1
|
Sapre AU, Vlček J, de Prado E, Fekete L, Klementová M, Vondráček M, Svora P, Cuza E, Morgan GG, Honolka J, Kühne IA. Investigating the thin film growth of [Ni(Hvanox) 2] by microscopic and spectroscopic techniques. NANOSCALE ADVANCES 2025; 7:2083-2091. [PMID: 39991063 PMCID: PMC11843256 DOI: 10.1039/d4na01021c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
We have investigated [Ni(Hvanox)2] (H2vanox = o-vanillinoxime), a square-planar Ni(ii) complex, for the preparation of thin films using organic molecule evaporation. Low pressure experiments to prepare thin films were conducted at temperatures between 120-150 °C and thin films of increasing thicknesses [Ni(Hvanox)2] (16-336 nm) have been prepared on various substrates and been analyzed by microscopic and spectroscopic methods. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to reveal a rough surface morphology which exhibits a dense arrangement of elongated, rod and needle-like nanocrystals with random orientations. It also enabled us to follow the growth of the thin films by increasing thickness revealing the formation of a seeding layer. X-ray photoelectron spectroscopy (XPS and 3D ED), TEM and X-ray diffraction (XRD) were utilized to confirm the atomic structure and the elemental composition of the thin films.
Collapse
Affiliation(s)
- Atharva U Sapre
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Jan Vlček
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Esther de Prado
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Ladislav Fekete
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Mariana Klementová
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Martin Vondráček
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Petr Svora
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
- Czech Technical University in Prague, University Centre for Energy Efficient Buildings Trinecka 1024, Bustehrad 273 43 Czech Republic
| | - Emmelyne Cuza
- School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Grace G Morgan
- School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Jan Honolka
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Irina A Kühne
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| |
Collapse
|
2
|
Liu Z, Lin R, Wei M, Yin M, Wu P, Li M, Li L, Wang Y, Chen G, Carnevali V, Agosta L, Slama V, Lempesis N, Wang Z, Wang M, Deng Y, Luo H, Gao H, Rothlisberger U, Zakeeruddin SM, Luo X, Liu Y, Grätzel M, Tan H. All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. NATURE MATERIALS 2025; 24:252-259. [PMID: 39794635 DOI: 10.1038/s41563-024-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/03/2024] [Indexed: 01/13/2025]
Abstract
Monolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination. We show that using two-dimensional perovskite as an intermediate phase on the film surface promotes heterogeneous nucleation along the (100) three-dimensional perovskite facets during crystallization. Preferred (100) orientations can be realized by augmenting the quantity of two-dimensional phases through surface composition engineering, without the need for excessive two-dimensional ligands that otherwise impede carrier transport. We demonstrate an open-circuit voltage of 1.373 V for 1.78 eV wide-bandgap perovskite solar cells, along with a high fill factor of 84.7%. This yields an open-circuit voltage of 2.21 V and a certified power-conversion efficiency of 29.1% for all-perovskite tandem solar cells, measured under the maximum power-point conditions.
Collapse
Affiliation(s)
- Zhou Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Renxing Lin
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
| | - Mingyang Wei
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mengran Yin
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Pu Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Manya Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Ludong Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Yurui Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Virginia Carnevali
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lorenzo Agosta
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vladislav Slama
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Lempesis
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zhichao Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Meiyu Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Haowen Luo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Han Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xin Luo
- Research and Development Center, Renshine Solar (Suzhou) Co., Ltd, Changshu, China
| | - Ye Liu
- Research and Development Center, Renshine Solar (Suzhou) Co., Ltd, Changshu, China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
- Research and Development Center, Renshine Solar (Suzhou) Co., Ltd, Changshu, China.
| |
Collapse
|
3
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
4
|
Fu D, Zhang Y, Chen Z, Pan L, He Y, Luo J. Bulk Photovoltaic Effect Induced by Non-Covalent Interactions in Bilayered Hybrid Perovskite for Efficient Passive X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403198. [PMID: 38738744 DOI: 10.1002/smll.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Hydrogen bonding as a multifunctional tool has always influenced the structure of hybrid perovskites. Compared with the research on hydrogen bonding, the study of halogen-halogen interactions on the structure and properties of hybrid perovskites is still in its early stages. Herein, a polar bilayered hybrid perovskite (IEA)2FAPb2I7 (IEA+ is 2-iodoethyl-1-ammonium, FA is formamidinium) with iodine-substituted spacer is successfully constructed by changing the configuration of interlayer cations and regulating non-covalent interactions at the organic-inorganic interface, which shows a shorter interlayer spacing and higher density (ρ = 3.862 g cm-3). The generation of structure polarity in (IEA)2FAPb2I7 is caused by the synergistic effect of hydrogen bonding and halogen-halogen interactions. Especially, as the length of the carbon chain in organic cations decreases, the I---I interaction in the system gradually strengthens, which may be the main reason for the symmetry-breaking. Polarity-induced bulk photovoltaics (Voc = 1.0 V) and higher density endow the device based on (I-EA)2FAPb2I7 exhibit a high sensitivity of 175.6 µC Gy-1 cm-2 and an ultralow detection limit of 60.4 nGy s-1 at 0 V bias under X-ray irradiation. The results present a facile approach for designing polar multifunctional hybrid perovskites, also providing useful assistance for future research on halogen-halogen interactions.
Collapse
Affiliation(s)
- Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yue Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Zhuo Chen
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Lin Pan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
5
|
Lu G, Wang X, Jiang X, Li J, Zhu M, Ma Z, Zhang D, Gao Y, Pan J, Dai X, Ye Z, He H. Blue Perovskite Lasing Derived from Bound Excitons through Defect Engineering. ACS NANO 2024; 18:23457-23467. [PMID: 39145749 DOI: 10.1021/acsnano.4c06877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
All-inorganic perovskite films have emerged as promising candidates for laser gain materials owing to their outstanding optoelectronic properties and straightforward solution processing. However, the performance of blue perovskite lasing still lags far behind due to the inevitable high density of defects. Herein, we demonstrate that defects can be utilized instead of passivated/removed to form bound excitons to achieve excellent blue stimulated emission in perovskite films. Such a strategy emphasizes defect engineering by introducing a deep-level defect in mixed-Rb/Cs perovskite films through octylammonium bromide (OABr) additives. Consequently, the OA-Rb/Cs perovskite films exhibit blue amplified spontaneous emission (ASE) from defect-related bound excitons with a low threshold (13.5 μJ/cm2) and a high optical gain (744.7 cm-1), which contribute to a vertical-cavity surface-emitting laser with single-mode blue emission at 482 nm. This work not only presents a facile method for creating blue laser gain materials but also provides valuable insights for further exploration of high-performance blue lasing in perovskite films.
Collapse
Affiliation(s)
- Guochao Lu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinyang Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinyi Jiang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jing Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zichao Ma
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, Shanxi, P. R. China
- Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, Shanxi, P. R. China
- Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, Shanxi, P. R. China
- Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, P. R. China
| |
Collapse
|
6
|
Bera S, Tripathi A, Titus T, Sethi NM, Das R, Afreen, Adarsh KV, Thomas KG, Pradhan N. CsPbBr 3 Perovskite Crack Platelet Nanocrystals and Their Biexciton Generation. J Am Chem Soc 2024; 146:20300-20311. [PMID: 39005055 DOI: 10.1021/jacs.4c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Lead halide perovskite nanocrystals have been extensively studied in recent years as efficient optical materials for their bright and color-tunable emissions. However, these are mostly confined to their 3D nanocrystals and limited to the anisotropic nanostructures. By exploring the Cs-sublattice-induced metal(II) ion exchange with Pb(II), crack CsPbBr3 perovskite platelet nanocrystals having polar surfaces in all three directions are reported here, which remained different than reported standard square platelets. The crack platelets are also passivated with halides to enhance their brightness. Further, as these crack and passivated crack platelets have defects and polar surfaces, the exciton and biexciton generation in these platelets is investigated using femtosecond photoluminescence and transient absorption measurement at ambient as well as cryogenic temperatures, correlated with time-resolved single-particle photoluminescence spectroscopy, and compared with standard square platelets having nonpolar facets. These investigations revealed that the crack platelets and passivated crack platelets possess enhanced biexciton emission compared to square platelets due to the presence of polar surfaces in all three directions. These results provide insights into not only the design of the anisotropic nanostructures of ionic nanocrystals but also the possibility of tuning the single exciton to biexciton generation efficiency, which has potential applications in optoelectronic systems.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Akash Tripathi
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Timi Titus
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Nilesh Monohar Sethi
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Rajdeep Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Afreen
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - K V Adarsh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| |
Collapse
|
7
|
Russ B, Eisler CN. The future of quantum technologies: superfluorescence from solution-processed, tunable materials. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1943-1951. [PMID: 39635086 PMCID: PMC11501137 DOI: 10.1515/nanoph-2023-0919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 12/07/2024]
Abstract
One of the most significant and surprising recent developments in nanocrystal studies was the observation of superfluorescence from a system of self-assembled, colloidal perovskite nanocrystals [G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, and T. Stöferle, "Superfluorescence from lead halide perovskite quantum dot superlattices," Nature, vol. 563, no. 7733, pp. 671-675, 2018]. Superfluorescence is a quantum-light property in which many dipoles spontaneously synchronize in phase to create a collective, synergistic photon emission with a much faster lifetime. Thus, it is surprising to observe this in more inhomogenous systems as solution-processed and colloidal structures typically suffer from high optical decoherence and non-homogeneous size distributions. Here we outline recent developments in the demonstration of superfluorescence in colloidal and solution-processed systems and explore the chemical and materials science opportunities allowed by such systems. The ability to create bright and tunable superfluorescent sources could enable transformative developments in quantum information applications and advance our understanding of quantum phenomena.
Collapse
Affiliation(s)
- Brendan Russ
- University of California, Los Angeles, Los Angeles, USA
| | | |
Collapse
|
8
|
Liu S, Ye Z, Yin Y. Seeded Growth of Plasmonic Nanostructures in Deformable Polymer Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8760-8770. [PMID: 38641343 DOI: 10.1021/acs.langmuir.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Plasmonic nanostructures exhibit optical properties highly related to their morphologies, enabling diverse applications in various areas such as biosensing, bioimaging, chemical detection, cancer therapy, and solar energy conversion. The expansive uses of these nanostructures necessitate robust and versatile synthesis methods suitable for large-scale production. Here, we introduce our recent efforts in developing a new strategy for controlling the seeded growth of plasmonic metal nanostructures, employing deformable polymer capsules to regulate the growth kinetics and the resulting particle morphology. Employing sol-gel-derived resorcinol-formaldehyde (RF) resin as a typical capsule material, we highlight its advanced features, including mechanical deformability and molecular permeability, that can be manipulated by tuning the capsule thickness and cross-linking degree. These features enable highly controllable confined seeded growth of plasmonic nanostructures. We reveal the significant role of the Ostwald ripening process of the seeds and the capsule structures in determining the morphological evolution of the plasmonic nanostructures. Moreover, we highlight some distinctive plasmonic nanostructures resulting from this unique synthesis strategy and their intriguing functionalities in various potential applications. Our discussion concludes with potential research directions to advance the development of the deformable polymer-confined seeded growth strategy into a general and robust synthesis platform for creating cutting-edge functional plasmonic nanostructures.
Collapse
Affiliation(s)
- Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Fan C, Zhu M, Xu X, Wang P, Zhang Q, Dai X, Yang K, He H, Ye Z. Self-Competitive Growth of CsPbBr 3 Planar Nanowire Array. NANO LETTERS 2024; 24:3750-3758. [PMID: 38488747 DOI: 10.1021/acs.nanolett.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Semiconductor planar nanowire arrays (PNAs) are essential for achieving large-scale device integration. Direct heteroepitaxy of PNAs on a flat substrate is constrained by the mismatch in crystalline symmetry and lattice parameters between the substrate and epitaxial nanowires. This study presents a novel approach termed "self-competitive growth" for heteroepitaxy of CsPbBr3 PNAs on mica. The key to inducing the self-competitive growth of CsPbBr3 PNAs on mica involves restricting the nucleation of CsPbBr3 nanowires in a high-adsorption region, which is accomplished by overlaying graphite sheets on the mica surface. Theoretical calculations and experimental results demonstrate that CsPbBr3 nanowires oriented perpendicular to the boundary of the high-adsorption area exhibit greater competitiveness in intercepting the growth of nanowires in the other two directions, resulting in PNAs with a consistent orientation. Moreover, these PNAs exhibit low-threshold and stable amplified spontaneous emission under one-, two-, and three-photon excitation, indicating their potential for an integrated laser array.
Collapse
Affiliation(s)
- Chao Fan
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030000 People's Republic of China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030000 People's Republic of China
| | - Xing Xu
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421010, People's Republic of China
| | - Peng Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Qinglin Zhang
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030000 People's Republic of China
| | - Ke Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, People's Republic of China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030000 People's Republic of China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030000 People's Republic of China
| |
Collapse
|
10
|
Cheng Y, Guo X, Shi Y, Pan L. Recent advance of high-quality perovskite nanostructure and its application in flexible photodetectors. NANOTECHNOLOGY 2024; 35:242001. [PMID: 38467065 DOI: 10.1088/1361-6528/ad3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Flexible photodetectors (PDs) have garnered increasing attention for their potential applications in diverse fields, including weather monitoring, smart robotics, smart textiles, electronic eyes, wearable biomedical monitoring devices, and so on. Notably, perovskite nanostructures have emerged as a promising material for flexible PDs due to their distinctive features, such as a large optical absorption coefficient, tunable band gap, extended photoluminescence decay time, high carrier mobility, low defect density, long exciton diffusion lengths, strong self-trapped effect, good mechanical flexibility, and facile synthesis methods. In this review, we first introduce various synthesis methods for perovskite nanostructures and elucidate their corresponding optical and electrical properties, encompassing quantum dots, nanocrystals, nanowires, nanobelts, nanosheets, single-crystal thin films, polycrystalline thin films, and nanostructured arrays. Furthermore, the working mechanism and key performance parameters of optoelectronic devices are summarized. The review also systematically compiles recent advancements in flexible PDs based on various nanostructured perovskites. Finally, we present the current challenges and prospects for the development of perovskite nanostructures-based flexible PDs.
Collapse
Affiliation(s)
- Yan Cheng
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xin Guo
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yi Shi
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Lijia Pan
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
11
|
Dong X, Wang R, Gao Y, Ling Q, Hu Z, Chen M, Liu H, Liu Y. Orbital Interactions in 2D Dion-Jacobson Perovskites Using Oligothiophene-Based Semiconductor Spacers Enable Efficient Solar Cells. NANO LETTERS 2024; 24:261-269. [PMID: 38113224 DOI: 10.1021/acs.nanolett.3c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
2D Dion-Jacobson (DJ) perovskites have emerged as promising photovoltaic materials, but the insulating organic spacer has hindered the efficient charge transport. Herein, we successfully synthesized a terthiophene-based semiconductor spacer, namely, 3ThDMA, for 2D DJ perovskite. An interesting finding is that the energy levels of 3ThDMA extensively overlap with the inorganic components and directly contribute to the band formation of (3ThDMA)PbI4, leading to enhanced charge transport across the organic spacer layers, whereas no such orbital interactions were found in (UDA)PbI4, a DJ perovskite based on 1,11-undecanediaminum (UDA). The devices based on (3ThDMA)MAn-1PbnI3n+1 (nominal n = 5) obtained a champion efficiency of 15.25%, which is a record efficiency for 2D DJ perovskite solar cells using long-conjugated spacers (conjugated rings ≥ 3) and a 22.60% efficiency for 3ThDMA-treated 3D PSCs. Our findings provide an important insight into understanding the orbital interactions in 2D DJ perovskite using an organic semiconductor spacer for efficient solar cells.
Collapse
Affiliation(s)
- Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuping Gao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qin Ling
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Mingqian Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Zhou F, Zhou W, Zhao Y, Liu L. Green Synthesis and Morphological Evolution for Bi 2Te 3 Nanosystems via a PVP-Assisted Hydrothermal Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2894. [PMID: 37947738 PMCID: PMC10648214 DOI: 10.3390/nano13212894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Bi2Te3 has been extensively used because of its excellent thermoelectric properties at room temperature. Here, 230-420 nm of Bi2Te3 hexagonal nanosheets has been successfully synthesized via a "green" method by using ethylene glycol solution and applying polyvinyl pyrrolidone (PVP) as a surfactant. In addition, factors influencing morphological evolution are discussed in detail in this study. Among these parameters, the reaction temperature, molar mass of NaOH, different surfactants, and reaction duration are considered as the most essential. The results show that the existence of PVP is vital to the formation of a plate-like morphology. The reaction temperature and alkaline surroundings played essential roles in the formation of Bi2Te3 single crystals. By spark plasma sintering, the Bi2Te3 hexagonal nanosheets were hot pressed into solid-state samples. We also studied the transport properties of solid-state samples. The electrical conductivity σ was 18.5 × 103 Sm-1 to 28.69 × 103 Sm-1, and the Seebeck coefficient S was -90.4 to -113.3 µVK-1 over a temperature range of 300-550 K. In conclusion, the observation above could serve as a catalyst for future exploration into photocatalysis, solar cells, nonlinear optics, thermoelectric generators, and ultraviolet selective photodetectors of Bi2Te3 nanosheet-based photodetectors.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Criminal Science and Technology, Department of Foundation Course, Hunan Police College, Changsha 410138, China;
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province and Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Weichang Zhou
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province and Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Yujing Zhao
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province and Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
- School of Physics, Electronictechnology and Intelligent Manufacturing, Huaihua University, Huaihua 418008, China
| | - Li Liu
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK;
| |
Collapse
|
13
|
Yan J, Stickel LS, van den Hengel L, Wang H, Anusuyadevi PR, Kooijman A, Liu X, Ibrahim B, Mol A, Taheri P, Mazzarella L, Isabella O, Savenije TJ. Vacuum Deposited Perovskites with a Controllable Crystal Orientation. J Phys Chem Lett 2023; 14:8787-8795. [PMID: 37747434 PMCID: PMC10561267 DOI: 10.1021/acs.jpclett.3c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
The preferential orientation of the perovskite (PVK) is typically accomplished by manipulation of the mixed cation/halide composition of the solution used for wet processing. However, for PVKs grown by thermal evaporation, this has been rarely addressed. It is unclear how variation in crystal orientation affects the optoelectronic properties of thermally evaporated films, including the charge carrier mobility, lifetime, and trap densities. In this study, we use different intermediate annealing temperatures Tinter between two sequential evaporation cycles to control the Cs0.15FA0.85PbI2.85Br0.15 orientation of the final PVK layer. XRD and 2D-XRD measurements reveal that when using no intermediate annealing primarily the (110) orientation is obtained, while when using Tinter = 100 °C a nearly isotropic orientation is found. Most interestingly for Tinter > 130 °C a highly oriented PVK (100) is formed. We found that although bulk electronic properties like photoconductivity are independent of the preferential orientation, surface related properties differ substantially. The highly oriented PVK (100) exhibits improved photoluminescence in terms of yield and lifetime. In addition, high spatial resolution mappings of the contact potential difference (CPD) as measured by KPFM for the highly oriented PVK show a more homogeneous surface potential distribution than those of the nonoriented PVK. These observations suggest that a highly oriented growth of thermally evaporated PVK is preferred to improve the charge extraction at the device level.
Collapse
Affiliation(s)
- Jin Yan
- PVMD
Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
- Department
of ChemE, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Lena Sophie Stickel
- PVMD
Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
- Georg-August-University
Göttingen, Göttingen 37077, Germany
| | - Lennart van den Hengel
- Department
of ChemE, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Haoxu Wang
- PVMD
Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Prasaanth Ravi Anusuyadevi
- Department
of Materials Science and Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands
| | - Agnieszka Kooijman
- Department
of Materials Science and Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands
| | - Xiaohui Liu
- Department
of ChemE, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Bahiya Ibrahim
- Department
of ChemE, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Arjan Mol
- Department
of Materials Science and Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands
| | - Peyman Taheri
- Department
of Materials Science and Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands
| | - Luana Mazzarella
- PVMD
Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Olindo Isabella
- PVMD
Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Tom J. Savenije
- Department
of ChemE, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
14
|
Ding X, He R, Zhang T, Mei L, Zhu S, Wang C, Liao Y, Wang D, Wang H, Guo J, Chen L, Gu Z, Hu H. Lung Toxicity and Molecular Mechanisms of Lead-Based Perovskite Nanoparticles in the Respiratory System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42139-42152. [PMID: 37650305 DOI: 10.1021/acsami.3c04255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lead-based perovskite nanoparticles (Pb-PNPs) have found extensive applications across diverse fields. However, because of poor stability and relatively strong water solubility, the potential toxicity of Pb-PNPs released into the environment during their manufacture, usage, and disposal has attracted significant attention. Inhalation is a primary route through which human exposure to Pb-PNPs occurs. Herein, the toxic effects and underlying molecular mechanisms of Pb-PNPs in the respiratory system are investigated. The in vitro cytotoxicity of CsPbBr3 nanoparticles in BEAS-2B cells is studied using multiple bioassays and electron microscopy. CsPbBr3 nanoparticles of different concentrations induce excessive oxidative stress and cell apoptosis. Furthermore, CsPbBr3 nanoparticles specifically recruit the TGF-β1, which subsequently induces epithelial-mesenchymal transition. In addition, the biodistribution and lung toxicity of representative CsPbBr3 nanoparticles in ICR mice are investigated following intranasal administration. These findings indicate that CsPbBr3 nanoparticles significantly induce pulmonary inflammation and epithelial-mesenchymal transition and can even lead to pulmonary fibrosis in mouse models. Above findings expose the adverse effects and molecular mechanisms of Pb-PNPs in the lung, which broadens the safety data of Pb-PNPs.
Collapse
Affiliation(s)
- Xuefeng Ding
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Rendong He
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tingjun Zhang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
15
|
Mai H, Li X, Lu J, Wen X, Le TC, Russo SP, Chen D, Caruso RA. Synthesis of Layered Lead-Free Perovskite Nanocrystals with Precise Size and Shape Control and Their Photocatalytic Activity. J Am Chem Soc 2023; 145:17337-17350. [PMID: 37523781 DOI: 10.1021/jacs.3c04890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Halide perovskites have attracted enormous attention due to their potential applications in optoelectronics and photocatalysis. However, concerns over their instability, toxicity, and unsatisfactory efficiency have necessitated the development of lead-free all-inorganic halide perovskites. A major challenge in designing efficient halide perovskites for practical applications is the lack of effective methods for producing nanocrystals with precise size and shape control. In this work, a layered perovskite, Cs4ZnSb2Cl12 (CZS), is found from calculations to exhibit size- and facet-dependent optoelectronic properties in the nanoscale, and thus, a colloidal method is used to synthesize the CZS nanoparticles with size-tunable morphologies: zero- (nanodots), one- (nanowires and nanorods), two- (nanoplates), and three-dimensional (nanopolyhedra). The growth kinetics of the CZS nanostructures, along with the effects of surface ligands, reaction temperature, and time were investigated. The optoelectronic properties of the nanocrystals varied with size due to quantum confinement effects and with shape due to anisotropy within the crystals and the exposure of specific facets. These properties could be modulated to enhance the visible-light photocatalytic performance for toluene oxidation. In particular, the 9.7 nm CZS nanoplates displayed a toluene to benzaldehyde conversion rate of 1893 μmol g-1 h-1 (95% selectivity), 500 times higher than the bulk synthesized CZS, and comparable with the reported photocatalysts. This study demonstrates the integration of theoretical calculations and synthesis, revealing an approach to the design and fabrication of novel, high-performance colloidal perovskite nanocrystals for optoelectronic and photocatalytic applications.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xuying Li
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Junlin Lu
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaoming Wen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
16
|
Zhang L, Chen L, Yang J, Liu J, Lu S, Liang X, Zhao X, Yang Y, Hu J, Hu L, Lan X, Zhang J, Gao L, Tang J. High-Performance and Stable Colloidal Quantum Dots Imager via Energy Band Engineering. NANO LETTERS 2023. [PMID: 37433227 DOI: 10.1021/acs.nanolett.3c01391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Solution-processed colloidal quantum dot (CQD) photodiodes are compatible for monolithic integration with silicon-based readout circuitry, enabling ultrahigh resolution and ultralow cost infrared imagers. However, top-illuminated CQD photodiodes for longer infrared imaging suffer from mismatched energy band alignment between narrow-bandgap CQDs and the electron transport layer. In this work, we designed a new top-illuminated structure by replacing the sputtered ZnO layer with a SnO2 layer by atomic layer deposition. Benefiting from matched energy band alignment and improved heterogeneous interface, our top-illuminated CQD photodiodes achieve a broad-band response up to 1650 nm. At 220 K, these SnO2-based devices exhibit an ultralow dark current density of 3.5 nA cm-2 at -10 mV, reaching the noise limit for passive night vision. The detectivity is 4.1 × 1012 Jones at 1530 nm. These SnO2-based devices also demonstrate exceptional operation stability. By integrating with silicon-based readout circuitry, our CQD imager realizes water/oil discrimination and see-through smoke imaging.
Collapse
Affiliation(s)
- Linxiang Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Long Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Junrui Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Jing Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Shuaicheng Lu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, 1085 Meiquan Street, Wenzhou 325035, P. R. China
| | - Xinyi Liang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Xuezhi Zhao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Yang Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jun Hu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xinzheng Lan
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Jianbing Zhang
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, 1085 Meiquan Street, Wenzhou 325035, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Road, Shenzhen 518057, P. R. China
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan 430074, P. R. China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, 1085 Meiquan Street, Wenzhou 325035, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Road, Shenzhen 518057, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
Garai A, Vishnu EK, Banerjee S, Nair AAK, Bera S, Thomas KG, Pradhan N. Vertex-Oriented Cube-Connected Pattern in CsPbBr 3 Perovskite Nanorods and Their Optical Properties: An Ensemble to Single-Particle Study. J Am Chem Soc 2023. [PMID: 37317943 DOI: 10.1021/jacs.3c03759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of cube-connected nanorods is accomplished by connecting seed nanocrystals of a defined shape in a particular orientation or by etching selective facets of preformed nanorods. In lead halide perovskite nanostructures, which retain mostly a hexahedron cube shape, such patterned nanorods can be designed with the anisotropic direction along the edge, vertex, or facet of seed cubes. Combining the Cs-sublattice platform for transforming metal halides to halide perovskites with facet-specific ligand binding chemistry, herein, vertex-oriented patterning of nanocubes in one-dimensional (1D) rod structures is reported. By tuning the length of host metal halides, their lengths could also be tuned from 100 nm to nearly 1000 nm. The symmetry of the hexagonal phase of host halide CsCdBr3 and product orthorhombic CsPbBr3 helped in maintaining the vertex [201] as the anisotropic direction. Neutral exciton recombination rates, extracted from photoluminescence blinking traces, showed a systematic increase from isolated cubes to cube-connected nanorods of various lengths. Efficient coupling of wave functions in vertex-oriented cube assemblies permits exciton delocalization. Our findings on carrier delocalization in cube-connected nanorods along their vertex direction having minimum interfacial contacts provide valuable insights into the fundamental chemistry of assembling anisotropic halide perovskite nanostructures as conducting wires.
Collapse
Affiliation(s)
- Arghyadeep Garai
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Souvik Banerjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Anoop Ajaya Kumar Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
18
|
Zhao Y, Tian S, Feng J, Qiu Y, Fan X, Yuan M, Zhao Y, Gao H, Zhao H, Jiang L, Wang J, Wu Y. Electrostatic Epitaxy of Orientational Perovskites for Microlasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210594. [PMID: 36859570 DOI: 10.1002/adma.202210594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Indexed: 05/12/2023]
Abstract
Orientational growth of single-crystalline structures is pivotal in the semiconductor industry, which is achievable by epitaxy for producing thin films, heterostructures, quantum wells, and superlattices. Beyond silicon and III-V semiconductors, solution-processible semiconductors, such as metal-halide perovskites, are emerging for scalable and cost-effective manufacture of optoelectronic devices, whereas the polycrystalline nature of fabricated structures restricts their application toward integrated devices. Here, electrostatic epitaxy, a process sustained by strong electrostatic interactions between self-assembled surfactants (octanoate anions) and Pb2+ , is developed to realize orientational growth of single-crystalline CsPbBr3 microwires. Strong electrostatic interactions localized at the air-liquid interface not only support preferential nucleation for single crystallinity, but also select the crystal facet with the highest Pb2+ areal density for pure crystallographic orientation. Due to the epitaxy at the air-liquid interface, direct growth of oriented single-crystalline microwires onto different substrates without the processes of lift-off and transfer is realized. Photonic lasing emission, waveguide coupling, and on-chip propagation of coherent light are demonstrated based on these single-crystalline microwires. These findings open an avenue for on-chip integration of single-crystalline materials.
Collapse
Affiliation(s)
- Yuyan Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shuangshuang Tian
- Key Laboratory of Micro and Nano Photonic Structures (MOE), and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yuchen Qiu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xin Fan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Meng Yuan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yingjie Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Haibin Zhao
- Key Laboratory of Micro and Nano Photonic Structures (MOE), and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Jun Wang
- Key Laboratory of Micro and Nano Photonic Structures (MOE), and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| |
Collapse
|
19
|
Behera RK, Bera S, Pradhan N. Hexahedron Symmetry and Multidirectional Facet Coupling of Orthorhombic CsPbBr 3 Nanocrystals. ACS NANO 2023; 17:7007-7016. [PMID: 36996308 DOI: 10.1021/acsnano.3c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The cube shape of orthorhombic phase CsPbBr3 nanocrystals possesses the ability of selective facet packing that leads to 1D, 2D, and 3D nanostructures. In solution, their transformation with linear one-dimensional packing to nanorods/nanowires is extensively studied. Here, multifacet coupling in two directions of the truncated cube nanocrystals to rod couples and then to single-crystalline rectangular rods is reported. With extensive high-resolution transmission electron microscopy image analysis, length and width directions of these nanorods are derived. For the seed cube structures, finding {110} and {002} facets has remained difficult as these possess the hexahedron symmetry and their size remains smaller; however, for nanorods, these planes and the ⟨110⟩ and ⟨001⟩ directions are clearly identified. From nanocrystal to nanorod formation, the alignment directions are observed as random (as shown in the abstract graphic), and this could vary from one to the other rods obtained in the same batch of samples. Moreover, seed nanocrystal connections are derived here as not random and are rather induced by addition of the calculated amount of additional Pb(II). The same has also been extended to nanocubes obtained from different literature methods. It is predicted that a Pb-bromide buffer octahedra layer was created to connect two cubes, and this can connect along one, two, or even more facets of cubes simultaneously to connect other cubes and form different nanostructures. Hence, these results here provide some basic fundamentals of seed cube connections, the driving force to connect those, trapping the intermediate to visualize their alignments for attachments, and identifying and establishing the orthorhombic ⟨110⟩ and ⟨001⟩ directions of the length and width of CsPbBr3 nanostructures.
Collapse
Affiliation(s)
- Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
20
|
Pramanik A, Sinha SS, Gates K, Nie J, Han FX, Ray PC. Light-Induced Wavelength Dependent Self Assembly Process for Targeted Synthesis of Phase Stable 1D Nanobelts and 2D Nanoplatelets of CsPbI 3 Perovskites. ACS OMEGA 2023; 8:13202-13212. [PMID: 37065067 PMCID: PMC10099116 DOI: 10.1021/acsomega.3c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Despite black cubic phase α-CsPbI3 nanocrystals having an ideal bandgap of 1.73 eV for optoelectronic applications, the phase transition from α-CsPbI3 to non-perovskite yellow δ-CsPbI3 phase at room temperature remains a major obstacle for commercial applications. Since γ-CsPbI3 is thermodynamically stable with a bandgap of 1.75 eV, which has great potential for photovoltaic applications, herein we report a conceptually new method for the targeted design of phase stable and near unity photoluminescence quantum yield (PLQY) two-dimensional (2D) γ-CsPbI3 nanoplatelets (NPLs) and one-dimensional (1D) γ-CsPbI3 nanobelts (NBs) by wavelength dependent light-induced assembly of CsPbI3 cubic nanocrystals. This article demonstrates for the first time that by varying the excitation wavelengths, one can design air stable desired 2D nanoplatelets or 1D nanobelts selectively. Our experimental finding indicates that 532 nm green light-driven self-assembly produces phase stable and highly luminescent γ-CsPbI3 NBs from CsPbI3 nanocrystals. Moreover, we show that a 670 nm red light-driven self-assembly process produces stable and near unity PLQY γ-CsPbI3 NPLs. Systematic time-dependent microscopy and spectroscopy studies on the morphological evolution indicates that the electromagnetic field of light triggered the desorption of surface ligands from the nanocrystal surface and transformation of crystallographic phase from α to γ. Detached ligands played an important role in determining the morphologies of final structures of NBs and NPLs from nanocrystals via oriented attachment along the [110] direction initially and then the [001] direction. In addition, XRD and fluorescence imaging data indicates that both NBs and NPLs exhibit phase stability for more than 60 days in ambient conditions, whereas the cubic phase α-CsPbI3 nanocrystals are not stable for even 3 days. The reported light driven synthesis provides a simple and versatile approach to obtain phase pure CsPbI3 for possible optoelectronic applications.
Collapse
|
21
|
Zhang H, He X, Wang H, Chen L, Xu G, Zhang N, Qu K, He Q, Peng Y, Pan J. In situgrowth strategy to construct perovskite quantum dot@covalent organic framework composites with enhanced water stability. NANOTECHNOLOGY 2023; 34:245601. [PMID: 36881878 DOI: 10.1088/1361-6528/acc1ec] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Metal halide perovskite quantum dots (QDs) have excellent optoelectronic properties; however, their poor stability under water or thermal conditions remains an obstacle to commercialization. Here, we used a carboxyl functional group (-COOH) to enhance the ability of a covalent organic framework (COF) to adsorb lead ions and grow CH3NH3PbBr3(MAPbBr3) QDsin situinto a mesoporous carboxyl-functionalized COF to construct MAPbBr3QDs@COF core-shell-like composites to improve the stability of perovskites. Owing to the protection of the COF, the as-prepared composites exhibited enhanced water stability, and the characteristic fluorescence was maintained for more than 15 d. These MAPbBr3QDs@COF composites can be used to fabricate white light-emitting diodes with a color comparable to natural white emission. This work demonstrates the importance of functional groups for thein situgrowth of perovskite QDs, and coating with a porous structure is an effective way to improve the stability of metal halide perovskites.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaoxiong He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liangjun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gaopeng Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Nan Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kang Qu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingquan He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
22
|
Wang Y, Liu J, Wang A, Gao S, Li Z, Li J, Yan S, Cheng S, Song Z, Zhang Y, Dong J, Cao J, Wang F, Huang W, Qin T. Heterostructural Nanosheets Consisting of Polycyclic Aromatic Hydrocarbon Shields and Layered Perovskite Cores for Optical Image Encryption. J Phys Chem Lett 2023; 14:2047-2055. [PMID: 36795606 DOI: 10.1021/acs.jpclett.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical image encryption technology, in which the emission on/off can be controlled by using specially appointed wavelengths, is useful in information storage and protection. Herein, we report a family of sandwiched heterostructural nanosheets, consisting of three-layered (n = 3) perovskite (PSK) frameworks in center with two different polycyclic aromatic hydrocarbons [triphenylene (Tp) and pyrene (Py)] in periphery. Both heterostructural nanosheets (Tp-PSK and Py-PSK) exhibit blue emissions under UVA-I irradiation; however, different photoluminescent properties are observed under UVA-II. A bright emission of Tp-PSK is attributed to the fluorescence resonance energy transfer (FRET) from Tp-shield to PSK-core, whereas the observed photoquenching phenomenon in Py-PSK is due to the competitive absorption between Py-shield and PSK-core. We exploited the unique photophysical features (on/off emission) of the two nanosheets in a narrow UV window (320-340 nm) for optical image encrypting.
Collapse
Affiliation(s)
- Yanchen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiaxin Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Aifei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Song Gao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zihao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Junjie Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suhao Yan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suwen Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zhicheng Song
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Yupeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jingjin Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiupeng Cao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| |
Collapse
|
23
|
Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X. Ligands in Lead Halide Perovskite Nanocrystals: From Synthesis to Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205950. [PMID: 36515335 DOI: 10.1002/smll.202205950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Ligands are indispensable for perovskite nanocrystals (NCs) throughout the whole lifetime, as they not only play key roles in the controllable synthesis of NCs with different sizes and shapes, but also act as capping shell that affects optical properties and electrical coupling of NCs. Establishing a systematic understanding of the relationship between ligands and perovskite NCs is significant to enable many potential applications of NCs. This review mainly focuses on the influence of ligands on perovskite NCs. First of all, the ligands-dominated size and shape control of NCs is discussed. Whereafter, the surface defects of NCs and the bonding between ligands and perovskite NCs are classified, and corresponding post-treatment of surface defects via ligands is also summarized. Furthermore, advances in engineering the ligands towards the high performance of optoelectronic devices based on perovskite NCs, including photodetector, solar cell, light emitting diode (LED), and laser, and finally to potential challenges are also discussed.
Collapse
Affiliation(s)
- Wenda Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Rui Yun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Yuling Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| |
Collapse
|
24
|
Aminzare M, Jiang J, Mandl GA, Mahshid S, Capobianco JA, Dorval Courchesne NM. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. NANOSCALE 2023; 15:2997-3031. [PMID: 36722934 DOI: 10.1039/d2nr05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.
Collapse
Affiliation(s)
- Masoud Aminzare
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Jennifer Jiang
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Macdonald Engineering Building, Room 355, Montréal, QC, H3A 0C3, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Noémie-Manuelle Dorval Courchesne
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| |
Collapse
|
25
|
Heinrich B, Kékicheff P, Hemmerle A, Fontaine P, Martel D. Structural investigation of titanium oxide nanowires with unconventional optoelectronic behaviour. Phys Chem Chem Phys 2023; 25:5648-5655. [PMID: 36734112 DOI: 10.1039/d2cp05181h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Grazing incidence wide angle X-ray scattering measurements on aligned titanium oxide nanowires displaying anisotropic optical-electronic properties are carried out. Elemental and thermal analyses provide a chemical composition corresponding to H2Ti3O7·nH2O with n ≈ 1 while the crystallographic data indicate a monoclinic cell with a lamellar substructure. Cell parameters are close to those of H2Ti3O7 notwithstanding a doubling of the lattice in the layer plane. A comparison of the band gap energy values and the electronic transition modes between the two polymorphs displays differences that could be ascribed to the structural variation.
Collapse
Affiliation(s)
- Benoît Heinrich
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, F-67000 Strasbourg, France
| | - Patrick Kékicheff
- Université de Strasbourg, CNRS, Institut Charles Sadron (ICS), UPR 22, F-67000 Strasbourg, France. .,Synchrotron SOLEIL, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | | | - David Martel
- Université de Strasbourg, CNRS, Institut Charles Sadron (ICS), UPR 22, F-67000 Strasbourg, France.
| |
Collapse
|
26
|
The Effects of Mono- and Bivalent Linear Alkyl Interlayer Spacers on the Photobehavior of Mn(II)-Based Perovskites. Int J Mol Sci 2023; 24:ijms24043280. [PMID: 36834688 PMCID: PMC9967457 DOI: 10.3390/ijms24043280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Mn(II)-based perovskite materials are being intensively explored for lighting applications; understanding the role of ligands regarding their photobehavior is fundamental for their development. Herein, we report on two Mn (II) bromide perovskites using monovalent (perovskite 1, P1) and bivalent (perovskite 2, P2) alkyl interlayer spacers. The perovskites were characterized with powder X-ray diffraction (PXRD), electron spin paramagnetic resonance (EPR), steady-state, and time-resolved emission spectroscopy. The EPR experiments suggest octahedral coordination in P1 and tetrahedral coordination for P2, while the PXRD results demonstrate the presence of a hydrated phase in P2 when exposed to ambient conditions. P1 exhibits an orange-red emission, while P2 shows a green photoluminescence, as a result of the different types of coordination of Mn(II) ions. Furthermore, the P2 photoluminescence quantum yield (26%) is significantly higher than that of P1 (3.6 %), which we explain in terms of different electron-phonon couplings and Mn-Mn interactions. The encapsulation of both perovskites into a PMMA film largely increases their stability against moisture, being more than 1000 h for P2. Upon increasing the temperature, the emission intensity of both perovskites decreases without a significant shift in the emission spectrum, which is explained in terms of an increase in the electron-phonon interactions. The photoluminescence decays fit two components in the microsecond regime-the shortest lifetime for hydrated phases and the longest one for non-hydrated phases. Our findings provide insights into the effects of linear mono- and bivalent organic interlayer spacer cations on the photophysics of these kinds of Mn (II)-based perovskites. The results will help in better designs of Mn(II)-perovskites, to increase their lighting performance.
Collapse
|
27
|
Heveling J. La-Doped Alumina, Lanthanum Aluminate, Lanthanum Hexaaluminate, and Related Compounds: A Review Covering Synthesis, Structure, and Practical Importance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Josef Heveling
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
28
|
Kong D, Zhang Y, Cheng D, Wang E, Zhang K, Wang H, Liu K, Yin L, Sheng X. Heteroepitaxy of Large-Area, Monocrystalline Lead Halide Perovskite Films on Gallium Arsenide. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52508-52515. [PMID: 36350274 DOI: 10.1021/acsami.2c15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead halide perovskite materials have been emerging as promising candidates for high-performance optoelectronic devices. Significant efforts have sought to realize monocrystalline perovskite films on a large scale. Here, we epitaxially grow monocrystalline methylammonium lead tribromide (MAPbBr3) films on lattice-matched gallium arsenide (GaAs) substrates on a centimeter scale. In particular, a solution-processed lead(II) sulfide (PbS) layer provides a lattice-matched and chemical protective interface for the solid-gas reaction to form MAPbBr3 films on GaAs. Structure characterizations identify the crystal orientations in the trilayer MAPbBr3/PbS/GaAs epistructure and confirm the monocrystalline nature of MAPbBr3 on PbS/GaAs. The dynamic evolution of surface morphologies during the growth indicates a two-step epitaxial process. These fundamental understandings and practical growth techniques offer a viable guideline to approach high-quality perovskite films for previously inaccessible applications.
Collapse
Affiliation(s)
- Deying Kong
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Yu Zhang
- Department of Physics, Tsinghua University, Beijing100084, China
| | - Dali Cheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Enze Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Kaiyuan Zhang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Kai Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| |
Collapse
|
29
|
Wang S, Hu W, Ru Y, Shi Y, Guo X, Sun Y, Pang H. Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shixian Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yue Ru
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| |
Collapse
|
30
|
Peng H, He X, Wei Q, Tian Y, Lin W, Yao S, Zou B. Realizing High-Efficiency Yellow Emission of Organic Antimony Halides via Rational Structural Design. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45611-45620. [PMID: 36179359 DOI: 10.1021/acsami.2c14169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zero-dimensional (0D) organic metal halides have captured extensive attention for their various structures and distinguished optical characteristics. However, achieving efficient emission through rational crystal structure design remains a great challenge, and how the crystal structure affects the photophysical properties of 0D metal halides is currently unclear. Herein, a rational crystal structure regulation strategy in 0D Sb(III)-based metal halides is proposed to realize near-unity photoluminescence quantum yield (PLQY). Specifically, two 0D organic Sb(III)-based compounds with different coordination configurations, namely, (C25H22P)2SbCl5 and (C25H22P)SbCl4 (C25H22P+ = benzyltriphenylphosphonium), were successfully obtained by precisely controlling the ratio of the initial raw materials. (C25H22P)2SbCl5 adopts an octahedral coordination geometry and shows highly efficient broadband yellow emission with a PLQY of 98.6%, while (C25H22P)SbCl4 exhibits a seesaw-shaped [SbCl4]- cluster and does not emit light under photoexcitation. Theoretical calculations reveal that, by rationally controlling the coordination structure, the indirect bandgap of (C25H22P)SbCl4 can be converted to the direct bandgap of (C25H22P)2SbCl5, thus ultimately boosting the emission intensity. Together with efficient emission and outstanding stability of (C25H22P)2SbCl5, a high-performance white-light emitting diode (WLED) with a high luminous efficiency of 31.2 lm W-1 is demonstrated. Our findings provide a novel strategy to regulate the coordination structure of the crystals, so as to rationally optimize the luminescence properties of organic metal halides.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Xuefei He
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Qilin Wei
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Ye Tian
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Wenchao Lin
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Shangfei Yao
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| |
Collapse
|
31
|
Yao J, Xu L, Wang S, Yang Z, Song J. Recent progress of single-halide perovskite nanocrystals for advanced displays. NANOSCALE 2022; 14:13990-14007. [PMID: 36125019 DOI: 10.1039/d2nr03872b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Light-emitting diodes based on lead halide perovskite nanocrystals (LHP NCs) have shown an astonishing increase in efficiency in just several years of academic research, reaching high external quantum efficiencies exceeding 20%. The extensive color-tunability and narrow emission bandwidth of LHP NCs, in particular, are of great importance in the creation of the next generation of ultra-high-definition displays, as defined by the Rec. 2020 standard recommendation. In fact, whereas the colour of LHP NCs can be easily tuned by the compositions of halogens, the ion migration in mixed-halide perovskites under the electric field will seriously affect the spectral stability and operational lifetimes of perovskite light-emitting diodes (PeLEDs). Therefore, it is essential to realize efficient colour-saturated PeLEDs based on single-halide perovskite NCs. In this review, we focus on the recent progress in LHP NC-based PeLEDs and highlight the strategy of tuning the spectral emission based on quantum confinement or cation alloying/doping in single-halide perovskite NCs. Finally, we will give an outlook on future research avenues for preparing high-efficiency pure green, red and blue PeLEDs based on single-halide perovskite NCs.
Collapse
Affiliation(s)
- Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Leimeng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Shalong Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| |
Collapse
|
32
|
Wang S, Frisch S, Zhang H, Yildiz O, Mandal M, Ugur N, Jeong B, Ramanan C, Andrienko D, Wang HI, Bonn M, Blom PWM, Kivala M, Pisula W, Marszalek T. Grain engineering for improved charge carrier transport in two-dimensional lead-free perovskite field-effect transistors. MATERIALS HORIZONS 2022; 9:2633-2643. [PMID: 35997011 DOI: 10.1039/d2mh00632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling crystal growth and reducing the number of grain boundaries are crucial to maximize the charge carrier transport in organic-inorganic perovskite field-effect transistors (FETs). Herein, the crystallization and growth kinetics of a Sn(II)-based 2D perovskite, using 2-thiopheneethylammonium (TEA) as the organic cation spacer, were effectively regulated by the hot-casting method. With increasing crystalline grain size, the local charge carrier mobility is found to increase moderately from 13 cm2 V-1 s-1 to 16 cm2 V-1 s-1, as inferred from terahertz (THz) spectroscopy. In contrast, the FET operation parameters, including mobility, threshold voltage, hysteresis, and subthreshold swing, improve substantially with larger grain size. The optimized 2D (TEA)2SnI4 transistor exhibits hole mobility of up to 0.34 cm2 V-1 s-1 at 295 K and a higher value of 1.8 cm2 V-1 s-1 at 100 K. Our work provides an important insight into the grain engineering of 2D perovskites for high-performance FETs.
Collapse
Affiliation(s)
- Shuanglong Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Sabine Frisch
- Organisch-Chemisches Institut, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Okan Yildiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Mukunda Mandal
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Naz Ugur
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Beomjin Jeong
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Milan Kivala
- Organisch-Chemisches Institut, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Marszalek
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
33
|
Feng Q, Nan G. How Do A-Site Cations Regulate Trap States at Defective Surfaces of Lead Iodide Perovskites? J Phys Chem Lett 2022; 13:4831-4839. [PMID: 35616279 DOI: 10.1021/acs.jpclett.2c01149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The defect properties at surfaces or grain boundaries of metal halide perovskites are largely unexplored due to the complexity of surface structures stirred by the rotational A-site cations with varied dipole moments. Using a combination of density functional theory (DFT) and time-dependent DFT methods, we study the nature of iodine vacancies at the surfaces of lead iodide perovskites (APbI3) with A-site cations including methylammonium (MA = CH3NH3+), formamidinium, and cesium. It is found that the light-induced charge distributions are sensitively dependent on MA orientation at the MAI-terminated surfaces with vacancies at the apical position while the electronic excitation is marginally affected by A-site species at both the AI- and PbI-terminated surfaces with vacancies at the equatorial site. Such variations of electronic excitation are rationalized by analyzing the electrostatic interactions between the A-site cations and charged defects as well as the projected p orbitals of Pb atoms at the bottom of the conduction band.
Collapse
Affiliation(s)
- Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| |
Collapse
|
34
|
Bera S, Banerjee S, Das R, Pradhan N. Tuning Crystal Plane Orientation in Multijunction and Hexagonal Single Crystalline CsPbBr 3 Perovskite Disc Nanocrystals. J Am Chem Soc 2022; 144:7430-7440. [DOI: 10.1021/jacs.2c01969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Souvik Banerjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rajdeep Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
35
|
Chen J, Hong X, Wang Y, Guan X, Wang R, Wang Y, Du H, Zhang Y, Shen S. Instability Issues and Stabilization Strategies of Lead Halide Perovskites for Photo(electro)catalytic Solar Fuel Production. J Phys Chem Lett 2022; 13:1806-1824. [PMID: 35171612 DOI: 10.1021/acs.jpclett.1c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photo(electro)catalysis is a promising route to utilizing solar energy to produce valuable chemical fuels. In recent years, lead halide perovskites (LHPs) as a class of high-performance semiconductor materials have been extensively used in photo(electro)catalytic solar fuel production because of their excellent photophysical properties. However, instability issues make it arduous for LHPs to achieve their full potential in photo(electro)catalysis. This Perspective discusses the instability issues and summarizes the stabilization strategies employed for prolonging the stability or durability of LHPs in photo(electro)catalytic solar fuel production. The strategies for particulate photocatalytic systems (including composition engineering, surface passivation, core-shell structures construction, and solvent selection) and for thin-film PEC systems (including physical protective coating, A site cation additive, and surface/interface passivation) are introduced. Finally, some challenges and opportunities regarding the development of stable and efficient LHPs for photo(electro)catalysis are proposed.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Hong
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiqing Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangjiu Guan
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruizhe Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiduo Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hanrui Du
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yihao Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
36
|
Liu J, Zheng X, Mohammed OF, Bakr OM. Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Acc Chem Res 2022; 55:262-274. [PMID: 35037453 PMCID: PMC8811956 DOI: 10.1021/acs.accounts.1c00651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Over the past decade, the impressive development
of metal halide
perovskites (MHPs) has made them leading candidates for applications
in photovoltaics (PVs), X-ray scintillators, and light-emitting diodes
(LEDs). Constructing MHP nanocrystals (NCs) with promising optoelectronic
properties using a low-cost approach is critical to realizing their
commercial potential. Self-assembly and regrowth techniques provide
a simple and powerful “bottom-up” platform for controlling
the structure, shape, and dimensionality of MHP NCs. The soft ionic
nature of MHP NCs, in conjunction with their low formation energy,
rapid anion exchange, and ease of ion migration, enables the rearrangement
of their overall appearance via self-assembly or regrowth. Because
of their low formation energy and highly dynamic surface ligands,
MHP NCs have a higher propensity to regrow than conventional hard-lattice
NCs. Moreover, their self-assembly and regrowth can be achieved simultaneously.
The self-assembly of NCs into close-packed, long-range-ordered mesostructures
provides a platform for modulating their electronic properties (e.g.,
conductivity and carrier mobility). Moreover, assembled MHP NCs exhibit
collective properties (e.g., superfluorescence, renormalized emission,
longer phase coherence times, and long exciton diffusion lengths)
that can translate into dramatic improvements in device performance.
Further regrowth into fused MHP nanostructures with the removal of
ligand barriers between NCs could facilitate charge carrier transport,
eliminate surface point defects, and enhance stability against moisture,
light, and electron-beam irradiation. However, the synthesis strategies,
diversity and complexity of structures, and optoelectronic applications
that emanate from the self-assembly and regrowth of MHPs have not
yet received much attention. Consequently, a comprehensive understanding
of the design principles of self-assembled and fused MHP nanostructures
will fuel further advances in their optoelectronic applications. In this Account, we review the latest developments in the self-assembly
and regrowth of MHP NCs. We begin with a survey of the mechanisms,
driving forces, and techniques for controlling MHP NC self-assembly.
We then explore the phase transition of fused MHP nanostructures at
the atomic level, delving into the mechanisms of facet-directed connections
and the kinetics of their shape-modulation behavior, which have been
elucidated with the aid of high-resolution transmission electron microscopy
(HRTEM) and first-principles density functional theory calculations
of surface energies. We further outline the applications of assembled
and fused nanostructures. Finally, we conclude with a perspective
on current challenges and future directions in the field of MHP NCs.
Collapse
Affiliation(s)
- Jiakai Liu
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaopeng Zheng
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Luo Y, Wang H, Zhao LY, Zhang YL. Dynamics of Strong Coupling Between Free Charge Carriers in Organometal Halide Perovskites and Aluminum Plasmonic States. Front Chem 2022; 9:818459. [PMID: 35096776 PMCID: PMC8795516 DOI: 10.3389/fchem.2021.818459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
We have investigated a strong coupled system composed of a MAPbIxCl3-x perovskite film and aluminum conical nanopits array. The hybrid states formed by surface plasmons and free carriers, rather than the traditional excitons, is observed in both steady-state reflection measurements and transient absorption spectra. In particular, under near upper band resonant excitation, the bleaching signal from the band edge of uncoupled perovskite was completely separated into two distinctive bleaching signals of the hybrid system, which is clear evidence for the formation of strong coupling states between the free carrier–plasmon state. Besides this, a Rabi splitting up to 260 meV is achieved. The appearance of the lower bands can compensate for the poor absorption of the perovskite in the NIR region. Finally, we found that the lifetime of the free carrier–SP hybrid states is slightly shorter than that of uncoupled perovskite film, which can be caused by the ultrafast damping of the SPs modes. These peculiar features on the strong coupled hybrid states based on free charge carriers can open new perspectives for novel plasmonic perovskite solar cells.
Collapse
|
38
|
Fan C, Yang K, Xu X, Qi Z, Jiang S, Xia M, Zhang Q. Controllable vapor growth of CsPbBr3/CdS 1D heterostructures with type-II band alignment for high-performance self-powered photodetector. CrystEngComm 2022. [DOI: 10.1039/d1ce01409a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The controllable growth of CsPbBr3/CdS heterostructures with a unique 1D morphology and type-II band alignment for a high-performance self-powered photodetector.
Collapse
Affiliation(s)
- Chao Fan
- Hunan Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Ke Yang
- Hunan Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Xing Xu
- Hunan Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Zhuodong Qi
- Hunan Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Sha Jiang
- Hunan Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Mingxia Xia
- College of Information Science and Engineering, Changsha Normal University, Changsha, 410082, P. R. China
| | - Qinglin Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
39
|
Toso S, Baranov D, Giannini C, Manna L. Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction. ACS NANO 2021; 15:20341-20352. [PMID: 34843227 PMCID: PMC8717630 DOI: 10.1021/acsnano.1c08636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The research on two-dimensional colloidal semiconductors has received a boost from the emergence of ultrathin lead halide perovskite nanoplatelets. While the optical properties of these materials have been widely investigated, their accurate structural and compositional characterization is still challenging. Here, we exploited the natural tendency of the platelets to stack into highly ordered films, which can be treated as single crystals made of alternating layers of organic ligands and inorganic nanoplatelets, to investigate their structure by multilayer diffraction. Using X-ray diffraction alone, this method allowed us to reveal the structure of ∼12 Å thick Cs-Pb-Br perovskite and ∼25 Å thick Cs-Pb-I-Cl Ruddlesden-Popper nanoplatelets by precisely measuring their thickness, stoichiometry, surface passivation type and coverage, as well as deviations from the crystal structures of the corresponding bulk materials. It is noteworthy that a single, readily available experimental technique, coupled with proper modeling, provides access to such detailed structural and compositional information.
Collapse
Affiliation(s)
- Stefano Toso
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- International
Doctoral Program in Science, Università
Cattolica del Sacro Cuore, 25121 Brescia, Italy
| | - Dmitry Baranov
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cinzia Giannini
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
40
|
Yi J, Zhou H, Wei WH, Han XC, Han DD, Gao BR. Micro-/Nano-Structures Fabricated by Laser Technologies for Optoelectronic Devices. Front Chem 2021; 9:823715. [PMID: 34976958 PMCID: PMC8716495 DOI: 10.3389/fchem.2021.823715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Due to unique optical and electrical properties, micro-/nano-structures have become an essential part of optoelectronic devices. Here, we summarize the recent developments in micro-/nano-structures fabricated by laser technologies for optoelectronic devices. The fabrication of micro-/nano-structures by various laser technologies is reviewed. Micro-/nano-structures in optoelectronic devices for performance improvement are reviewed. In addition, typical optoelectronic devices with micro-nano structures are also summarized. Finally, the challenges and prospects are discussed.
Collapse
|
41
|
Liu J, Song K, Zheng X, Yin J, Yao KX, Chen C, Yang H, Hedhili MN, Zhang W, Han P, Mohammed OF, Han Y, Bakr OM. Cyanamide Passivation Enables Robust Elemental Imaging of Metal Halide Perovskites at Atomic Resolution. J Phys Chem Lett 2021; 12:10402-10409. [PMID: 34672588 DOI: 10.1021/acs.jpclett.1c02830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead halide perovskites (LHPs) have attracted a tremendous amount of attention because of their applications in solar cells, lighting, and optoelectronics. However, the atomistic principles underlying their decomposition processes remain in large part obscure, likely due to the lack of precise information about their local structures and composition along regions with dimensions on the angstrom scale, such as crystal interfaces. Aberration-corrected scanning transmission electron microscopy combined with X-ray energy dispersive spectroscopy (EDS) is an ideal tool, in principle, for probing such information. However, atomic-resolution EDS has not been achieved for LHPs because of their instability under electron-beam irradiation. We report the fabrication of CsPbBr3 nanoplates with high beam stability through an interface-assisted regrowth strategy using cyanamide. The ultrahigh stability of the nanoplates primarily stems from two contributions: defect-healing self-assembly/regrowth processes and surface modulation by strong electron-withdrawing cyanamide molecules. The ultrahigh stability of as-prepared CsPbBr3 nanoplates enabled atomic-resolution EDS elemental mapping, which revealed atomically and elementally resolved details of the LHP nanostructures at an unprecedented level. While improving the stability of LHPs is critical for device applications, this work illustrates how improving the beam stability of LHPs is essential for addressing fundamental questions on structure-property relations in LHPs.
Collapse
Affiliation(s)
- Jiakai Liu
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Kepeng Song
- KAUST Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Xiaopeng Zheng
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- KAUST Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ke Xin Yao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Cailing Chen
- KAUST Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Haoze Yang
- KAUST Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Nejib Hedhili
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wang Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Peigang Han
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Omar F Mohammed
- KAUST Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yu Han
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|