1
|
Xu L, An X, Jiang H, Pei R, Li Z, Wen J, Pi W, Zhang Q. A novel Gordonia sp. PS3 isolated from the gut of Galleria mellonella larvae: Mechanism of polystyrene biodegradation and environmental toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137219. [PMID: 39893981 DOI: 10.1016/j.jhazmat.2025.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Plastic pollution is a global concern, with polystyrene (PS) being a major source of plastic waste. In this study, a PS-degrading bacterial strain, Gordonia sp. PS3, was isolated from the gut of Galleria mellonella larvae. After 40 days, strain PS3 exhibited a 33.59 ± 1.12 % degradation rate of PS-microplastics (PS-MPs). The biodegradation mechanism of PS by strain PS3 was investigated using genomics, molecular docking, and metabolomics. Degradation resulted in a significant decrease in molecular weight, disappearance of characteristic aromatic peaks, and the appearance of new functional groups (e.g., hydroxyl and carbonyl), indicating oxidative depolymerization and enhanced hydrophilicity. Four key enzymes involved in PS degradation were identified, with alkane 1-monooxygenase initiating cleavage of C-C bonds in PS and cytochrome P450 monooxygenase catalyzing oxidation of the aromatic ring. Metabolomics analysis revealed upregulation of proline, branched-chain amino acids, and polyamines, indicating oxidative stress response and energy acquisition during PS degradation. The PS degradation products showed no significant adverse effects on Arabidopsis thaliana growth, and PS residues were less harmful to G. mellonella larvae than untreated PS-MPs. This study presents a novel strain for PS biodegradation and provides new insights into the microbial degradation mechanism of PS and the safety of its degradation products.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huoyong Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rui Pei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiehao Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjie Pi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Zhu P, Zhang Y, Deng M, Zhang Y, Luo J, Han R, Xu L. Microplastics and Nanoplastics Alter the Physicochemical Properties of Willow Trees and Lead to Mortality in Leaf Beetle Larvae. PLANT, CELL & ENVIRONMENT 2025; 48:2895-2909. [PMID: 39635818 DOI: 10.1111/pce.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Polystyrene micro- and nanoplastics (MNPs) are increasingly found in terrestrial environments, posing risks across the food web. However, the potential impacts of MNPs transfer on plant-insect interactions remains largely unknown. In this study, consumption of willow plants (Salix maizhokunggarensis) exposed to 10.0 mg/L MNPs for 21 days inhibited survival and reduced body weight in Plagiodera versicolora larvae unlike those exposed to lower concentrations or shorter durations (0.1, 1.0 and 10.0 mg/L MNPs for 7 or 14 days). MNPs exposure increased lignin content and leaf thickness in willows, leading to decreased leaf consumption and increased mouthpart wear in P. versicolora larvae. Transcriptome and gut microbiota analyses revealed significant downregulation of genes related to digestion, intestinal homoeostasis, immunity, and growth/development along with profound alterations in gut microbiota composition. Notably, the abundance of the pathogenic bacterium Pseudomonas increased significantly. The gut barrier was disrupted, allowing gut bacteria to translocate into the haemolymph, accelerating larval mortality. Overall, MNPs altered plant physiology, making willow plants unsuitable for herbivore consumption and indirectly influenced herbivore survival by modulating gut bacteria. These findings offer novel insights into the cascading ecological effects and risks of MNPs, highlighting potential impacts on plant-herbivore interactions, biodiversity, and ecosystem health in terrestrial ecosystems.
Collapse
Affiliation(s)
- Peipei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanping Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengqi Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Huang T, Zhang J, Dong X, Yang Y. Discovery of two novel cutinases from a gut yeast of plastic-eating mealworm for polyester depolymerization. Appl Environ Microbiol 2025; 91:e0256224. [PMID: 40172219 PMCID: PMC12042792 DOI: 10.1128/aem.02562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
Identification of novel plastic-degrading enzymes is crucial for developing enzymatic degradation and recycling strategies for plastic waste. Here, we report the discovery of two novel cutinases, SiCut1 and SiCut2, from a yeast strain Sakaguchia sp. BIT-D3 was isolated from the gut of plastic-eating mealworms. Their amino acid sequences share less than 25% identity with all previously described cutinases and reveal a conserved S-D-H catalytic triad with a unique GYSKG motif. Their recombinant proteins were successfully overexpressed in Pichia pastoris. The pH range for both enzymes was 4.0 to 11.0 and the temperature range for SiCut1 and SiCut2 was 10°C to 50°C and 10°C to 70°C, respectively. Both enzymes showed strong activity against apple cutin and short-chain fatty acid esters of p-nitrophenol and glycerol, substantiating their classification as true cutinases. SiCut1 and SiCut2 have been demonstrated to exhibit efficient degradation of polycaprolactone (PCL) film, polybutylene succinate (PBS) film, and polyester-polyurethane (PUR) foam. Molecular docking and molecular dynamics simulations were used to elucidate the underlying mechanisms of the observed catalytic activity and thermal stability. This study shows that SiCut1 and SiCut2 are novel yeast-derived cutinases with the potential for depolymerization and recycling of plastic waste.IMPORTANCEThe identification of novel plastic-degrading enzymes is critical in addressing the pervasive problem of plastic pollution. This study presents two unique cutinases, SiCut1 and SiCut2, derived from the yeast Sakaguchia sp. BIT-D3 isolated from the gut of plastic-feeding mealworms. Despite sharing less than 25% sequence identity with known cutinases, both enzymes exhibit remarkable degradation capabilities against various polyester plastics, including polycaprolactone (PCL) film, polybutylene succinate (PBS) film, and polyester-polyurethane (PUR) foam. Our results elucidate the catalytic mechanisms of SiCut1 and SiCut2 and provide insights into their potential applications in enzymatic degradation and recycling strategies. By harnessing the gut microbiota of plastic-degrading organisms, this research lays the foundation for innovative enzyme-based solutions to reduce plastic waste and promote sustainable practices in waste management.
Collapse
Affiliation(s)
- Tong Huang
- School of Life
Science, Beijing Institute of Technology, Beijing,
China
| | - Jingya Zhang
- School of Life
Science, Beijing Institute of Technology, Beijing,
China
| | - Xuena Dong
- School of Life
Science, Beijing Institute of Technology, Beijing,
China
| | - Yu Yang
- School of Life
Science, Beijing Institute of Technology, Beijing,
China
| |
Collapse
|
4
|
Peng BY, Wang WX. In Vivo visualization of microplastic degradability and intestinal functional responses in a plastivore insect. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137109. [PMID: 39764959 DOI: 10.1016/j.jhazmat.2025.137109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 03/12/2025]
Abstract
The plastivore insect Tenebrio molitor demonstrates significant potential for the rapid biodegradation and bioremediation of micro(nano)plastics. However, real-time visualization of the digestive degradation and removal of microplastics (MPs) during intestinal transit, along with the associated in vivo intestinal functional responses, remains challenging. Here, we developed second near-infrared (NIR-II) window aggregated-induced emission (AIE) MPs of two sizes (29.8 μm and 299.5 μm, respectively) to enable real-time monitoring of MPs removal in T. molitor larvae, and quantified the degradation kinetics. Our findings revealed that small MPs were digested and passed through the intestine more rapidly compared to large MPs, in strong contrast with patterns observed in organisms lacking plastic-degrading capacity. Digestive removal was more pronounced in the posterior than in the anterior midgut. A NIR-II peroxynitrite probe (NIR-ONOO-) was synthesized to investigate the intestinal functional responses to MPs biodegradation. Generation of reactive nitrogen species (RNS) was extensive during feedstock digestion in the intestine. The larvae instinctively modulated the ONOO- levels and heterogeneously redistributed the ONOO- in response to MPs biodegradation, with a more pronounced effect observed in larvae fed large MPs. This work presents a robust trafficking technology for the dynamic and in vivo visualization of micro(nano)plastics removal and bioremediation in plastivore species.
Collapse
Affiliation(s)
- Bo-Yu Peng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
5
|
Burd BS, Mussagy CU, Bebber C, Sant'Ana Pegorin Brasil G, Dos Santos LS, Guerra NB, Persinoti GF, Jucaud V, Goldbeck R, Herculano RD. Can the insects Galleria mellonella and Tenebrio molitor be the future of plastic biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178879. [PMID: 40022971 DOI: 10.1016/j.scitotenv.2025.178879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Plastics have been an integral part of human lives, enhancing the functionality and safety of many everyday products, contributing significantly to our overall well-being. However, petroleum-based plastics can take hundreds or even thousands of years to decompose, resulting in an unprecedented plastic waste accumulation in the environment. Widely used conventional plastic disposal methods as landfilling and incineration are also environmentally harmful, frequently leading to soil/water contamination and the release of microplastics. To overcome these limitations, researchers have been investigating novel sustainable alternatives for plastic waste management, such as the use of microorganisms, microbial-based enzymes, and, more recently, some insect larvae, being Galleria mellonella and Tenebrio molitor the most promising ones. In this review, we explore different methods of plastic waste disposal focusing on recent discoveries regarding biological plastic degradation using insects as alternative methods. We also discuss the plastic degradation mechanisms employed by G. mellonella and T. molitor larvae known so far, as salivary enzymes and the pool of microorganisms in their gut. Finally, this review highlights key challenges in plastic biodegradation, such as standardization and experimental comparability, while proposing innovative perspectives like using insects as bioreactors and exploring unexplored research directions.
Collapse
Affiliation(s)
- Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Camila Bebber
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo, University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Nayrim Brizuela Guerra
- School of Science, São Paulo State University (UNESP), 14-01 Eng. Luiz Edmundo Carrijo Coube, Avenue, Bauru, SP, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas, UNICAMP Monteiro Lobato no. 80, Campinas, São Paulo 13083-862, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
6
|
Vital-Vilchis I, Karunakaran E. Using Insect Larvae and Their Microbiota for Plastic Degradation. INSECTS 2025; 16:165. [PMID: 40003794 PMCID: PMC11856541 DOI: 10.3390/insects16020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Plastic pollution is one of the biggest current global threats to the environment given that petroleum-based plastic is recalcitrant and can stay in the environment for decades, even centuries, depending on the specific plastic type. Since less than 10% of all plastic made is recycled, and the other solutions (such as incineration or landfill storage) are pollutant methods, new, environmentally friendly solutions are needed. In this regard, the latest biotechnological discovery on this topic is the capability of insect larvae to use plastic polymers as carbon feedstock. This present review describes the most relevant information on the insect larvae capable of degrading plastic, mainly Galleria mellonella (Fabricius, 1798), Tenebrio molitor (Linnaeus, 1758), and Zophobas atratus (Fabricius, 1776), and also adds new information about other less commonly studied "plastivore" insects such as termites. This review covers the literature from the very first work describing plastic degradation by larvae published in 2014 all the way to the very latest research available (till June 2024), focusing on the identification of a wide variety of plastic-degrading microorganisms isolated from larvae guts and on the understanding of the potential molecular mechanisms present for degradation to take place. It also describes the latest discoveries, which include the identification of novel enzymes from waxworm saliva.
Collapse
Affiliation(s)
| | - Esther Karunakaran
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
7
|
Gowthami A, Syed Marjuk M, Santhanam P, Thirumurugan R, Muralisankar T, Perumal P. Marine microalgae - Mediated biodegradation of polystyrene microplastics: Insights from enzymatic and molecular docking studies. CHEMOSPHERE 2025; 370:144024. [PMID: 39722402 DOI: 10.1016/j.chemosphere.2024.144024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Biodegradation of microplastics (MPs) through microalgal strains would be of eco-friendly approach for significant pollution abatement. Polystyrene (PS) is a major contaminant in the marine environment; however studies on marine microalgal degradation of PS MPs have been very limited. In the present study, six marine microalgal strains viz. Picochlorum maculatum, Dunaliella salina, Amphora sp., Navicula sp., Synechocystis sp. and Limnospira indica were investigated for their ability to degrade PS MPs for the incubation period of 45 days. Results from weight reduction, ATR-FTIR, SEM, and molecular docking analysis confirmed that microalgae formed biofilms on PS MPs, causing structural changes, and laccase-driven enzymatic breakdown. A maximum weight loss of 23.2 ± 0.21% and a minimum of 11.3 ± 0.026% were caused by the colonized microalgae Synechocystis sp. and Amphora sp. respectively. The study indicated that a higher reduction rate was observed in the Synechocystis sp. Treated PS MPs with a rate of 0.0058 g/day and a lower half-life of 119.34 days. SEM analysis showed that microalgae caused pits, erosion, and damage to the PS film. ATR-FTIR confirmed the chemical modifications and proved biodegradation. Laccase enzyme activity was higher in Synechocystis sp., and molecular docking showed the laccase interaction with the derivatives of PS, elucidating the breakdown process. This study highlights the potential of microalgae for eco-friendly microplastic degradation and paves the way for future research on the by-products of this process. Exploring the ecological impact of by-products and optimizing scalable methods can further enhance the sustainability and practical applications of this promising solution.
Collapse
Affiliation(s)
- Ayyasamy Gowthami
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Mohammed Syed Marjuk
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Perumal Santhanam
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Ramasamy Thirumurugan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Pachiappan Perumal
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
8
|
Hu S, Lu P, Feng Y, Chen A, Han G. Elucidating the role of the genus Pseudomonas involved in coumarin degradation. ENVIRONMENTAL RESEARCH 2025; 266:120603. [PMID: 39667481 DOI: 10.1016/j.envres.2024.120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Coumarin, a synthetic chemical and phytotoxin, exhibits hepatotoxicity and carcinogenicity, posing threats to both human health and environmental safety. Microbial degradation effectively mitigates environmental contamination. In this study, a coumarin-degrading bacterial consortium designated as XDS-7 with Pseudomonas as the key degrader was obtained. However, there is a lack of comprehensive perspective on the key role of the genus Pseudomonas involved in coumarin degradation. We employed the consortium XDS-7 as a model system to investigate the critical role of the genus Pseudomonas involved in coumarin degradation. Metagenomic binning analysis indicated that bin 14 (Pseudomonas sp.) contains the full complement of genes required for coumarin degradation. A coumarin-degrading bacterium, Pseudomonas sp. strain X4, was isolated from consortium XDS-7 using a traditional enrichment method supplemented with chloramphenicol. Genomic analysis demonstrated that strain X4 carries a suite of genes to completely degrade coumarin. Bioinformatics analysis revealed that putative coumarin-degrading bacteria are widely distributed across diverse bacteria of the genus Pseudomonas. In addition, strain X4 completely removed 100 mg kg-1 of coumarin from contaminated soil within 48 h and 100 mg L-1 of coumarin from contaminated wastewater within 4 h. This study will greatly enhance our understanding and utilization of these valuable bioresources.
Collapse
Affiliation(s)
- Shunli Hu
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036, Hefei, China.
| | - Peicheng Lu
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China
| | - Youhui Feng
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China
| | - Anqi Chen
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
9
|
Zarra F, Funari R, Cucini C, Nardi F, Carapelli A, Marri L, Frati F. Novel insights into insect mediated polystyrene biodegradation through bacterial genome analyses. Sci Rep 2025; 15:1047. [PMID: 39774784 PMCID: PMC11707134 DOI: 10.1038/s41598-025-85517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Plastic pollution is a significant environmental challenge of contemporary age. Polystyrene (PS), among the most commonly used plastic polymers worldwide, is highly durable and difficult to degrade. Despite various disposal strategies, PS continues to impact biodiversity, human health, and ecosystems. Recently, the scientific community has focused on the potential role of microorganisms for plastic biodegradation, particularly those from the gut of plastivorous insects. In a previous study, three bacterial strains, each representing a distinct taxonomic group (Klebsiella, Pseudomonas, and Stenotrophomonas), were isolated from Alphitobius diaperinus larvae after rearing on a PS diet and enriched in a medium with PS as the sole carbon source. The Stenotrophomonas sp. strain, here identified as S. indicatrix, showed the greatest potential for PS degradation. The present study investigates the genetic profile of the newly isolated S. indicatrix strain DAI2m/c through genome sequencing, to identify enzyme-encoding genes involved in the intracellular metabolic pathways responsible for the biodegradation of the styrene monomer. Our findings indicate that the genome of S. indicatrix strain DAI2m/c encodes all enzymes required for one of the two recognized styrene degradation pathways, suggesting its ability to convert styrene into byproducts that are then utilized for cellular energy production.
Collapse
Affiliation(s)
- Felice Zarra
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Rebecca Funari
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Claudio Cucini
- Department of Life Sciences, University of Siena, 53100, Siena, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Laura Marri
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|
10
|
Lu Q, Tang D, Liang Q, Wang S. Biotechnology for the degradation and upcycling of traditional plastics. ENVIRONMENTAL RESEARCH 2024; 263:120140. [PMID: 39395553 DOI: 10.1016/j.envres.2024.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Traditional plastics, predominantly derived from petrochemicals, are extensively utilized in modern industry and daily life. However, inadequate management and disposal practices have resulted in widespread environmental contamination, with polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene being the most prevalent pollutants. Biological methods for plastic degradation have garnered significant attention due to their cost-effectiveness and potential for resource recovery, positioning them as promising strategies for sustainable plastic waste management. While polyethylene terephthalate, characterized by its relatively less stable C-O bonds, has been extensively studied and demonstrates significant potential for biodegradation. In contrast, the biodegradation of other plastics remains a significant challenge due to the inherent stability of their C-C backbone structures. This review comprehensively examines the state-of-the-art biotechnology for treating these traditional plastics, focusing on: (1) the roles of specific microorganisms and enzymes, their taxonomic classifications, and the metabolic pathways involved in plastic biodegradation; and (2) a proposed two-stage hybrid approach integrating physicochemical and biological processes to enhance the biodegradation or upcycling of these traditional plastics. Additionally, the review highlights the critical role of multi-omics approaches and tailored strategies in enhancing the efficiency of plastic biodegradation while examining the impact of plastic molecular structures and additives on their degradation potential. It also addresses key challenges and delineates future research directions to foster the development of innovative biological methods for the effective and sustainable management of plastic waste.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Daoyu Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Da YM, Yang XR, Li MJ, Li SS, Gao ZP, Zhang Y, Su JQ, Zhou GW. Promotion of antibiotic-resistant genes dissemination by the micro/nanoplastics in the gut of snail Achatina fulica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176829. [PMID: 39437930 DOI: 10.1016/j.scitotenv.2024.176829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Terrestrial animal intestines are hotspots for the enrichment of micro/nano plastics (M/NPs) and antibiotic-resistant genes (ARGs). However, little is known about the further impact of M/NPs on the spread of ARGs in animal guts. This study investigates the role of M/NPs (polystyrene) with varying particle sizes (0.082, 42, and 182 μm), concentrations (10 and 100 mg/L), and exposure durations (4 and 16 days) in the ARGs dissemination via conjugation in the edible snail (Achatina fulica) gut. Combination of qPCR with 16S rRNA-based sequencing, we found that PS exposure caused intestinal cell impairment and shifts in the gut microbial community of snails. Conjugation rate increased with PS particle sizes in the snail gut. After 4 days of exposure, significantly higher conjugation rates were observed in the gut exposed to 100 mg/L PS compared to 10 mg/L, however, this trend reversed after 16 days. Consistently, the abundances of conjugation relevant genes trfA and trbB shared similar trends to the conjugation ratios in the snail gut after PS exposure. Transconjugant diversity was much lower in 10 mg/L PS groups than in 100 mg/L PS treatments. Therefore, this study suggests that the presence of M/NPs would complicate management of ARG spread. The selection pressure exerted by M/NPs may sustain or even amplify the spread of ARGs in the gut of terrestrial animals even in the absence of antibiotics. It highlights the necessity of avoiding M/NPs intake as a part of comprehensive strategy for cubing ARG dissemination in the gut of animals.
Collapse
Affiliation(s)
- Yan-Mei Da
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shun-Shun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ze-Ping Gao
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ying Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Vishnu Murthy JS, Keerthana A, Logeswaran K, Das A, Choudhury S, Ramakrishna BG, Chowdhury S, Aggarwal H, Saravanan S, Pal A, Dubey VK, Kumar V. Harnessing insects mediated plastic biodegradation: Current insight and future directions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123038. [PMID: 39566205 DOI: 10.1016/j.jenvman.2024.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Plastic polymers pose a significant challenge due to their resistance to degradation, resulting in their persistent accumulation in the environment and exacerbating a critical environmental concern. Urgent innovation and novel management technologies are essential to tackle this issue. Plastic biodegradation, distinguished by its environmentally friendly and safe attributes, has garnered substantial attention as a viable solution. Insects are pivotal in this process, utilizing their gut microbes to facilitate plastic degradation. The enzymatic action within the digestive tracts of diverse insect hosts and their microbial symbionts contributes to the breakdown of these polymers. This comprehensive review delves into the current landscape and strategies aimed at combating plastic pollution, with a specific focus on the involvement of insects such as mealworms (Tenebrio molitor Linnaeus), superworms (Zophobas atratus Blanchard), greater wax moths (Galleria mellonella Linnaeus), and various other insect species in the degradation of plastics. This review explores the different insects involved in plastic degradation, the mechanisms by which insects degrade plastics and delineates the characteristics of resultant degradable products. Furthermore, it investigates the future potential for plastic degradation by insects and examines the prospective developmental pathways for degradable plastics. Ultimately, this review provides an array of solutions by using various insects to pervasive the issue of plastic pollution.
Collapse
Affiliation(s)
- Jasti Sri Vishnu Murthy
- Department of Agricultural Entomology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - Alagesan Keerthana
- Department of Entomology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, 641003, Tamil Nadu, India
| | - K Logeswaran
- Division of Entomology and Nematology, Indian Institute of Horticultural Research, Bengaluru, 560089, Karnataka, India
| | - Abhibandana Das
- Department of Entomology, College of Agriculture, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Srishti Choudhury
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Bindu Gudi Ramakrishna
- Department of Agricultural Entomology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - Sanhita Chowdhury
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Himani Aggarwal
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - S Saravanan
- Department of Entomology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, 641003, Tamil Nadu, India
| | - Arindam Pal
- Department of Entomology, Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Vinod Kumar Dubey
- School of Agriculture and Veterinary Science, Shridhar University, Pilani, 333031, Rajasthan, India.
| | - Vinay Kumar
- Department of Soil Science and Agricultural Chemistry, Jute Research Station Katihar, Bihar Agricultural University, Sabour, Bhagalpur, 854103, Bihar, India
| |
Collapse
|
13
|
Kim HR, Koh HY, Shin H, Suh DE, Lee S, Choi D. Enhancing the oxidation of polystyrene through a homogeneous liquid degradation system for effective microbial degradation. Front Microbiol 2024; 15:1509603. [PMID: 39669785 PMCID: PMC11636969 DOI: 10.3389/fmicb.2024.1509603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Plastics play a crucial role in modern industries; however, their resistance to natural degradation contributes to environmental pollution, and microplastics pose a health threat. The hydrophobic nature of microplastics poses a considerable challenge, rendering them resistant to dissolving in water. In this study, we conducted a comparative analysis of the microbial biodegradation capabilities of polystyrene in solid and liquid states. Polystyrene in its solid foam form, along with polystyrene converted into a liquid state using ethyl-ester oil, was biodegraded by microorganisms. Subsequently, the liquid plastic was re-extracted into its solid form, and the degree of degradation was assessed using weight loss measurement, XPS, FT-IR, GPC, and TGA. Liquid-state polystyrene exhibited a higher degradation rate than that reported previously. Furthermore, liquid polystyrene undergoes more pronounced oxidation than its solid counterpart, leading to an increased oxygen atom ratio. Chemical structure analysis highlighted the distinct formation of -OH and C=O functional groups in the liquid state compared to those in the solid state. Additionally, notable changes in the molecular weight and thermal stability of polystyrene were observed during biodegradation in the liquid state. This study suggests that a heterogeneous reaction (solid plastic-liquid medium) might impede plastic biodegradation, while indicating the potential to enhance the degradation efficiency through a homogeneous reaction (liquid plastic-liquid medium). The follow-up study identifies appropriate solvents and optimizes cultivation conditions, offering potential to enhance the efficiency of biological plastic degradation.
Collapse
Affiliation(s)
- Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hye Yeon Koh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hyeyoung Shin
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Daegu Gyeonbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Donggeon Choi
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| |
Collapse
|
14
|
Gates EG, Crook N. The biochemical mechanisms of plastic biodegradation. FEMS Microbiol Rev 2024; 48:fuae027. [PMID: 39500541 PMCID: PMC11644497 DOI: 10.1093/femsre/fuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/15/2024] Open
Abstract
Since the invention of the first synthetic plastic, an estimated 12 billion metric tons of plastics have been manufactured, 70% of which was produced in the last 20 years. Plastic waste is placing new selective pressures on humans and the organisms we depend on, yet it also places new pressures on microorganisms as they compete to exploit this new and growing source of carbon. The limited efficacy of traditional recycling methods on plastic waste, which can leach into the environment at low purity and concentration, indicates the utility of this evolving metabolic activity. This review will categorize and discuss the probable metabolic routes for each industrially relevant plastic, rank the most effective biodegraders for each plastic by harmonizing and reinterpreting prior literature, and explain the experimental techniques most often used in plastic biodegradation research, thus providing a comprehensive resource for researchers investigating and engineering plastic biodegradation.
Collapse
Affiliation(s)
- Ethan G Gates
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| | - Nathan Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
15
|
Urbanek AK, Rybak J, Hanus-Lorenz B, Komisarczyk DA, Mirończuk AM. Zophobas morio versus Tenebrio molitor: Diversity in gut microbiota of larvae fed with polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176005. [PMID: 39236822 DOI: 10.1016/j.scitotenv.2024.176005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Plastics are common synthetic materials that have been abundantly present as pollutants in natural ecosystems for the past few decades. Thus scientists have investigated the capability of plastic digestion by insects. Here we compare the effectiveness of biodegradation of the specific polymers: expanded polystyrene (EPS), polyvinyl chloride (PVC), low-density polyethylene (LDPE) and polypropylene (PP) altogether with above variants of plastics with microelements and vitamins by the mealworm - the larval form of the beetle Tenebrio molitor - and larvae of the beetle Zophobas morio, known as superworms. Z. morio beetles on all diets were able to complete their life cycle from larvae through pupae and imago, gaining 19 % and 22 % in mass on LDPE and EPS; 8 % and 7 % on PVC and PP. Mealworms (T. molitor) reared on polymers had minimal weight gain, gaining 2 % on LDPE and EPS, and a slight reduction in mass was observed when reared on PP and PVC. Not all specimens of T. molitor were able to pupate and transform to the adult stage. The results suggest that larvae of Z. morio can eat and degrade some types of plastic compounds more effectively than T. molitor. The changes in microbial gut communities were compared between these two species. The highest mass gain for Z. morio is associated with higher diversity in gut microbia and it was more diverse than that of T. molitor. Citrobacter freundii, a bacterium recognized for its ability to degrade long-chain polymers, linear hydrocarbons and cyclic hydrocarbons, was found in the microflora of Z. morio. The results confirm that superworms can survive on polymer feed. Moreover, this diet supplemented with microelements and vitamins increases the number of bacterial species and the diversity in the microbial gut.
Collapse
Affiliation(s)
- Aneta K Urbanek
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Justyna Rybak
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50370 Wrocław, Poland
| | - Beata Hanus-Lorenz
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50370 Wrocław, Poland
| | - Dominika A Komisarczyk
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Aleksandra M Mirończuk
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
16
|
Morales-Vera R, Cantillana J, Arto-Paz F, Hernández C, Echeverría-Vega A, Valdés C. Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria. Microorganisms 2024; 12:2285. [PMID: 39597674 PMCID: PMC11596620 DOI: 10.3390/microorganisms12112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
This study demonstrated the biodegradation of two different brands of cigarette butts (CBs), which are primarily composed of cellulose acetate, by four distinct microorganisms. These included the white rot fungus Pleurotus ostreatus, the brown rot fungus Lentinus lepideus, and the bacteria Bacillus cereus and Pseudomonas putida. After 31 days of treatment, weight loss measurements revealed a mass loss of 24-34%, where B. cereus exhibited the greatest efficacy in terms of mass loss for both brands of CBs. Fourier-Transform Infrared Spectroscopy (FTIR), confocal microscopy, and scanning electron microscopy (SEM) confirmed changes in the surface of the CBs, attributable to structural wear and material breakdown, indicating effective biodegradation by the evaluated microorganisms. Furthermore, the analyses confirmed changes in the surface of the CBs, attributable to structural wear and material breakdown, indicating effective biodegradation by the evaluated microorganisms.
Collapse
Affiliation(s)
- Rodrigo Morales-Vera
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile; (J.C.); (C.H.)
| | - Javiera Cantillana
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile; (J.C.); (C.H.)
| | - Félix Arto-Paz
- Doctorado en Biotecnología Traslacional (DBT), Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile;
| | - Camila Hernández
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile; (J.C.); (C.H.)
| | - Alex Echeverría-Vega
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3466706, Chile;
| | - Cristian Valdés
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3466706, Chile;
| |
Collapse
|
17
|
Senko O, Maslova O, Stepanov N, Aslanli A, Lyagin I, Efremenko E. Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions. Microorganisms 2024; 12:2024. [PMID: 39458333 PMCID: PMC11509615 DOI: 10.3390/microorganisms12102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs). HSs constitute a macrocomponent of natural non-living organic matter of aquatic and soil ecosystems, formed and transformed in the processes of mineralization of bio-organic substances in environmental conditions. Analysis of the main mechanisms of their influence on each other and the effects produced that accelerate or inhibit polymer degradation can create the basis for scientifically based approaches to the most effective solution to the problem of degradation of SPs, including in the form of microplastics. This review is aimed at comparing various aspects of interactions of SPs, MOs, and HSs in laboratory experiments (in vitro) and environmental investigations (in situ) aimed at the biodegradation of polymers, as well as pollutants (antibiotics and pesticides) that they absorb. Comparative calculations of the degradation velocity of different SPs in different environments are presented. A special place in the analysis is given to the elemental chemical composition of HSs, which are most successfully involved in the biodegradation of SPs. In addition, the role of photo-oxidation and photoaging of polymers under the influence of the ultraviolet spectrum of solar radiation under environmental conditions on the (bio)degradation of SPs in the presence of HSs is discussed.
Collapse
Affiliation(s)
- Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| |
Collapse
|
18
|
Miravalle E, Balboa S, Zanetti M, Otero A, Lazzari M. New insights on the degradation of polystyrene and polypropylene by larvae of the superworm Zophobas atratus and gut bacterial consortium enrichments obtained under different culture conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135475. [PMID: 39146588 DOI: 10.1016/j.jhazmat.2024.135475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
This study aims to deepen knowledge of the biodegradation of plastics, focusing on polypropylene (PP) fabric from surgical masks and polystyrene (PS) by larvae of Zophobas atratus as well as of specialized bacterial consortia from their gut, which were obtained in different enrichment conditions (aerobic, anaerobic, presence or absence of combined nitrogen). Plastics ingested by larvae obtained in Spain did not show any signs of oxidation but only limited depolymerization, preferably from the lowest molecular weight chains. Gut microbiota composition changed as an effect of plastic feeding. Such differences were more evident in bacterial enrichment cultures, where the polymer type influenced the composition more than by culture conditions, with an increase in the presence of nitrogen-fixers in anaerobic conditions. PS and PP degradation by different enrichment cultures was confirmed under aerobic and anaerobic conditions by respirometry tests, with anaerobic conditions favouring a more active plastic degradation. In addition, exposure to selected bacterial consortia in aerobiosis induced limited surface oxidation of PS. This possibly indicates that different biochemical routes are being utilized in the anaerobic gut and in aerobic conditions to degrade the polymer.
Collapse
Affiliation(s)
- Edoardo Miravalle
- Department of Chemistry, University of Turin, 10125 Turin, Italy; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Sabela Balboa
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Marco Zanetti
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Aquatic One Health Research Institute (iARCUS). Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Massimo Lazzari
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Hosseini FS, Asoodeh A, Ostad Movahed S, Makhdoumi A. An integrated approach for plastic polymer degradation by the gut bacterial resident of superworm, Zophobas morio (Coleoptera:Tenebrionidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60359-60370. [PMID: 39379655 DOI: 10.1007/s11356-024-35244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
The potential of superworm to remove certain plastic polymers has recently been noted. In this study, aerobic bacterial strains were isolated from the gut of Zophobas morio larvae which were fed with polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS) polymers. Strains P2 (Leminorella), P6 (Bacillus), P9 (Bacillus), and P5 (Citrobacter) were associated with the highest PS (2.7%), PP (1.3%), PET (1.1%), and PE (0.42%) weight loss after 28 days, respectively. Pretreatments including thermal treatment (80 °C for 10 days), weathering (4 months in the free environment), and nitric and sulfuric acids (1 N, 10 days) improved the degradation of PE (1.3%), PET (1.9%), PP (5.2%), and PS (8.3%) by the same strains, respectively. Further analyses on the PS degradation by Leminorella sp. P2 revealed acid pretreatment promoted the formation of the C = C, C = O, and O-H functional groups. Surface irregularities, as well as a 3.6-fold increase in surface roughness, were observed in the PS film subjected to biodegradation. The contact angle dropped from 98.4° to 42.2° following the biodegradation. Bacterial depolymerization was confirmed by the 8.7% and 3.4% reduction of Mn and Mw and the change in polydispersity from 1.65 to 1.75. The results suggest that Zophobas morio microbiota in combination with abiotic pretreatment can be considered for plastic waste management.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Ostad Movahed
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
20
|
Wang S, Yu H, Li W, Song E, Zhao Z, Xu J, Gao S, Wang D, Xie Z. Biodegradation of four polyolefin plastics in superworms (Larvae of Zophobas atratus) and effects on the gut microbiome. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135381. [PMID: 39088959 DOI: 10.1016/j.jhazmat.2024.135381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Recent studies have demonstrated superworms (larvae of Zophobas atratus) ability to degrade polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polypropylene (PP) within their digestive system. This study aimed to compare the ability of superworms to degrade the above four polyolefin plastics over a duration of 30 days. In this study, the degradation rate of PE was the highest, and the final average weight of superworms, as well as the final plastic mass loss consumed by them, significantly increased (73.38 % and 52.33 %, respectively) when PE was fed with wheat bran (1:1 [w/w]). FTIR and TGA indicated the occurrence of oxidation and biodegradation processes in the four polyolefin plastics when exposed to superworms. In addition, the molecular weights (Mw and Mn) of excreted polymer residues decreased by 3.1 % and 2.87 % in PE-fed superworms, suggesting that the depolymerization of PE was not entirely dependent on the gut microbial community. The analysis of the gut microbial communities revealed that the dominant microbial community were different for each type of plastic. The results indicate that the gut microbiome of superworms exhibited remarkable adaptability in degrading various types of plastics, and the intake preferences and efficiency of different plastics are associated with different dominant microbial community species.
Collapse
Affiliation(s)
- Shuaibing Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Hong Yu
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Wei Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Enze Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Zhiguo Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Shangkun Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Dandan Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| | - Zhihong Xie
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| |
Collapse
|
21
|
Ndotono EW, Tanga CM, Kelemu S, Khamis FM. Mitogenomic profiling and gut microbial analysis of the newly identified polystyrene-consuming lesser mealworm in Kenya. Sci Rep 2024; 14:21370. [PMID: 39266593 PMCID: PMC11393456 DOI: 10.1038/s41598-024-72201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Plastic waste has recently become a major global environmental concern and one of the biggest challenges has been seeking for alternative management options. Several studies have revealed the potential of several coleopteran species to degrade plastics, and this is the first research paper on plastic-degradation potential by lesser mealworms from Africa. This study evaluated the whole mitogenomic profile of the lesser mealworm to further identify the insect. The ability of the mealworm to consume Polystyrene (PS) was also evaluated alongside its associated gut microbiota diversity. Our results showed a complete circular mitochondrial genome which clustered closely to the Alphitobius genus but also suggested that our insect might be a new subspecies which require further identification. During the PS feeding trials, overall survival rates of the larvae decreased when fed a sole PS diet while PS intake was observed to increase over a 30-day period. The predominant bacteria observed in larvae fed PS diets were Kluyvera, Lactococcus, Klebsiella, Enterobacter, and Enterococcus, while Stenotrophomonas dominated the control diet. These findings demonstrated that the newly identified lesser mealworm can survive on a PS diet and has a consortium of important bacteria strongly associated with PS degradation. This work provides a better understanding of bioremediation applications, paving the way for further research into the metabolic pathways of plastic-degrading microbes and bringing hope to solving plastic waste pollution while providing high-value insect protein towards a circular economy.
Collapse
Affiliation(s)
- Evalyne W Ndotono
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
22
|
Qiu Q, Li H, Sun X, Tian K, Gu J, Zhang F, Zhou D, Zhang X, Huo H. Integrating genomics, molecular docking, and protein expression to explore new perspectives on polystyrene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135031. [PMID: 38943889 DOI: 10.1016/j.jhazmat.2024.135031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Faced with the escalating challenge of global plastic pollution, this study specifically addresses the research gap in the biodegradation of polystyrene (PS). A PS-degrading bacterial strain was isolated from the gut of Tenebrio molitor, and genomics, molecular docking, and proteomics were employed to thoroughly investigate the biodegradation mechanisms of Pseudomonas putida H-01 against PS. Using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (ATR-FTIR), and contact angle analysis, significant morphological and structural changes in the PS films under the influence of the H-01 strain were observed. The study revealed several potential degradation genes and ten enzymes that were specifically upregulated in the PS degradation environment. Additionally, a novel protein with laccase-like activity, LacQ1, was purified from this strain for the first time, and its crucial role in the PS degradation process was confirmed. Through molecular docking and molecular dynamics (MD) simulations, the interactions between the enzymes and PS were detailed, elucidating the binding and catalytic mechanisms of the degradative enzymes with the substrate. These findings have deepened our understanding of PS degradation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
| | - Xinwen Zhang
- College of Pharmacy, Hainan Vocational University of Science and Technology, Haikou 571126, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
23
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
24
|
Jiang J, Xu H, Cao X, Liang Y, Mo A, Cao X, Liu Y, Benbow ME, Criddle CS, Wu WM, He D. Soil-dwelling grub larvae of Protaetia brevitarsis biodegrade polystyrene: Responses of gut microbiome and host metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173399. [PMID: 38781836 DOI: 10.1016/j.scitotenv.2024.173399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Plastic pollution poses a significant threat to terrestrial ecosystems, yet the potential for soil fauna to contribute to plastic biodegradation remains largely unexplored. In this study, we reveal that soil-dwelling grubs, Protaetia brevitarsis larvae, can effectively biodegrade polystyrene (PS) plastics. Over a period of 4 weeks, these grubs achieved a remarkable 61.5 % reduction in PS foam mass. This biodegradation was confirmed by the depolymerization of ingested PS, formation of oxidative functional groups, noticeable chemical modifications, and an increase of δ13C of residual PS in frass. Additionally, antibiotic treatment to suppress gut microbes led to variations in the biodegradation process. PS ingestion induced a significant shift in the gut microbiome, promoting the growth of degradation-related bacteria such as Promicromonosporaceae, Bacillaceae, and Paenibacillaceae. Furthermore, the digestion of plastic triggered extensive metabolomic reprogramming of grubs' intestines, enhancing redox capabilities and facilitating PS biodegradation. These results indicate that responsive adaptation of both the gut microbiome and the host's intestinal metabolism contributes to PS degradation. Collectively, these findings demonstrate P. brevitarsis larvae's capability to alleviate soil plastic pollution, and highlight the potential of researching soil fauna further for sustainable plastic waste management solutions.
Collapse
Affiliation(s)
- Jie Jiang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Haowen Xu
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Xiaomu Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yuqing Liang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Aoyun Mo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xuelong Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yan Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Mark Eric Benbow
- Department of Entomology and Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA.
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
25
|
Dar MA, Xie R, Zabed HM, Pawar KD, Dhole NP, Sun J. Current paradigms and future challenges in harnessing gut bacterial symbionts of insects for biodegradation of plastic wastes. INSECT SCIENCE 2024. [PMID: 38990171 DOI: 10.1111/1744-7917.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria. This review consolidates existing knowledge on plastic degradation by insects and their influence on gut microbiota. Additionally, it delves into the potential mechanisms employed by insects in symbiosis with gut bacteria, exploring the bioconversion of waste plastics into value-added biodegradable polymers through mineralization. These insights hold significant promise for the bio-upcycling of plastic waste, opening new horizons for future biomanufacturing of high-value chemicals from plastic-derived compounds. Finally, we weigh the pros and cons of future research endeavors related to the bioprospection of plastic-degrading bacteria from underexplored insect species. We also underscore the importance of bioengineering depolymerases with novel characteristics, aiming for their application in the remediation and valorization of waste plastics.
Collapse
Affiliation(s)
- Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Neeraja P Dhole
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Klauer RR, Hansen DA, Wu D, Monteiro LMO, Solomon KV, Blenner MA. Biological Upcycling of Plastics Waste. Annu Rev Chem Biomol Eng 2024; 15:315-342. [PMID: 38621232 PMCID: PMC11575423 DOI: 10.1146/annurev-chembioeng-100522-115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plastic wastes accumulate in the environment, impacting wildlife and human health and representing a significant pool of inexpensive waste carbon that could form feedstock for the sustainable production of commodity chemicals, monomers, and specialty chemicals. Current mechanical recycling technologies are not economically attractive due to the lower-quality plastics that are produced in each iteration. Thus, the development of a plastics economy requires a solution that can deconstruct plastics and generate value from the deconstruction products. Biological systems can provide such value by allowing for the processing of mixed plastics waste streams via enzymatic specificity and using engineered metabolic pathways to produce upcycling targets. We focus on the use of biological systems for waste plastics deconstruction and upcycling. We highlight documented and predicted mechanisms through which plastics are biologically deconstructed and assimilated and provide examples of upcycled products from biological systems. Additionally, we detail current challenges in the field, including the discovery and development of microorganisms and enzymes for deconstructing non-polyethylene terephthalate plastics, the selection of appropriate target molecules to incentivize development of a plastic bioeconomy, and the selection of microbial chassis for the valorization of deconstruction products.
Collapse
Affiliation(s)
- Ross R Klauer
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - D Alex Hansen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Derek Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | | | - Kevin V Solomon
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| |
Collapse
|
27
|
Salgado CA, Pereira Vidigal PM, Dantas Vanetti MC. Biodegradation of polyurethanes by Staphylococcus warneri and by microbial co-culture. CHEMOSPHERE 2024; 359:142169. [PMID: 38710416 DOI: 10.1016/j.chemosphere.2024.142169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
With the increasing production and use of polyurethanes (PUs), it is necessary to develop sustainable techniques for the remediation of plastic pollution. The use of microorganisms capable of biodegrading PUs may be an environmentally desirable solution for controlling these plastic contaminants. To contribute to the discovery of alternatives for the mitigation of plastics in the environment, this study aimed to explore the potential of StaphylococcuswarneriUFV_01.21, isolated from the gut of Galleria mellonellalarvae, for biodegradation of PU in pure culture and microbial co-culture with Serratia liquefaciensL135. S. warneri grew using Impranil® PU as the sole carbon source in pure culture and co-culture. With six days of incubation, the biodegradation of Impranil® in Luria Bertani broth was 96, 88 and 76%, while in minimal medium, it was 58, 54 and 42% for S. warneri, S. liquefaciens, and co-culture, respectively. In addition, S. warneri in pure culture or co-culture was able to biodegrade, adhere and form biofilms on the surfaces of Impranil® disks and poly[4,4'-methylenebis (phenyl isocyanate)-alt-1,4-butanediol/di(propylene glycol)/polycaprolactone] (PCLMDI) films. Scanning electron microscopy also revealed biodegradation by detecting the formation of cracks, furrows, pores, and roughness on the surfaces of inoculated PU, both with pure culture and microbial co-culture. This study is the first to demonstrate the potential of S. warneriin PU biodegradation.
Collapse
|
28
|
Peng BY, Xu Y, Zhou X, Wu WM, Zhang Y. Generation and Fate of Nanoplastics in the Intestine of Plastic-Degrading Insect ( Tenebrio molitor Larvae) during Polystyrene Microplastic Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10368-10377. [PMID: 38814143 DOI: 10.1021/acs.est.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37‰ versus -24.88‰) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yazhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tongji University, Shanghai 200092, China
| |
Collapse
|
29
|
Di Liberto EA, Battaglia G, Pellerito R, Curcuruto G, Dintcheva NT. Biodegradation of Polystyrene by Plastic-Eating Tenebrionidae Larvae. Polymers (Basel) 2024; 16:1404. [PMID: 38794597 PMCID: PMC11125288 DOI: 10.3390/polym16101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Polystyrene (PS) is an extremely stable polymer with a relatively high molecular weight and a strong hydrophobic character that makes it highly resistant to biodegradation. In this study, PS was subjected to biodegradation tests by Tenebrio Molitor (T. Molitor) and Zophobas Morio (Z. Morio) larvae. Specifically, six different experimental diets were compared: (i) T. Molitor fed with bran; (ii) T. Molitor fed only PS; (iii) T. Molitor fed only PS treated with H2O2; (iv) Z. Morio fed with bran; (v) Z. Morio fed only PS; and (vi) Z. Morio fed only PS treated with H2O2. Therefore, the mass change of the larvae and the survival rate were measured periodically, while the frass collected after 15 and 30 days was analyzed by different analyses, such as spectroscopy (FTIR), spectrometry (molecular weight and polydispersity), thermal analysis (TGA) and microscopy (scanning electron microscopy observations). The obtained results suggest that in the case of T. Molitor larvae, larvae feeding on bran showed the highest survival rate of ~94% at 30 days, while in the case of the Z. Morio larvae, the highest survival rate was exhibited by larvae eating PS-H2O2. Although not strongly pronounced, the Mw and Mn of PS in the frass of both T. Molitor and Z. Morio larvae decreased over 30 days, suggesting PS biodegradation. Finally, the morphological analysis shows that PS samples isolated from the frass of T. Molitor and Z. Morio larvae showed completely different, rough and irregularly carved surface structures, in comparison to PS before biodegradation.
Collapse
Affiliation(s)
- Erika Alessia Di Liberto
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy;
| | - Giuseppe Battaglia
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy;
| | - Rosalia Pellerito
- Istituto Comprensivo Statale “Luigi Capuana”, Via A. Narbone, 55, 90138 Palermo, Italy;
| | - Giusy Curcuruto
- Institute for Polymers, Composites and Biomaterials (IPCB)—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Nadka Tz. Dintcheva
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy;
- Institute for Polymers, Composites and Biomaterials (IPCB)—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
30
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
31
|
El-Kurdi N, El-Shatoury S, ElBaghdady K, Hammad S, Ghazy M. Biodegradation of polystyrene nanoplastics by Achromobacter xylosoxidans M9 offers a mealworm gut-derived solution for plastic pollution. Arch Microbiol 2024; 206:238. [PMID: 38684545 PMCID: PMC11058615 DOI: 10.1007/s00203-024-03947-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Nanoplastics pose significant environmental problems due to their high mobility and increased toxicity. These particles can cause infertility and inflammation in aquatic organisms, disrupt microbial signaling and act as pollutants carrier. Despite extensive studies on their harmful impact on living organisms, the microbial degradation of nanoplastics is still under research. This study investigated the degradation of nanoplastics by isolating bacteria from the gut microbiome of Tenebrio molitor larvae fed various plastic diets. Five bacterial strains capable of degrading polystyrene were identified, with Achromobacter xylosoxidans M9 showing significant nanoplastic degradation abilities. Within 6 days, this strain reduced nanoplastic particle size by 92.3%, as confirmed by SEM and TEM analyses, and altered the chemical composition of the nanoplastics, indicating a potential for enhanced bioremediation strategies. The strain also caused a 7% weight loss in polystyrene film over 30 days, demonstrating its efficiency in degrading nanoplastics faster than polystyrene film. These findings might enhance plastic bioremediation strategies.
Collapse
Affiliation(s)
- Najat El-Kurdi
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology, New Burj Al-Arab, Alexandria, Egypt
- Aquaculture Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Sahar El-Shatoury
- Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Khaled ElBaghdady
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif Hammad
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology, New Burj Al-Arab, Alexandria, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Egypt
| | - Mohamed Ghazy
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology, New Burj Al-Arab, Alexandria, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
32
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
33
|
Xu L, Li Z, Wang L, Xu Z, Zhang S, Zhang Q. Progress in polystyrene biodegradation by insect gut microbiota. World J Microbiol Biotechnol 2024; 40:143. [PMID: 38530548 DOI: 10.1007/s11274-024-03932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Polystyrene (PS) is frequently used in the plastics industry. However, its structural stability and difficulty to break down lead to an abundance of plastic waste in the environment, resulting in micro-nano plastics (MNPs). As MNPs are severe hazards to both human and environmental health, it is crucial to develop innovative treatment technologies to degrade plastic waste. The biodegradation of plastics by insect gut microorganisms has gained attention as it is environmentally friendly, efficient, and safe. However, our knowledge of the biodegradation of PS is still limited. This review summarizes recent research advances on PS biodegradation by gut microorganisms/enzymes from insect larvae of different species, and schematic pathways of the degradation process are discussed in depth. Additionally, the prospect of using modern biotechnology, such as genetic engineering and systems biology, to identify novel PS-degrading microbes/functional genes/enzymes and to realize new strategies for PS biodegradation is highlighted. Challenges and limitations faced by the application of genetically engineered microorganisms (GEMs) and multiomics technologies in the field of plastic pollution bioremediation are also discussed. This review encourages the further exploration of the biodegradation of PS by insect gut microbes/enzymes, offering a cutting-edge perspective to identify PS biodegradation pathways and create effective biodegradation strategies.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
34
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
35
|
Zaman I, Turjya RR, Shakil MS, Al Shahariar M, Emu MRRH, Ahmed A, Hossain MM. Biodegradation of polyethylene and polystyrene by Zophobas atratus larvae from Bangladeshi source and isolation of two plastic-degrading gut bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123446. [PMID: 38295931 DOI: 10.1016/j.envpol.2024.123446] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
Plastic pollution has become a major environmental concern globally, and novel and eco-friendly approaches like bioremediation are essential to mitigate the impact. Low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and expanded polystyrene (EPS) are three of the most frequently used plastic types. This study examined biodegradation of these using Zophobas atratus larvae, followed by isolation and whole genome sequencing of gut bacteria collected from larvae frass. Over 36 days, 24.04 % LDPE, 20.01 % EPS, and 15.12 % LLDPE were consumed on average by the larvae, with survival rates of 85 %, 90 %, and 87 %, respectively. Fourier transform infrared spectroscopy (FTIR) analysis of fresh plastic types, consumed plastics, and larvae frass showed proof of plastic oxidation in the gut. Frass bacteria were isolated and cultured in minimal salt media supplemented with plastics as the sole carbon source. Two isolates of bacteria were sampled from these cultures, designated PDB-1 and PDB-2. PDB-1 could survive on LDPE and LLDPE as carbon sources, whereas PDB-2 could survive on EPS. Scanning Electron Microscopy (SEM) provided proof of degradation in both cases. Both isolates were identified as strains of Pseudomonas aeruginosa, followed by sequencing, assembly, and annotation of their genomes. LDPE- and LLDPE-degrading enzymes e.g., P450 monooxygenase, alkane monooxygenase, alcohol dehydrogenase, etc. were identified in PDB-1. Similarly, phenylacetaldehyde dehydrogenase and other enzymes involved in EPS degradation were identified in PDB-2. Genes of both isolates were compared with genomes of known plastic-degrading P. aeruginosa strains. Virulence factors, antibiotic-resistance genes, and rhamnolipid biosurfactant biosynthesis genes were also identified in both isolates. This study indicated Zophobas atratus larvae as potential LDPE, LLDPE, and EPS biodegradation agent. Additionally, the isolated strains of Pseudomonas aeruginosa provide a more direct and eco-friendly solution for plastic degradation. Confirmation and modification of the plastic-degrading pathways in the bacteria may create scope for metabolic engineering in the future.
Collapse
Affiliation(s)
- Ifthikhar Zaman
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Rafeed Rahman Turjya
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Ramna, Dhaka, 1000, Bangladesh.
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mahruf Al Shahariar
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | | | - Akash Ahmed
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - M Mahboob Hossain
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
36
|
Lv S, Cui K, Zhao S, Li Y, Liu R, Hu R, Zhi B, Gu L, Wang L, Wang Q, Shao Z. Continuous generation and release of microplastics and nanoplastics from polystyrene by plastic-degrading marine bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133339. [PMID: 38150757 DOI: 10.1016/j.jhazmat.2023.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Plastic waste released into the environments breaks down into microplastics due to weathering, ultraviolet (UV) radiation, mechanical abrasion, and animal grazing. However, little is known about the plastic fragmentation mediated by microbial degradation. Marine plastic-degrading bacteria may have a double-edged effect in removing plastics. In this study, two ubiquitous marine bacteria, Alcanivorax xenomutans and Halomonas titanicae, were confirmed to degrade polystyrene (PS) and lead to microplastic and nanoplastic generation. Biodegradation occurred during bacterial growth with PS as the sole energy source, and the formation of carboxyl and carboxylic acid groups, decreased heat resistance, generation of PS metabolic intermediates in cultures, and plastic weight loss were observed. The generation of microplastics was dynamic alongside PS biodegradation. The size of the released microplastics gradually changed from microsized plastics on the first day (1344 nm and 1480 nm, respectively) to nanoplastics on the 30th day (614 nm and 496 nm, respectively) by the two tested strains. The peak release from PS films reached 6.29 × 106 particles/L and 7.64 × 106 particles/L from degradation by A. xenomutans (Day 10) and H. titanicae (Day 5), respectively. Quantification revealed that 1.3% and 1.9% of PS was retained in the form of micro- and nanoplastics, while 4.5% and 1.9% were mineralized by A. xenomutans and H. titanicae at the end of incubation, respectively. This highlights the negative effects of microbial degradation, which results in the continuous release of numerous microplastics, especially nanoplastics, as a notable secondary pollution into marine ecosystems. Their fates in the vast aquatic system and their impact on marine lives are noted for further study.
Collapse
Affiliation(s)
- Shiwei Lv
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Kexin Cui
- The Laboratory of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Qingdao 266072, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Renju Liu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Rongxiang Hu
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 15080, China
| | - Bin Zhi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Li Gu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Lei Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zongze Shao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
37
|
Shah MZ, Quraishi M, Sreejith A, Pandit S, Roy A, Khandaker MU. Sustainable degradation of synthetic plastics: A solution to rising environmental concerns. CHEMOSPHERE 2024; 352:141451. [PMID: 38368957 DOI: 10.1016/j.chemosphere.2024.141451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.
Collapse
Affiliation(s)
- Masirah Zahid Shah
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Anushree Sreejith
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India.
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
38
|
Banerjee D, Patel C, Patel K. Degradation of Plastic Beads Containing Low Density Polyethylene (LDPE) by Sequential Photolysis, Hydrolysis and Bacterial Isolates. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:41. [PMID: 38386139 DOI: 10.1007/s00128-024-03853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Plastic is an important part of today's human daily lifestyle, and it is classified as a "global pollutant" due to its durability. The natural degradation of plastic is extremely slow and will take a hundred years or more. The ultimate destinations of plastics as well as their effects on the ecosystem vary with the type of plastic and the rate of their degradation. In this study, an attempt was made to explain the degradation of low-density polyethylene (LDPE) plastic beads with the help of selected bacterial isolates in both laboratory and field conditions. 16 S rRNA gene sequencing further identified the bacterial isolates as Micrococcus luteus and Bacillus pumilus, obtained from the municipal waste disposal site near Anand, Gujarat, India. The beads were subjected to photolysis and hydrolysis for a predetermined amount of time in addition to biodegradation. After 60 days of treatment with Pseudomonas aeruginosa, Micrococcus luteus, and Bacillus pumilus in both laboratory and field conditions, a significant percentage decrease in the weight of LDPE beads was observed. Pseudomonas aeruginosa was taken as a positive control. Further, the rate of degradation was found to be accelerated in the presence of 10% starch.
Collapse
Affiliation(s)
- Devjani Banerjee
- Ashok and Rita Patel Institute Of Integrated Study and Research in Biotechnology & Allied Sciences (ARIBAS), New V V Nagar, Anand, India.
- GSFC University, Vigyan Bhavan, P.O. Fertilizer Nagar, Vadodara, Gujarat, 391750, India.
| | - Chandani Patel
- Ashok and Rita Patel Institute Of Integrated Study and Research in Biotechnology & Allied Sciences (ARIBAS), New V V Nagar, Anand, India
| | - Kajal Patel
- Ashok and Rita Patel Institute Of Integrated Study and Research in Biotechnology & Allied Sciences (ARIBAS), New V V Nagar, Anand, India
| |
Collapse
|
39
|
Wang W, Yao S, Zhao Z, Liu Z, Li QX, Yan H, Liu X. Degradation and potential metabolism pathway of polystyrene by bacteria from landfill site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123202. [PMID: 38128711 DOI: 10.1016/j.envpol.2023.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Microplastics pollution has garnered significant attention in recent years. The unique cross-linked structure of polystyrene microplastics makes them difficult to biodegrade. In this study, we investigated the microbial community in landfill soil that has the ability to degrade polystyrene, as well as two isolated strains, named Lysinibacillus sp. PS-L and Pseudomonas sp. PS-P. The maximum weight loss of polystyrene film and microplastic in 30 days is 2.25% and 6.99% respectively. The water contact angle of polystyrene film decreased by a maximum of 35.70% during biodegradation. The increase in hydrophilicity is attributed to the oxidation reaction and formation of hydroxyl groups during the degradation of polystyrene. The carbon and oxygen element contents of polystyrene decreased and increased by a maximum of 3.81% and 0.79% respectively. The peak intensity changes at wavelengths of 3285-3648 cm-1 and 1652 cm-1 in Fourier transform infrared spectroscopy confirmed the formation of hydroxyl and carbonyl groups. Furthermore, quantitative PCR revealed the gene expression levels of alkane monooxygenase and alcohol dehydrogenase were upregulated by 8.8-fold and 8.5-fold respectively in PS biodegradation. Additionally, genome annotation of Pseudomonas sp. PS-P identified nine genes associated with polystyrene metabolism. These findings highlight Pseudomonas sp. PS-P as a potential candidate strain for polystyrene degradation enzymes or genes. Thus, they lay the groundwork for understanding the potential metabolic mechanisms and pathways involved in polystyrene degradation.
Collapse
Affiliation(s)
- Weijun Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shunyu Yao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zixi Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhimin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
40
|
Hao B, Wu H, Zhang S, He B. Response strategies of stem/leaves endophyte communities to nano-plastics regulate growth performance of submerged macrophytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132883. [PMID: 37952333 DOI: 10.1016/j.jhazmat.2023.132883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Research on the toxicity effects of nano-plastics on submerged macrophytes has been increasing over the past several years. However, how the endophytic bacteria of submerged macrophytes respond to nano-plastics remains unknown, although they have been widely shown to help terrestrial plants cope with various environmental stressors. Here, a microcosm experiment was performed to unravel the effects of high concentration of nano-plastics (20 mg/L) on three submerged macrophyte (Vallisneria natans, Potamogeton maackianus, Myriophyllum spicatum) and their endophytic bacterial communities. Results indicated that nano-plastics induced antioxidative stress in plants, but significantly reduction in relative growth rate (RGR) only occurred in V. natans (from 0.0034 to -0.0029 day-1), accompanied by change in the stem/leaves endophyte community composition. Further analysis suggested nano-plastics caused a reduction in environmental nutrient availability and the proportion of positive interactions between endophyte communities (43%), resulting in the lowest RGR of V. natans. In contrast, endophytes may help P. maackianus and M. spicatum cope with nano-plastic stress by increasing the proportion of positive correlations among communities (70% and 75%), leaving their RGR unaffected. Collectively, our study elucidates the species-specific response strategies of submerged macrophyte-endophyte to nano-plastics, which helps to reveal the different phytoremediation potential of submerged macrophytes against nano-plastic pollution.
Collapse
Affiliation(s)
- Beibei Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Siyi Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bin He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
41
|
Bhanot V, Mamta, Gupta S, Panwar J. Phylloplane fungus Curvularia dactyloctenicola VJP08 effectively degrades commercially available PS product. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119920. [PMID: 38157570 DOI: 10.1016/j.jenvman.2023.119920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Polystyrene (PS), a widely produced plastic with an extended carbon (C-C) backbone that resists microbial attack, is produced in enormous quantities throughout the World. Naturally occurring plasticizers such as plant cuticle and lignocelluloses share similar properties to synthetic plastics such as hydrophobicity, structural complexity, and higher recalcitrance to degradation. In due course of time, phytopathogenic fungi have evolved strategies to overcome these limitations and utilize lignocellulosic waste for their nutrition. The present investigation focuses on the utilization of phylloplane fungus, Curvularia dactyloctenicola VJP08 towards its ability to colonize and degrade commercially available PS lids. The fungus was observed to densely grow onto PS samples over an incubation period of 30 days. The morphological changes showcased extensive fungal growth with mycelial imbrication invading the PS surface for carbon extraction leading to the appearance of cracks and holes in the PS surface. It was further confirmed by EDS analysis which indicated that carbon was extracted from PS for the fungal growth. Further, 3.57% decrease in the weight, 8.8% decrease in the thickness and 2 °C decrease in the glass transition temperature (Tg) confirmed alterations in the structural integrity of PS samples by the fungal action. GC-MS/MS analysis of the treated PS samples also showed significant decrease in the concentration of benzene and associated aromatic derivatives confirming the degradation of PS samples and subsequent utilization of generated by-products by the fungus for growth. Overall, the present study confirmed the degradation and utilization of commercially available PS samples by phylloplane fungus C. dactyloctenicola VJP08. These findings establish a clear cross-assessment of the phylloplane fungi for their prospective use in the development of degradation strategies of synthetic plastics.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Mamta
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
42
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
43
|
Liu YN, Bairoliya S, Zaiden N, Cao B. Establishment of plastic-associated microbial community from superworm gut microbiome. ENVIRONMENT INTERNATIONAL 2024; 183:108349. [PMID: 38039945 DOI: 10.1016/j.envint.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Gut microbial communities of plastic-munching worms provide novel insights for the development of plastic-processing biotechnologies. Considering the complexity of worm maintenance and the gut microbial communities, it is challenging to apply the worms directly in plastic processing. Harnessing the power of microbial communities derived from the worm gut microbiomes in vitro may enable a promising bioprocess for plastic degradation. Here, we established stable and reproducible plastic-associated biofilm communities derived from the gut microbiome of a superworm, Zophobas atratus, through a two-stage enrichment process: feeding with plastics (HDPE, PP, and PS) and in vitro incubation of gut microbiomes obtained from the plastic-fed worms. Plastic feeding exhibited marginal influence on bacterial diversity but substantially changed the relative abundance of different bacterial groups, and intriguingly, enriched potential plastic degraders. More prominent shifts of microbial communities were observed during the in vitro incubation of the gut microbiomes. Taxa containing plastic-degrading strains were further enriched, while other taxa represented by lactic acid bacteria were depleted. Additionally, the plastic characterization confirmed the degradation of the incubated plastics by the plastic-associated microbial communities. Community functional inference for both gene abundance and community phenotype suggested that the in vitro incubation enhanced plastic-degrading potential. Deterministic ecological effects, in particular, selection processes, were identified as the main driving force of the observed community shifts. Our findings provide novel insights into plastic-munching-worm-inspired bioprocessing of plastic wastes.
Collapse
Affiliation(s)
- Yi-Nan Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Norazean Zaiden
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
44
|
Meyer Cifuentes IE, Degenhardt J, Neumann-Schaal M, Jehmlich N, Ngugi DK, Öztürk B. Comparative biodegradation analysis of three compostable polyesters by a marine microbial community. Appl Environ Microbiol 2023; 89:e0106023. [PMID: 38014952 PMCID: PMC10734441 DOI: 10.1128/aem.01060-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Biodegradable plastics can be used in applications where the end product cannot be efficiently recycled due to high levels of contaminations, e.g., food or soil. Some of these plastics have a dedicated end of life, such as composting, but their degradation in the marine environment is poorly understood. In this study we showed that marine microbial communities can degrade a range of biodegradable polymers with different physical and chemical properties and use these as a sole carbon source for growth. We have also provided insights into the degradation mechanisms using a combined metagenomic and metaproteomic approach. In addition, we have identified three new enzymes that are capable of degrading both aliphatic polymers and aliphatic-aromatic copolymers, which can be used for biotechnological applications.
Collapse
Affiliation(s)
- Ingrid E. Meyer Cifuentes
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julius Degenhardt
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - David Kamanda Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
45
|
Hu F, Wang P, Li Y, Ling J, Ruan Y, Yu J, Zhang L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117211. [PMID: 37778604 DOI: 10.1016/j.envres.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The development of the chemical industry has led to a boom in daily consumption and convenience, but has also led to the release of large amounts of organic pollutants, such as petroleum hydrocarbons, plastics, pesticides, and dyes. These pollutants are often recalcitrant to degradation in the environment, whereby the most problematic compounds may even lead to carcinogenesis, teratogenesis and mutagenesis in animals and humans after accumulation in the food chain. Microbial degradation of organic pollutants is efficient and environmentally friendly, which is why it is considered an ideal method. Numerous studies have shown that Pseudomonas aeruginosa is a powerful platform for the remediation of environmental pollution with organic chemicals due to its diverse metabolic networks and its ability to secrete biosurfactants to make hydrophobic substrates more bioavailable, thereby facilitating degradation. In this paper, the mechanisms and methods of the bioremediation of environmental organic pollutants (EOPs) by P. aeruginosa are reviewed. The challenges of current studies are highlighted, and new strategies for future research are prospected. Metabolic pathways and critical enzymes must be further deciphered, which is significant for the construction of a bioremediation platform based on this powerful organism.
Collapse
Affiliation(s)
- Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Panlin Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiahuan Ling
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
46
|
Zhu J, Chen X, Chen SC, Qiu W, Yu J, Guo T, Wang X. Diversity and community composition of strictly anaerobic and culturable bacteria from the feces of Styrofoam-fed Tenebrio molitor larvae: a culturomics-based study. Front Microbiol 2023; 14:1309806. [PMID: 38116533 PMCID: PMC10728288 DOI: 10.3389/fmicb.2023.1309806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction In recent years, researchers have been exploring the plastic-degrading abilities of bacteria residing in the guts of Styrofoam-eating Tenebrio molitor larvae. However, none of the reported strains have displayed highly efficient plastic degradation capabilities, and it's noteworthy that none of the existing studies have focused on strictly anaerobic microbes. Methods In this study, we exclusively fed Styrofoam to T. molitor larvae and examined how this dietary change influence the gut's bacterial community composition, as observed through fecal bacteria using bacterial 16S rRNA gene amplicon sequencing and the small-scale culturomics method with 20 types of anaerobic media under four different conditions. Results The results revealed a significant shift in the dominant phylogroup from Lactococcus (37.8%) to Escherichia-Shigella (54.7%) when comparing the feces of larvae fed with bran and Styrofoam, as analyzing through the bacterial 16S rRNA gene amplicon sequencing. For small-scale culturomics method, a total of 226 strains of anaerobic bacteria were isolated and purified using the rolling-tube/strictly anaerobic technique. Among them, 226 strains were classified into 3 phyla, 7 classes, 9 orders, 17 families, 29 genera, 42 known species and 34 potential novel species. Discussion Interestingly, 24 genera in total, identified through the culturomics method, were not found in the results obtained from amplicon sequencing. Here, we present a collection of culturable anaerobic bacteria from the feces of T. molitor larvae, which might be a promising avenue for investigating the biodegradability of plastics by combining specific strains, either randomly or intentionally, while considering the abundance ratio of the microbial community composition.
Collapse
Affiliation(s)
- Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, China
| | - Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Sheng-Chung Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, China
| | - Wanling Qiu
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, Fujian, China
| | - Tengfei Guo
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, Fujian, China
| | - Xianxing Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, Fujian, China
| |
Collapse
|
47
|
Ge Z, Lu X. Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122691. [PMID: 37797922 DOI: 10.1016/j.envpol.2023.122691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Increasing pollution of microplastics (MPs) and nanoplastics (NPs) has caused widespread concern worldwide. Extracellular polymeric substances (EPS) are natural organic polymers mainly produced by microorganisms, the major components of which are polysaccharides and proteins. This review focuses on the interactions that occur between EPS and MPs/NPs in the water environment and evaluates the effects of these interactions on the behaviors of MPs/NPs. EPS-driven formation of eco-corona, biofilm, and "marine snow" can incorporate MPs and NPs into sinking aggregates, resulting in the export of MPs/NPs from the upper water column. EPS coating greatly enhances the adsorption of metals and organic pollutants by MPs due to the larger specific surface area and the abundance of functional groups such as carboxyl, hydroxyl and amide groups. EPS can weaken the physical properties of MPs. Through the synergistic action of different extracellular enzymes, MPs may be decomposed into oligomers and monomers that can enter microbial cells for further mineralization. This review contributes to a comprehensive understanding of the dynamics of MPs and NPs in the water environment and the associated ecological risks.
Collapse
Affiliation(s)
- Zaiming Ge
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
48
|
Peng BY, Sun Y, Li P, Yu S, Xu Y, Chen J, Zhou X, Wu WM, Zhang Y. Biodegradation of polyvinyl chloride, polystyrene, and polylactic acid microplastics in Tenebrio molitor larvae: Physiological responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118818. [PMID: 37633102 DOI: 10.1016/j.jenvman.2023.118818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
It is widely understood that microplastics (MPs) can induce various biological stresses in macroinvertebrates that are incapable of biodegrading plastics. However, the biodegradation and physiological responses of plastic-degrading macroinvertebrates toward MPs of different degradability levels remain unexplored. In this study, Tenebrio molitor larvae (mealworms) were selected as a model of plastics-degrading macroinvertebrate, and were tested against three common plastics of different degradability rankings: polyvinyl chloride (PVC), polystyrene (PS), and polylactic acid (PLA) MPs (size <300 μm). These three MPs were biodegraded with the rate sequence of PLA > PS > PVC, resulting in a reversed order of negative physiological responses (body weight loss, decreased survival, and biomass depletion) of mealworms. Simultaneously, the levels of reactive oxygen species (ROS), antioxidant enzyme activities, and lipid peroxidation were uniformly increased as polymer degradability decreased and intermediate toxicity increased. PVC MPs exhibited higher toxicity than the other two polymers. The oxidative stresses were effectively alleviated by supplementing co-diet bran. The T. molitor larvae fed with PLA plus bran showed sustainable growth without an increase in oxidative stress. The results provide new insights into the biotoxicity of MPs on macroinvertebrates and offer comprehensive information on the physiological stress responses of plastic-degrading macroinvertebrates during the biodegradation of plastics with different degradability levels.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Siran Yu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA, 94305-4020, United States.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
49
|
Zhu J, Dong G, Feng F, Ye J, Liao CH, Wu CH, Chen SC. Microplastics in the soil environment: Focusing on the sources, its transformation and change in morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165291. [PMID: 37406689 DOI: 10.1016/j.scitotenv.2023.165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Microplastics (MPs) are small plastic pieces less than 5 mm in size. Previous studies have focused on the sources, transports, and fates of MPs in marine or sediment environments. However, limited attention has been given to the role of land as the primary source of MPs, and how plastic polymers are transformed into MPs through biological or abiotic effects during the transport process remains unclear. Here, we focus on the exploration of the main sources of MPs in the soil, highlighting that MP generation is not solely a byproduct of plastic production but can also result from the impact of biological and abiotic factors during the process of MPs transport. This review presents a new perspective on understanding the degradation of MPs in soil, considering soil as a distinct fluid and suggesting that the main transformation and change mediated by abiotic factors occur on the soil surface, while the main biodegradation occurs in the soil interior. This viewpoint is suggested because the role of some abiotic factors becomes less obvious in the soil interior, and MPs, whose surface is expected to colonize microorganisms, are gradually considered a carbon source independent of photosynthesis and net primary production. This review emphasizes the need to understand basic MPs information in soil for a rational evaluation of its environmental toxicity. Such understanding enables better control of MPs pollution in affected areas and prevents contamination in unaffected regions. Finally, knowledge gaps and future research directions necessary for advancements in this field are provided.
Collapse
Affiliation(s)
- Junyu Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Guowen Dong
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Fu Feng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Jing Ye
- College of Environment and chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, People's Republic of China
| | - Ching-Hua Liao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Chih-Hung Wu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Sheng-Chung Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China.
| |
Collapse
|
50
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|