their covalent cross-linking kinetics are not well characterized. We employ chemorheology as a tool to measure the gelation kinetics of a model slide-ring organogel derived from α-cyclodextrin/poly (ethylene glycol) PRs cross-linked with hexamethylenediisocyanate (HMDI) in DMSO. The viscoelastic properties of the gels were monitored in situ by small-amplitude oscillatory shear (SAOS) rheology, enabling us to estimate the activation barrier and rate law for cross-linking while mapping experimental parameters to kinetics and mechanical properties. Gelation time, gel point, and final gel elasticity depend on cross-linker concentration, but polyrotaxane concentration only affects gelation time and elasticity (not gel point), while temperature only affects gelation time and gel point (not final elasticity). These measurements facilitate the rational design of slide-ring networks by simple parameter selection (temperature, cross-linker concentration, PR concentration, reaction time).
Collapse
Affiliation(s)
- Karan Dikshit
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, United States
| | - Carson J. Bruns
- Paul M. Rady Mechanical Engineering Department, University of Colorado Boulder, Boulder, CO, United States
- ATLAS Institute, University of Colorado Boulder, Boulder, CO, United States
- *Correspondence: Carson J. Bruns ,
| |
Collapse
|
14
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
15
|
Li J, Luo G, Zhang C, Long S, Guo L, Yang G, Wang F, Zhang L, Shi L, Fu Y, Zhang Y. In situ injectable hydrogel-loaded drugs induce anti-tumor immune responses in melanoma immunochemotherapy. Mater Today Bio 2022; 14:100238. [PMID: 35330634 PMCID: PMC8938887 DOI: 10.1016/j.mtbio.2022.100238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 12/25/2022] Open
|
16
|
Ijaz U, Sohail M, Usman Minhas M, Khan S, Hussain Z, Kazi M, Ahmed Shah S, Mahmood A, Maniruzzaman M. Biofunctional Hyaluronic Acid/κ-Carrageenan Injectable Hydrogels for Improved Drug Delivery and Wound Healing. Polymers (Basel) 2022; 14:376. [PMID: 35160366 PMCID: PMC8840380 DOI: 10.3390/polym14030376] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/24/2023] Open
Abstract
The in situ injectable hydrogel system offers a widespread range of biomedical applications in prompt chronic wound treatment and management, as it provides self-healing, maintains a moist wound microenvironment, and offers good antibacterial properties. This study aimed to develop and evaluate biopolymer-based thermoreversible injectable hydrogels for effective wound-healing applications and the controlled drug delivery of meropenem. The injectable hydrogel was developed using the solvent casting method and evaluated for structural changes using proton nuclear magnetic resonance, Fourier transforms infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results indicated the self-assembly of hyaluronic acid and kappa-carrageenan and the thermal stability of the fabricated injectable hydrogel with tunable gelation properties. The viscosity assessment indicated the in-situ gelling ability and injectability of the hydrogels at various temperatures. The fabricated hydrogel was loaded with meropenem, and the drug release from the hydrogel in phosphate buffer saline (PBS) with a pH of 7.4 was 96.12%, and the simulated wound fluid with a pH of 6.8 was observed to be at 94.73% at 24 h, which corresponds to the sustained delivery of meropenem. Antibacterial studies on P. aeruginosa, S. aureus, and E. coli with meropenem-laden hydrogel showed higher zones of inhibition. The in vivo studies in Sprague Dawley (SD) rats presented accelerated healing with the drug-loaded injectable hydrogel, while 90% wound closure with the unloaded injectable hydrogel, 70% in the positive control group (SC drug), and 60% in the negative control group was observed (normal saline) after fourteen days. In vivo wound closure analysis confirmed that the developed polymeric hydrogel has synergistic wound-healing potential.
Collapse
Affiliation(s)
- Uzma Ijaz
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22010, Pakistan; (U.I.); (S.A.S.)
| | - Muhammad Sohail
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22010, Pakistan; (U.I.); (S.A.S.)
| | | | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan;
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Syed Ahmed Shah
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22010, Pakistan; (U.I.); (S.A.S.)
- Department of Pharmaceutical Sciences, The Superior University, Lahore 54600, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates;
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
17
|
Hsieh KC, Lin TC, Kuo MI. Effect of whole chia seed flour on gelling properties, microstructure and texture modification of tofu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
An Z, Zhang L, Liu Y, Zhao H, Zhang Y, Cao Y, Zhang Y, Pei R. Injectable thioketal-containing hydrogel dressing accelerates skin wound healing with the incorporation of reactive oxygen species scavenging and growth factor release. Biomater Sci 2021; 10:100-113. [PMID: 34792044 DOI: 10.1039/d1bm01179k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound healing is a complex dynamic process. During the occurrence of skin injury, the excessive reactive oxygen species (ROS) level is associated with sustained inflammatory response, which limits efficient wound repair. Although multifunctional hydrogels are considered ideal wound dressings due to their unique advantages, the development of hydrogel dressings with rapid gelling rates, shape adaptation, and antioxidant function is still a vital challenge. In this work, a ROS-responsive injectable polyethylene glycol hydrogel containing thioketal bonds (PEG-TK hydrogel) was synthesized and utilized to deliver epidermal growth factor (EGF). We adopted bio-orthogonal click chemistry for crosslinking the polymer chains to obtain the EGF@PEG-TK hydrogel with fast gelation time, injectability and shape-adaptability. More interestingly, the thioketal bonds in the PEG-TK hydrogel not only scavenged excessive ROS in the wound sites but also achieved responsive and controlled EGF release to facilitate regeneration. The EGF@PEG-TK hydrogel treatment offered the benefits of protecting cells from oxidative stress, accelerating wound closure, and reducing scar formation in the full-thickness skin defect model. This work provides a promising strategy for developing antioxidant hydrogel dressing for facilitating the repair of wounds.
Collapse
Affiliation(s)
- Zhen An
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hongbo Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
19
|
Wu N, Schultz KM. Correlation of Bulk Degradation and Molecular Release from Enzymatically Degradable Polymeric Hydrogels. Biomacromolecules 2021; 22:4489-4500. [PMID: 34516089 DOI: 10.1021/acs.biomac.1c00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we establish a quantitative correlation between molecular release and material degradation. We characterize a radical-initiated photopolymerized hydrogel and base-initiated Michael addition-polymerized hydrogel, which form gels through distinct crosslinking reactions. Both scaffolds use the same degradable peptide crosslinker, which enables them to be degraded through the same enzymatic degradation reaction. A fluorescently labeled poly(ethylene glycol) molecule is chemically conjugated into the scaffold and is released during enzymatic degradation. Real-time changes in scaffold rheological properties during degradation are measured using bulk rheology. Molecular release is measured by quantifying the change in fluorescence in the incubation liquid and the hydrogel scaffold. A complicating factor, previously described in the literature, is that shear may cause increased crosslinking, resulting in an increase in the storage modulus after initiation of degradation, which changes release profiles by limiting the initial release of molecules. Therefore, we also test the hypothesis that shear induces additional crosslinking in degrading hydrogel scaffolds. To determine whether shear changes rheological properties during scaffold degradation, enzymatic degradation is characterized using bulk rheology as materials undergo continuous or minimal shear. To determine the effect of shear on molecular release, shear is induced by shaking the material during incubation. Release is characterized from scaffolds that are incubated with continuous or without shaking. We determine that shear does not make a difference in scaffold degradation or release regardless of the gelation reaction. Instead, we determine that the type of hydrogel crosslinking reaction greatly affects both material degradation and molecular release. A hydrogel crosslinking by base-initiated Michael addition does undergo further crosslinking at the start of degradation. We correlate release with enzymatic degradation for both scaffolds. We determine that the material storage modulus is indirectly correlated with release during degradation. These results indicate that rheological characterization is a useful tool to characterize and predict the release of molecules from degrading hydrogels.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
20
|
Dorishetty P, Balu R, Gelmi A, Mata JP, Dutta NK, Choudhury NR. 3D Printable Soy/Silk Hybrid Hydrogels for Tissue Engineering Applications. Biomacromolecules 2021; 22:3668-3678. [PMID: 34460237 DOI: 10.1021/acs.biomac.1c00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of protein-based 3D printable hydrogel systems with tunable structure and properties is a critical challenge in contemporary biomedicine. Particularly, 3D printing of modular hydrogels comprising different types of protein tertiary structure, such as globular and fibrous, has not yet been achieved. Here we report the extrusion-based 3D printing of hybrid hydrogels photochemically co-cross-linked between globular soy protein isolate (SPI) and fibrous silk fibroin (SF) for the first time. The hierarchical structure and organization of pristine SPI and SF, and 1:3 (SPI/SF) hybrid inks under various shear stress were investigated using in situ rheology combined with small-/ultra-small-angle neutron scattering (Rheo-SANS/USANS). The hybrid ink exhibited an isotropic mass fractal structure that was stable between tested shear rates of 0.1 and 100 s-1 (near printing shear). The kinetics of sol-gel transition during the photo-cross-linking reaction and the micromechanical properties of fabricated hydrogels were investigated using photorheology and atomic force microscopy, where the hybrid hydrogels exhibited tunable storage and Young's moduli in the range of 13-29 and 214-811 kPa, respectively. The cross-link density and printing accuracy of hybrid hydrogels and inks were observed to increase with the increase in SF content. The 3D printed hybrid hydrogels exhibited a micropore size larger than that of solution casted hydrogels; where the 3D printed 1:3 (SPI/SF) hybrid hydrogel showed a pore size about 7.6 times higher than that of the casted hydrogel. Moreover, the fabricated hybrid hydrogels exhibit good mouse fibroblast cell attachment, viability, and proliferation, demonstrating their potential for tissue engineering applications.
Collapse
Affiliation(s)
- Pramod Dorishetty
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Rajkamal Balu
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Amy Gelmi
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, NSW 2232, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
21
|
Haidari H, Bright R, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Eradication of Mature Bacterial Biofilms with Concurrent Improvement in Chronic Wound Healing Using Silver Nanoparticle Hydrogel Treatment. Biomedicines 2021; 9:1182. [PMID: 34572368 PMCID: PMC8470956 DOI: 10.3390/biomedicines9091182] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Biofilm-associated infections are a major cause of impaired wound healing. Despite the broad spectrum of anti-bacterial benefits provided by silver nanoparticles (AgNPs), these materials still cause controversy due to cytotoxicity and a lack of efficacy against mature biofilms. Herein, highly potent ultrasmall AgNPs were combined with a biocompatible hydrogel with integrated synergistic functionalities to facilitate elimination of clinically relevant mature biofilms in-vivo combined with improved wound healing capacity. The delivery platform showed a superior release mechanism, reflected by high biocompatibility, hemocompatibility, and extended antibacterial efficacy. In vivo studies using the S. aureus wound biofilm model showed that the AgNP hydrogel (200 µg/g) was highly effective in eliminating biofilm infection and promoting wound repair compared to the controls, including silver sulfadiazine (Ag SD). Treatment of infected wounds with the AgNP hydrogel resulted in faster wound closure (46% closure compared to 20% for Ag SD) and accelerated wound re-epithelization (60% for AgNP), as well as improved early collagen deposition. The AgNP hydrogel did not show any toxicity to tissue and/or organs. These findings suggest that the developed AgNP hydrogel has the potential to be a safe wound treatment capable of eliminating infection and providing a safe yet effective strategy for the treatment of infected wounds.
Collapse
Affiliation(s)
- Hanif Haidari
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Sanjay Garg
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Allison J. Cowin
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Zlatko Kopecki
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
22
|
Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent Developments in Nanomaterial-Based Shear-Sensitive Drug Delivery Systems. Adv Healthc Mater 2021; 10:e2002196. [PMID: 34076369 PMCID: PMC8273148 DOI: 10.1002/adhm.202002196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/21/2021] [Indexed: 01/30/2023]
Abstract
Nanomaterial-based drug delivery systems (DDSs) increase the efficacy of various therapeutics, and shear stress has been shown to be a robust modulator of payload release. In the past few decades, a deeper understanding has been gained of the effects of flow in the body and its alteration in pathological microenvironments. More recently, shear-responsive nanomaterial DDSs have been developed. Studies on this subject mainly from the last decade are reviewed here, focusing on innovations of the material design and mechanisms of the shear response. The two most popular shear-controlled drug carriers distinguished by different release mechanisms, that is, shear-deformable nanoparticles (NPs) and shear-dissociated NP aggregates (NPAs), are surveyed. The influence of material structures on their properties such as drug loading, circulation time, and shear sensitivity are discussed. The drug development stages, therapeutic effects, limitations, and potential of these DDSs are further inspected. The reviewed research emphasizes the advantages and significance of nanomaterial-based shear-sensitive DDSs in the field of targeted drug delivery. It is also believed that efforts to rationally design nanomaterial DDSs responsive to shear may prompt a new class of diagnostics and therapeutics for signaling and rectifying pathological flows in the body.
Collapse
Affiliation(s)
- Yi Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Avani V. Pisapati
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - X. Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| |
Collapse
|
23
|
Ishikawa S, Kamata H, Chung UI, Sakai T. On-demand retrieval of cells three-dimensionally seeded in injectable thioester-based hydrogels. RSC Adv 2021; 11:23637-23643. [PMID: 35479827 PMCID: PMC9036596 DOI: 10.1039/d1ra01934a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022] Open
Abstract
Scaffold systems that can easily encapsulate cells and safely retrieve them at the desired time are important for the advancement of cell-based medicine. In this study, we designed and fabricated thioester-based poly(ethylene glycol) (PEG) hydrogels with injectability and on-demand degradability as new scaffold materials for cells. Hydrogels can be formed in situ within minutes via thioester cross-linking between PEG molecules and can be degraded under mild conditions in response to l-cysteine molecules through thiol exchange occurring at the thioester linkage. Various cell experiments, especially with sucrose, which enables the adjustment of the osmotic pressure around the cells, showed that the damage to the cells during encapsulation and degradation was minimal, indicating the capability of on-demand retrieval of intact cells. This hydrogel system is a versatile tool in the field of cell-based research and applications such as tissue regeneration and regenerative medicine. Human mesenchymal stem/stromal cells can be three-dimensionally encapsulated in hydrogels cross-linked with thioester linkages. Degrading the cell-embedded hydrogels by l-cysteine molecules enables safe on-demand retrieval of the cells.![]()
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| | - Hiroyuki Kamata
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| | - Ung-Il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan .,Center for Disease Biology and Integrative Medicine, School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| | - Takamasa Sakai
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan .,Department of Materials Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| |
Collapse
|
24
|
Haidari H, Bright R, Strudwick XL, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomater 2021; 128:420-434. [PMID: 33857695 DOI: 10.1016/j.actbio.2021.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The increasing emergence of antibiotic resistance coupled with the limited effectiveness of current treatments highlights the need for the development of new treatment modalities. Silver nanoparticles (AgNPs) are a promising alternative with broad-spectrum antibacterial activity. However, the clinical translation of AgNPs have been hampered primarily due to the delivery of unsafe levels of silver ions (Ag+) resulting in cellular toxicity and their susceptibility to aggregation resulting in loss of efficacy. Here, we describe a safe and effective, thermo-responsive AgNP hydrogel that provides antibacterial effects in conjunction with wound promoting properties. Using a murine model of wound infection, we demonstrate that the applied AgNP hydrogel to the wound (12 µg silver) not only provides superior bactericidal activity but also reduces inflammation leading to accelerated wound closure when compared to industry-standard silver sulfadiazine (302 µg silver). The AgNP hydrogel-treatment significantly accelerated wound closure at day 4 post-infection (56 closure) compared to both blank hydrogel or Ag SD (74% and 91% closure respectively) with a concurrent increase in PCNA-positive proliferating cells corresponding with a significant 32% improvement in wound re-epithelization compared to the blank hydrogel. Treatment of infected wounds with AgNP hydrogel also decreased neutrophil infiltration, increased anti-inflammatory Ym-1 positive M2 macrophages, and reduced the number of caspase-1 positive apoptotic cells. Therefore, this novel multifunctional AgNP thermo-responsive hydrogel is potentially a safe and effective treatment at much lower concentration for the treatment of wound infections. STATEMENT OF SIGNIFICANCE: In this study, we describe the development of a multifunctional thermo-responsive hydrogel of ultrasmall silver nanoparticles (AgNPs) for controlled and optimized delivery of silver to infected wounds. The in vivo biological effects of the developed hydrogel showed significant S. aureus elimination from infected mouse wounds compared to a commercial antibacterial formulation. The developed AgNP hydrogel optimally regulates inflammatory responses to promote wound healing as indicated by increased cell proliferation and wound re-epithelization. Additionally, AgNP hydrogel shows significant potential in regulating neutrophil infiltration while increasing levels of anti-inflammatory M2 macrophages and reduces the number of apoptotic cells. Therefore, the multifunctional properties of the developed AgNP thermo-responsive hydrogel offers great clinical potential to control bacterial infections and promote wound healing.
Collapse
|
25
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
26
|
Sun Han Chang RA, Shanley JF, Kersh ME, Harley BAC. Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces. SCIENCE ADVANCES 2020; 6:eabb6763. [PMID: 32875114 PMCID: PMC7438087 DOI: 10.1126/sciadv.abb6763] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.
Collapse
Affiliation(s)
- Raul A Sun Han Chang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John F Shanley
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Pour-Esmaeil S, Sharifi-Sanjani N, Khoee S, Taheri-Qazvini N. Biocompatible chemical network of α-cellulose-ESBO (epoxidized soybean oil) scaffold for tissue engineering application. Carbohydr Polym 2020; 241:116322. [PMID: 32507210 DOI: 10.1016/j.carbpol.2020.116322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022]
Abstract
Despite many desirable properties, the use of α-cellulose in biomedical applications is limited because of its poor processability. Here we demonstrate that the chemical network of α-cellulose and epoxidized soybean oil (ESBO) can be adequately processed into biocompatible, self-standing, highly-porous scaffolds for tissue engineering applications. First, α-cellulose was dissolved in N-Methylmorpholine N-oxide monohydrate (NMMO.MH) and chemically crosslinked by ESBO. Then, the porous scaffolds of α-cellulose-ESBO were fabricated by solvent exchange and freeze-drying techniques. The scaffolds were evaluated for morphology, thermal and mechanical stability, and in vitro cell attachment and cell viability. Scanning electron microscopy images and Brunauer-Emmett-Teller results suggested that porous scaffolds provide a good surface and internal structure for cell adhesion and growth. Specifically, the α-cellulose-ESBO scaffolds support the homogeneous attachment and proliferation of MG63 cells. Overall, our results suggest that α-cellulose-ESBO chemically crosslinked networks are biocompatible and demonstrate a remarkable capacity for the development of tissue engineering platforms.
Collapse
Affiliation(s)
- Sajad Pour-Esmaeil
- Polymer Laboratory, Nano-Chemistry Division, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
| | - Naser Sharifi-Sanjani
- Polymer Laboratory, Nano-Chemistry Division, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran.
| | - Sepideh Khoee
- Polymer Laboratory, Nano-Chemistry Division, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States; Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, United States
| |
Collapse
|
28
|
Molley TG, Wang X, Hung TT, Jayathilaka PB, Yang JL, Kilian KA. Geometrically Structured Microtumors in 3D Hydrogel Matrices. ACTA ACUST UNITED AC 2020; 4:e2000056. [PMID: 32402124 DOI: 10.1002/adbi.202000056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022]
Abstract
During cancer progression, a growing tumor encounters variation in the surrounding microenvironment leading to a diverse landscape at the tumor-matrix interface. Topological cues at the interface are believed to influence invasive characteristics; however, most laboratory models involve tumor spheroids that develop a uniform geometry within a homogenous hydrogel. In this communication, a method for templating hydrogels in well-defined 3D architectures is reported. Using melanoma as a model cancer, fabrication of geometrically structured model tumors in a myriad of shapes and sizes is demonstrated. These microtumors can be encapsulated in virtually any polymeric matrix, with demonstrations using poly(ethylene glycol) and gelatin-based hydrogels. Light sheet imaging reveals uniform viability throughout with regions of high curvature at the periphery influencing cellular heterogeneity. These hydrogel encapsulated microtumors can be harvested and implanted in animal models, providing a unique xenograft system where relationships between geometry, progression, and invasion may be systematically studied.
Collapse
Affiliation(s)
- Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaochun Wang
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pavithra B Jayathilaka
- School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
29
|
Sharma PK, Halder M, Srivastava U, Singh Y. Antibacterial PEG-Chitosan Hydrogels for Controlled Antibiotic/Protein Delivery. ACS APPLIED BIO MATERIALS 2019; 2:5313-5322. [DOI: 10.1021/acsabm.9b00570] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peeyush Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Udit Srivastava
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| |
Collapse
|
30
|
Lee JCW, Hong YT, Weigandt KM, Kelley EG, Kong H, Rogers SA. Strain shifts under stress-controlled oscillatory shearing in theoretical, experimental, and structural perspectives: Application to probing zero-shear viscosity. JOURNAL OF RHEOLOGY 2019; 63:10.1122/1.5111358. [PMID: 39411405 PMCID: PMC11474985 DOI: 10.1122/1.5111358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/08/2019] [Indexed: 10/19/2024]
Abstract
Rheological measurements in which the applied stress or strain is oscillated are widely used to interrogate viscoelastic properties due to the independent control over the time scale and length scale afforded by changes in amplitude and frequency. Taking a nontraditional approach, we treat stress-controlled oscillatory tests as creep tests with transiently varying stress and apply an analysis typically used for steady creep and recovery experiments. Defining zero strain as the state prior to external shearing, it is shown that strain responses to small-amplitude oscillatory stressing are naturally shifted from the starting point by an amount proportional to the phase of the applied stress. The phenomenology is experimentally observed with entangled polymerlike micelles and polyethylene oxide solutions. A theory of strain shifting in the steady alternating state is provided based on recovery rheology, where differences between total strain and recoverable strains are acknowledged. User-controlled variables, such as the amplitude of the stress, the angular frequency, and the phase of the stress, as well a lone material parameter, the zero-shear viscosity, are shown to dictate the amount of shifting. A rapid and efficient approach of determining the zero-shear viscosity is, therefore, presented. We investigate the microstructural evolution via in situ small-angle neutron scattering when strain shifting appears. The microscopic orientation is shown to correlate to the recoverable strain independent of the shifting. Additional measurements are carried out on collagen, pluronic-hyaluronic acid, alginate gels, and polystyrene melts to show the generic nature of the strain shift phenomenon. In addition, we demonstrate that the strain-shift knowledge can be applied to determine the horizontal shift factor in time-temperature superposition, free of any numerical fitting procedures.
Collapse
Affiliation(s)
- Johnny Ching-Wei Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Yu-Tong Hong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Katie M. Weigandt
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Elizabeth G. Kelley
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
31
|
Unveiling Temporal Nonlinear Structure-Rheology Relationships under Dynamic Shearing. Polymers (Basel) 2019; 11:polym11071189. [PMID: 31315259 PMCID: PMC6680679 DOI: 10.3390/polym11071189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
Understanding how microscopic rearrangements manifest in macroscopic flow responses is one of the central goals of nonlinear rheological studies. Using the sequence-of-physical-processes framework, we present a natural 3D structure–rheology space that temporally correlates the structural and nonlinear viscoelastic parameters. Exploiting the rheo-small-angle neutron scattering (rheo-SANS) techniques, we demonstrate the use of the framework with a model system of polymer-like micelles (PLMs), where we unveil a sequence of microscopic events that micelles experience under dynamic shearing across a range of frequencies. The least-aligned state of the PLMs is observed to migrate from the total strain extreme toward zero strain with increasing frequency. Our proposed 3D space is generic, and can be equally applied to other soft materials under any sort of deformation, such as startup shear or uniaxial extension. This work therefore provides a natural approach for researchers to study complex out-of-equilibrium structure–rheology relationships of soft materials.
Collapse
|