1
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
3
|
East A, Polasek CG, Miller EA, Ranganathan S, Reda ID, Patel A, Ahlers CD, Zingales SK, Karver CE. Expansion of the Structure-Activity Relationship Profile of Triaminopyrimidines as Inhibitors of Caspase-1. Chem Biol Drug Des 2024; 104:e70031. [PMID: 39668548 DOI: 10.1111/cbdd.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Caspase-1 is a sought-after therapeutic target for inflammatory conditions due to its role in activation and release of pro-inflammatory cytokines, but there has been little success getting drugs into the clinic. We have previously shown triaminopyrimidines such as CK-1-41 are potent, reversible small molecule inhibitors of caspase-1, likely binding in an allosteric site within the enzyme. A series of analogs of CK-1-41 were synthesized and tested against caspase-1 to develop a more robust structure-activity relationship profile. In general, alkyl and aryl groups were well tolerated via an ethylene or methylene linkage to the piperazine nitrogen, with IC50 values ranging from 13 to 200 nM. The most potent compounds were methylene linked o-tolyl (AE-2-21) and ethylene linked 4-trifluoromethylphenyl (AE-2-48) with IC50 values of 18 and 13 nM, respectively. Derivatives with electrophilic covalent warheads linked via an amide bond to the piperazine nitrogen were synthesized and characterized. CA-1-11 and EM-1-10 were semi-reversible, non-competitive inhibitors of caspase-1 with slightly reduced potencies of 134 and 144 nM, respectively. All derivatives docked well into the allosteric site, supporting our hypothesis that this family of caspase-1 inhibitors function via an allosteric non-competitive mechanism of inhibition.
Collapse
Affiliation(s)
- Amanda East
- Department of Chemistry, DePaul University, Chicago, Illinois, USA
| | | | | | | | - Isabella D Reda
- Department of Chemistry, DePaul University, Chicago, Illinois, USA
| | - Aisha Patel
- Department of Chemistry, DePaul University, Chicago, Illinois, USA
| | | | | | - Caitlin E Karver
- Department of Chemistry, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Bernal-Bernal D, Pantoja-Uceda D, López-Alonso JP, López-Rojo A, López-Ruiz JA, Galbis-Martínez M, Ochoa-Lizarralde B, Tascón I, Elías-Arnanz M, Ubarretxena-Belandia I, Padmanabhan S. Structural basis for regulation of a CBASS-CRISPR-Cas defense island by a transmembrane anti-σ factor and its ECF σ partner. SCIENCE ADVANCES 2024; 10:eadp1053. [PMID: 39454004 PMCID: PMC11506125 DOI: 10.1126/sciadv.adp1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
How CRISPR-Cas and cyclic oligonucleotide-based antiphage signaling systems (CBASS) are coordinately deployed against invaders remains unclear. We show that a locus containing two CBASS and one type III-B CRISPR-Cas system, regulated by the transmembrane anti-σ DdvA and its cognate extracytoplasmic function (ECF) σ DdvS, can defend Myxococcus xanthus against a phage. Cryo-electron microscopy reveals DdvA-DdvS pairs assemble as arrow-shaped transmembrane dimers. Each DdvA periplasmic domain adopts a separase/craspase-type tetratricopeptide repeat (TPR)-caspase HetF-associated with TPR (TPR-CHAT) architecture with an incomplete His-Cys active site, lacking three α-helices conserved among CHAT domains. Each active site faces the dimer interface, raising the possibility that signal-induced caspase-like DdvA autoproteolysis in trans precedes RseP-mediated intramembrane proteolysis and DdvS release. Nuclear magnetic resonance reveals a DdvA cytoplasmic CHCC-type zinc-bound three-helix bundle that binds to DdvS σ2 and σ4 domains, undergoing σ4-induced helix extension to trap DdvS. Altogether, we provide structural-mechanistic insights into membrane anti-σ-ECF σ regulation of an antiviral CBASS-CRISPR-Cas defense island.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| | | | - Alfonso López-Rojo
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - José Antonio López-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | | | - Igor Tascón
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - S. Padmanabhan
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| |
Collapse
|
5
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
6
|
Krause KD, Rees K, Darwish GH, Bernal-Escalante J, Algar WR. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity. ACS NANO 2024; 18:17018-17030. [PMID: 38845136 DOI: 10.1021/acsnano.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The advantageous optical properties of quantum dots (QDs) motivate their use in a wide variety of applications related to imaging and bioanalysis, including the detection of proteases and their activity. Recent studies have shown that surface chemistry on QDs is able to modulate protease activity, but only nonspecifically. Here, we present a strategy to selectively accelerate the activity of a particular target protease by as much as two orders of magnitude. Exosite-binding "bait" peptides were derived from proteins that span a range of biological roles─substrate, receptor, and inhibitor─and were used to increase the affinity of the QD-peptide conjugates for either thrombin or factor Xa, resulting in increased rates of proteolysis for coconjugated substrates. Unlike effects from QD surface chemistry, the acceleration was specific to the target protease with negligible acceleration of other proteases. Benefits of this "bait and cleave" sensing approach included detection limits that improved by more than an order of magnitude, reenabled detection of target protease against an overwhelming background of nontarget proteolysis, and mitigation of the action of inhibitors. The cumulative results point to a generalizable strategy, where the mechanism of acceleration, considerations for the design of bait peptides and conjugates, and routes to expanding the scope of this approach are discussed. Overall, this research represents a major step forward in the rational design of nanoparticle-based enzyme sensors that enhance sensitivity and selectivity.
Collapse
Affiliation(s)
- Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| |
Collapse
|
7
|
van Beljouw SPB, Brouns SJJ. CRISPR-controlled proteases. Biochem Soc Trans 2024; 52:441-453. [PMID: 38334140 DOI: 10.1042/bst20230962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
With the discovery of CRISPR-controlled proteases, CRISPR-Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We recollect the original bioinformatic prediction and early experimental characterizations; evaluate some of the mechanistic structural intricacies and emerging biotechnology; discuss open questions and unexplained mysteries; and indicate future directions for the rapidly moving field of the CRISPR proteases.
Collapse
Affiliation(s)
- Sam P B van Beljouw
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| |
Collapse
|
8
|
Zhuang Y, Dong H, Liu T, Zhao Y, Xu Y, Zhao X, Sun D. Highly sensitive and selective SERS detection of caspase-3 during cell apoptosis based on the target-induced hotspot effect. Analyst 2024; 149:490-496. [PMID: 38062995 DOI: 10.1039/d3an01721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Caspase-3 is an important biomarker for the process of apoptosis, which is a key target for cancer treatment. Due to its low concentration in single cells and the structural similarity of caspase family proteins, it is exceedingly challenging to accurately determine the intracellular caspase-3 during apoptosis in situ. Herein, a biosensing strategy based on the target-induced SERS "hot spot" formation has been developed for the simultaneous highly sensitive and selective detection of intracellular caspase-3 level. The nanosensor is composed of gold nanoparticles modified with the probe molecule 4-mercaptophenylboronic acid (4-MPBA) and a peptide chain. The well-designed peptide chain contains two distinct functional domains, one with a sulfhydryl group for bonding to the gold nanoparticles and the other a fragment specifically recognized by caspase-3. When caspase-3 is present, the negatively charged segment (NH2-Asp-Asp-Asp-Glu-Val-Asp-OH) of the peptide chain is specifically hydrolyzed, leaving a positively charged fragment coated on the surface of the gold nanoparticles. At this time, the golden nanoparticles undergo significant coupling aggregation due to the electrostatic interaction, resulting in a large number of SERS "hot spot" formation. The SERS signal of the 4-MPBA located at the nano-gap is significantly boosted because of the local plasma enhancement effect. The highly sensitive determination of caspase-3 can be achieved according to the altered SERS signal intensity of 4-MPBA. The turn-on of the SERS signal-induced target contributes to the excellent selectivity and the formation of the SERS "hot spot" effect that further improves the sensitivity of caspase-3 detection. The advantages of this biosensing technique allow for the precise in situ monitoring of the dynamic changes in caspase-3 levels during apoptosis. In addition, the differences in caspase-3 levels during the apoptosis of various cell types were compared. Monitoring the caspase-3 levels can be used to track the cellular apoptosis process, evaluate the effect of drugs on cancer cells in real time, and provide guidance for the selection of the appropriate drug dosage.
Collapse
Affiliation(s)
- Yueyuan Zhuang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Han Dong
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaojuan Zhao
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
9
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
10
|
Godbole S, Dokholyan NV. Allosteric regulation of kinase activity in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549709. [PMID: 37503033 PMCID: PMC10370130 DOI: 10.1101/2023.07.19.549709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
- Shivani Godbole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
12
|
Joglekar I, Clark AC. Sequential Unfolding Mechanisms of Monomeric Caspases. Biochemistry 2023; 62:1878-1889. [PMID: 37337671 DOI: 10.1021/acs.biochem.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Caspases are evolutionarily conserved cysteinyl proteases that are integral in cell development and apoptosis. All apoptotic caspases evolved from a common ancestor into two distinct subfamilies with either monomeric (initiators) or dimeric (effectors) oligomeric states. The regulation of apoptosis is influenced by the activation mechanism of the two subfamilies, but the evolution of the well-conserved caspase-hemoglobinase fold into the two subfamilies is not well understood. We examined the folding landscape of monomeric caspases from two coral species over a broad pH range of 3-10.5. On an evolutionary timescale, the two coral caspases diverged from each other approximately 300 million years ago, and they diverged from human caspases about 600 million years ago. Our results indicate that both proteins have overall high stability, ∼15 kcal mol-1, near the physiological pH range (pH 6-8) and unfold via two partially folded intermediates, I1 and I2*, that are in equilibrium with the native and the unfolded state. Like the dimeric caspases, the monomeric coral caspases undergo a pH-dependent conformational change resulting from the titration of an evolutionarily conserved site. Data from molecular dynamics simulations paired with limited proteolysis and MALDI-TOF mass spectrometry show that the small subunit of the monomeric caspases is unstable and unfolds prior to the large subunit. Overall, the data suggest that all caspases share a conserved folding landscape, that a conserved allosteric site can be fine-tuned for species-specific regulation, and that the subfamily of stable dimers may have evolved to stabilize the small subunit.
Collapse
Affiliation(s)
- Isha Joglekar
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
13
|
Liu N, Zhang R, Shi Q, Jiang H, Zhou Q. Intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy. Bioorg Chem 2023; 136:106550. [PMID: 37121105 DOI: 10.1016/j.bioorg.2023.106550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
The drugs targeting the PD-1/PD-L1 pathway have gained abundant clinical applications for cancer immunotherapy. However, only a part of patients benefit from such immunotherapy. Thus, brilliant novel tactic to increase the response rate of patients is on the agenda. Nanocarriers, particularly the rationally designed intelligent delivery systems with controllable therapeutic agent release ability and improved tumor targeting capacity, are firmly recommended. In light of this, state-of-the-art nanocarriers that are responsive to tumor-specific microenvironments (internal stimuli, including tumor acidic microenvironment, high level of GSH and ROS, specifically upregulated enzymes) or external stimuli (e.g., light, ultrasound, radiation) and release the target immunomodulators at tumor sites feature the advantages of increased anti-tumor potency but decreased off-target toxicity. Given the fantastic past achievements and the rapid developments in this field, the future is promising. In this review, intelligent delivery platforms targeting the PD-1/PD-L1 axis are attentively appraised. Specifically, mechanisms of the action of these stimuli-responsive drug release platforms are summarized to raise some guidelines for prior PD-1/PD-L1-based nanocarrier designs. Finally, the conclusion and outlook in intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Qiang Shi
- Moji-Nano Technology Co. Ltd., Yantai 264006, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300038, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
14
|
Nag M, Clark AC. Conserved folding landscape of monomeric initiator caspases. J Biol Chem 2023; 299:103075. [PMID: 36858199 PMCID: PMC10074801 DOI: 10.1016/j.jbc.2023.103075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The apoptotic caspase subfamily evolved into two subfamilies-monomeric initiators and dimeric effectors; both subfamilies share a conserved caspase-hemoglobinase fold with a protease domain containing a large subunit and a small subunit. Sequence variations in the conserved caspase-hemoglobinase fold resulted in changes in oligomerization, enzyme specificity, and regulation, making caspases an excellent model for examining the mechanisms of molecular evolution in fine-tuning structure, function, and allosteric regulation. We examined the urea-induced equilibrium folding/unfolding of two initiator caspases, monomeric caspase-8 and cFLIPL, over a broad pH range. Both proteins unfold by a three-state equilibrium mechanism that includes a partially folded intermediate. In addition, both proteins undergo a conserved pH-dependent conformational change that is controlled by an evolutionarily conserved mechanism. We show that the conformational free energy landscape of the caspase monomer is conserved in the monomeric and dimeric subfamilies. Molecular dynamics simulations in the presence or the absence of urea, coupled with limited trypsin proteolysis and mass spectrometry, show that the small subunit is unstable in the protomer and unfolds prior to the large subunit. In addition, the unfolding of helix 2 in the large subunit results in disruption of a conserved allosteric site. Because the small subunit forms the interface for dimerization, our results highlight an important driving force for the evolution of the dimeric caspase subfamily through stabilizing the small subunit.
Collapse
Affiliation(s)
- Mithun Nag
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
15
|
Sawang N, Phongphanphanee S, Wong-ekkabut J, Sutthibutpong T. Biophysical Interpretation of Evolutionary Consequences on the SARS-CoV2 Main Protease through Molecular Dynamics Simulations and Network Topology Analysis. J Phys Chem B 2023; 127:2331-2343. [PMID: 36913683 PMCID: PMC10022058 DOI: 10.1021/acs.jpcb.2c08312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Indexed: 03/14/2023]
Abstract
In this study, we present a combined analysis procedure between atomistic molecular dynamics (MD) simulations and network topology to obtain more understanding on the evolutionary consequences on protein stability and substrate binding of the main protease enzyme of SARS-CoV2. Communicability matrices of the protein residue networks (PRNs) were extracted from MD trajectories of both Mpro enzymes in complex with the nsp8/9 peptide substrate to compare the local communicability within both proteases that would affect the enzyme function, along with biophysical details on global protein conformation, flexibility, and contribution of amino acid side chains to both intramolecular and intermolecular interactions. The analysis displayed the significance of the mutated residue 46 with the highest communicability gain to the binding pocket closure. Interestingly, the mutated residue 134 with the highest communicability loss corresponded to a local structural disruption of the adjacent peptide loop. The enhanced flexibility of the disrupted loop connecting to the catalytic residue Cys145 introduced an extra binding mode that brought the substrate in proximity and could facilitate the reaction. This understanding might provide further help in the drug development strategy against SARS-CoV2 and prove the capability of the combined techniques of MD simulations and network topology analysis as a "reverse" protein engineering tool.
Collapse
Affiliation(s)
- Nuttawat Sawang
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
- Center
of Excellence in Theoretical and Computational Science (TaCS-CoE),
Faculty of Science, King Mongkut’s
University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Saree Phongphanphanee
- Computational
Biomodelling Laboratory for Agricultural Science and Technology (CBLAST),
Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Thailand
Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Department
of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jirasak Wong-ekkabut
- Computational
Biomodelling Laboratory for Agricultural Science and Technology (CBLAST),
Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Thailand
Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Thana Sutthibutpong
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
- Center
of Excellence in Theoretical and Computational Science (TaCS-CoE),
Faculty of Science, King Mongkut’s
University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Computational
Biomodelling Laboratory for Agricultural Science and Technology (CBLAST),
Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
16
|
Mohd Azmi SI, Kumar P, Sharma N, Sazili AQ, Lee SJ, Ismail-Fitry MR. Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods 2023; 12:1336. [PMID: 36981262 PMCID: PMC10047955 DOI: 10.3390/foods12061336] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Papain, bromelain, and ficin are commonly used plant proteases used for meat tenderization. Other plant proteases explored for meat tenderization are actinidin, zingibain, and cucumin. The application of plant crude extracts or powders containing higher levels of compounds exerting tenderizing effects is also gaining popularity due to lower cost, improved sensory attributes of meat, and the presence of bioactive compounds exerting additional benefits in addition to tenderization, such as antioxidants and antimicrobial effects. The uncontrolled plant protease action could cause excessive tenderization (mushy texture) and poor quality due to an indiscriminate breakdown of proteins. The higher cost of separation and the purification of enzymes, unstable structure, and poor stability of these enzymes due to autolysis are some major challenges faced by the food industry. The meat industry is targeting the recycling of enzymes and improving their stability and shelf-life by immobilization, encapsulation, protein engineering, medium engineering, and stabilization during tenderization. The present review critically analyzed recent trends and the prospects of the application of plant proteases in meat tenderization.
Collapse
Affiliation(s)
- Syahira Izyana Mohd Azmi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India;
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura 181012, Union Territory of Jammu and Kashmir, India;
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
17
|
Coating of SPIONs with a Cysteine-Decorated Copolyester: A Possible Novel Nanoplatform for Enzymatic Release. Pharmaceutics 2023; 15:pharmaceutics15031000. [PMID: 36986860 PMCID: PMC10058032 DOI: 10.3390/pharmaceutics15031000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have their use approved for the diagnosis/treatment of malignant tumors and can be metabolized by the organism. To prevent embolism caused by these nanoparticles, they need to be coated with biocompatible and non-cytotoxic materials. Here, we synthesized an unsaturated and biocompatible copolyester, poly (globalide-co-ε-caprolactone) (PGlCL), and modified it with the amino acid cysteine (Cys) via a thiol-ene reaction (PGlCLCys). The Cys-modified copolymer presented reduced crystallinity and increased hydrophilicity in comparison to PGlCL, thus being used for the coating of SPIONS (SPION@PGlCLCys). Additionally, cysteine pendant groups at the particle’s surface allowed the direct conjugation of (bio)molecules that establish specific interactions with tumor cells (MDA-MB 231). The conjugation of either folic acid (FA) or the anti-cancer drug methotrexate (MTX) was carried out directly on the amine groups of cysteine molecules present in the SPION@PGlCLCys surface (SPION@PGlCLCys_FA and SPION@PGlCLCys_MTX) by carbodiimide-mediated coupling, leading to the formation of amide bonds, with conjugation efficiencies of 62% for FA and 60% for MTX. Then, the release of MTX from the nanoparticle surface was evaluated using a protease at 37 °C in phosphate buffer pH~5.3. It was found that 45% of MTX conjugated to the SPIONs were released after 72 h. Cell viability was measured by MTT assay, and after 72 h, 25% reduction in cell viability of tumor cells was observed. Thus, after a successful conjugation and subsequent triggered release of MTX, we understand that SPION@PGlCLCys has a strong potential to be treated as a model nanoplatform for the development of treatments and diagnosis techniques (or theranostic applications) that can be less aggressive to patients.
Collapse
|
18
|
Yao L, Clark A. Comparing the folding landscapes of evolutionarily divergent procaspase-3. Biosci Rep 2022; 42:BSR20220119. [PMID: 35670809 PMCID: PMC9208311 DOI: 10.1042/bsr20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
All caspases evolved from a common ancestor and subsequently developed into two general classes, inflammatory or apoptotic caspases. The caspase-hemoglobinase fold has been conserved throughout nearly one billion years of evolution and is utilized for both the monomeric and dimeric subfamilies of apoptotic caspases, called initiator and effector caspases, respectively. We compared the folding and assembly of procaspase-3b from zebrafish to that of human effector procaspases in order to examine the conservation of the folding landscape. Urea-induced equilibrium folding/unfolding of procaspase-3b showed a minimum three-state folding pathway, where the native dimer isomerizes to a partially folded dimeric intermediate, which then unfolds. A partially folded monomeric intermediate observed in the folding landscape of human procaspase-3 is not well-populated in zebrafish procaspase-3b. By comparing effector caspases from different species, we show that the effector procaspase dimer undergoes a pH-dependent conformational change, and that the conformational species in the folding landscape exhibit similar free energies. Together, the data show that the landscape for the caspase-hemoglobinase fold is conserved, yet it provides flexibility for species-specific stabilization or destabilization of folding intermediates resulting in changes in stability. The common pH-dependent conformational change in the native dimer, which yields an enzymatically inactive species, may provide an additional, albeit reversible, mechanism for controlling caspase activity in the cell.
Collapse
Affiliation(s)
- Liqi Yao
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, U.S.A
| | - A. Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, U.S.A
| |
Collapse
|
19
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
20
|
Hwan Shin J, Rana Gul A, Seop Hyun M, Choi CH, Jung Park T, Pil Park J. Electrochemical detection of caspase-3 based on a chemically modified M13 phage virus. Bioelectrochemistry 2022; 145:108090. [DOI: 10.1016/j.bioelechem.2022.108090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
|
21
|
Ross C, Chan AH, von Pein JB, Maddugoda MP, Boucher D, Schroder K. Inflammatory Caspases: Toward a Unified Model for Caspase Activation by Inflammasomes. Annu Rev Immunol 2022; 40:249-269. [PMID: 35080918 DOI: 10.1146/annurev-immunol-101220-030653] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases. We discuss inflammatory caspase activation and deactivation mechanisms, alongside the physiological importance of caspase activity kinetics. We also examine mechanisms of caspase substrate selection and how inflammasome and cell identities influence caspase activity and resultant inflammatory and pyroptotic cellular programs. Understanding how inflammatory caspases are regulated may offer new strategies for treating infection and inflammasome-driven disease. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Connie Ross
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia; .,Current affiliation: School of Molecular and Chemical Sciences, The University of Queensland, St. Lucia, Australia
| | - Amy H Chan
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| | - Jessica B von Pein
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| | - Madhavi P Maddugoda
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| | - Dave Boucher
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Kate Schroder
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| |
Collapse
|
22
|
Hsia TC, Peng SF, Chueh FS, Lu KW, Yang JL, Huang AC, Hsu FT, Wu RSC. Bisdemethoxycurcumin Induces Cell Apoptosis and Inhibits Human Brain Glioblastoma GBM 8401/ Luc2 Cell Xenograft Tumor in Subcutaneous Nude Mice In Vivo. Int J Mol Sci 2022; 23:ijms23010538. [PMID: 35008959 PMCID: PMC8745075 DOI: 10.3390/ijms23010538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.
Collapse
Affiliation(s)
- Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 406, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 406, Taiwan;
| | - Jiun-Long Yang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - An-Cheng Huang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Anesthesiology, China Medical University, Taichung 404, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| |
Collapse
|
23
|
Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103790. [PMID: 34651344 DOI: 10.1002/adma.202103790] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cancer vaccines aim at eliciting tumor-specific responses for the immune system to identify and eradicate malignant tumor cells while sparing the normal tissues. Furthermore, cancer vaccines can potentially induce long-term immunological memory for antitumor responses, preventing metastasis and cancer recurrence, thus presenting an attractive treatment option in cancer immunotherapy. However, clinical efficacy of cancer vaccines has remained low due to longstanding challenges, such as poor immunogenicity, immunosuppressive tumor microenvironment, tumor heterogeneity, inappropriate immune tolerance, and systemic toxicity. Recently, bioinspired materials and biomimetic technologies have emerged to play a part in reshaping the field of cancer nanomedicine. By mimicking desirable chemical and biological properties in nature, bioinspired engineering of cancer vaccine delivery platforms can effectively transport therapeutic cargos to tumor sites, amplify antigen and adjuvant bioactivities, and enable spatiotemporal control and on-demand immunoactivation. As such, integration of biomimetic designs into delivery platforms for cancer vaccines can enhance efficacy while retaining good safety profiles, which contributes to expediting the clinical translation of cancer vaccines. Recent advances in bioinspired delivery platforms for cancer vaccines, existing obstacles faced, as well as insights and future directions for the field are discussed here.
Collapse
Affiliation(s)
- Jing Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
24
|
Liu B, Li J, Zhou P, Pan W, Li N, Tang B. Real-Time In Situ Sequential Fluorescence Activation Imaging of Cyt c and Caspase-9 with a Gold-Selenium-Bonded Nanoprobe. Anal Chem 2021; 93:16880-16886. [PMID: 34886667 DOI: 10.1021/acs.analchem.1c03872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apoptosis, as a very important mode of programmed death, is closely associated with many diseases. Real-time in situ monitoring of the dynamic change of the apoptotic process remains a great challenge. Herein, a nanoprobe based on the gold-selenium (Au-Se) bond was developed for a sequential fluorescence activation imaging of cytochrome c (Cyt c) and caspase-9, two important apoptotic signaling molecules, to monitor the progression of apoptosis. The Cyt c aptamer and caspase-9-cleavable peptide chains labeled with two dyes were modified onto the surface of gold nanoparticles (Au NPs) by the Au-Se bond, which can be activated by upstream Cyt c and downstream caspase-9 to trigger fluorescence recovery. The Au-Se nanoprobe exhibited good specificity and stability. Compared with the traditional nanoprobe based on the gold-sulfur (Au-S) bond, the interference of biological thiols on the Au-Se nanoprobe can be effectively avoided. Importantly, the Au-Se nanoprobe can image the sequential changes of the two markers in situ in real time during cell apoptosis. This work provides an effective tool for the accurate and real-time detection of apoptosis and is conducive to the in-depth study of the relationship between apoptosis and disease.
Collapse
Affiliation(s)
- Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
25
|
De Novo Molecular Design of Caspase-6 Inhibitors by a GRU-Based Recurrent Neural Network Combined with a Transfer Learning Approach. Pharmaceuticals (Basel) 2021; 14:ph14121249. [PMID: 34959651 PMCID: PMC8706867 DOI: 10.3390/ph14121249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Due to their potential in the treatment of neurodegenerative diseases, caspase-6 inhibitors have attracted widespread attention. However, the existing caspase-6 inhibitors showed more or less inevitable deficiencies that restrict their clinical development and applications. Therefore, there is an urgent need to develop novel caspase-6 candidate inhibitors. Herein, a gated recurrent unit (GRU)-based recurrent neural network (RNN) combined with transfer learning was used to build a molecular generative model of caspase-6 inhibitors. The results showed that the GRU-based RNN model can accurately learn the SMILES grammars of about 2.4 million chemical molecules including ionic and isomeric compounds and can generate potential caspase-6 inhibitors after transfer learning of the known 433 caspase-6 inhibitors. Based on the novel molecules derived from the molecular generative model, an optimal logistic regression model and Surflex-dock were employed for predicting and ranking the inhibitory activities. According to the prediction results, three potential caspase-6 inhibitors with different scaffolds were selected as the promising candidates for further research. In general, this paper provides an efficient combinational strategy for de novo molecular design of caspase-6 inhibitors.
Collapse
|
26
|
Shrestha S, Clark AC. Evolution of the folding landscape of effector caspases. J Biol Chem 2021; 297:101249. [PMID: 34592312 PMCID: PMC8628267 DOI: 10.1016/j.jbc.2021.101249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/07/2022] Open
Abstract
Caspases are a family of cysteinyl proteases that control programmed cell death and maintain homeostasis in multicellular organisms. The caspase family is an excellent model to study protein evolution because all caspases are produced as zymogens (procaspases [PCPs]) that must be activated to gain full activity; the protein structures are conserved through hundreds of millions of years of evolution; and some allosteric features arose with the early ancestor, whereas others are more recent evolutionary events. The apoptotic caspases evolved from a common ancestor (CA) into two distinct subfamilies: monomers (initiator caspases) or dimers (effector caspases). Differences in activation mechanisms of the two subfamilies, and their oligomeric forms, play a central role in the regulation of apoptosis. Here, we examine changes in the folding landscape by characterizing human effector caspases and their CA. The results show that the effector caspases unfold by a minimum three-state equilibrium model at pH 7.5, where the native dimer is in equilibrium with a partially folded monomeric (PCP-7, CA) or dimeric (PCP-6) intermediate. In comparison, the unfolding pathway of PCP-3 contains both oligomeric forms of the intermediate. Overall, the data show that the folding landscape was first established with the CA and was retained for >650 million years. Partially folded monomeric or dimeric intermediates in the ancestral ensemble provide mechanisms for evolutionary changes that affect stability of extant caspases. The conserved folding landscape allows for the fine-tuning of enzyme stability in a species-dependent manner while retaining the overall caspase–hemoglobinase fold.
Collapse
Affiliation(s)
- Suman Shrestha
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
27
|
Huang S, Mei H, Lu L, Kuang Z, Heng Y, Xu L, Liang X, Qiu M, Pan X. Conformational transitions of caspase-6 in substrate-induced activation process explored by perturbation-response scanning combined with targeted molecular dynamics. Comput Struct Biotechnol J 2021; 19:4156-4164. [PMID: 34527189 PMCID: PMC8342898 DOI: 10.1016/j.csbj.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Caspase-6 participates in a series of neurodegenerative pathways, and has aroused widespread attentions as a promising molecular target for the treatment of neurodegeneration. Caspase-6 is a homodimer with 6 central-stranded β-sheets and 5 α-helices in each monomer. Previous crystallographic studies suggested that the 60′s, 90′s and 130′s helices of caspase-6 undergo a distinctive conformational transition upon substrate binding. Although the caspase-6 structures in apo and active states have been determined, the conformational transition process between the two states remains poorly understood. In this work, perturbation-response scanning (PRS) combined with targeted molecular dynamics (TMD) simulations was employed to unravel the atomistic mechanism of the dynamic conformational transitions underlying the substrate-induced activation process of caspase-6. The results showed that the conformational transition of caspase-6 from apo to active states is mainly characterized by structural rearrangements of the substrate-binding site as well as the conformational changes of 60′s and 130′s extended helices. The H-bond interactions between L1, 130′s helix and 90′s helix are proved to be key determinant factors for substrate-induced conformational transition. These findings provide valuable insights into the activation mechanism of caspase-6 as well as the molecular design of caspase-6 inhibitors.
Collapse
Affiliation(s)
- Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Laichun Lu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Zuyin Kuang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Yu Heng
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Lei Xu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Xiaoqi Liang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Minyao Qiu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, College of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
28
|
Zhu W, Wang CY, Hu JM, Shen AG. Promoted “Click” SERS Detection for Precise Intracellular Imaging of Caspase-3. Anal Chem 2021; 93:4876-4883. [DOI: 10.1021/acs.analchem.0c04997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wei Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Printing and Packaging, Wuhan University, Wuhan 430079, P. R. China
| | - Chun-Yang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
29
|
Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3. Biosci Rep 2021; 41:227600. [PMID: 33448281 PMCID: PMC7846959 DOI: 10.1042/bsr20203495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Caspase (or cysteinyl-aspartate specific proteases) enzymes play important roles in apoptosis and inflammation, and the non-identical but overlapping specificity profiles (that is, cleavage recognition sequence) direct cells to different fates. Although all caspases prefer aspartate at the P1 position of the substrate, the caspase-6 subfamily shows preference for valine at the P4 position, while caspase-3 shows preference for aspartate. In comparison with human caspases, caspase-3a from zebrafish has relaxed specificity and demonstrates equal selection for either valine or aspartate at the P4 position. In the context of the caspase-3 conformational landscape, we show that changes in hydrogen bonding near the S3 subsite affect selection of the P4 amino acid. Swapping specificity with caspase-6 requires accessing new conformational space, where each landscape results in optimal binding of DxxD (caspase-3) or VxxD (caspase-6) substrate and simultaneously disfavors binding of the other substrate. Within the context of the caspase-3 conformational landscape, substitutions near the active site result in nearly equal activity against DxxD and VxxD by disrupting a hydrogen bonding network in the substrate binding pocket. The converse substitutions in zebrafish caspase-3a result in increased selection for P4 aspartate over valine. Overall, the data show that the shift in specificity that results in a dual function protease, as in zebrafish caspase-3a, requires fewer amino acid substitutions compared with those required to access new conformational space for swapping substrate specificity, such as between caspases-3 and -6.
Collapse
|
30
|
Vogeler S, Carboni S, Li X, Joyce A. Phylogenetic analysis of the caspase family in bivalves: implications for programmed cell death, immune response and development. BMC Genomics 2021; 22:80. [PMID: 33494703 PMCID: PMC7836458 DOI: 10.1186/s12864-021-07380-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Apoptosis is an important process for an organism's innate immune system to respond to pathogens, while also allowing for cell differentiation and other essential life functions. Caspases are one of the key protease enzymes involved in the apoptotic process, however there is currently a very limited understanding of bivalve caspase diversity and function. RESULTS In this work, we investigated the presence of caspase homologues using a combination of bioinformatics and phylogenetic analyses. We blasted the Crassostrea gigas genome for caspase homologues and identified 35 potential homologues in the addition to the already cloned 23 bivalve caspases. As such, we present information about the phylogenetic relationship of all identified bivalve caspases in relation to their homology to well-established vertebrate and invertebrate caspases. Our results reveal unexpected novelty and complexity in the bivalve caspase family. Notably, we were unable to identify direct homologues to the initiator caspase-9, a key-caspase in the vertebrate apoptotic pathway, inflammatory caspases (caspase-1, - 4 or - 5) or executioner caspases-3, - 6, - 7. We also explored the fact that bivalves appear to possess several unique homologues to the initiator caspase groups - 2 and - 8. Large expansions of caspase-3 like homologues (caspase-3A-C), caspase-3/7 group and caspase-3/7-like homologues were also identified, suggesting unusual roles of caspases with direct implications for our understanding of immune response in relation to common bivalve diseases. Furthermore, we assessed the gene expression of two initiator (Cg2A, Cg8B) and four executioner caspases (Cg3A, Cg3B, Cg3C, Cg3/7) in C. gigas late-larval development and during metamorphosis, indicating that caspase expression varies across the different developmental stages. CONCLUSION Our analysis provides the first overview of caspases across different bivalve species with essential new insights into caspase diversity, knowledge that can be used for further investigations into immune response to pathogens or regulation of developmental processes.
Collapse
Affiliation(s)
- Susanne Vogeler
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden
| | - Stefano Carboni
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Xiaoxu Li
- South Australia Research and Development Institute Aquatic Sciences Centre, 2 Hamra Ave, West Beach, SA, 5024, Australia
| | - Alyssa Joyce
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden.
| |
Collapse
|
31
|
Shrestha S, Tung J, Grinshpon RD, Swartz P, Hamilton PT, Dimos B, Mydlarz L, Clark AC. Caspases from scleractinian coral show unique regulatory features. J Biol Chem 2020; 295:14578-14591. [PMID: 32788218 PMCID: PMC7586219 DOI: 10.1074/jbc.ra120.014345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization.
Collapse
Affiliation(s)
- Suman Shrestha
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Jessica Tung
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Robert D Grinshpon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul T Hamilton
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Bradford Dimos
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Laura Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
32
|
Öhlknecht C, Petrov D, Engele P, Kröß C, Sprenger B, Fischer A, Lingg N, Schneider R, Oostenbrink C. Enhancing the promiscuity of a member of the Caspase protease family by rational design. Proteins 2020; 88:1303-1318. [PMID: 32432825 PMCID: PMC7497161 DOI: 10.1002/prot.25950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
The N-terminal cleavage of fusion tags to restore the native N-terminus of recombinant proteins is a challenging task and up to today, protocols need to be optimized for different proteins individually. Within this work, we present a novel protease that was designed in-silico to yield enhanced promiscuity toward different N-terminal amino acids. Two mutations in the active-site amino acids of human Caspase-2 were determined to increase the recognition of branched amino-acids, which show only poor binding capabilities in the unmutated protease. These mutations were determined by sequential and structural comparisons of Caspase-2 and Caspase-3 and their effect was additionally predicted using free-energy calculations. The two mutants proposed in the in-silico studies were expressed and in-vitro experiments confirmed the simulation results. Both mutants showed not only enhanced activities toward branched amino acids, but also smaller, unbranched amino acids. We believe that the created mutants constitute an important step toward generalized procedures to restore original N-termini of recombinant fusion proteins.
Collapse
Affiliation(s)
- Christoph Öhlknecht
- Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Drazen Petrov
- Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life SciencesViennaAustria
| | - Petra Engele
- Institute of Biochemistry and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Christina Kröß
- Institute of Biochemistry and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Bernhard Sprenger
- Institute of Biochemistry and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | | | - Nico Lingg
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Rainer Schneider
- Institute of Biochemistry and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
33
|
Wang J, Jain A, McDonald LR, Gambogi C, Lee AL, Dokholyan NV. Mapping allosteric communications within individual proteins. Nat Commun 2020; 11:3862. [PMID: 32737291 PMCID: PMC7395124 DOI: 10.1038/s41467-020-17618-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/30/2020] [Indexed: 02/05/2023] Open
Abstract
Allostery in proteins influences various biological processes such as regulation of gene transcription and activities of enzymes and cell signaling. Computational approaches for analysis of allosteric coupling provide inexpensive opportunities to predict mutations and to design small-molecule agents to control protein function and cellular activity. We develop a computationally efficient network-based method, Ohm, to identify and characterize allosteric communication networks within proteins. Unlike previously developed simulation-based approaches, Ohm relies solely on the structure of the protein of interest. We use Ohm to map allosteric networks in a dataset composed of 20 proteins experimentally identified to be allosterically regulated. Further, the Ohm allostery prediction for the protein CheY correlates well with NMR CHESCA studies. Our webserver, Ohm.dokhlab.org, automatically determines allosteric network architecture and identifies critical coupled residues within this network.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| | - Abha Jain
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Leanna R McDonald
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Craig Gambogi
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
34
|
Resurrection of ancestral effector caspases identifies novel networks for evolution of substrate specificity. Biochem J 2020; 476:3475-3492. [PMID: 31675069 PMCID: PMC6874516 DOI: 10.1042/bcj20190625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022]
Abstract
Apoptotic caspases evolved with metazoans more than 950 million years ago (MYA), and a series of gene duplications resulted in two subfamilies consisting of initiator and effector caspases. The effector caspase genes (caspases-3, -6, and -7) were subsequently fixed into the Chordata phylum more than 650 MYA when the gene for a common ancestor (CA) duplicated, and the three effector caspases have persisted throughout mammalian evolution. All caspases prefer an aspartate residue at the P1 position of substrates, so each caspase evolved discrete cellular roles through changes in substrate recognition at the P4 position combined with allosteric regulation. We examined the evolution of substrate specificity in caspase-6, which prefers valine at the P4 residue, compared with caspases-3 and -7, which prefer aspartate, by reconstructing the CA of effector caspases (AncCP-Ef1) and the CA of caspase-6 (AncCP-6An). We show that AncCP-Ef1 is a promiscuous enzyme with little distinction between Asp, Val, or Leu at P4. The specificity of caspase-6 was defined early in its evolution, where AncCP-6An demonstrates a preference for Val over Asp at P4. Structures of AncCP-Ef1 and of AncCP-6An show a network of charged amino acids near the S4 pocket that, when combined with repositioning a flexible active site loop, resulted in a more hydrophobic binding pocket in AncCP-6An. The ancestral protein reconstructions show that the caspase-hemoglobinase fold has been conserved for over 650 million years and that only three substitutions in the scaffold are necessary to shift substrate selection toward Val over Asp.
Collapse
|
35
|
Liu Z, Wang C, Yang J, Chen Y, Zhou B, Abbott DW, Xiao TS. Caspase-1 Engages Full-Length Gasdermin D through Two Distinct Interfaces That Mediate Caspase Recruitment and Substrate Cleavage. Immunity 2020; 53:106-114.e5. [PMID: 32553275 PMCID: PMC7382298 DOI: 10.1016/j.immuni.2020.06.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
The recognition and cleavage of gasdermin D (GSDMD) by inflammatory caspases-1, 4, 5, and 11 are essential steps in initiating pyroptosis after inflammasome activation. Previous work has identified cleavage site signatures in substrates such as GSDMD, but it is unclear whether these are the sole determinants for caspase engagement. Here we report the crystal structure of a complex between human caspase-1 and the full-length murine GSDMD. In addition to engagement of the GSDMD N- and C-domain linker by the caspase-1 active site, an anti-parallel β sheet at the caspase-1 L2 and L2' loops bound a hydrophobic pocket within the GSDMD C-terminal domain distal to its N-terminal domain. This "exosite" interface endows an additional function for the GSDMD C-terminal domain as a caspase-recruitment module besides its role in autoinhibition. Our study thus reveals dual-interface engagement of GSDMD by caspase-1, which may be applicable to other physiological substrates of caspases.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chuanping Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jie Yang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, TRY-21, La Jolla, CA 92037, USA
| | - Yinghua Chen
- Protein Expression Purification Crystallization and Molecular Biophysics Core, Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bowen Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
36
|
Liu X, Lu S, Song K, Shen Q, Ni D, Li Q, He X, Zhang H, Wang Q, Chen Y, Li X, Wu J, Sheng C, Chen G, Liu Y, Lu X, Zhang J. Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Res 2020; 48:D394-D401. [PMID: 31665428 PMCID: PMC7145546 DOI: 10.1093/nar/gkz958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Allosteric regulation is one of the most direct and efficient ways to fine-tune protein function; it is induced by the binding of a ligand at an allosteric site that is topographically distinct from an orthosteric site. The Allosteric Database (ASD, available online at http://mdl.shsmu.edu.cn/ASD) was developed ten years ago to provide comprehensive information related to allosteric regulation. In recent years, allosteric regulation has received great attention in biological research, bioengineering, and drug discovery, leading to the emergence of entire allosteric landscapes as allosteromes. To facilitate research from the perspective of the allosterome, in ASD 2019, novel features were curated as follows: (i) >10 000 potential allosteric sites of human proteins were deposited for allosteric drug discovery; (ii) 7 human allosterome maps, including protease and ion channel maps, were built to reveal allosteric evolution within families; (iii) 1312 somatic missense mutations at allosteric sites were collected from patient samples from 33 cancer types and (iv) 1493 pharmacophores extracted from allosteric sites were provided for modulator screening. Over the past ten years, the ASD has become a central resource for studying allosteric regulation and will play more important roles in both target identification and allosteric drug discovery in the future.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kun Song
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Li
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Xinheng He
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hao Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qi Wang
- China National Pharmaceutical Industry Information Center, Shanghai, 200040, China
| | - Yingyi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jing Wu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yaqin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
37
|
Wang W, Liu Y, Niu J, Lin W. Discrimination of live and dead cells with two different sets of signals and unique application in vivo imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118115. [PMID: 32007905 DOI: 10.1016/j.saa.2020.118115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Discriminating living and dead cells is of great significance for the study of apoptosis. In this work, we have developed a unique fluorescent probe (RPIC) for discriminating live and dead cells with duel-channel fluorescence imaging under double excitation and double emission mode. Dead cells treated with RPIC shows weak fluorescence signals in red channel, however, strong fluorescence signals are appeared in red channel in live cells. Weak and strong green fluorescence signals present at live cells and dead cells, respectively. Moreover, RPIC can detect successfully apoptosis of cancer cells. For in-vivo imaging, RPIC can discriminate successfully live and dead zebrafish with the same method. More interestingly, it is found that RPIC possesses the ability of discriminating normal mice and tumor mice.
Collapse
Affiliation(s)
- Weishan Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Yong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Jie Niu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
38
|
Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev 2020; 49:4234-4253. [DOI: 10.1039/c9cs00773c] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the development of activatable immunotherapeutic nanoagents that activate antitumor immunity only in response to internal or external stimuli, which potentially enhance patient response rates while reducing immune-related adverse events during cancer immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
39
|
Glaser M, Rajkumar V, Diocou S, Gendron T, Yan R, Sin PKB, Sander K, Carroll L, Pedley RB, Aboagye EO, Witney TH, Årstad E. One-Pot Radiosynthesis and Biological Evaluation of a Caspase-3 Selective 5-[ 123,125I]iodo-1,2,3-triazole derived Isatin SPECT Tracer. Sci Rep 2019; 9:19299. [PMID: 31848442 PMCID: PMC6917698 DOI: 10.1038/s41598-019-55992-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/26/2019] [Indexed: 11/08/2022] Open
Abstract
Induction of apoptosis is often necessary for successful cancer therapy, and the non-invasive monitoring of apoptosis post-therapy could assist in clinical decision making. Isatins are a class of compounds that target activated caspase-3 during apoptosis. Here we report the synthesis of the 5-iodo-1,2,3-triazole (FITI) analog of the PET tracer [18F]ICMT11 as a candidate tracer for imaging of apoptosis with SPECT, as well as PET. Labelling with radioiodine (123,125I) was achieved in 55 ± 12% radiochemical yield through a chelator-accelerated one-pot cycloaddition reaction mediated by copper(I) catalysis. The caspase-3 binding affinity and selectivity of FITI compares favourably to that of [18F]ICMT11 (Ki = 6.1 ± 0.9 nM and 12.4 ± 4.7 nM, respectively). In biodistribution studies, etoposide-induced cell death in a SW1222 xenograft model resulted in a 2-fold increase in tumour uptake of the tracer. However, the tumour uptake was too low to allow in vivo imaging of apoptosis with SPECT.
Collapse
Affiliation(s)
- Matthias Glaser
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | | | - Seckou Diocou
- UCL, Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Thibault Gendron
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Ran Yan
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, SE1 7EH, London, United Kingdom
| | - Pak Kwan Brian Sin
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
| | - Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Laurence Carroll
- Imperial College London, Science, Technology & Medicine, Department of Medicine, Hammersmith Hospital, DuCane Road, London, W12 0NN, United Kingdom
| | | | - Eric O Aboagye
- Imperial College London, Science, Technology & Medicine, Department of Medicine, Hammersmith Hospital, DuCane Road, London, W12 0NN, United Kingdom
| | - Timothy H Witney
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, SE1 7EH, London, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom.
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom.
| |
Collapse
|
40
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
41
|
Wei L, Wang Z, Xia Y, Liu B. The mechanism and tumor inhibitory study of Lagopsis supine ethanol extract on colorectal cancer in nude mice. Altern Ther Health Med 2019; 19:173. [PMID: 31299960 PMCID: PMC6624892 DOI: 10.1186/s12906-019-2585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/30/2019] [Indexed: 02/05/2025]
Abstract
Background This study was aimed to determination the tumor inhibitory effect and explore the potential mechanisms of Lagopsis supine ethanol extract (Ls) on colorectal cancer. Methods The cell growth inhibition experiment of Ls in colorectal cancer cell lines was determined by MTT method in the time course of 24, 48 and 72 h in four gradient drug concentrations. The protein expression levels of pSTAT3, pJAK2, STAT3, JAK2, Bcl-2 and caspase 3 were measured by Western blot method. The mRNA levels of the downstream genes of STAT3 were detected through semi-quantitative RT PCR. Sixty Balb/c-nude mice were xenograft with HCT116 colorectal cancer cells through subcutaneously. The xenografts were divided into five groups: model group, positive group (capecitabine 300 mg/kg) and three dosages of Ls treated groups (75, 150 and 300 mg/kg). Tumor size and tumor weight were calculated for evaluation the anti-tumor effects. H & E staining and immunohistochemical analysis were used to determine the histopathological changes and the levels of pSTAT3 and pJAK2 in the tumor tissues. Results Ls exhibited a significant anti-proliferation effect in HCT116 and SW480 cells in vitro. The protein levels of pSTAT3, pJAK2 and Bcl-2, and the mRNA levels of Bcl-2 and Bak notably reduced with a dose-dependent manner. While the protein levels of caspase 3, and mRNA levels of Bax and caspase-3 remarkably increased in the gradient dosage of Ls in HCT116 cells. HCT116 in vivo xenografts experiment showed that the growth of the tumors significantly inhibited by Ls administration, which with no any significant body weight changes in each experiment group. The histopathology analysis displayed that Ls significantly reduced the inflammatory cells in tumor tissue. Furthermore, Ls also significantly down-regulate the protein levels of pSTAT3 and pJAK2 in the tumor tissues, compared with the model group. Conclusions This work shows that Ls inhibited the cell proliferation of colorectal cancer in vitro and significantly reduced the tumor growth in HCT116 xenografts in vivo, which is probably related with the JAK/STAT signal pathway.
Collapse
|
42
|
Tubeleviciute-Aydin A, Beautrait A, Lynham J, Sharma G, Gorelik A, Deny LJ, Soya N, Lukacs GL, Nagar B, Marinier A, LeBlanc AC. Identification of Allosteric Inhibitors against Active Caspase-6. Sci Rep 2019; 9:5504. [PMID: 30940883 PMCID: PMC6445123 DOI: 10.1038/s41598-019-41930-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/21/2019] [Indexed: 01/04/2023] Open
Abstract
Caspase-6 is a cysteine protease that plays essential roles in programmed cell death, axonal degeneration, and development. The excess neuronal activity of Caspase-6 is associated with Alzheimer disease neuropathology and age-dependent cognitive impairment. Caspase-6 inhibition is a promising strategy to stop early stage neurodegenerative events, yet finding potent and selective Caspase-6 inhibitors has been a challenging task due to the overlapping structural and functional similarities between caspase family members. Here, we investigated how four rare non-synonymous missense single-nucleotide polymorphisms (SNPs), resulting in amino acid substitutions outside human Caspase-6 active site, affect enzyme structure and catalytic efficiency. Three investigated SNPs were found to align with a putative allosteric pocket with low sequence conservation among human caspases. Virtual screening of 57,700 compounds against the putative Caspase-6 allosteric pocket, followed by in vitro testing of the best virtual hits in recombinant human Caspase-6 activity assays identified novel allosteric Caspase-6 inhibitors with IC50 and Ki values ranging from ~2 to 13 µM. This report may pave the way towards the development and optimisation of novel small molecule allosteric Caspase-6 inhibitors and illustrates that functional characterisation of rare natural variants holds promise for the identification of allosteric sites on other therapeutic targets in drug discovery.
Collapse
Affiliation(s)
- Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Jeffrey Lynham
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec, H3A 0C7, Canada
| | - Gyanesh Sharma
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Alexei Gorelik
- Department of Biochemistry, McGill University, 3649 promenade Sir-William-Osler, Montreal, Quebec, H3G 0B1, Canada
| | - Ludovic J Deny
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Naoto Soya
- Department of Physiology and Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y6, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, 3649 promenade Sir-William-Osler, Montreal, Quebec, H3G 0B1, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
43
|
Xu P, Ning P, Wang J, Qin Y, Liang F, Cheng Y. Precise control of apoptosis via gold nanostars for dose dependent photothermal therapy of melanoma. J Mater Chem B 2019; 7:6934-6944. [DOI: 10.1039/c9tb01956a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Precise induction and monitoring of cell apoptosis are significant for cancer treatment.
Collapse
Affiliation(s)
- Peng Xu
- The State Key Laboratory of Refractories and Metallurgy
- Coal Conversion and New Carbon Materials Hubei Key Laboratory
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan
| | - Peng Ning
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Jingjing Wang
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Yao Qin
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy
- Coal Conversion and New Carbon Materials Hubei Key Laboratory
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan
| | - Yu Cheng
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| |
Collapse
|
44
|
Dang DT, van Onzen AHAM, Dorland YL, Brunsveld L. Cucurbit[8]uril Reactivation of an Inactivated Caspase-8 Mutant Reveals Differentiated Enzymatic Substrate Processing. Chembiochem 2018; 19:2490-2494. [PMID: 30300966 PMCID: PMC6391946 DOI: 10.1002/cbic.201800521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 01/26/2023]
Abstract
Caspase-8 constructs featuring an N-terminal FGG sequence allow for selective twofold recognition by cucurbit[8]uril, which leads to an increase of the enzymatic activity in a cucurbit[8]uril dose-dependent manner. This supramolecular switching has enabled for the first time the study of the same caspase-8 in its two extreme states; as full monomer and as cucurbit[8]uril induced dimer. A mutated, fully monomeric caspase-8 (D384A), which is enzymatically inactive towards its natural substrate caspase-3, could be fully reactivated upon addition of cucurbit[8]uril. In its monomeric state caspase-8 (D384A) still processes a small synthetic substrate, but not the natural caspase-3 substrate, highlighting the close interplay between protein dimerization and active site rearrangement for substrate selectivity. The ability to switch the caspase-8 activity by a supramolecular system thus provides a flexible approach to studying the activity of a protein at different oligomerization states.
Collapse
Affiliation(s)
- Dung T. Dang
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Arthur H. A. M. van Onzen
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Yvonne L. Dorland
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| |
Collapse
|
45
|
Gratzer K, Diemer V, Clayden J. Signal transduction in oligoamide foldamers by selective non-covalent binding of chiral phosphates at a urea binding site. Org Biomol Chem 2018; 15:3585-3589. [PMID: 28397923 DOI: 10.1039/c7ob00660h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transduction of biological signals depends on the spatial communication of conformational change. We report a synthetic mimic of this signal transduction process in which non-covalent binding induces a change in the position of equilibrium between two rapidly interconverting screw-sense conformers of a synthetic helical polyamide. Selectivity was achieved by incorporating at the N-terminus of the polyamide a urea-based anion recognition site capable of binding chiral phosphate anions. As a result of solvent-dependent binding, an induced conformational change propagates from the binding site through the amide chain, leading to a screw-sense preference detectable in the form of a chemical shift separation between two NMR active 13C labels. The remote induction of screw sense preference indicates successful communication of a signal originating solely from non-covalent binding.
Collapse
Affiliation(s)
- Katharina Gratzer
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | |
Collapse
|
46
|
Sheffield WP, Eltringham-Smith LJ, Bhakta V. A factor XIa-activatable hirudin-albumin fusion protein reduces thrombosis in mice without promoting blood loss. BMC Biotechnol 2018; 18:21. [PMID: 29621998 PMCID: PMC5887181 DOI: 10.1186/s12896-018-0431-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/27/2018] [Indexed: 01/13/2023] Open
Abstract
Background Hirudin is a potent thrombin inhibitor but its antithrombotic properties are offset by bleeding side-effects. Because hirudin’s N-terminus must engage thrombin’s active site for effective inhibition, fusing a cleavable peptide at this site may improve hirudin’s risk/benefit ratio as a therapeutic agent. Previously we engineered a plasmin cleavage site (C) between human serum albumin (HSA) and hirudin variant 3 (HV3) in fusion protein HSACHV3. Because coagulation factor XI (FXI) is more involved in thrombosis than hemostasis, we hypothesized that making HV3 activity FXIa-dependent would also improve HV3’s potential therapeutic profile. We combined albumin fusion for half-life extension of hirudin with positioning of an FXIa cleavage site N-terminal to HV3, and assessed in vitro and in vivo properties of this novel protein. Results FXIa cleavage site EPR was employed. Fusion protein EPR-HV3HSA but not HSAEPR-HV3 was activated by FXIa in vitro. FVIIa, FXa, FXIIa, or plasmin failed to activate EPR-HV3HSA. FXIa-cleavable EPR-HV3HSA reduced the time to occlusion of ferric chloride-treated murine arteries and reduced fibrin deposition in murine endotoxemia; noncleavable mycHV3HSA was without effect. EPR-HV3HSA elicited less blood loss than constitutively active HV3HSA in murine liver laceration or tail transection but extended bleeding time to the same extent. EPR-HV3HSA was partially activated in citrated human or murine plasma to a greater extent than HSACHV3. Conclusions Releasing the N-terminal block to HV3 activity using FXIa was an effective way to limit hirudin’s bleeding side-effects, but plasma instability of the exposed EPR blocking peptide rendered it less useful than previously described plasmin-activatable HSACHV3.
Collapse
Affiliation(s)
- William P Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. .,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Louise J Eltringham-Smith
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| |
Collapse
|
47
|
Thomas ME, Grinshpon R, Swartz P, Clark AC. Modifications to a common phosphorylation network provide individualized control in caspases. J Biol Chem 2018; 293:5447-5461. [PMID: 29414778 DOI: 10.1074/jbc.ra117.000728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Caspase-3 activation and function have been well-defined during programmed cell death, but caspase activity, at low levels, is also required for developmental processes such as lymphoid proliferation and erythroid differentiation. Post-translational modification of caspase-3 is one method used by cells to fine-tune activity below the threshold required for apoptosis, but the allosteric mechanism that reduces activity is unknown. Phosphorylation of caspase-3 at a conserved allosteric site by p38-MAPK (mitogen-activated protein kinase) promotes survival in human neutrophils, and the modification of the loop is thought to be a key regulator in many developmental processes. We utilized phylogenetic, structural, and biophysical studies to define the interaction networks that facilitate the allosteric mechanism in caspase-3. We show that, within the modified loop, Ser150 evolved with the apoptotic caspases, whereas Thr152 is a more recent evolutionary event in mammalian caspase-3. Substitutions at Ser150 result in a pH-dependent decrease in dimer stability, and localized changes in the modified loop propagate to the active site of the same protomer through a connecting surface helix. Likewise, a cluster of hydrophobic amino acids connects the conserved loop to the active site of the second protomer. The presence of Thr152 in the conserved loop introduces a "kill switch" in mammalian caspase-3, whereas the more ancient Ser150 reduces without abolishing enzyme activity. These data reveal how evolutionary changes in a conserved allosteric site result in a common pathway for lowering activity during development or a more recent cluster-specific switch to abolish activity.
Collapse
Affiliation(s)
- Melvin E Thomas
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - Robert Grinshpon
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - Paul Swartz
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - A Clay Clark
- the Department of Biology, University of Texas, Arlington, Texas 76019
| |
Collapse
|
48
|
Haywood J, Schmidberger JW, James AM, Nonis SG, Sukhoverkov KV, Elias M, Bond CS, Mylne JS. Structural basis of ribosomal peptide macrocyclization in plants. eLife 2018; 7:32955. [PMID: 29384475 PMCID: PMC5834244 DOI: 10.7554/elife.32955] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Constrained, cyclic peptides encoded by plant genes represent a new generation of drug leads. Evolution has repeatedly recruited the Cys-protease asparaginyl endopeptidase (AEP) to perform their head-to-tail ligation. These macrocyclization reactions use the substrates amino terminus instead of water to deacylate, so a peptide bond is formed. How solvent-exposed plant AEPs macrocyclize is poorly understood. Here we present the crystal structure of an active plant AEP from the common sunflower, Helianthus annuus. The active site contained electron density for a tetrahedral intermediate with partial occupancy that predicted a binding mode for peptide macrocyclization. By substituting catalytic residues we could alter the ratio of cyclic to acyclic products. Moreover, we showed AEPs from other species lacking cyclic peptides can perform macrocyclization under favorable pH conditions. This structural characterization of AEP presents a logical framework for engineering superior enzymes that generate macrocyclic peptide drug leads. Most proteins are long, chain-like molecules that have two ends respectively called the N-terminus and C-terminus. However, certain proteins can close on themselves to become circular. This requires a chemical reaction between the N- and C-termini, which creates a strong bond between the two extremities. To go through this ‘cyclization’ process, a straight protein attaches to a certain type of protease, a class of enzyme that usually cuts proteins into smaller pieces. In plants that are distantly related, the same group of enzymes – called AEPs – has been selected to perform cyclization. Here, Haywood et al. study an AEP enzyme from sunflowers: they identify what about this enzyme’s structure is important to drive the complex chemical reaction that results in the protein being cyclized rather than simply cut. Using a technique called X-ray crystallography to see the positions of individual atoms in the enzyme, Haywood et al. caught a snapshot of the enzyme. Its structure explained how the enzyme’s shape can guide cyclization. In particular, the part of the enzyme that binds to the proteins, the active site, was relatively flat and open, but also flexible: this helped the N and C-termini react with each other and close the protein. Further experiments artificially mutated specific areas of the enzyme, which helped determine exactly which elements guide this succession of chemical reactions. The activity of AEPs is influenced by their local environment, such as acidity. In fact, Haywood et al. showed that certain AEPs, which do not normally carry out cyclization, can start performing this role when exposed to a different level of acidity. The pharmaceutical industry is increasingly interested in circular proteins, as these are stable, easily used by the body, and can be genetically customized to act only on specific targets. If the cyclization process is better understood, and then harnessed, new drug compounds could be produced.
Collapse
Affiliation(s)
- Joel Haywood
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.,The ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia
| | - Jason W Schmidberger
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.,The ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia
| | - Amy M James
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.,The ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia
| | - Samuel G Nonis
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.,The ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia
| | - Kirill V Sukhoverkov
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.,The ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.,The ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia
| |
Collapse
|
49
|
Vance NR, Gakhar L, Spies MA. Allosteric Tuning of Caspase-7: A Fragment-Based Drug Discovery Approach. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas R. Vance
- Division of Medicinal and Natural Products Chemistry; College of Pharmacy; University of Iowa; 115 S Grand Ave Iowa City IA 52242 USA
| | - Lokesh Gakhar
- Department of Biochemistry; College of Medicine; University of Iowa; 51 Newton Road Iowa City IA 52242 USA
- Protein Crystallography Facility; Roy J. and Lucille A. Carver College of Medicine; University of Iowa; 51 Newton Road Iowa City IA 52242 USA
| | - M. Ashley Spies
- Division of Medicinal and Natural Products Chemistry; College of Pharmacy; University of Iowa; 115 S Grand Ave Iowa City IA 52242 USA
- Department of Biochemistry; College of Medicine; University of Iowa; 51 Newton Road Iowa City IA 52242 USA
| |
Collapse
|
50
|
Insight into the mechanism of action and selectivity of caspase-3 reversible inhibitors through in silico studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|