1
|
Deng Z, Xu J, Zhu S, Zou M, Wang B, Zhang W, Zhang F. Highly efficient 5-hydroxymethylfurfural production from fructose over S, N-doped lignin carbon solid acids. Int J Biol Macromol 2025; 310:143221. [PMID: 40250677 DOI: 10.1016/j.ijbiomac.2025.143221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The production of 5-hydroxymethylfurfural (HMF) by traditional liquid acid catalysis has the problems of high equipment requirements and high pollution, which can be overcame by using environmentally friendly solid acid catalysts. In this paper, the lignin-based carbon solid acid (LBCS) co-doped with S, N elements was synthesized for the efficient catalysis of fructose conversion to HMF. The ammonium sulphate and sodium lignosulfonate (LS) were served as carbon-containing precursors via ice templates, and lignin-based carbon solid acids were prepared after one-step carbonization activation and sulfonation. Ammonium sulfate enhances the weak acid sites of the solid acids, while bringing high S, N contents of 3.75 % and 3.35 %. The total acidity of the solid acid was as high as 8.123 mmol/g. Following the optimization of the catalytic reaction conditions, the conversion of fructose to HMF was successfully catalyzed within a DMSO and water system, resulting in a fructose conversion rate exceeding 99 % and achieving an HMF yield of up to 91.91 %. In addition, there was no significant deactivation after 5 cycles of reuse. The efficient catalysis of LBCS represents both a value-added use of woody biomass resources and an environmentally friendly alternative to liquid acid catalysts for HMF production.
Collapse
Affiliation(s)
- Ziji Deng
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, Plant Fiber Materials Science Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, Plant Fiber Materials Science Research Center, South China University of Technology, Guangzhou 510640, China; Shandong Sun Paper Industry Joint Stock, Jining 272100, China.
| | - Shiyun Zhu
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, Plant Fiber Materials Science Research Center, South China University of Technology, Guangzhou 510640, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | - Maowang Zou
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, Plant Fiber Materials Science Research Center, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, Plant Fiber Materials Science Research Center, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhang
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, Plant Fiber Materials Science Research Center, South China University of Technology, Guangzhou 510640, China; Shandong Sun Paper Industry Joint Stock, Jining 272100, China
| | - Fengshan Zhang
- Shandong Huatai Paper Industry Shareholding Co., Ltd, Dongying 257335, China
| |
Collapse
|
2
|
Cheruvathoor Poulose A, Bares H, Zaoralová D, Dědek I, Otyepka M, Bakandritsos A, Zbořil R. Aminosulfonated Graphene as a Catalyst for Efficient Production of Biodiesel from Fatty Acids and Crude Vegetable Oils. CHEMSUSCHEM 2025:e2402488. [PMID: 40197703 DOI: 10.1002/cssc.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Climate change and the depletion of fossil fuels increase the demand for sustainable energy. Biodiesel synthesized using heterogeneous acid catalysts is a promising clean-energy carrier that supports a circular carbon economy. Herein, the efficient synthesis of biodiesel is reported using a reusable solid acid graphene catalyst functionalized with a natural aminosulfonic acid. Experimental and theoretical studies reveal the key role of functionalities that simultaneously contain amino and sulfonate groups, which impart superior acidity. Excellent activity and selectivity for oleic acid conversion to oleic acid methyl esters (a sustainable biofuel) are obtained, offering a strategy for achieving improved catalytic performance compared to earlier or benchmark catalysts in the field. Notably, the catalyst also effectively converts common vegetable oils into biodiesel via transesterification and facilitates carbohydrate dehydration to value-added chemicals, demonstrating broad applicability. Two additional variants of aminosulfonic acid-functionalized graphene show similar activity, confirming the crucial role of these functionalities in achieving high acidity and catalytic performance. The development of such potent, recyclable catalysts is crucial because acid catalysis is highly versatile, underpinning many biological and synthetic transformations.
Collapse
Affiliation(s)
- Aby Cheruvathoor Poulose
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech
| | - Hugo Bares
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech
| | - Dagmar Zaoralová
- IT4InnovationsVŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 708 00, Poruba, Czech
| | - Ivan Dědek
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech
- IT4InnovationsVŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 708 00, Poruba, Czech
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech
- Nanotechnology Centre Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00, Ostrava, Czech
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech
- Nanotechnology Centre Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00, Ostrava, Czech
| |
Collapse
|
3
|
Valentini F, Chen S, Brufani G, Gu Y, Vaccaro L. Ni/PiNe Heterogeneous Catalyst from Biomass Waste: Low-Loading, Ligand-Free Suzuki-Miyaura Cross-Coupling. CHEMSUSCHEM 2025; 18:e202402011. [PMID: 39560453 PMCID: PMC11960593 DOI: 10.1002/cssc.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
An efficient Ni-based heterogeneous catalyst from pine needles urban waste valorization was designed and developed with a resource recycling strategy. The Ni/PiNe catalyst was fully characterized and tested in the Suzuki-Miyaura coupling under microwave irradiation. Although Ni is a promising candidate for replacing Pd-based catalytic systems, it generally requires a high catalyst amount and the exploitation of ligands and additives to enhance the reaction rate. On the contrary, with our new Ni/PiNe, 30 different products were efficiently synthesized with an isolated yield of up to 93 %, using a very low catalyst amount and in the absence of ligands. Furthermore, the Ni/PiNe catalyst also showed good durability for consecutive cycles and an impressive TON value (1140). In addition to the catalytic efficiency in short reaction time and to the stability and durability under MW irradiation, the Ni/PiNe allowed for further optimization, achieving a low E-factor value (14.0), thus highlighting the potential in further reducing the waste and costs associated to the process.
Collapse
Affiliation(s)
- Federica Valentini
- Laboratory of Green S.O.C. – Dipartimento di Chimica, biologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto 806123PerugiaItaly
| | - Shaomin Chen
- Laboratory of Green S.O.C. – Dipartimento di Chimica, biologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto 806123PerugiaItaly
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Zhejiang Base of National Southern Pesticide Research CentreZhejiang Research Institute of Chemical IndustryHangzhou310023China
| | - Giulia Brufani
- Laboratory of Green S.O.C. – Dipartimento di Chimica, biologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto 806123PerugiaItaly
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C. – Dipartimento di Chimica, biologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto 806123PerugiaItaly
| |
Collapse
|
4
|
Dang TM, Nguyen TH, Nguyen HK, Phan HB, Nguyen HT, Tran PH. Biomass-derived magnetic amorphous carbon as an efficient catalyst in the conversion of fructose into 5-hydroxymethylfurfural. Dalton Trans 2025; 54:4965-4976. [PMID: 39988969 DOI: 10.1039/d4dt03566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Fructose dehydration yields 5-hydroxymethylfurfural (5-HMF), a multifaceted precursor for clean fuels, advanced biofuels, and fuel additives. In this work, we developed a magnetic solid acid (BMSA) derived from rice husk as a proficient catalyst in the production of 5-HMF. This study investigated the influence of calcination conditions on the acid content of the catalyst, with the objective of enhancing its performance. The study factors include the effects of temperature, solvent, reaction duration, and catalyst mass, which were investigated. 5-HMF was synthesized with a yield of 72% in 3 h using 2 mg of catalyst in DMSO at 120 °C. Interestingly, the catalyst exhibited facile recovery with an external magnet and demonstrated efficient reusability for up to four cycles.
Collapse
Affiliation(s)
- Tuan Minh Dang
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ha Khanh Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ha Bich Phan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute of Public Health, Ho Chi Minh City, Vietnam
| | - Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Malaika A, Eblagon KM, Matuszek N, Pereira MFR, Kozłowski M. Towards valorization of glycerol and molasses: Carbon-based catalysts from molasses for the synthesis of acetins. BIORESOURCE TECHNOLOGY 2025; 417:131834. [PMID: 39557101 DOI: 10.1016/j.biortech.2024.131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Crude sugarcane molasses (SCM) was successfully applied for the first time as a bio-feedstock for producing biochar catalysts for glycerol upgrading. Preparation methods were developed, including partial or hydrothermal carbonization (abbr. PC and HTC) and chemical activation. After functionalization with -SO3H groups, the catalysts were tested for the esterification of glycerol to acetins. The materials varied in their textural and chemical features, particularly in the -SO3H content, giving the single-step PC method a distinct advantage. The best catalyst yielded approximately 74 % of di- and tri-acetins with 97 % glycerol conversion within only 2 h of the reaction and demonstrated great stability over three consecutive cycles. The formation of the desired TA product was correlated with the concentration of -SO3H groups. Despite being non-porous, the most active PC catalyst possessed a compact structure with a high abundance and easy accessibility of -SO3H, -COOH, and -OH groups on its surface.
Collapse
Affiliation(s)
- Anna Malaika
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Katarzyna Morawa Eblagon
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nikola Matuszek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mieczysław Kozłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Kotkar G, Tilve SG. Sulfonic Acid-Functionalized Solid Polymer Catalyst from Crude Cashew Nut Shell Liquid: Synthesis of Tetra(indolyl)methanes and Bis(indolyl)methanes from Xylochemicals. ACS OMEGA 2024; 9:47543-47556. [PMID: 39651066 PMCID: PMC11618440 DOI: 10.1021/acsomega.4c06337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024]
Abstract
Xylochemistry presents a sustainable solution to the depletion of petroleum resources, contributing to the success of the circulatory economy. The development of reusable carbonaceous materials as heterogeneous acid catalysts has garnered significant attention in both research community and industry. Catalysis research has an intrinsic connection with low-cost synthetic routes, sustainable raw materials, and chemical and thermal stability. We designed and made a solid acid catalyst that can be used more than once from cheap, naturally occurring, crude cashew nut shell liquid (CNSL). Identification of practical applications for waste biomass is a component of the objectives of sustainable development. We treated the black-colored crude CNSL with varying amounts of formaldehyde and further sulfonated the resulting crude resins with chlorosulfonic acid. The solid with the most sulfonic acid groups was used as a Bronsted acid catalyst (CNSLF-SO3H) for the Friedel-Craft reactions of indoles and furfuraldehydes. We synthesized 15 novel di[bis(indolyl)methane] derivatives from secondary xylochemical 2,5-diformylfuran (DFF) and 15 bis(indolyl)methanes from 5-hydroxymethylfurfural (5-HMF).
Collapse
|
7
|
Noor Armylisas AH, Hoong SS, Tuan Ismail TNM, Chan CH. Efficient biodiesel production by sulfonated carbon catalyst derived from waste glycerine pitch via single-step carbonisation and sulfonation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:34-43. [PMID: 39173470 DOI: 10.1016/j.wasman.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Glycerine pitch is a highly alkaline residue from the oleochemical industry that contains glycerol and contaminants, such as water, soap, salt and ash. In this study, acidic heterogeneous glycerol-based carbon catalysts were synthesised for biodiesel production via single-step partial carbonisation and sulfonation using pure glycerol and glycerine pitch, producing products labelled as SGC and SGPC, respectively. Carbon materials were obtained by heating glycerol and concentrated sulfuric acid (1:3) at 200℃ for 1 h. The produced SGC and SGPC displayed high densities of sulfonic group (-SO3H), i.e. 1.49 and 1.00 mmol·g-1, respectively, alongside carboxylic (-COOH) and phenolic (-OH) acid. In the catalytic evaluation, excellent oleic acid conversions of 96.0 ± 0.4 % and 92.4 ± 0.5 % were achieved using SGC and SGPC, respectively, under optimised reaction conditions: 1:10 M ratio of oleic acid to methanol, 5 % (w/w) catalyst, 64℃ and 5 h. SGPC was found to be recyclable with 68.5 % conversion after the 6th cycle, which was attributed to the loss of -SO3H and catalyst deactivation by the deposition of oleic acid on its surface. Remarkably, despite the impurities present in the glycerine pitch, the obtained results demonstrated that the reactivity of SGPC is comparable to SGC and superior to that of commercial solid acid catalysts, which demonstrated that the presence of impurities appears to have minimal impact on the production of carbon materials and their properties.
Collapse
Affiliation(s)
- A H Noor Armylisas
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - S S Hoong
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - T N M Tuan Ismail
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - C H Chan
- Process Engineering and Design (PED) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
8
|
Sarangi PK, Singh AK, Ganachari SV, Pengadeth D, Mohanakrishna G, Aminabhavi TM. Biobased heterogeneous renewable catalysts: Production technologies, innovations, biodiesel applications and circular bioeconomy. ENVIRONMENTAL RESEARCH 2024; 261:119745. [PMID: 39117050 DOI: 10.1016/j.envres.2024.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The growing population and waste biomass accumulation are leading to increased environmental pollution and climate change. Waste biomass comprising of nutrient rich components has promising potential to produce value-added products for sustainable environmental solutions. This review explores the critical role of bio-based heterogeneous catalysts in enabling sustainable waste biomass utilization. In industrial chemical transformations, over 95% involve catalysts, with more than 90% being heterogeneous systems, prized for their robustness, ease of product separation, and reusability. Bio-based heterogeneous catalysts address the pressing need for sustainable waste biomass management, allowing the conversion of diverse waste biomasses into biodiesel as valuable products. Research on these catalysts, particularly for biodiesel production, has shown yields exceeding 90% with enhanced catalyst reusability. This surge in research is evident from the increasing number of published articles, notably in 2022 and 2023, highlighting growing interest and importance in the scientific community. The synthesis of these catalysts is examined, including novel approaches and techniques to enhance their efficiency, selectivity, and stability. The challenges with their feasible solutions of heterogeneous catalysts in catalyst-based processes are addressed. Altogether, this review underscores the immense potential of bio-based heterogeneous catalysts in sustainable waste biomass utilization, aligning with resource efficiency and environmental conservation goals while offering distinct insights and perspectives on the latest innovations in the field.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795 004, India.
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845 401, India
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Devu Pengadeth
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Korea University, Seoul, South Korea.
| |
Collapse
|
9
|
Qi S, Zhang T, Zhang C, Jiang B, Huang C, Yong Q, Jin Y. Sucrose-derived porous carbon catalyzed lignin depolymerization to obtain a product with application in type 2 diabetes mellitus. Int J Biol Macromol 2024; 279:135170. [PMID: 39214225 DOI: 10.1016/j.ijbiomac.2024.135170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As the most important phenolic biopolymer in nature, lignin shows promising application potentialities in various bioactivities in vivo and in vitro, mainly including antioxidant, anti-inflammatory, hypolipidemic, and antidiabetic control. In this work, several carbon-based solid acids were synthesized to catalyze the fragmentation of organosolv lignin (OL). The generated lignin fragments, with controllable molecular weight and functional groups, were further evaluated for their application in the prevention and treatment of type 2 diabetes mellitus (T2DM). The results suggested that the urea-doped catalyst (SUPC) showed a more excellent catalytic performance in producing diethyl ether insoluble lignin (DEIL) and diethyl ether soluble lignin (DESL). In addition, the lignin fragments have a good therapeutic effect on the cell model of T2DM. Compared with the insulin resistance model, DEIL obtained by catalytic depolymerization of OL with SUPC could improve the glucose consumption of insulin-resistant cells. Moreover, low-concentration samples (50 μg/mL) can promote glucose consumption (19.7 mM) more than the traditional drug rosiglitazone (17.5 mM). This work demonstrates the prospect of depolymerized lignin for the prevention and treatment of T2DM and provides a new application field for lignin degradation products.
Collapse
Affiliation(s)
- Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Fan H, Wang Q, Liu H, Han B, Liu H, Yang G. Surface Engineering of Biochar Toward Simultaneously Generating Superamphiphilicity and Catalytic Activity for Strengthening Pickering Interfacial Catalysis. CHEMSUSCHEM 2024; 17:e202400248. [PMID: 38695866 DOI: 10.1002/cssc.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Multifunctional carbon materials have revealed distinctive features and excellent performance in the field of catalysis. However, the facile fabrication of bifunctional carbon materials with special wettability and catalytic activity remains a grand challenge in Pickering emulsion catalysis. Herein, we reported one-step construction of bifunctional biochar with superamphiphilicity and catalytic activity directly from the thermolysis of sawdust and 1-butyl-3-methylimidazolium tetrafluoroborate for enhancing the oxidation of benzyl alcohol in Pickering emulsion. Co-doping of B and F enhanced the hydrophilicity of biochar, and the oleophilicity of biochar was kept simultaneously. Conversion became 4 times using bifunctional biochar compared with blank results during the oxidation of benzyl alcohol. More interestingly, the turnover frequency (TOF) value using bifunctional biochar enhanced 61 % than that employing N-doped superamphiphilic carbon without catalytic activity. Catalytic activities of bifunctional biochar could be ascribed to the existence of different chemical bonds containing the element B. This work paves a path toward rational design of bifunctional biochar materials with special wettability and catalytic activity for greatly enhancing the liquid-liquid biphasic reaction efficiencies.
Collapse
Affiliation(s)
- Honglei Fan
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Qiuxia Wang
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hongliang Liu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guanying Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Suminar DR, Pribadi CZ, Fitriana QR, Andrijanto E, Permana MD, Eddy DR, Rahayu I. Corncob waste derived carbon with sulfonic acid group: An efficient heterogeneous catalyst for production of ethyl levulinate as biodiesel additives. Heliyon 2024; 10:e37687. [PMID: 39309960 PMCID: PMC11416285 DOI: 10.1016/j.heliyon.2024.e37687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Alkyl levulinate is a biomass-based chemical compound used as a fuel additive. This research aims to produce ethyl levulinate from levulinic acid and ethanol using esterification with the assistance of a heterogeneous sulfonated carbon catalyst. The carbon sulfonate catalyst is obtained from corncob waste that has undergone carbonization at 300 °C and sulfonation using sulfuric acid at a temperature of 150 °C for 8 h. The catalyst is used for esterification with predetermined operating variables using Box-Behnken Design (BBD) on the response surface methodology (RSM). The result shows significant variables for ethyl levulinate esterification are catalyst loading and esterification time. The FTIR analysis indicates the presence of S=O bonds in the sulfonated carbon catalyst. The XRD and SEM analysis shows that the sulfonated carbon catalyst is in amorphous and mesoporous form. Catalyst reusability demonstrates that the corncob-derived carbon sulfonate catalyst can be used up to 3 times. The optimum condition for esterification is 9 h of reaction, 10 % catalyst loading, and a molar ratio of levulinic acid to ethanol of 1:10, which has 83.15 % conversion. These results present the optimum parameter conditions for an efficient heterogeneous catalyst from corncob for producing ethyl levulinate.
Collapse
Affiliation(s)
- Dian Ratna Suminar
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Qonita Rahmah Fitriana
- Department of Chemical Engineering, Politeknik Negeri Bandung, Bandung Barat, 40559, Indonesia
| | - Eko Andrijanto
- Department of Chemical Engineering, Politeknik Negeri Bandung, Bandung Barat, 40559, Indonesia
| | - Muhamad Diki Permana
- Special Educational Program for Green Energy Conversion Science and Technology, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, 4008511, Japan
- Center for Crystal Science and Technology, University of Yamanashi, Kofu, 400-8511, Japan
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Iman Rahayu
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
12
|
Ahmed MR, Anaya IO, Nishina Y. Investigating the radical properties of oxidized carbon materials under photo-irradiation: behavior of carbon radicals and their application in catalytic reactions. Chem Commun (Camb) 2024; 60:10544-10547. [PMID: 39229730 DOI: 10.1039/d4cc03101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Oxidized carbon materials have abundant surface functional groups and customizable properties, making them an excellent platform for generating radicals. Unlike reactive oxygen species such as hydroxide or superoxide radicals that have been reported previously, oxidized carbon also produces stable carbon radicals under photo-irradiation. This has been confirmed through electron spin resonance. Among the various oxidized carbon materials synthesized, graphene oxide shows the largest number of carbon radicals when exposed to blue LED light. The light absorption capacity, high surface area, and unique structural characteristics of oxidized carbon materials offer a unique function for radical-mediated oxidative reactions.
Collapse
Affiliation(s)
- Md Razu Ahmed
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
- Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Israel Ortiz Anaya
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuta Nishina
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
13
|
Jiang Z, He C, Gao F, Shi Q, Chen Y, Yu H, Zhou Z, Wang R. Molecular characteristics of organic matter derived from sulfonated biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1641-1650. [PMID: 39132952 DOI: 10.1039/d4em00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Sulfonated biochar (SBC), as a functional carbon-based material, has attracted widespread attention due to its excellent adsorption properties. The composition of biochar-derived organic matter (B-DOM) is a key factor influencing the migration and transformation of soil elements and pollutants. However, molecular characteristics of sulfonated biochar-derived organic matter (SBC-DOM) are still unclear. In this study, the molecular composition of derived organic matter (DOM) from SBC prepared via one-step carbonization-sulfonation techniques was investigated by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and then compared with those of DOMs from rice husk (RH), pyrochar (PYC), and hydrochar (HYC). The results show that the CHOS- and CHONS-containing formulae are predominant in SBC-DOM, accounting for 85% of the total molecular formula number, while DOMs from RH, PYC, and HYC are dominated by CHO-containing formulae. Compared to PYC-DOM and HYC-DOM, SBC-DOM has more unsaturated aliphatic compounds, which make it more labile and easily biodegraded. Additionally, SBC-DOM has higher O/C, (N + O)/C ratios and sulfur-containing compounds. These findings provide a theoretical basis for further research on the application of sulfonated biochar in soil improvement and remediation.
Collapse
Affiliation(s)
- Zhengfeng Jiang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
- National Elite Institute of Engineering, CNPC, Beijing 100096, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Fei Gao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Haimeng Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Zhimao Zhou
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Ruoxin Wang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
| |
Collapse
|
14
|
Bounoukta CE, Megías-Sayago C, Rendón N, Ammari F, Centeno MA, Ivanova S. Finely Tunable Carbon Nanofiber Catalysts for the Efficient Production of HMF in Biphasic MIBK/H 2O Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1293. [PMID: 39120398 PMCID: PMC11314515 DOI: 10.3390/nano14151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
This work proposes catalytic systems for fructose dehydration to 5-hydroxymethylfurfural using a series of functionalized carbon nanofibers. The catalysts were synthesized via finely selected covalent grafting in order to include a variety of functionalities like pure Bronsted acid, tandem Brønsted/Lewis acid, and tandem Lewis acid/Lewis base catalysts. After the characterization and evaluation of acidity strength and the amount of acid centers, the catalyst series was screened and related to the product distribution. The best-performing catalyst was also used to optimize the reaction parameters in order to achieve 5-hydroxymethylfurfural yields rounding at 60% without significant humin formation.
Collapse
Affiliation(s)
- Charf Eddine Bounoukta
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain; (C.E.B.); (M.A.C.)
- Laboratoire de Génie des Procédés Chimiques-LGPC, Département de Génie des Procéés, Faculté de Technologie, Université Ferhat Abbas Setif-1, Setif 19000, Algeria;
| | - Cristina Megías-Sayago
- Departamento de Química Inorgánica e Instituto de Investigaciones Químicas, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain; (C.M.-S.); (N.R.)
| | - Nuria Rendón
- Departamento de Química Inorgánica e Instituto de Investigaciones Químicas, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain; (C.M.-S.); (N.R.)
| | - Fatima Ammari
- Laboratoire de Génie des Procédés Chimiques-LGPC, Département de Génie des Procéés, Faculté de Technologie, Université Ferhat Abbas Setif-1, Setif 19000, Algeria;
| | - Miguel Angel Centeno
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain; (C.E.B.); (M.A.C.)
| | - Svetlana Ivanova
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain; (C.E.B.); (M.A.C.)
| |
Collapse
|
15
|
Lertna N, Sansawat N, Neramittagapong A, Theerakulpisut S, Neramittagapong S. Optimizing sorbitol double dehydration: A Box-Behnken design approach with commercial sulfonic acid resin. Heliyon 2024; 10:e34791. [PMID: 39148987 PMCID: PMC11324973 DOI: 10.1016/j.heliyon.2024.e34791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
In this study, double dehydration of sorbitol into isosorbide using commercial sulfonic acid resin as a catalyst was carried out under vacuum conditions generated by water ejection. To improve the efficiency and selectivity of the process, optimum reaction conditions prescribed by temperature, catalyst loading, and reaction time were investigated using the Box-Behnken design (BBD) together with Response Surface Methodology (RSM). The results showed that using the water ejection system could increase reaction activity. Statistically, all the reaction parameters were found to significantly affect the double dehydration reaction response, including sorbitol conversion, 1,4-sorbitant yield, and isosorbide yield. Furthermore, accurate predictive equations for all the reaction responses displayed R2 > 95 %, with no significant errors observed. The optimized conditions resulted in the complete conversion of sorbitol with 6.42 % 1,4-sorbitant yield and 67.55 % isosorbide yield. The equations yielded predicted values of the responses with minor variances being lower than 1 % when compared with the experimental values. However, the efficiency of the catalyst decreased steadily over recycling cycle due to reduced active sites and textural properties, likely caused by structural collapse and by-product accumulation. This work contributes to biomass valorization by optimizing the effective process for the production of isosorbide via commercial catalysts under vacuum conditions.
Collapse
Affiliation(s)
- Natthaphong Lertna
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nitchakamol Sansawat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arthit Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutasinee Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
16
|
Chen Y, Wu H, Jin F, Ge HL, Gao F, Wu Q, Wang S, Wang Y, Yang H. Sulfonate-modified fullerenes mimicking tentacle structures for humidity sensors. J Colloid Interface Sci 2024; 661:977-986. [PMID: 38330669 DOI: 10.1016/j.jcis.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
In this work, a straightforward method for synthesizing fullerene derivatives with tentacle structures has been explored for monitoring environmental humidity, which involves introducing sulfonate onto the fullerenes. The structure and number of polar groups in three fullerene derivatives determined by a series of structural tests greatly affect their hydrophilicity and morphology, resulting in changes in humidity sensitive properties. In particular, the hysteresis and response time of the sensors display a great correlation with hydrophilicity. C60-Ho, the best performing derivative of this work, has exhibited high response values (∼3500 times), good linearity (R2 = 97.3 %), and rapid response/recovery times (0.3/4.4 s), making it suitable for various applications such as non-contact detection of respiration, finger distance, and soil humidity.
Collapse
Affiliation(s)
- Yuying Chen
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Huimin Wu
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Fei Jin
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Hong-Liang Ge
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Feng Gao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Qiong Wu
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Song Wang
- Department of Materials Science and Engineering, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Ying Wang
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Hua Yang
- Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| |
Collapse
|
17
|
Ptaszyńska K, Malaika A, Morawa Eblagon K, Figueiredo JL, Kozłowski M. Promoting Effect of Ball Milling on the Functionalization and Catalytic Performance of Carbon Nanotubes in Glycerol Etherification. Molecules 2024; 29:1623. [PMID: 38611901 PMCID: PMC11013610 DOI: 10.3390/molecules29071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
A facile and eco-friendly approach using in situ-generated 4-benzenediazonium sulfonate (BDS) was applied to prepare highly functionalized carbon nanotubes (CNTs). The effectiveness of this functionalization was additionally enhanced by a green and short-time ball milling process applied beforehand. The obtained BDS-modified CNTs presented significant activity in glycerol etherification, producing tert-butyl glycerol ethers, which are considered promising fuel additives. Excellent results of ~56% glycerol conversion and ~10% yield of higher-substituted tert-butyl glycerol ethers were obtained within just 1 h of reaction at 120 °C using a low catalyst loading of only 2.5 wt.%. Furthermore, the sulfonated CNTs were reusable over several reaction cycles, with only a minor decrease in activity. Additionally, the sample activity could be restored by a simple regeneration approach. Finally, a clear correlation was found between the content of -SO3H groups on the surface of CNTs and the catalytic performances of these materials in glycerol etherification. Improved interaction between functionalized ball-milled CNTs and the reactants was also suggested to positively affect the activity of these catalysts in the tested process.
Collapse
Affiliation(s)
- Karolina Ptaszyńska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Anna Malaika
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Katarzyna Morawa Eblagon
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (K.M.E.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José Luís Figueiredo
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (K.M.E.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mieczysław Kozłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
18
|
Amarasekara AS, Nwankwo VC. A Comparison of Dilute Aqueous Isethionic Acid and Sulfuric Acid in Hydrolysis of Three Different Untreated Lignocellulosic Biomass Varieties. Ind Eng Chem Res 2023; 62:20037-20043. [PMID: 38357381 PMCID: PMC10863032 DOI: 10.1021/acs.iecr.3c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 02/16/2024]
Abstract
Efficient catalytic hydrolysis of lignocellulosic biomass to sugars is a major challenge in the production of sustainable biofuels and chemical feedstocks. In this study isethionic acid was compared with H2SO4 for hydrolysis of polysaccharides in corn stover, switch grass, and poplar. The catalytic activities of acids were compared by analysis of total reducing sugar (TRS) and glucose yields in a sequence of experiments in water at 90-190 °C using 0.050 mol of H+/L isethionic acid and H2SO4. In comparison to using H2SO4, the use of isethionic acid catalyst lowered the maximum TRS percent yield temperatures by 25, 24, and 21% for corn stover, switch grass, and poplar. A similar effect was observed for glucose percent yields as well. This temperature reduction is due to lowering of the activation energy in the polysaccharide depolymerization reaction and most likely due to hydrogen-bonding-type dipolar interactions between the isethionic acid -OH group and -OH groups in biomass polysaccharides.
Collapse
Affiliation(s)
- Ananda S. Amarasekara
- Department
of Chemistry Prairie View A&M University, 700 University Drive, Prairie View, Texas 77446, United States
- Center
for Energy and Environmental Sustainability Prairie View A&M University, 700 University Drive, Prairie View, Texas 77446, United States
| | - Victor C. Nwankwo
- Department
of Chemistry Prairie View A&M University, 700 University Drive, Prairie View, Texas 77446, United States
| |
Collapse
|
19
|
Huang Q, Cabral NM, Tong X, Schafranski AS, Kennepohl P, Hill JM. Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways. Molecules 2023; 28:7051. [PMID: 37894530 PMCID: PMC10609519 DOI: 10.3390/molecules28207051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
A series of petroleum coke (petcoke)-derived solid acid catalysts were prepared via nitric acid treatment with or without ball milling pretreatment. The inherent sulfur in petcoke was converted to sulfonic groups, which were active sites for the esterification of octanoic acid and methanol at 60 °C, with ester yields of 14-43%. More specifically, samples without ball milling treated at 120 °C for 3 h had a total acidity of 4.67 mmol/g, which was 1.6 times that of the samples treated at 80 °C, despite their -SO3H acidities being similar (~0.08 mmol/g). The samples treated for 24 h had higher -SO3H (0.10 mmol/g) and total acidity (5.25 mmol/g) but not increased catalytic activity. Ball milling increased the defects and exposed aromatic hydrogen groups on petcoke, which facilitated further acid oxidation (0.12 mmol -SO3H/g for both materials and total acidity of 5.18 mmol/g and 5.01 mmol/g for BP-N-3/120 and BP-N-8/90, respectively) and an increased ester yield. DFT calculations were used to analyze the pathways of sulfonic acid group formation, and the reaction pathway with NO2• was the most thermodynamically and kinetically favourable. The activities of the prepared catalysts were related to the number of -SO3H acid sites, the total acidity, and the oxygen content, with the latter two factors having a negative impact.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| | - Natalia M. Cabral
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| | - Xing Tong
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Annelisa S. Schafranski
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Josephine M. Hill
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (Q.H.); (N.M.C.); (A.S.S.)
| |
Collapse
|
20
|
Nguyen HT, Nguyen PN, Van Le T, Nguyen TH, Nguyen LD, Tran PH. Synthesis of benzo[ a]carbazole derivatives via intramolecular cyclization using Brønsted acidic carbonaceous material as the catalyst. RSC Adv 2023; 13:28623-28631. [PMID: 37780732 PMCID: PMC10540035 DOI: 10.1039/d3ra04943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
In this work, a new procedure for the synthesis of benzo[a]carbazole from 1,3-diketones, primary amines, phenylglyoxal monohydrate, and malononitrile employing a solid acidic catalyst has been developed. The multicomponent reaction provided 3-cyanoacetamide pyrrole as an intermediate and then the formation of benzo[a]carbazole via intramolecular ring closure. The reaction was carried out for 2 h at 240 °C, resulting in the desired product with 73% yield. Acidic sites on the solid acid catalyst, made from rice husk-derived amorphous carbon with a sulfonic acid core (AC-SO3H), provided the best activity. Acidic sites on the surface of the catalyst, including carboxylic, phenolic, and sulfonic acids, were 4.606 mmol g-1 of the total acidity. AC-SO3H demonstrated low cost, low toxicity, porosity, stability, and flexibility of tuning and reusability.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phat Ngoc Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Tan Van Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Linh Dieu Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
21
|
Yadav G, Yadav N, Ahmaruzzaman M. Advances in biomass derived low-cost carbon catalyst for biodiesel production: preparation methods, reaction conditions, and mechanisms. RSC Adv 2023; 13:23197-23210. [PMID: 37545599 PMCID: PMC10398831 DOI: 10.1039/d3ra03561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Biodiesel is a less hazardous, environmentally friendly biofuel that has been extensively investigated in modern years to ensure that we lessen our dependency on fossil fuels and mitigate climate change. While fossil fuel substitutes like biodiesel may help transition to a less polluted world, industrial-scale manufacturing still relies highly on chemical catalysis. However, heterogeneous solid catalysts result in less activity for biodiesel production due to their deactivation effects, porosity, surface area, material stability, and lower reactivity under moderate conditions. The "sulfonated carbons" are metal-free solid protonic acids distinguished by their distinctive carbon structure and Brønsted acidity (H0 = 8-11). Heterogeneous sulfonated catalysts derived from waste biomass were a significant focus of the most advanced biodiesel processing techniques for simple and low-cost manufacturing processes. This study discusses the advantages and disadvantages of various catalysts, biomass sources and properties, synthesis of catalysts, and factors influencing the insertion of active sulfonic sites on biomass surfaces. Additionally, transesterification and esterification reaction mechanisms and kinetics are discussed. At last, future directions are provided for young, dynamic researchers.
Collapse
Affiliation(s)
- Gaurav Yadav
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Nidhi Yadav
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
22
|
Al-Naji M, Antonietti M. Turning Polyethylene Waste to Hydrocarbons Using a Sustainable Acidic Carbocatalyst. CHEMSUSCHEM 2023; 16:e202201991. [PMID: 36637905 DOI: 10.1002/cssc.202201991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 05/06/2023]
Abstract
Careless release of plastic waste is a pressing problem for marine and other eco-environments, and materials recycling of this stream is an open problem. For this purpose, a new metal-free acidic carbocatalyst with 8 wt % sulfur is constructed from a side product of the paper industry namely Na-lignosulfonate. The catalyst shows an extraordinary performance for the fragmentation of polymer waste which smoothly occurs above the ceiling temperature of the polymers. The reaction is run without hydrogen and at ambient pressure with commercially available high-density polyethylene (HDPE) as well as a real polymer waste mixture of high and low-density polyethylene (HDPE, LDPE). In all cases, a homologous series of n-alkanes and n-alkenes are obtained. The unique sulfur-rich carbonaceous structure (transfer hydrogenation functionality) and the metal-free character of the acidic carbocatalyst makes it inert against many typical catalyst poisons, among them water, salt, polar functionalities, and sulfur species. The described performance in plastic recycling, as well as the low cost and large-scale availability of lignosulfonate from the pulp industry, makes this metal-free acidic carbocatalyst promising for real-life environmental applications.
Collapse
Affiliation(s)
- Majd Al-Naji
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
23
|
Nguyen HT, Truong VA, Tran PH. Preparation of polysubstituted imidazoles using AC-SO 3H/[Urea] 7[ZnCl 2] 2 as an efficient catalyst system: a novel method, and α-glucosidase inhibitor activity. RSC Adv 2023; 13:12455-12463. [PMID: 37091625 PMCID: PMC10117287 DOI: 10.1039/d3ra00755c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Deep eutectic solvents (DESs) act as both an organic solvent and a useful catalyst for organic synthesis reactions, especially the synthesis of heterocyclic compounds containing the element nitrogen. DESs exhibit many important properties namely large liquid fields, biodegradability, outstanding thermal stability, and moderate vapor pressure. Amorphous carbon-bearing sulfonic acid groups (AC-SO3H) are one of the new-generation solid acids showing strong acid activity. Based on the simultaneous presence of acidic functional groups such as carboxylic acid, phenolic, and sulfonic acid groups, they exhibit many important activities namely strong Brønsted acid, high surface area, high stability, reusability, and recyclability. In this study, AC-SO3H was made from rice husk via the carbonization and sulfonation processes, and the surface properties and structure were examined using contemporary methods such as FT-IR, P-XRD, TGA, SEM, and EDS. And, [Urea]7[ZnCl2]2 was synthesized from urea and ZnCl2 with a mole ratio of 7 : 2; the structure is defined using FT-IR and TGA. By combining AC-SO3H and [Urea]7[ZnCl2]2 we aim to form an effective catalyst/solvent system for the preparation of polysubstituted imidazole derivatives through the multi-component cyclization reaction from nitrobenzenes, benzil, aldehydes, and ammonium acetate. The major products are obtained with high isolation yields above 60%. To assess the catalyst system's activity, the recovery and reusability of the AC-SO3H/[Urea]7[ZnCl2]2 system were examined with hardly any performance modification. In an effort to create potential enzyme α-glucosidase inhibitors, several novel polysubstituted imidazoles were created. Five of these compounds showed good enzyme α-glucosidase inhibitor activity. The most effective substances were IMI-13, IMI-15, and IMI-20, with IC50 values that were greater than the acarbose at 16.5, 15.8, and 11.6 μM, respectively - the acarbose (IC50, 214.5 μM) as the positive control.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Viet Nam
- Vietnam National University Ho Chi Minh City 7000000 Viet Nam
| | - Vy Anh Truong
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Viet Nam
- Vietnam National University Ho Chi Minh City 7000000 Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Viet Nam
- Vietnam National University Ho Chi Minh City 7000000 Viet Nam
| |
Collapse
|
24
|
Xu X, Zhu D, Jian Q, Wang X, Zheng X, Xue G, Liu Y, Li X, Hassan GK. Treatment of industrial ferric sludge through a facile acid-assisted hydrothermal reaction: Focusing on dry mass reduction and hydrochar recyclability performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161879. [PMID: 36716871 DOI: 10.1016/j.scitotenv.2023.161879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Large amounts of Fenton sludge and waste activated sludge (WAS) are mixed as ferric sludge (FS) in most industrial wastewater treatment plants. The treatment of such waste represents a challenge and quantity-dependent cost, so that a reliable way for FS waste reduction is required. In this study, we develop a facile acid-assisted hydrothermal treatment (HT) for the cost-efficient treatment of hazardous FS waste. Sulfuric acid was dosed at 0.25 mL/g dry solid (DS) to the HT process, which significantly increased the total solid mass reduction (TMR) by 25.1 % and dry mass reduction (DMR) by 104.4 %. The participation of sulfuric acid during the HT process changed the HT reaction pathway from dehydration to demethylation based on the analysis of the derivative thermogravimetric and Van Krevelen diagram. The addition of sulfuric acid improved the release of Fe from FS by 52.9 %, which contributed to the DMR. During the acid-assisted HT, Fe(III) was effectively reduced to Fe(II) within the produced hydrochar, which can be recycled for the Fenton reaction during the degradation of actual industrial wastewater such as pharmaceutical wastewater. Moreover, Sulfuric acid facilitated the generation of sulfonated hydrochar, which was efficient as an adsorbent for the complete removal of some metals such as Cu(II) - cation metal (98.8 %) and Cr(VI) - anion metal (99.9 %). This study firstly provides a novel and reliable approach for hazardous FS reduction and pointed out the recycling of hydrochar as the supplement for the Fenton reaction and adsorbents for some hazardous heavy metals.
Collapse
Affiliation(s)
- Xianbao Xu
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Daan Zhu
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qiwei Jian
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaohu Zheng
- Institute of Artificial Intelligence, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Gamal Kamel Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
25
|
Zhu J, Meng W, Xue Q, Zhang K. Two dimensional sulfonated molybdenum disulfide (S–MoS2) thin-film nanocomposite nanofiltration membrane for selective desalination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
26
|
SO 3H-functionalized carbon fibers for the catalytic transformation of glycerol to glycerol tert-butyl ethers. Sci Rep 2023; 13:565. [PMID: 36631517 PMCID: PMC9834229 DOI: 10.1038/s41598-023-27432-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Carbon fibers (CFs) of high quality were produced from hydrocarbons such as isobutane or ethylene using the catalytic chemical vapor deposition method (CCVD) and Ni catalyst. The as-prepared samples were functionalized with acidic groups using concentrated sulfuric acid or 4-benzenediazonium sulfonate (BDS) generated in situ from sulfanilic acid and sodium nitrite. The morphological features of the materials were confirmed by transmission electron microscopy, whereas their physicochemical properties were characterized by means of elemental and textural analyses, thermogravimetric (TG) method, Raman spectroscopy, potentiometric back titration, and X-ray diffraction analysis. The obtained CFs were used as catalysts in glycerol etherification with tert-butyl alcohol at 110 °C under autogenous pressure. The BDS-modified CFs were particularly effective in the reaction, showing high glycerol conversions (of about 45-55% after 6 h) and substantial yields of mono- and di-glycerol ethers. It was found that the chemistry of the sample surface was crucial for the process. The high concentration of -SO3H groups decorating CFs boosted the formation of di- and tri-tert-butyl glycerol ethers. Surface oxygen functionalities also had a positive effect on the reaction, however, their impact on the catalytic performances of CFs was significantly weaker compared to that shown by -SO3H groups and it was probably due to the adsorption of reagents on the catalyst surface.
Collapse
|
27
|
Nguyen HT, Dang PH, Tran PH. A new and straightforward route to synthesize novel pyrazolo[3,4- b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3- c]pyrazole-5-carbonitriles. RSC Adv 2023; 13:1877-1882. [PMID: 36712648 PMCID: PMC9832579 DOI: 10.1039/d2ra07521k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
Among many acidic catalysts, amorphous carbon-supported sulfonic acid (AC-SO3H) has been evaluated as a new-generation solid catalyst with outstanding activity. Because of the -SO3H groups, the surface properties of the amorphous carbon catalyst were improved, which made the catalytic activity of the amorphous carbon-supported sulfonic acid many times greater than that of sulfuric acid. The amorphous carbon-supported sulfonic acid exhibited several advantages such as low cost, non-toxicity, porosity, stability, and easily adjustable chemical surface. In this paper, we introduce a new pathway for the synthesis of pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles and aniline at room temperature under ethanol in the presence of AC-SO3H as the catalyst. This method provided the desired products with moderate to good yields. The gram-scale synthesis of the major product was carried out with good yields (up to 80%). This strategy involves a sequential opening/closing cascade reaction. This approach presents several advantages, including room temperature conditions, short reaction time, and operational simplicity.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of ScienceHo Chi Minh City 700000Viet Nam,Vietnam National UniversityHo Chi Minh City 700000Viet Nam
| | - Phu Hoang Dang
- Department of Organic Chemistry, Faculty of Chemistry, University of ScienceHo Chi Minh City 700000Viet Nam,Vietnam National UniversityHo Chi Minh City 700000Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of ScienceHo Chi Minh City 700000Viet Nam,Vietnam National UniversityHo Chi Minh City 700000Viet Nam
| |
Collapse
|
28
|
Ajien A, Idris J, Md Sofwan N, Husen R, Seli H. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:37-51. [PMID: 36346183 PMCID: PMC9925910 DOI: 10.1177/0734242x221127167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
The coconut industry generates a relatively large amount of coconut shell and husk biomass, which can be utilized for industrial and environmental purposes. Immense potential for added value when coconut shell and husk biomass are turned into biochar and limited studies are available, making this review paper significant. This paper specifically presents the production and activation technology, economic and financial aspect and application of biochar from coconut shell and husk biomass. Pyrolysis, gasification and self-sustained carbonization are among the production technology discussed to convert this biomass into carbon-rich materials with distinctive characteristics. The surface characteristics of coconut-based biochar, that is, Brunauer-Emmett-Teller (BET) surface area (SBET), pore volume (Vp), pore diameter (dp) and surface functional group can be enhanced by physical and chemical activation and metal impregnation. Due to their favourable characteristics, coconut shell and husk-activated biochar exhibit their potential as valuable adsorption materials for industrial and environmental application including biodiesel production, capacitive deionization, soil amendment, water treatment and carbon sequestration. With the knowledge of the potential, the coconut industry can contribute to both the local and global biocircular economy by producing coconut shell and husk biochar for economic development and environmental remediation. The capital and operating cost for production and activation processes must be taken into account to ensure bioeconomy sustainability, hence coconut shell and husk biomass have a great potential for income generation.
Collapse
Affiliation(s)
- Azrine Ajien
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Juferi Idris
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Nurzawani Md Sofwan
- Faculty of Health Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Rafidah Husen
- Faculty of Applied Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan 2 Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Hazman Seli
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| |
Collapse
|
29
|
Kuznetsova SA, Yunusov SM, Gak AS, Riazanov VI, Nelyubina YV, Barker R, North M, Zhereb VP, Khakina EA, Naumkin A, Lobanov NN, Khrustalev VN, Chusov D, Kalyuzhnaya ES, Belokon YN. Palladium Nanoparticles Entrapped In a Hydrogen Bonded Crystalline Organic Salt Matrix as a Selective Heterogeneous Reduction Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Svetlana A. Kuznetsova
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| | - Safar M. Yunusov
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| | - Alexander S. Gak
- Moscow State University Faculty Of Material Science Leninskie Gory, 1/40 119991 Moscow Russian Federation
| | - Vladimir I. Riazanov
- D. Mendeleev University Of Chemical Technology Of Russia Miusskaya Square 9 125047 Moscow Russian Federation
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| | - Ryan Barker
- Green Chemistry Centre Of Excellence Department Of Chemistry University Of York, Heslington York YO10 5DD UK
| | - Michael North
- Green Chemistry Centre Of Excellence Department Of Chemistry University Of York, Heslington York YO10 5DD UK
| | - Vladimir P. Zhereb
- Siberian Federal University School Of Non-Ferrous Metals And Material Science 95 Krasnoyarskiy Rabochiy Pr. 660025 Krasnoyarsk Russian Federation
| | - Ekaterina A. Khakina
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| | - Alexander Naumkin
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| | - Nikolai N. Lobanov
- Peoples' Friendship University Of Russia (Rudn University) 6 Miklukho-Maklaya Street Moscow 117198 Russian Federation
| | - Victor N. Khrustalev
- Peoples' Friendship University Of Russia (Rudn University) 6 Miklukho-Maklaya Street Moscow 117198 Russian Federation
| | - Denis Chusov
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| | - Elena S. Kalyuzhnaya
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| | - Yuri N. Belokon
- A. N. Nesmeyanov Institute Of Organoelement Compounds Russian Academy Of Sciences Vavilov Street 28 119991 Moscow Russian Federation e-mail:
| |
Collapse
|
30
|
Parshina A, Yelnikova A, Safronova E, Kolganova T, Kuleshova V, Bobreshova O, Yaroslavtsev A. Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Functionalized CNTs for Determination of Sulfamethoxazole and Trimethoprim in Pharmaceuticals. MEMBRANES 2022; 12:1091. [PMID: 36363646 PMCID: PMC9695963 DOI: 10.3390/membranes12111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Sulfamethoxazole and trimethoprim are synthetic bacteriostatic drugs. A potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. Perfluorosulfonic acid membranes containing functionalized CNTs were used as the sensor materials. The CNTs' surface was modified by carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. The influence of the CNT concentration and the properties of their surface, as well as preliminary ultrasonic treatment of the polymer and CNT solution before the casting of hybrid membranes, on their ion-exchange capacity, water uptake, and transport properties was revealed. Cross-sensitivity of the sensors to the analytes was achieved due to ion exchange and hydrophobic interactions with hybrid membranes. An array of cross-sensitive sensors based on the membranes containing 1.0 wt% of CNTs with sulfonic acid or (3-aminopropyl)trimethoxysilanol groups enabled us to provide the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous solutions with a concentration ranging from 1.0 × 10-5 to 1.0 × 10-3 M (pH 4.53-8.31). The detection limits of sulfamethoxazole and trimethoprim were 3.5 × 10-7 and 1.3 × 10-7 М. The relative errors of sulfamethoxazole and trimethoprim determination in the combination drug as compared with the content declared by the manufacturer were 4% (at 6% RSD) and 5% (at 7% RSD).
Collapse
Affiliation(s)
- Anna Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Anastasia Yelnikova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina Safronova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Tatyana Kolganova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Victoria Kuleshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Olga Bobreshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| |
Collapse
|
31
|
Xia Y, Lei H, Sun C, Wen X, Wang Z, Hu G, Fang B. Enhanced Ageing Performance of Sulfonic Acid-Grafted Pt/C Catalysts. MICROMACHINES 2022; 13:1825. [PMID: 36363846 PMCID: PMC9696470 DOI: 10.3390/mi13111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Chemical functionalization of carbon support for Pt catalysts is a promising way to enhance the performance of catalysts. In this study, Pt/C catalysts grafted with various amounts of phenylsulfonic acid groups were prepared under mild conditions. The influence of sulfonic acid groups on the physiochemical characteristics and electrochemical activities of the modified catalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, a transmission electron microscope, and cyclic voltammetry (CV). The presence of the chemical groups enhanced the hydrogen adsorption onto/desorption off the Pt surface during the CV cycling. In contrast, the hydrogen peaks of the grafted catalysts increased after 500 CV cycles, especially for Pt (111) facets. The highest electrochemical surface area (ECSA) after the aging test was obtained for the catalyst with 18.0 wt.% graft, which was ca. 87.3% higher than that of the non-functionalized Pt catalyst. In the density functional theory (DFT) calculation, it was proven that SO3H adsorption on the crystalline was beneficial for Pt stability. The adsorption energy and bond distance of the adsorbed SO3H on Pt (110), (100), and (111) surfaces were calculated. All the stable configurations were obtained when O from S-O single bond or S was bound to the Pt surface, with the adsorption energy following the trend of (111)F > (100)H > (110)H. This result was consistent with the ECSA experiment, which explained the high electrochemical stability of the sulfonic acid groups-grafted Pt/C catalyst.
Collapse
Affiliation(s)
- Yuzhen Xia
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hangwei Lei
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chuanfu Sun
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaohao Wen
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zichen Wang
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guilin Hu
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
32
|
Sun C, Wu W, Chang H, Wang R, Wang K, Zhong N, Zhang T, He X, Sun F, Zhang E, Ho SH. A tailored bifunctional carbon catalyst for efficient glycosidic bond fracture and selective hemicellulose fractionation. BIORESOURCE TECHNOLOGY 2022; 362:127861. [PMID: 36041679 DOI: 10.1016/j.biortech.2022.127861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
This study proposed a mild chlorination-sulfonation approach to synthesize magnetic carbon acid bearing with catalytic SO3H and adsorption Cl bifunctional sites on polydopamine coating. The catalysts exerted good textural structure and surface chemical properties (i.e., porosity, high specific surface area of >70 m2/g, high catalytic activity with 0.86-1.1 mmol/g of SO3H sites and 0.8%-1.9% of Cl sites, and abundant hydrophilic functional groups), rendering a maximum cellobiose adsorption efficiency of ∼40% within 6 h. Moreover, the catalysts had strong fracture characteristics on different α-/β-glycosidic bonds with 85.4%-93.9% of disaccharide conversion, while selectively fractionating hemicellulose from wheat straw with 64.3% of xylose yield and 93.4% of cellulose retention. Due to the stable interaction between parent polydopamine support with Fe core and functional groups, the catalysts efficiently recovered by simple magnetic separation had good reusability with minimal losses in catalytic activity.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenbo Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xuefeng He
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007,China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
33
|
Ding Y, Qiao ZA. Carbon Surface Chemistry: New Insight into the Old Story. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206025. [PMID: 36127265 DOI: 10.1002/adma.202206025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The enormous complexity of the carbon material family has provoked a phenomenological approach to develop its potential in different applications. Although the electronic, chemical, mechanical, and magnetic properties of carbon materials have been widely discussed based on defect control engineering, there is still a lack of fundamental understanding of the carbon surface chemistry, which leads to many controversial conclusions. Here, by analyzing various defects on carbon surface, some commonly neglected aspects and misunderstandings in this field are pointed out, clarifying how surface chemistry affects the chemical behaviors of carbon in some specific chemical reactions. With this full-scale consideration of the carbon surface chemistry, the behaviors of carbon materials with various functions can be well defined, which is indispensable for their scalable applications. Perspectives on future developments of carbon surface chemistry are also provided to enable practically accessible design of advanced carbon in those applications.
Collapse
Affiliation(s)
- Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
34
|
Zhang T, Li W, Xiao H, Jin Y, Wu S. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. BIORESOURCE TECHNOLOGY 2022; 354:127126. [PMID: 35398210 DOI: 10.1016/j.biortech.2022.127126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Furfural is a vital biomass-derived platform molecule, which can be used to synthesize a wide range of value-added chemicals. Furfural and its derivatives are promising alternatives to conventional petroleum chemicals. However, recent industrial production of furfural existed some thorny problems, including low efficiency, energy waste, and environmental pollution. Therefore, tremendous and continuous efforts have been made by researchers to develop novel furfural production processes with high economic viability, production efficiency, and sustainability. This review summarized the merits and shortcomings of disparate catalytic systems for the synthesis of furfural from biomass and biomass pretreatment hydrolysate on the basis of recently published literature. Furthermore, the suggestions for furfural production research were put forward.
Collapse
Affiliation(s)
- Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
35
|
Selim A, Sharma R, Arumugam SM, Elumalai S, Jayamurugan G. Sulphonated Carbon Dots Synthesized Through a One‐Pot, Facile and Scalable Protocol Facilitates the Preparation of Renewable Precursors Using Glucose/Levulinic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202104448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Abdul Selim
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Raina Sharma
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Senthil Murugan Arumugam
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Govindasamy Jayamurugan
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| |
Collapse
|
36
|
Sulfuric Acid Immobilized on Activated Carbon Aminated with Ethylenediamine: An Efficient Reusable Catalyst for the Synthesis of Acetals (Ketals). NANOMATERIALS 2022; 12:nano12091462. [PMID: 35564172 PMCID: PMC9099747 DOI: 10.3390/nano12091462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
Through the amination of oxidized activated carbon with ethylenediamine and then the adsorption of sulfuric acid, a strong carbon-based solid acid catalyst with hydrogen sulfate (denoted as AC-N-SO4H) was prepared, of which the surface acid density was 0.85 mmol/g. The acetalization of benzaldehyde with ethylene glycol catalyzed by AC-N-SO4H was investigated. The optimized catalyst dosage accounted for 5 wt.% of the benzaldehyde mass, and the molar ratio of glycol to benzaldehyde was 1.75. After reacting such mixture at 80 °C for 5 h, the benzaldehyde was almost quantitatively converted into acetal; the conversion yield was up to 99.4%, and no byproduct was detected. It is surprising that the catalyst could be easily recovered and reused ten times without significant deactivation, with the conversion yield remaining above 99%. The catalyst also exhibited good substrate suitability for the acetalization of aliphatic aldehydes and the ketalization of ketones with different 1,2-diols.
Collapse
|
37
|
Sripada S, Kastner JR. Catalytic Esterification Using Solid Acid Carbon Catalysts Synthesized by Sustainable Hydrothermal and Plasma Sulfonation Techniques. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarada Sripada
- Riverbend North Research Lab, Biochemical Engineering, College of Engineering, The University of Georgia, 110 Riverbend Road, Athens, Georgia 30602, United States
| | - James R. Kastner
- Riverbend North Research Lab, Biochemical Engineering, College of Engineering, The University of Georgia, 110 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
38
|
Xu X, Zhu D, Wang X, Deng L, Fan X, Ding Z, Zhang A, Xue G, Liu Y, Xuan W, Li X, Makinia J. Transformation of polyvinyl chloride (PVC) into a versatile and efficient adsorbent of Cu(II) cations and Cr(VI) anions through hydrothermal treatment and sulfonation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126973. [PMID: 34461533 DOI: 10.1016/j.jhazmat.2021.126973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The reuse of waste polyvinyl chloride (PVC) has drawn much attention as it can reduce plastic waste and associated pollution, and provide valuable raw materials and products. In this study, sulfonated PVC-derived hydrochar (HS-PVC) was synthesized by two-stage hydrothermal treatment (HT) and sulfonation, and shown to be a versatile adsorbent. The removal of Cu(II) cations and Cr(VI) anions using HS-PVC reached 81.2 ± 1.6% and 60.3 ± 3.8%, respectively. The first stage of HT was crucial for the dichlorination of PVC and the formation of an aromatic structure. This stage guaranteed the introduction of -SO3H onto PVC-derived hydrochar through subsequent sulfonation. HT intensities (i.e., temperature and time) and sulfonation intensity strongly determined the adsorption capacity of HS-PVC. Competitive adsorption between Cu(II) and Cr(VI) onto HS-PVC was demonstrated by binary and preloading adsorption. The proposed Cu(II) cations adsorption mechanism was electrostatic adsorption, while Cr(VI) were possibly complexed by the phenolic -OH and reduced to Cr(III) cations by CC groups in HS-PVC. In addition, HS-PVC derived from PVC waste pipes performed better than PVC powder for Cu(II) and Cr(VI) removal (>90%). This study provides an efficient method for recycling waste PVC and production of efficient adsorbents.
Collapse
Affiliation(s)
- Xianbao Xu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Daan Zhu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Liling Deng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xinyun Fan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zizhen Ding
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weimin Xuan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
39
|
Singh VK, Jain P, Panda S, Kuila BK, Pitchaimuthu S, Das S. Sulfonic acid/sulfur trioxide (SO 3H/SO 3) functionalized two-dimensional MoS 2 nanosheets for high-performance photocatalysis of organic pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj02222b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the enhanced photocatalytic activity of sulfonic acid/sulfur trioxide (SO3H/SO3) functionalized two-dimensional (2D)-MoS2 (SO3H/SO3-MoS2) nanosheets synthesized using a one-pot hydrothermal method.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Prachi Jain
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Subrata Panda
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Biplab Kumar Kuila
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sudhagar Pitchaimuthu
- Research Centre for Carbon Solutions, Institute of Mechanical, Processing and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Santanu Das
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
40
|
Mohammadi M, Ghorbani-Choghamarani A. Hercynite silica sulfuric acid: a novel inorganic sulfurous solid acid catalyst for one-pot cascade organic transformations. RSC Adv 2022; 12:26023-26041. [PMID: 36199605 PMCID: PMC9469644 DOI: 10.1039/d2ra03481f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/01/2022] [Indexed: 12/18/2022] Open
Abstract
Herein, we delignated the synthesis of a novel inorganic sulfurous magnetic solid acid catalyst by the immobilization of an extremely high content of sulfuric acid functionalities on the amorphous silica-modified hercynite nanomagnetic core–shell via a simple method. Silica sulfuric acid (SSA) modified hercynite nanocomposite (hercynite@SSA) combines excellent recoverability and stability characteristics of hercynite (which can be regarded as a ferro spinel with Fd3m space group and cubic crystal structure) with the strong Brønsted acid properties of –SO3H groups. This nanomagnetic solid acid was found to be an efficient and facile strong solid acid catalyst for the synthesis of bis(pyrazolyl)methanes via two different one-pot multicomponent methodologies under green conditions. The hercynite@SSA catalyst shows excellent catalytic activity and reusability in the ethanolic medium among different solid acid materials. A plausible reaction mechanism is proposed for this synthesis. A novel inorganic sulfurous nanomagnetic solid acid composite was synthesized and its catalytic activity was evaluated in the synthesis of bis(pyrazolyl)methane derivatives. The catalyst displayed excellent activity and recoverability under green conditions.![]()
Collapse
Affiliation(s)
- Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, P. O. Box 69315516, Ilam, Iran
| | | |
Collapse
|
41
|
Zhang T, Wei H, Gao J, Chen S, Jin Y, Deng C, Wu S, Xiao H, Li W. Synthesis of sulfonated hierarchical carbons and theirs application on the production of furfural from wheat straw. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Deng Q, Li X, Gao R, Wang J, Zeng Z, Zou JJ, Deng S, Tsang SCE. Hydrogen-Catalyzed Acid Transformation for the Hydration of Alkenes and Epoxy Alkanes over Co-N Frustrated Lewis Pair Surfaces. J Am Chem Soc 2021; 143:21294-21301. [PMID: 34874721 DOI: 10.1021/jacs.1c08259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogen (H2) is widely used as a reductant for many hydrogenation reactions; however, it has not been recognized as a catalyst for the acid transformation of active sites on solid surface. Here, we report the H2-promoted hydration of alkenes (such as styrenes and cyclic alkenes) and epoxy alkanes over single-atom Co-dispersed nitrogen-doped carbon (Co-NC) via a transformation mechanism of acid-base sites. Specifically, the specific catalytic activity and selectivity of Co-NC are superior to those of classical solid acids (acidic zeolites and resins) per micromole of acid, whereas the hydration catalysis does not take place under a nitrogen atmosphere. Detailed investigations indicate that H2 can be heterolyzed on the Co-N bond to form Hδ--Co-N-Hδ+ and then be converted into OHδ--Co-N-Hδ+ accompanied by H2 generation via a H2O-mediated path, which significantly reduces the activation energy for hydration reactions. This work not only provides a novel catalytic method for hydration reactions but also removes the conceptual barriers between hydrogenation and acid catalysis.
Collapse
Affiliation(s)
- Qiang Deng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiang Li
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ruijie Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jun Wang
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zheling Zeng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ji-Jun Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
43
|
Araujo RO, Santos VO, Ribeiro FCP, Chaar JDS, Falcão NPS, de Souza LKC. One-step synthesis of a heterogeneous catalyst by the hydrothermal carbonization of acai seed. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Yang H, Joh HI, Choo H, Choi JW, Suh DJ, Lee U, Choi J, Ha JM. Condensation of furans for the production of diesel precursors: A study on the effects of surface acid sites of sulfonated carbon catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Sustainable production of fuels and chemicals from biomass over niobium based catalysts: A review. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Jiang W, Cui WR, Liang RP, Qiu JD. Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125302. [PMID: 33609869 DOI: 10.1016/j.jhazmat.2021.125302] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Due to the low efficiency of traditional sewage treatment methods, the effective removal of zwitterionic fluoroquinolone (FQs) antibiotics is of vital significant for environment protection. In this work, a SO3H-anchored covalent organic framework (TpPa-SO3H) was deliberately designed by linking phenolic trialdehyde with triamine through Schiff reaction, then low-content Tb3+ ions were loaded onto covalent organic framework according to wet-chemistry immersion dispersion method which benefitting for efficient FQs antibiotics uptaking. Tb@TpPa-SO3H functionalized with regularly distributed sulfonic acid groups and terbium ions which could provide difunctional binding sites. Tb3+ sites could capture carboxylic acid group of FQs molecules according to the complexes coordination effect and sulfonic acid sites play a significant role in the adsorption of FQs molecules through electrostatic interaction with amine group. Tb@TpPa-SO3H with dual complementary function sites exhibited ultra-fast adsorption kinetics (< 2 min, average over 99% removing rate) and high adsorption capacities of 989, 956, and 998 mg g-1 for Norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), respectively. Furthermore, Tb@TpPa-SO3H showed excellent selectivity for the adsorption of FQs in tanglesome system. This work not only explored synergistic adsorption in ion-functionalized 2D covalent organic framework with dual binding sites, but also delineated a promising strategy for the elimination of organic pollutants in environmental remediation.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Nanchang University, Nanchang 330031, China; Nanchang Institute for Food and Drug Control, Nanchang 330038, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
47
|
Non-Porous Sulfonic Acid Catalysts Derived from Vacuum Residue Asphaltenes for Glycerol Valorization via Ketalization with Acetone. Catalysts 2021. [DOI: 10.3390/catal11070776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, an approach for the preparation of heterogeneous acid catalysts based on asphaltenes isolated from vacuum residue is proposed. Varying the conditions for the sulfonation of asphaltenes made it possible to obtain materials with an acid value of 1.16 to 2.76 meq g−1 and a total sulfur content of 6.4 to 12.3 wt%. The samples obtained were characterized by acid-base titration, nitrogen adsorption, sulfur elemental analysis and transmission electron microscopy techniques, and were studied as potential acid catalysts in the ketalization reaction between glycerol and acetone. Sulfonated asphaltenes (SA) were characterized by a homogeneous distribution of sulfonic groups over the granule surface and an almost complete absence of a porous structure. The ketalization reaction in the presence of SA proceeded without intradiffusion restrictions; as a result of which, their activity was higher than for known heterogeneous catalysts. The most active SA sample (total acid value, 1.16 meq g−1) had an apparent activation energy of 18.0 kJ mol−1, which was lower than the value obtained for the zeolite BEA-40 (29–53 kJ mol−1) and the Amberlyst 36 resin (27 kJ mol−1), and was close to the value for the homogeneous p-TSA catalyst (14.5 kJ mol−1). The SA heterogeneous catalysts did not show any acid leaching and had no loss of activity after five catalytic cycles, with the total turnover number TON = 7247.
Collapse
|
48
|
Gao K, Ma M, Liu Y, Ma Z. A comparative study of the removal of o-xylene from gas streams using mesoporous silicas and their silica supported sulfuric acids. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124965. [PMID: 33440323 DOI: 10.1016/j.jhazmat.2020.124965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The three types of silica supported sulfuric acids (SSA), with the same sulfuric acid loading of 9.25 mmol g-1, were prepared by a wet impregnation method from silica gel (SG), SBA-15 and MCM-41. Characterization of the prepared SSA showed that two anchoring states coexisted for sulfuric acid supported on the surface of the silicas: A physiosorbed (P)-state sulfuric acid; and a chemically bonded (C)-state sulfuric acid. Dynamic adsorption results showed that each SSA had a significant removal capacity for o-xylene gas in the reactive temperature regions. The ranges of the reactive regions were 120-220 °C (SSA/SG), 120-230 °C (SSA/SBA-15) and 120-250 °C (SSA/MCM-41), and this could be attributed to the sulfonation reaction between o-xylene and the anchored sulfuric acid. SSA/MCM-41 showed the highest theoretical breakthrough adsorption capacity (QB, th, 526.71 mg g-1) compared with SSA/SBA-15 (363.54 mg g-1) and SSA/SG (239.15 mg g-1). QB, th was closely associated with the amount or proportion of the C-state sulfuric acid on the surface of each SSA. Optimum breakthrough time and QB, th was obtained by increasing the bed height and decreasing flow rate and inlet concentration. The SSA exhibited excellent recyclability and reuse performance over eight consecutive adsorption/desorption/regeneration cycles. The results suggested that the SSA, especially SSA/MCM-41, might have good potential in applications using adsorbents for the removal of BTEX pollutants.
Collapse
Affiliation(s)
- Kaiyin Gao
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Mengze Ma
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Yuheng Liu
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China.
| |
Collapse
|
49
|
Amino-functional biocarbon with CO2-responsive property for removing copper(II) ions from aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Wu B, Shen S, Yuan S, Pan H, Wang C, Jing S, Li J, Zhao Y. Co-improvement of –COOH group and –SO3H group densities in carbon-based solid acid by a simple strategy. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|