1
|
Sun N, Hu S, Zhao X, Gao C, Liu R. Amplification of benzo[a]pyrene toxicity persistence in earthworms by polystyrene nanoplastics: From organismal health to molecular responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137091. [PMID: 39793388 DOI: 10.1016/j.jhazmat.2025.137091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/29/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Typically, nanoplastics (NPs) are contaminated before entering soil, and the impact of NPs on the biotoxicity of Persistent Organic Pollutants (POPs) they carry remains unclear. This study simulated two environmentally relevant scenarios: singular exposure of benzo[a]pyrene (BaP) in soil and exposure via NPs loading (NP-BaP). Correlation analysis and machine learning revealed that injury in earthworms exposed for 28 days was significantly associated with NPs. Moreover, when the soil exposure concentration of BaP was 4 mg/kg, the NP-BaP group exhibited 10.67 % greater pigmentation than the BaP-only group. Despite the lower biota soil accumulation factor (BSAF) of earthworms in the NP-BaP group, the concentration of BaP in the soil remained at higher levels in the late stages of exposure. This led to NP-BaP inducing a stronger trend of oxidative damage compared to BaP alone. Furthermore, molecular-level studies indicated that the differential preferences of NPs and BaP for damaging antioxidant enzymes were linked to individual oxidative stress responses. This study confirmed that NPs, at non-toxic concentrations, could increase the persistence of BaP's biological toxicity after prolonged exposure, highlighting the potential safety risks of NPs as carriers of POPs to soil organisms.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China..
| |
Collapse
|
2
|
Ullah F, Wang PY, Saqib S, Zhao L, Ashraf M, Khan A, Khan W, Khan A, Chen Y, Xiong YC. Toxicological complexity of microplastics in terrestrial ecosystems. iScience 2025; 28:111879. [PMID: 39995877 PMCID: PMC11848805 DOI: 10.1016/j.isci.2025.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Microplastics (MPs), defined as plastic debris, smaller than <5 mm, are viewed as persistent contaminants that significantly modify terrestrial ecosystems and biodiversity by altering soil microbiota, structure, and functions. This paper summarizes MPs' interactions with various pollutants, including heavy metals and pesticides, also addressing socio-economic impacts, such as reduced agricultural yields and threats to regional fisheries. The study emphasizes the need for an on the basis of waste management model to mitigate these effects, advocating for collaborative efforts among stakeholders. Also, interdisciplinary studies incorporating material sciences, ecology, and environmental policy are essential to confront the challenges of MPs to ecological services. Additionally, the review highlights how MPs can serve as vectors for toxins to damage soil health and species survival. The overview underscores a complex interplay between environmental and socio-economic systems, addressing the urgency of harnessing MPs pollution and protecting ecosystem integrity and sustainability.
Collapse
Affiliation(s)
- Fazal Ullah
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Peng-Yang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Saddam Saqib
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ling Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wasim Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Adnan Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Sun Y, Lu G, Zhang P, Zhang J, Yu Y, Li F, Liu J. Effects of colloids with different compositions on benzophenone-3 biotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125670. [PMID: 39798796 DOI: 10.1016/j.envpol.2025.125670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae. And in the co-exposure groups, the organic and black carbon mineral (BCM) colloids enhanced the organism's antioxidant system by regulating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), reducing the lipid peroxidation damage in larvae. BCM colloids caused the thyroid system disorders in organisms, while organic colloids exacerbated the thyroid toxicity by transporting more BP3 into organisms, inducing severe abnormal heartbeats. The BCM and organic colloids regulated the acetylcholinesterase (AChE) activity and/or 5-hydroxytryptamine (5-ht) contents by affecting the neuroactive ligand receptor interaction pathway in zebrafish larvae, significantly increasing their swimming speed in co-exposure groups under the light condition. In addition, the effects of colloid-bound and freely dissolved BP3 absorbed by organisms on their physiological and biochemical activities were different. By analyzing the relative expression of the significant differential metabolites affected by BP3 in all experimental groups, it was found that colloid-bound and freely dissolved BP3 had a synergistic effect on most of these metabolites and pathways. However, the freely dissolved BP3 interfered with the purine metabolic pathway by mediating 2-(amidino)-n1-(5-phospho-d-ribosyl)acetamidine, and the tyrosine metabolic pathway by mediating choline and uranylacetic acid, while the colloid-bound BP3 has no or inverse regulatory effects on these three metabolites. This study provided a new perspective for the biotoxicity study of the pollutants in aquatic environment, necessitating a reconsideration of the real ecological risks of emerging pollutants in the presence of natural colloids.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yeting Yu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Jian Liu
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| |
Collapse
|
4
|
Wang J, Lv L, An X, Zhang C, Tang T, Sun Y, Wang F. Combined effects of different-sized microplastics and fluindapyr on earthworm: Bioaccumulation, oxidative stress, histopathological responses and gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125478. [PMID: 39647773 DOI: 10.1016/j.envpol.2024.125478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Soil is an important sink for microplastics (MPs) and pesticides. MPs can act as carriers for pesticides, thus induce direct and indirect effects on soil organisms. Fluindapyr (FIP), a novel succinate dehydrogenase inhibitors fungicides (SDHIs), may pose a serious threat to earthworms. However, few studies have evaluated the effects of joint exposure to MPs and FIP. Here, earthworms (Eisenia fetida) were jointly exposed to PMMA (polymethylmethacrylate) and PS (polystyrene) MPs of different sizes (0.1, 1 and 10 μm) along with FIP for 28-day to investigate the toxic effects of single and joint exposure of FIP and MPs on earthworms. The results showed that joint exposure to 0.1 and 1 μm MP promoted the accumulation of FIP in earthworms at the beginning of the experiment compared to the sole group, but the elimination of FIP from earthworms accelerated after 14 d. In addition, the joint exposure caused more serious damages to the epidermis and intestine of earthworms and increased the severity of oxidative stress. The effects of joint exposure to FIP and MPs depended on the size of the MPs, and the strongest effects were observed in the treatment with the smallest size. The 16S rRNA sequencing results showed that the joint exposure to MPs and FIP didn't cause gut microbiota dysbiosis. However, the sole 0.1 μm PS significantly altered the community diversity and richness of earthworm gut bacteria, and the relative abundance of Proteobacteria, Actinobacteria and Firmicutes was significantly changed. The obtained results inferred that MPs could influence environmental and toxicological behaviors of FIP and may provide data support for the risk assessments of MPs and FIP on soil ecosystems.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China.
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
5
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Wu Y, Li Z, Deng Y, Bian B, Xie L, Lu X, Tian J, Zhang Y, Wang L. Mangrove mud clam as an effective sentinel species for monitoring changes in coastal microplastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134617. [PMID: 38749247 DOI: 10.1016/j.jhazmat.2024.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The worldwide mangrove shorelines are experiencing considerable contamination from microplastics (MPs). Finding an effective sentinel species in the mangrove ecosystem is crucial for early warning of ecological and human health risks posed by coastal microplastic pollution. This study collected 186 specimens of the widely distributed mangrove clam (Geloina expansa, Solander, 1786) from 18 stations along the Leizhou Peninsula, the largest mangrove coast in Southern China. This study discovered that mangrove mud clams accumulated a relatively high abundance of MPs (2.96 [1.61 - 6.03] items·g-1) in their soft tissue, wet weight, as compared to previously reported levels in bivalves. MPs abundance is significantly (p < 0.05 or 0.0001) influenced by coastal urban development, aquaculture, and shell size. Furthermore, the aggregated MPs exhibit a significantly high polymer risk index (Level III, H = 353.83). The estimated annual intake risk (EAI) from resident consumption, as calculated via a specific questionnaire survey, was at a moderate level (990 - 2475, items·g -1·Capita -1). However, the EAI based on suggested nutritional standards is very high, reaching 113,990 (79,298 - 148,681), items·g -1·Capita -1. We recommend utilizing the mangrove mud clam as sentinel species for the monitoring of MPs pollution changing across global coastlines.
Collapse
Affiliation(s)
- Yinglin Wu
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China; School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China.
| | - Zitong Li
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yanxia Deng
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Bingbing Bian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ling Xie
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Xianye Lu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Jingqiu Tian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Liyun Wang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| |
Collapse
|
7
|
Xu H, Hu Z, Sun Y, Xu J, Huang L, Yao W, Yu Z, Xie Y. Microplastics supply contaminants in food chain: non-negligible threat to health safety. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:276. [PMID: 38958774 DOI: 10.1007/s10653-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Jiang Xu
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi, 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
8
|
Yu Z, An Q, Zhou T, Zhou L, Yan B. Meta-analysis unravels the complex combined toxicity of microplastics and antibiotics in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172503. [PMID: 38631628 DOI: 10.1016/j.scitotenv.2024.172503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
The aquatic ecosystem, a repository for various pollutants, has been identified as a crucial zone where microplastics (MPs) serve as vectors for antibiotics, facilitating their spread. Despite this, the influence of MPs on the toxicity of antibiotics remains a topic of debate. In this study, we conduct a global meta-analysis, examining 730 datasets from 29 laboratory studies. Our findings reveal that the impact of MPs on antibiotic toxicity is highly dependent on biological response pathways, microplastic concentration, antibiotic properties, and exposure time. We observed that MPs amplify the accumulation of antibiotics in aquatic organisms, significantly heightening their adverse effects on growth, development, and immune functions. Intriguingly, MPs appear to mitigate the reproductive toxicity caused by antibiotics. A notable inverse relationship was identified between antibiotic toxicity and microplastic concentration and exposure time. Furthermore, antibiotic concentration predominantly affects growth, development, and reproductive health, whereas exposure time is critical in determining antibiotic accumulation and immune-related toxicity. These insights underscore that microplastic co-exposure can modify the toxicological profile of antibiotics. The outcomes of this research enhance our comprehensive understanding of the intricate combined effects of MPs and antibiotics on aquatic life, emphasizing the necessity for informed scientific management of these emerging contaminants.
Collapse
Affiliation(s)
- Ziyue Yu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Bao X, Gu Y, Chen L, Wang Z, Pan H, Huang S, Meng Z, Chen X. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171472. [PMID: 38458459 DOI: 10.1016/j.scitotenv.2024.171472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Plastic film mulching can maintain soil water and heat conditions, promote plant growth and thus generate considerable economic benefits in agriculture. However, as they age, these plastics degrade and form microplastics (MPs). Additionally, pesticides are widely utilized to control organisms that harm plants, and they can ultimately enter and remain in the environment after use. Pesticides can also be sorbed by MPs, and the sorption kinetics and isotherms explain the three stages of pesticide sorption: rapid sorption, slow sorption and sorption equilibrium. In this process, hydrophobic and partition interactions, electrostatic interactions and valence bond interactions are the main sorption mechanisms. Additionally, small MPs, biodegradable MPs and aged conventional MPs often exhibit stronger pesticide sorption capacity. As environmental conditions change, especially in simulated biological media, pesticides can desorb from MPs. The utilization of pesticides by environmental microorganisms is the main factor controlling the degradation rate of pesticides in the presence of MPs. Pesticide sorption by MPs and size effects of MPs on pesticides are related to the internal exposure level of biological pesticides and changes in pesticide toxicity in the presence of MPs. Most studies have suggested that MPs exacerbate the toxicological effects of pesticides on sentinel species. Hence, the environmental risks of pesticides are altered by MPs and the carrier function of MPs. Based on this, research on the affinity between MPs and various pesticides should be systematically conducted. During agricultural production, pesticides should be cautiously selected and used plastic film to ensure human health and ecological security.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hui Pan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
10
|
Wang J, Tao J, Wu M, Sun Y, Su Y, Guo X, Du X, Li J, Gan J. Size-dependent vector effects of microplastics on bioaccumulation of hydrophobic organic contaminants in earthworm: A dual-dosing study. ENVIRONMENT INTERNATIONAL 2024; 186:108625. [PMID: 38593690 DOI: 10.1016/j.envint.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
The potential of microplastics to act as a vector for anthropogenic contaminants is of rising concern. However, directly quantitatively determining the vector effects of microplastics has been rarely studied. Here, we present a dual-dosing method that simulates the chemical bioaccumulation from soil and microplastics simultaneously, wherein unlabeled hydrophobic organic contaminants (HOCs) were spiked in the soil and their respective isotope-labeled reference compounds were spiked on the polyethylene microplastics. The comparison of the bioavailability, i.e., the freely dissolved concentration in soil porewater and bioaccumulation by earthworm, between the unlabeled and isotope-labeled HOCs was carried out. Relatively higher level of bioavailability of the isotope-labeled HOCs was observed compared to the unlabeled HOCs, which may be attributed to the irreversible desorption of HOCs from soil particles. The average relative fractions of bioaccumulated isotope-labeled HOCs in the soil treated with 1 % microplastics ranged from 6.9 % to 46.4 %, which were higher than those in the soil treated with 0.1 % microplastics. Treatments with the smallest microplastic particles were observed to have the highest relative fractions of bioaccumulated isotope-labeled HOCs, with the exception of phenanthrene, suggesting greater vector effects of smaller microplastic particles. Biodynamic model analysis indicated that the contribution of dermal uptake to the bioaccumulation of isotope-labeled HOCs was higher than that for unlabeled HOCs. This proposed method can be used as a tool to assess the prospective vector effects of microplastics in complex environmental conditions and would enhance the comprehensive understanding of the microplastic vector effects for HOC bioaccumulation.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Jianguo Tao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mochen Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Du
- Collage of Maine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Zheng Y, Su Z, Liu D, Huang B, Mu Q, Li Y, Wen D. Metagenomics reveals the influence of small microplastics on microbial communities in coastal sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169982. [PMID: 38215846 DOI: 10.1016/j.scitotenv.2024.169982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The ecological impact of microplastics (MPs) in coastal environments has been widely studied. However, the influence of small microplastics in the actual environment is often overlooked due to measurement challenges. In this study, Hangzhou Bay (HZB), China, was selected as our study area. High-throughput metagenomic sequencing and micro-Raman spectrometry were employed to analyze the microbial communities and microplastics of coastal sediment samples, respectively. We aimed to explore the ecological impact of MPs with small sizes (≤ 100 μm) in real coastal sediment environments. Our results revealed that as microplastic size decreased, the environmental behavior of MPs underwent alterations. In the coastal sediments, no significant correlations were observed between the detected MPs and the whole microbial communities, but small MPs posed potential hazards to eukaryotic communities. Moreover, these small MPs were more prone to microbial degradation and significantly affected carbon metabolism in the habitat. This study is the first to reveal the comprehensive impact of small MPs on microbial communities in a real coastal sediment environment.
Collapse
Affiliation(s)
- Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dantong Liu
- China Aviation Planning and Design Institute(Group)CO., LTD, Beijing 100120, China
| | - Bei Huang
- Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Qinglin Mu
- Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Yunong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Gao N, Yang L, Lu X, Zhu L, Feng J. Non-negligible vector effect of micro(nano)plastics on tris(1,3-dichloro-2-propyl) phosphate in zebrafish quantified by toxicokinetic model. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132928. [PMID: 37944229 DOI: 10.1016/j.jhazmat.2023.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Micro(nano)plastics (MNPs) inevitably interact with coexisting contaminants and can act as vectors to affect their fate in organisms. However, the quantitative contribution of MNPs in the in vivo bioaccumulation and distribution of their coexisting contaminants remains unclear. Here, by selecting tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) as the typical coexisting contaminant, we quantified the contribution of MNPs to bioaccumulation and distribution of TDCIPP with toxicokinetic models. Results indicated that MNPs differentially facilitated TDCIPP bioaccumulation and distribution, and NPs slowed down TDCIPP depuration more significantly than MPs. Model analysis further revealed increasing contributions of MNPs to whole-fish TDCIPP bioaccumulation over time, with NPs (33-42%) contributing more than MPs (12-32%) at 48 h exposure. NPs contributed more than MPs to TDCIPP distribution in the liver (13-19% for MPs; 36-52% for NPs) and carcass (24-45% for MPs; 57-71% for NPs). The size-dependent vector effect might be attributed to the fact that MNPs promote contaminant transfer by damaging biofilm structure and increasing tissue membrane permeability, with NPs exerting stronger effects. This work demonstrated the effectiveness of using modeling tools to understand the relative importance of MNPs as contaminant vectors in the TK process and highlighted the higher contaminant transfer potential of NPs under combined exposure scenarios.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong SAR China
| | - Xueqiang Lu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Xu Z, Zhai X, Bai X. Amplifiers of environmental risk of microplastics in sewage sludge: Thermal drying treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167029. [PMID: 37704158 DOI: 10.1016/j.scitotenv.2023.167029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Sewage sludge was already identified as an important source of microplastics (MPs) in the environment. Therefore, investigating the effects of sludge treatment processes on sludge-based MPs is essential for understanding the environmental risks and controlling their release. This study investigated the occurrence characteristics and elucidated the fragmentation mechanism of sludge-based MPs before and after the thermal drying treatment of sludge. The results showed that this treatment increased the abundance of sludge-based MPs by about 10-fold, with enhanced fragmentation and fracture parameters, and increased the abundance of <100 μm MPs to >60 %. Remarkably, both polypropylene-microplastics (PP-MPs) and polyethylene terephthalate-microplastics (PET-MPs) did not show significant chemical aging. The structural analysis showed that the molecular chain disorientation and secondary crystallization of PP-MPs and PET-MPs occurred. These transformations caused the contraction of the polymer molecular chains and the generation of micro-mechanical stresses, leading to the formation of warpage structures and stress cracking on the MPs' surface. These phenomena also contributed to the further fragmentation of the MPs and the development of finer MPs particles. The findings of the present investigations emphasize that the thermal drying of sewage sludge amplifies the environmental risk of sludge-based MPs.
Collapse
Affiliation(s)
- Zhenjia Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Zhai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
14
|
Shang G, Zhai J, Xu G, Wang L, Wang X. Ecotoxicological effects of co-exposure biodegradable microplastics polylactic acid with cadmium are higher than conventional microplastics polystyrene with cadmium on the earthworm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166953. [PMID: 37699480 DOI: 10.1016/j.scitotenv.2023.166953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Microplastics (MPs) are plastic fragments with particle sizes <5 mm, ubiquitously distributed in terrestrial environments. However, the negative effects of MPs, such as joint-pollution with heavy metals on soil fauna remain controversial. This study investigated survival rate, growth, reproduction, avoidance behavior, histology, biochemical assays, comet assay, qPCR, Cd content, and IBR index. We found that six types of traditional MPs (PC, PP, PVC, LDPE, PET and PS, and PLA (a biodegradable microplastics)) had no adverse effects on earthworm growth, survival and reproduction. Moreover, we found that earthworms exhibit an avoidance behavior towards PLA. Both PS and PLA can exacerbated Cd pollution, leading to loose circular muscle layer, DNA damage in coelomocytes, and impaired antioxidant system due to increased reactive oxygen species (ROS). mRNA level of HSP70 increased under joint-pollution of both PS and Cd or PLA and Cd compared to Cd treatment alone. MPs enhanced Cd accumulation in earthworms in Cd-contaminated soil. Notably, the Integrated Biomarkers Response index revealed that the toxicity of joint PLA and Cd was greater than the joint effect of PS and Cd, which might violate the original intention of biodegradable plastics having non-toxic influence on the soil fauna. Our findings provide new insights into the ecotoxicological effects of MPs, the joint ecotoxicological effects of MPs and Cd on earthworms, and the ecological risks of MPs to soil fauna.
Collapse
Affiliation(s)
- Guangshen Shang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Guangxia Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
15
|
Peng BY, Xiao S, Sun Y, Liu Y, Chen J, Zhou X, Wu WM, Zhang Y. Unveiling Fragmentation of Plastic Particles during Biodegradation of Polystyrene and Polyethylene Foams in Mealworms: Highly Sensitive Detection and Digestive Modeling Prediction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15099-15111. [PMID: 37751481 DOI: 10.1021/acs.est.3c04406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 μm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yurong Liu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Liao H, Gao D, Kong C, Junaid M, Li Y, Chen X, Zheng Q, Chen G, Wang J. Trophic transfer of nanoplastics and di(2-ethylhexyl) phthalate in a freshwater food chain (Chlorella Pyrenoidosa-Daphnia magna-Micropterus salmoides) induced disturbance of lipid metabolism in fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132294. [PMID: 37591169 DOI: 10.1016/j.jhazmat.2023.132294] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Nanoplastics and di(2-ethylhexyl) phthalate (DEHP) are ubiquitous emerging contaminants that are transferred among organisms through food chain in the ecosystem. This study evaluated the trophic transfer of polystyrene nanoplastics (PSNPs) and DEHP in a food chain including Chlorella pyrenoidosa, Daphnia magna and Micropterus salmoides (algae-crustacean-fish) and lipid metabolism at a higher trophic level in fish. Our results showed that the PSNPs and DEHP accumulated in C. pyrenoidosa or D. magna were transferred to the M. salmoides, of which the DEHP were not biomagnified, while the PSNPs were trophically amplified by the food chain. It is suggested that more PSNPs might be accumulated by higher level consumers in a longer food chain. Additionally, the trophic transfer of PSNPs and DEHP resulted in antioxidant response and histopathological damage in M. salmoides. Moreover, the lipid biochemical parameters and lipid metabolism related genes (fasn, hsl, cpt1a, atgl, apob, fabp1, lpl, cetp) of M. salmoides were significantly affected, which indicated disturbance of lipid metabolism. This study offers great insight into the transfer of contaminants by trophic transfer and their negative effects on organisms at higher trophic levels, which cause human exposure to MNPs and organic contaminants in the ecosystem.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
17
|
Palansooriya KN, Sang MK, El-Naggar A, Shi L, Chang SX, Sung J, Zhang W, Ok YS. Low-density polyethylene microplastics alter chemical properties and microbial communities in agricultural soil. Sci Rep 2023; 13:16276. [PMID: 37770500 PMCID: PMC10539289 DOI: 10.1038/s41598-023-42285-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Microplastic (MP) pollution in agricultural soils, resulting from the use of plastic mulch, compost, and sewage sludge, jeopardizes the soil microbial populations. However, the effects of MPs on soil chemical properties and microbial communities remain largely unknown. Here, we investigated the effects of different concentration levels (0, 0.1, 1, 3, 5, and 7%; w:w) of low-density polyethylene (LDPE) MPs on the chemical properties and bacterial communities of agricultural soil in an incubation study. The addition of LDPE MPs did not drastically change soil pH (ranging from 8.22 to 8.42). Electrical conductivity increased significantly when the LDPE MP concentrations were between 1 and 7%, whereas the total exchangeable cations (Na+, K+, Mg2+, and Ca2+) decreased significantly at higher LDPE MP concentrations (3-7%). The highest available phosphorus content (2.13 mg kg-1) was observed in 0.1% LDPE MP. Bacterial richness (Chao1 and Ace indices) was the lowest at 0.1% LDPE MP, and diversity indices (Shannon and Invsimpson) were higher at 0 and 1% LDPE MP than at other concentrations. The effect of LDPE MP concentrations on bacterial phyla remained unchanged, but the bacterial abundance varied. The relative abundance of Proteobacteria (25.8-33.0%) was the highest in all treatments. The abundance of Acidobacteria (15.8-17.2%) was also high, particularly in the 0, 0.1, and 1% LDPE MPs. With the increase in LDPE MP concentration, the abundance of Actinobacteria gradually increased from 7.80 to 31.8%. Our findings suggest that different MP concentration levels considerably alter soil chemical properties and microbial composition, which may potentially change the ecological functions of soil ecosystems.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, Rural Development Administration, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life Science and Environmental Chemistry, Chungbuk National University, Cheongju, 28644, Chungcheongbuk-Do, Republic of Korea
| | - Wei Zhang
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Green Manufacturing Technology, College of Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Li X, Kong Y, Juhasz AL, Zhou P, Zhang Q, Cui X. Effect of Microplastic Types on the In Vivo Bioavailability of Polychlorinated Biphenyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12838-12846. [PMID: 37587565 DOI: 10.1021/acs.est.3c04068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As MPs are released into the soil, various equilibrium statuses are expected. MPs could play roles as a "source," a "cleaner," or a "sink" of HOCs. Three types of MPs (LDPE, PLA, and PS) were selected to study their effect on polychlorinated biphenyl (PCBs) relative bioavailability (RBA) measured by a mouse model. As a "source" of HOCs, exposure to MP-sorbed PCBs resulted in their accumulation in adipose tissue with PCB RBA as 101 ± 6.73% for LDPE, 76.2 ± 19.2% for PLA, and 9.22 ± 2.02% for PS. The addition of 10% MPs in PCB-contaminated soil led to a significant (p < 0.05) reduction in PCB RBA (52.2 ± 16.7%, 49.3 ± 4.85%, and 47.1 ± 5.99% for LDPE, PLA, and PS) compared to control (75.0 ± 4.26%), implying MPs acted as "cleaner" by adsorbing PCBs from the digestive system and reducing PCB accumulation. MPs acted as a "sink" for PCBs in contaminated soil after aging, but the sink effect varied among MP types with more pronounced effect for LDPE than PLA and PS. Therefore, the role played by MPs in bioavailability of HOCs closely depended on the MP types as well as the equilibrium status among MPs, soil, and HOCs.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Pengfei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Zhou L, Sang S, Li J, Li Y, Wang D, Gan L, Zhao Z, Wang J. From waste to resource: Metagenomics uncovers the molecular ecological resources for plastic degradation in estuaries of South China. WATER RESEARCH 2023; 242:120270. [PMID: 37392508 DOI: 10.1016/j.watres.2023.120270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Estuaries are hotspots of plastic pollution due to accumulated waste from surrounding rivers and coasts. However, the molecular ecological resources that possess plastic-degrading traits and their biogeographic distributions in estuarine waters remain to be elucidated. In this study, we mapped the distribution profiles of plastic-degrading genes (PDGs) in 30 subtropical estuaries in China based on metagenomic sequencing. A total of 41 PDG subtypes were observed in these estuaries. The Pearl River Estuary had higher diversity and abundance of PDGs than the east and west region estuaries. Genes for degrading synthetic heterochain and natural plastics were the most diverse and abundant types, respectively. The abundance of synthetic PDGs was significantly higher in estuaries affected by intense anthropogenic activities. Further binning strategies revealed diverse microbes with plastic-degrading ability in these estuaries. Rhodobacteraceae, a dominant plastic-degrading bacterial family, primarily carried PDGs for degrading natural plastics. Pseudomonas veronii carrying diverse PDGs was identified, which may be of value for further technical improvement of plastic degradation. In addition, phylogenetic and structural analyses of 19 putative 3HV dehydrogenases, the most diverse and abundant DPGs, showed inconsistent evolution with their hosts, but different sequences were conserved with consistent key functional amino acids. A potential biodegradation pathway for polyhydroxybutyrate by Rhodobacteraceae was proposed. The result implied that plastic-degrading functions are widely distributed in estuarine waters and metagenomics could be used as a promising screening tool for large-scale profiling of plastic-degrading potential in the natural environment. Our findings have important implications and provide potential molecular ecological resources for developing plastic waste removal technologies.
Collapse
Affiliation(s)
- Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| | - Jiajie Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yusen Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Lihong Gan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Wang J, Tao J, Ji J, Wu M, Sun Y, Li J, Gan J. Use of a Dual-Labeled Bioaccumulation Method to Quantify Microplastic Vector Effects for Hydrophobic Organic Contaminants in Soil. ACS ENVIRONMENTAL AU 2023; 3:233-241. [PMID: 37483307 PMCID: PMC10360207 DOI: 10.1021/acsenvironau.3c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Although in vitro simulation and in vivo feeding experiments are commonly used to evaluate the carrier role of microplastics in the bioaccumulation of toxic chemicals, there is no direct method for quantitatively determining their vector effect. In this study, we propose a dual-labeled method based on spiking unlabeled hydrophobic organic contaminants (HOCs) into soils and spiking their respective isotope-labeled reference compounds into microplastic particles. The bioaccumulation of the unlabeled and isotope-labeled HOCs in Eisenia fetida earthworms was compared. Earthworms can assimilate both unlabeled and isotope-labeled HOCs via three routes: dermal uptake, soil ingestion, and microplastic ingestion. After 28 days of exposure, the relative fractions of bioaccumulated isotope-labeled HOCs in the soil treated with 1% microplastics ranged from 15.5 to 55.8%, which were 2.9-47.6 times higher than those in the soils treated with 0.1% microplastics. Polyethylene microplastics were observed to have higher relative fractions of bioaccumulated isotope-labeled HOCs, potentially because of their surface hydrophobicity and amorphous rubbery state. The general linear models suggested that the vector effects were mainly due to the microplastic concentration, followed by polymer properties and HOC hydrophobicity. This proposed method and the derived empirical formula contribute to a more comprehensive understanding of the vector effects of microplastics for HOC bioaccumulation.
Collapse
Affiliation(s)
- Jie Wang
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianguo Tao
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianghao Ji
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mochen Wu
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanze Sun
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Li
- State
Key Laboratory of Biogeology and Environmental Geology, School of
the Earth Sciences and Resources, China
University of Geosciences, Beijing 100083, China
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Lin W, Li Y, Xiao X, Fan F, Jiang J, Jiang R, Shen Y, Ouyang G. The effect of microplastics on the depuration of hydrophobic organic contaminants in Daphnia magna: A quantitative model analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162813. [PMID: 36940747 DOI: 10.1016/j.scitotenv.2023.162813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
Microplastics are emerging pollutants that can absorb large amounts of hydrophobic organic contaminants (HOCs). However, no biodynamic model has yet been proposed to estimate their effects on HOC depuration in aquatic organisms, where the HOC concentrations are time-varying. In this work, a microplastic-inclusive biodynamic model was developed to estimate the depuration of HOCs via ingestion of microplastics. Several key parameters of the model were redefined to determine the dynamic HOC concentrations. Through the parameterized model, the relative contributions of dermal and intestinal pathways can be distinguished. Moreover, the model was verified and the vector effect of microplastics was confirmed by studying the depuration of polychlorinated biphenyl (PCB) in Daphnia magna (D. magna) with different sizes of polystyrene (PS) microplastics. The results showed that microplastics contributed to the elimination kinetics of PCBs because of the fugacity gradient between the ingested microplastics and the biota lipids, especially for the less hydrophobic PCBs. The intestinal elimination pathway via microplastics would promote overall PCB elimination, contributing 37-41 % and 29-35 % to the total flux in the 100 nm and 2 μm polystyrene (PS) microplastic suspensions, respectively. Furthermore, the contribution of microplastic uptake to total HOC elimination increased with decreasing microplastic size in water, suggesting that microplastics may protect organisms from HOC risks. In conclusion, this work demonstrated that the proposed biodynamic model is capable of estimating the dynamic depuration of HOCs for aquatic organisms. The results can shed light on a better understanding of the vector effects of microplastics.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiaoying Xiao
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Shantou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Shantou 515000, China
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jiakun Jiang
- Center for Statistics and Data Science, Beijing Normal University, Zhuhai 519087, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Yong Shen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Cao H, Yao S, Xu L, Bian Y, Jiang X, Ćwieląg-Piasecka I, Song Y. Aging of biodegradable-mulch-derived microplastics reduces their sorption capacity of atrazine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121877. [PMID: 37230173 DOI: 10.1016/j.envpol.2023.121877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Degradable plastics are gradually regarded as alternatives of conventional, synthetic organic polymers to reduce the plastics or microplastics (MPs) pollution; however, the reports upon environmental risk of degradable plastics are still limited. In order to evaluate the potential vector effect of biodegradable MPs on coexisting contaminants, sorption of atrazine onto pristine and ultraviolet-aged (UV) polybutylene adipate co-terephthalate (PBAT) MPs and polybutylene succinate co-terephthalate (PBST) MPs were investigated. The results showed that, UV aging led to more wrinkles and cracks on the surface, increased homogeneous chains proportion, enhanced hydrophobicity, and enlarged crystallinity of both MPs. The sorption kinetics of atrazine to MPs fitted well into pseudo-first-order (R2 = 0.809-0.996) and pseudo-second-order (R2 = 0.889-0.994) models. In the concentration range of 0.5-25 mg L-1, the sorption isotherm fitted into linear (R2 = 0.967-0.996) and Freundlich model (R2 = 0.972-0.997), indicating that the absorption partitioning was the dominant sorption mechanism. The partition coefficient (Kd) of atrazine to PBAT- MPs (40.11-66.01 L kg-1) was higher than that of PBST- MPs (34.34-57.96 L kg-1), and the Kd values of both MPs declined for aged MPs. The specific surface area, hydrophobicity, polarity and crystallinity of MPs jointly interpreted the changing sorption capacity of the MPs. In the present study, both aged PBAT- and aged PBST- MPs exhibited lower vector potential to atrazine than pristine MPs, suggesting reduced risk of being a pollutant carrier, which is of great significance for the development of biodegradable plastics.
Collapse
Affiliation(s)
- Huihui Cao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Irmina Ćwieląg-Piasecka
- Wroclaw University of Environmental and Life Sciences, Institute of Soil Science, Plant Nutrition and Environmental Protection, Grunwaldzka 53 St., 50-357, Wrocław, Poland
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
23
|
Yuan F, Chen H, Ding Y, Wang Y, Liao Q, Wang T, Fan Q, Feng Z, Zhang C, Fu G, Zou X. Effects of microplastics on the toxicity of co-existing pollutants to fish: A meta-analysis. WATER RESEARCH 2023; 240:120113. [PMID: 37235892 DOI: 10.1016/j.watres.2023.120113] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Aquatic ecosystems are among the main destination for microplastics (MPs) in the environment. MPs that enter aquatic ecosystems can contribute to pollution together with other co-existing pollutants. However, whether such pollution results in higher or lower toxicity to fish than that caused by co-existing pollutants alone remains controversial. This study aimed at closing this research gap based on 1380 biological endpoints under the background of environmental MP concentrations collected from 55 laboratory studies. Overall, MPs in co-existing pollutant solutions significantly increased the toxicity to fish. Specifically, MPs elevated negative effects on the immune system, metabolism, and oxidative damage. Subgroup analysis indicated that changes in toxicity were related to fish life stage and MP size, but not to co-existing pollutant or MP type. Meta-regression analysis indicated that changes in toxicity were not related to the logarithm of the octanol-water partition coefficient (logKow) or exposure time. Finally, the differences between laboratory research and the actual aquatic environment were discussed from four aspects: MPs, co-existing pollutants, environmental factors, and experimental objects. Our study provides a basis for further understanding the potential impact of MPs on aquatic organisms from a combined pollution perspective. Moreover, our results can provide a reference for the conservation and management of aquatic ecosystems.
Collapse
Affiliation(s)
- Feng Yuan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Hongyu Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Yongcheng Ding
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Qinya Fan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Ziyue Feng
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Guanghe Fu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
24
|
Chen S, Yang JL, Zhang YS, Wang HY, Lin XY, Xue RY, Li MY, Li SW, Juhasz AL, Ma LQ, Zhou DM, Li HB. Microplastics affect arsenic bioavailability by altering gut microbiota and metabolites in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121376. [PMID: 36863442 DOI: 10.1016/j.envpol.2023.121376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Microplastics exposure is a new human health crisis. Although progress in understanding health effects of microplastic exposure has been made, microplastic impacts on absorption of co-exposure toxic pollutants such as arsenic (As), i.e., oral bioavailability, remain unclear. Microplastic ingestion may interfere As biotransformation, gut microbiota, and/or gut metabolites, thereby affecting As oral bioavailability. Here, mice were exposed to arsenate (6 μg As g-1) alone and in combination with polyethylene particles of 30 and 200 μm (PE-30 and PE-200 having surface area of 2.17 × 103 and 3.23 × 102 cm2 g-1) in diet (2, 20, and 200 μg PE g-1) to determine the influence of microplastic co-ingestion on arsenic (As) oral bioavailability. By determining the percentage of cumulative As consumption recovered in urine of mice, As oral bioavailability increased significantly (P < 0.05) from 72.0 ± 5.41% to 89.7 ± 6.33% with PE-30 at 200 μg PE g-1 rather than with PE-200 at 2, 20, and 200 μg PE g-1 (58.5 ± 19.0%, 72.3 ± 6.28%, and 69.2 ± 17.8%). Both PE-30 and PE-200 exerted limited effects on pre- and post-absorption As biotransformation in intestinal content, intestine tissue, feces, and urine. They affected gut microbiota dose-dependently, with lower exposure concentrations having more pronounced effects. Consistent with the PE-30-specific As oral bioavailability increase, PE exposure significantly up-regulated gut metabolite expression, and PE-30 exerted greater effects than PE-200, suggesting that gut metabolite changes may contribute to As oral bioavailability increase. This was supported by 1.58-4.07-fold higher As solubility in the presence of up-regulated metabolites (e.g., amino acid derivatives, organic acids, and pyrimidines and purines) in the intestinal tract assessed by an in vitro assay. Our results suggested that microplastic exposure especially smaller particles may exacerbate the oral bioavailability of As, providing a new angle to understand health effects of microplastics.
Collapse
Affiliation(s)
- Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Mei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
25
|
Liao H, Gao D, Junaid M, Liu S, Kong C, Chen X, Pan T, Zheng Q, Ai W, Chen G, Wang J. Parental exposure to polystyrene nanoplastics and di(2-ethylhexyl) phthalate induces transgenerational growth and reproductive impairments through bioaccumulation in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163657. [PMID: 37084918 DOI: 10.1016/j.scitotenv.2023.163657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous presence of polystyrene nanoplastics (PSNPs) and di(2-ethylhexyl) phthalate (DEHP) in the aquatic environment may cause unpredictable negative effects on aquatic organisms and even continue to the offspring. This study assessed the transgenerational impacts of parental exposure to PSNPs and DEHP over four generations (F0-F3) of Daphnia magna. A total of 480 D. magna larvae (F0, 24 h old) were divided into four groups with six replicates (each of them contains 20 D. magna) and exposed with dechlorinated tap water (control), 1 mg/L PSNPs, 1 μg/L DEHP, and 1 mg/L PSNPs + 1 μg/L DEHP (PSNPs-DEHP) until spawning begins. Subsequent to exposure, all the surviving F1 offspring were transferred to new water and continued to be cultured until the end of F3 generation births in all groups. The results showed that the PSNPs accumulated in F0 generation and were inherited into F1 and F2 generations, and disappeared in F3 generation in PSNPs and PSNPs-DEHP groups. However, the accumulation of DEHP lasted from F0 generation to F3 generation, despite a significant decline in F2 and F3 generations in DEHP and PSNPs-DEHP groups. The accumulation of PSNPs and DEHP caused overproduction of reactive oxygen species in F0-F2 generations and fat deposition in F0-F3 generations. Additionally, single and in combination parental exposure to PSNPs and DEHP induced regulation of growth-related genes (cyp18a1, cut, sod and cht3) and reproduction-related genes (hr3, ftz-f1, vtg and ecr) in F0-F3 generations. Survival rates were decreased in F0-F1 generations and recovered in F2 generation in all treatment groups. Furthermore, the spawning time was prolonged and the average number of offspring was increased in F1-F2 generaions as a defense mechanism against population mortality. This study fosters a greater comprehension of the transgenerational and reproductive effects and associated molecular mechanisms in D. magna.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Ai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
26
|
Lei P, Zhang W, Ma J, Xia Y, Yu H, Du J, Fang Y, Wang L, Zhang K, Jin L, Sun D, Zhong J. Advances in the Utilization of Zebrafish for Assessing and Understanding the Mechanisms of Nano-/Microparticles Toxicity in Water. TOXICS 2023; 11:380. [PMID: 37112607 PMCID: PMC10142380 DOI: 10.3390/toxics11040380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
A large amount of nano-/microparticles (MNPs) are released into water, not only causing severe water pollution, but also negatively affecting organisms. Therefore, it is crucial to evaluate MNP toxicity and mechanisms in water. There is a significant degree of similarity between the genes, the central nervous system, the liver, the kidney, and the intestines of zebrafish and the human body. It has been shown that zebrafish are exceptionally suitable for evaluating the toxicity and action mechanisms of MNPs in water on reproduction, the central nervous system, and metabolism. Providing ideas and methods for studying MNP toxicity, this article discusses the toxicity and mechanisms of MNPs from zebrafish.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Wenxia Zhang
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yuping Xia
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Junbo Zhong
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| |
Collapse
|
27
|
Li T, Liu K, Tang R, Liang JR, Mai L, Zeng EY. Environmental fate of microplastics in an urban river: Spatial distribution and seasonal variation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121227. [PMID: 36758926 DOI: 10.1016/j.envpol.2023.121227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/31/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Rivers are recognized as an important pathway for transport of microplastics (MPs) from land to sea, but limited information is available on the spatial distribution and seasonal variation of riverine MPs from upper reaches to estuaries. Such information is critical for source apportionment and development of effective management measures for riverine MPs. To fill the knowledge gap, we investigated the occurrence of MPs in surface water along an urban river in Guangzhou, southern China in wet and dry seasons. The abundances of MPs from 16 sampling sites in the wet and dry seasons varied from 0.123 to 1.84 particles m-3 and from 0.046 to 4.21 particles m-3, respectively. The spatial distribution of MP abundances showed an increasing trend from upstream to midstream and a decreasing trend from midstream to downstream and estuaries. The abundances of MPs peaked at the midstream, which is surrounded by a highly urbanized region with high population density (∼2530 persons per km2). The large surface water runoff during the wet season elevated the MP abundance in riverine water, except for that flowing through the central urban area where the abundance of MPs collected in the dry season was higher than that in the wet season. This was mainly ascribed to the large input from extensive anthropogenic activities and slow water flow rate in urban areas. The estimated monthly riverine MP fluxes from Humen, Hongqili, and Jiaomen were 7.42, 2.38, and 2.3 billion particles, respectively, in the wet season, and 0.86, 0.71, and 0.19 billion particles, respectively, in the dry season. An increase of riverine MP fluxes from Humen, Hongqili, and Jiaomen in the past three years was evident. The results from the present study provide valuable information for source apportionment of riverine MPs and support the initialization of possible MPs controlling measures.
Collapse
Affiliation(s)
- Ting Li
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Kai Liu
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Rui Tang
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Jun-Rong Liang
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Lei Mai
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Eddy Y Zeng
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
28
|
Tourinho PS, Loureiro S, Pavlaki MD, Mocová KA, Ribeiro F. A Systematic Review of Nano- and Microplastic (NMP) Influence on the Bioaccumulation of Environmental Contaminants: Part I-Soil Organisms. TOXICS 2023; 11:154. [PMID: 36851029 PMCID: PMC9958926 DOI: 10.3390/toxics11020154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nano- and microplastics (NMPs) are a group of contaminants that cause concern due to their abundance in the environment, high persistence, and interaction with other contaminants. This review aims to understand the role of NMP in the bioaccumulation of environmental contaminants. For that, a comprehensive literature search was conducted to identify publications that compared the uptake of contaminants in the presence and absence of NMP. In this part I, twenty-eight publications of the terrestrial compartment were analyzed. Two main taxonomic groups were studied, namely, earthworms and terrestrial plants. In earthworms, most studies observed an increase in the bioaccumulation of the contaminants, while in plants, most studies observed a decrease in the bioaccumulation. Changes in bioavailable fractions of contaminants due to NMP presence was the main reason pointed out by the authors for their outcomes. Moreover, biological aspects were also found to be important in defining how NMPs affect bioaccumulation. Dermal damage and changes in contaminant-degrading bacteria in the gut of earthworms caused an increase in bioaccumulation, and root pore blockage was a common reason for the decrease in the bioaccumulation of contaminants in plants. Nevertheless, such effects were mainly observed at high, unrealistic NMP concentrations. Finally, knowledge gaps were identified, and the limitations of this systematic review were presented.
Collapse
Affiliation(s)
- Paula S. Tourinho
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria D. Pavlaki
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Klará Anna Mocová
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Fabianne Ribeiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Cao J, Wang Q, Lei Y, Jiang X, Li M. Accumulation of microplastics and Tcep pollutants in agricultural soil: Exploring the links between metabolites and gut microbiota in earthworm homeostasis. ENVIRONMENT INTERNATIONAL 2022; 170:107590. [PMID: 36272253 DOI: 10.1016/j.envint.2022.107590] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Agricultural soil contamination with plastic film has become a critical global environmental problem, requiring greater research on the possible occurrence and biological risk of microplastics (MPs) and their additives in soil ecosystems. The presence of MPs and tris (2-chloroethyl) phosphate (Tcep) in agricultural soil was investigated at nine sites in the present study. Polyethylene MPs (PE-MPs) and Tcep were found at all nine sites. To study co-exposure effects on soil microbiota and earthworms, and to mimic a realistic exposure scenario, 0.05 % (w/w) PE-MPs with three particle size ranges were combined with Tcep (1.0 mg/kg). After 28 days of exposure, there was no indication that added PE-MPs and/or Tcep significantly affected the soil microbial community structure. In earthworms, size-selective intake, digestion and egestion of PE-MPs may occur, with Tcep co-exposure affecting the residual Tcep concentration in earthworm intestines (3.52-9.31 μg/g dw). Long-term earthworm PE-MPs intake caused intestinal damage, and Tcep co-exposure increased oxidative stress, thereby influencing their feeding behavior and growth, resulting in weight loss (3.42 %-14.96 %), especially for the most common PE-MPs sizes (0-300 μm). High performance liquid chromatography-mass spectrometry (LC-MS) was used for metabolomic analysis, revealing the significant up-regulation of citrate (p < 0.001) and down-regulation of l-glutamate (p < 0.05) in co-exposure groups. Co-exposure resulted in the alteration of most metabolic pathways, thereby impairing nervous, digestive and excretory systems in the earthworm, with an associated decrease in amino acid metabolism and changes in tricarboxylic acid (TCA) cycle intermediates. Gut microbiota, such as Proteobacteria (Verminephrobacter and Bradyrhizobium) and Firmicutes (Bacillus), are critically important in maintaining earthworm metabolic homeostasis, particularly for the TCA cycle and amino acid metabolism. Overall, MPs and Tcep co-exposure in agricultural soil enhanced their toxicity to earthworms and may potentially endanger the development of agricultural sustainability.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Liu Y, Shi Q, Liu X, Wang L, He Y, Tang J. Perfluorooctane sulfonate (PFOS) enhanced polystyrene particles uptake by human colon adenocarcinoma Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157640. [PMID: 35907536 DOI: 10.1016/j.scitotenv.2022.157640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
As microplastics and nanoplastics (MNPs) are widely distributed in the environment and can be transferred to human body through food chain, their potential impact on human health is of great concern. Perfluorooctane sulfonate (PFOS) is persistent, bioaccumulative and can be adsorbed by MNPs. However, there are few studies on the combined human health effects of MNPs with PFOS. In this study, the effects of polystyrene (PS) particles and PFOS on human colon adenocarcinoma cell Caco-2 were investigated in vitro to explore the combined toxicity from cellular level, and the toxic mechanism was further illustrated. Results showed that the presence of PFOS significantly increased the cell uptake of PS nanoparticles by >30 %, which is related to variations of the surface properties of PS particles, including the decrease of hydration kinetic diameter, the rise of surface potential and the adsorption of hydrophobic PFOS molecules. The toxic effect of PFOS was weakened in the presence of PS particles under low PFOS concentration (10 μg/mL), which is because the bioavailability of PFOS was reduced after adsorption. PS particles with small particle size (20 nm) showed higher cell uptake and ROS production, while PS particles with large particle size (1 μm) led to higher lipid oxidation degree and related membrane damage as well as mitochondrial stress. This study provides the first evaluation of combined toxicity of MNPs and PFOS on human intestinal cells, in order to support the risk assessment of combined pollution of MNPs and PFOS on human health.
Collapse
Affiliation(s)
- Yaxuan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qingying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
31
|
Zhang L, Cheng Y, Qian Y, Ding T, Li J. Phytotoxicity and accumulation of BPS to Pistia stratiotes under the influence of microplastics. CHEMOSPHERE 2022; 307:135854. [PMID: 35952788 DOI: 10.1016/j.chemosphere.2022.135854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) is a contaminant of emerging concern, its exposure and phytotoxicity towards plants, however, is scarce. This study aimed at revealing the BPS translocation in plants and phytotoxicity in the presence of Polystyrene (PS) microplastics. Results found that BPS and PS showed no effect on plant growth, indicating the tolerance of plants towards BPS and PS co-contamination. In addition, plants enriched BPS from soil, and a major part of absorbed BPS was accumulated in roots, as supported by the higher BCF value in roots compared with leaves. Besides, the low TF (<1) suggested the capacity of plants to accumulate BPS in roots, and less translocation to leaves. PS negatively affected the translocation of BPS in plants. PS with large size (5 μm) also increased the distribution of BPS in organelles. Exposure risk assessment suggested low concern of BPS carried in plants to human health. This study underlines the bioaccumulation of BPS in plants, and the effects of PS in the translocation process.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
32
|
Cui G, Lü F, Hu T, Zhang H, Shao L, He P. Vermicomposting leads to more abundant microplastics in the municipal excess sludge. CHEMOSPHERE 2022; 307:136042. [PMID: 35981618 DOI: 10.1016/j.chemosphere.2022.136042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/12/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Municipal excess activated sludge is not only an important reservoir of microplastics particles, but is also a vehicle of entry of microplastics into the environments as soil amendments or organic fertilizer. Vermicomposting is a cost-effective technology for sludge valorization. However, it is not clear whether vermicomposting affects the occurrence of microplastics in residual sludge. Here, the variation of microplastics (0.05-5 mm) in sludge, including the abundance, type, size, and morphology, before and after vermicomposting by epigeic earthworms under different temperature conditions (15 °C, 20 °C and 25 °C) were investigated by micro Fourier Transform Infrared Spectroscopy (μ-FTIR) and Scanning Electronic Microscopy (SEM). More abundant (over 104 particles ∙kg-1 (dry weight)), and smaller microplastics (over 60% in total with 0.05-0.5 mm) in the treated sludge via earthworms were observed compared to the raw sludge. The increment of vermicomposting temperature was more obvious (p < 0.05) for the enrichment of the microplastics, especially for polyethylene particle. Gizzard grinding and microbial digestion in the gut of earthworms may contribute to the fragment of microplastics. The present study suggests that the sludge-sourced vermicompost is still an important hotspot of microplastics, posing a potential threat to the receiving environments.
Collapse
Affiliation(s)
- Guangyu Cui
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China.
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Tian Hu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China.
| |
Collapse
|
33
|
Yu Z, Zhang L, Huang Q, Dong S, Wang X, Yan C. Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156917. [PMID: 35772560 DOI: 10.1016/j.scitotenv.2022.156917] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Accumulated evidence has demonstrated that microplastics and oxytetracycline (OTC) affect organisms, but few studies have investigated their combined effects on aquatic organisms. In this study, adult zebrafish (Danio rerio) were exposed to single and binary-combined contamination of micro-, nano-sized polystyrene plastics and OTC for 30 days, and the intestinal histopathology, gut microbiota and antibiotic resistance genes (ARGs) of zebrafish were measured. The results showed that the intestinal epithelial damage increase with the decrease of plastic sizes. Nano-sized plastics, OTC and their combined exposure caused intestinal epithelial damage, and co-exposure with micro-sized plastics reduced the intestinal damage caused by single OTC exposure. The gut microbial communities were affected by the combined exposure to microplastics and OTC. Compared with the blank control, the relative abundance of Fusobacteria increased 12.7 % and 21.1 % in OTC combined with 45-85 μm micro-plastics (MOTC) and 40-54 nm nano-plastics (NOTC), respectively, and that of Bacteroidetes increased 26.2 % and 18.6 % in the MOTC and NOTC treatments, respectively. The effects of MOTC and NOTC on the biodiversity of the zebrafish gut microbiome were different; MOTC increased the biodiversity by 11.3 % compared with the blank control, whereas NOTC decreased the biodiversity by 8.8 % compared with the blank control. Furthermore, the abundance of ARGs in 40-54 nm nano-plastics, MOTC and NOTC treatments was increased 96.9 %, 96.6 % and 68.8 % compared with the control group, respectively. Additionally, significant differences were observed in ARGs characteristics between the micro- and nano-plastics treated groups whether combined with OTC or not. These results are essential to further understand the combined ecotoxicological effects of micro- or nano-plastics and antibiotics on aquatic organisms.
Collapse
Affiliation(s)
- Ziyue Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sijun Dong
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
34
|
Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment. WATER 2022. [DOI: 10.3390/w14152403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global panic caused by COVID-19 has continued to increase people’s demand for masks. However, due to inadequate management and disposal practice, these masks have, unfortunately, entered the environment and release a large amount of microplastics (MPs), posing a serious threat to the environment and human health. Understanding the occurrence of mask waste in various environments, release of mask-origin MPs, and related environmental risk is essential to mask-waste management in current and future epidemic prevention and control. This paper focuses on the global distribution of mask waste, the potential release of waste-origin MPs, and the impact on the environment. Specifically, the physical and chemical properties of polypropylene (the most common plastic material in a mask), which show a high adsorption capacity for heavy metals and organic pollutants and play a role as a support for microbial growth, were extensively reported. In addition, several important issues that need to be resolved are raised, which offers a direction for future research. This review focuses on the essentiality of handling masks to avoid potential environmental issues.
Collapse
|
35
|
Li J, Peng D, Ouyang Z, Liu P, Fang L, Guo X. Occurrence status of microplastics in main agricultural areas of Xinjiang Uygur Autonomous Region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154259. [PMID: 35278564 DOI: 10.1016/j.scitotenv.2022.154259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
A large number of plastic products are used in the process of agricultural production, and the recycling efficiency is low, which leads to the production of a large number of microplastics. Therefore, the microplastic contamination in agricultural areas requires being investigated urgently. In addition, the occurrence characteristics of microplastics are also different in agricultural areas with various land use modes. In this study, the main agricultural areas in Xinjiang are taken as the research object. The abundance of microplastics in the main agricultural areas in Xinjiang ranges from 288 to 1452 items/kg. The shape of microplastics is mainly bulks, and white microplastics account for the highest proportion, and the majority of their sizes are less than 0.5 mm. The risk assessment results show that the contamination risk index of microplastics in this area is 108.92 and the risk level is grade III. The research shows that there is little difference in the abundance of microplastics between paddy field and garden land, which may be because there are few sources of microplastics in the land of these two utilization modes, and the potential pollution sources are similar, such as the atmospheric deposition of microplastics, the falling of fibers on people's clothes during farming, and the agricultural use of sludge. This study can provide a reference for further study on the existing circumstances of microplastics in agricultural areas.
Collapse
Affiliation(s)
- Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China.
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Liu H, Wang X, Shi Q, Liu Y, Lei H, Chen Y. Microplastics in arid soils: Impact of different cropping systems (Altay, Xinjiang). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119162. [PMID: 35307499 DOI: 10.1016/j.envpol.2022.119162] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Although microplastic pollution in the soil environment is currently an important research topic, few studies have focused on farmland soil in arid regions. This study investigated the abundances, sizes, polymer compositions, and forms of microplastics across nine agricultural plots cultivated with maize, sunflower, and potato (three of each crop) plants to determine the influences of different cropping characteristics and agricultural practices. The study area was within the arid region of the Ulungur River basin in Qinghe County, Altay, Xinjiang, China. The main forms of microplastics were fragments and fibers, and polyethylene was the dominant polymer (91.6%). The microplastic abundance ranged from 11 347 items/kgdw to 78 061 items/kgdw (mean of 52 081.7 items/kgdw). The abundance and proportion of microplastics with a diameter of <0.2 mm were significantly higher in the sunflower and maize plots (i.e., tall crops) than in the potato plots (i.e., short crops) (p < 0.05). This is due to straw residues affecting the migration and recovery of the mulch. The abundance and fragmentation of microplastics were significantly higher in the sunflower and maize plots where plastic mulch was extensively used because these tall crops anchored the mulch near their stem-root systems. The mulch was then slowly aged (e.g., via wind erosion) before being fragmented due to agricultural practices (e.g., mechanical plowing and residue retention). Although microplastics sourced from mulch are probably immobilized by straw residues in the short term, fragile and easily broken pieces of mulch are eventually released into the soil due to agricultural practices. The findings suggest that different cropping characteristics can affect the abundance and fragmentation of microplastics in agricultural soils, even within the same region, and thus the level and type of microplastic pollution. Traditional plastic mulch should be replaced with biodegradable mulch to reduce microplastic pollution in agricultural fields.
Collapse
Affiliation(s)
- Hao Liu
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, 830046, China; Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, 830046, China.
| | - Xiyuan Wang
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, 830046, China; Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, 830046, China.
| | - Qingdong Shi
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, 830046, China; Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Yuying Liu
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, 830046, China; Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Haifeng Lei
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, 830046, China; Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Yutong Chen
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, 830046, China; Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
37
|
Wang Y, Wang F, Xiang L, Bian Y, Wang Z, Srivastava P, Jiang X, Xing B. Attachment of positively and negatively charged submicron polystyrene plastics on nine typical soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128566. [PMID: 35359109 DOI: 10.1016/j.jhazmat.2022.128566] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) have attracted increasing concern as emerging contaminants of global importance in recent years. Soil is considered an important sink for MPs. Due to environmental weathering, MP surfaces are often charged, but there are limited studies on the interaction of differentially charged MP with soils. This study constructed Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles, investigated the interaction mechanism of polystyrene MPs (0.2 µm) with positive (MP+) and negative (MP-) charges on nine typical soils through quantitative analysis of fluorescence intensity. The attachment of MPs to different soils fitted the pseudo-second-order kinetic model well. The attachment isotherm data of MP+ fitted the linear model better, while the MP- data fitted the Langmuir model. The attachment capacity of MPs was significantly correlated with the zeta potential of soils. These results, as well as the fourier transform infrared spectroscopy (FTIR) spectra and scanning electronic microscopy (SEM) images of soils, indicated that electrostatic interactions and physical trapping were the dominant mechanisms for MP attachment to soils. These results showed a strong affinity for MPs attachment on soil and gave insights to predict the transport, fate and ecological effect of different charged MPs in soil.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Prashant Srivastava
- Land and Water Business Unit, Industry Environments Program, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
38
|
Co-Exposure of Nanopolystyrene and Other Environmental Contaminants-Their Toxic Effects on the Survival and Reproduction of Enchytraeus crypticus. TOXICS 2022; 10:toxics10040193. [PMID: 35448454 PMCID: PMC9032828 DOI: 10.3390/toxics10040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Plastics in all shapes and sizes have become widespread across ecosystems due to intense anthropogenic use. As such, they can interact with other contaminants that accumulate in the terrestrial environment, such as pharmaceuticals, metals or nanomaterials (NMs). These interactions can potentiate combined toxic effects in the exposed soil organisms, with hazardous long-term consequences to the full ecosystem. In the present study, a terrestrial model species, Enchytraeus crypticus (oligochaeta), was exposed through contaminated soil with nanopolystyrene (representative of nanoplastics (NPls)), alone and in combination with diphenhydramine (DPH, representative of pharmaceuticals), silver nitrate (AgNO3, representative of metals) and vanadium nanoparticles (VNPs, representative of NMs). AgNO3 and VNPs decreased E. crypticus reproduction at 50 mg/kg, regardless of the presence of NPls. Moreover, at the same concentration, both single and combined VNP exposures decreased the E. crypticus survival. On the other hand, DPH and NPls individually caused no effect on organisms' survival and reproduction. However, the combination of DPH (10 and 50 mg/kg) with 300 mg NPls/kg induced a decrease in reproduction, showing a relevant interaction between the two contaminants (synergism). Our findings indicate that the NPls can play a role as vectors for other contaminants and can potentiate the effects of pharmaceuticals, such as DPH, even at low and sub-lethal concentrations, highlighting the negative impact of mixtures of contaminants (including NPls) on soil systems.
Collapse
|
39
|
Sun T, Wang S, Ji C, Li F, Wu H. Microplastics aggravate the bioaccumulation and toxicity of coexisting contaminants in aquatic organisms: A synergistic health hazard. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127533. [PMID: 34879523 DOI: 10.1016/j.jhazmat.2021.127533] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
There are ongoing controversies regarding the effects of microplastics (MPs) on the bioaccumulation and toxicity of coexisting contaminants in aquatic organisms. This study aims to quantitatively evaluate this issue based on 870 endpoints from 40 publications. It was shown that the presence of MPs significantly increased the bioaccumulation of co-contaminants by 31%, with high statistical power and without obvious publication bias. The aggravated bioaccumulation was also revealed by the strongly positive correlation between bioconcentration factors in the presence and the absence of MPs. Furthermore, the subgroup/regression analyses indicated that the vector effect of MPs on other chemicals was affected by multiple factors and their interactions, such as particle size and exposure time. In addition, a relatively comprehensive biomarker profile was recompiled from included studies to assess the changes in toxicity caused by combined exposure. Results confirmed that the presence of MPs obviously exacerbated the toxicity of co-contaminants by 18%, manifested by the potentiated cytotoxicity, endocrine disruption, immunotoxicity and oxidative stress, implying a synergistic health hazard. Ultimately, the mismatches between laboratory and field conditions were discussed, and the recommendations for future research were offered.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
40
|
Rozman U, Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle - The most comprehensive review on microplastic laboratory research. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127529. [PMID: 34736190 DOI: 10.1016/j.jhazmat.2021.127529] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, much attention has been paid to microplastic pollution, and research on microplastics has begun to grow exponentially. However, microplastics research still suffers from the lack of standardized protocols and methods for investigation of microplastics under laboratory conditions. Therefore, in this review, we summarize and critically discuss the results of 715 laboratory studies published on microplastics in the last five years to provide recommendations for future laboratory research. Analysis of the data revealed that the majority of microplastic particles used in laboratory studies are manufactured spheres of polystyrene ranging in size from 1 to 50 µm, that half of the studies did not characterize the particles used, and that a minority of studies used aged particles, investigated leaching of chemicals from microplastics, or used natural particles as a control. There is a large discrepancy between microplastics used in laboratory research and those found in the environment, and many laboratory studies suffer from a lack of environmental relevance and provide incomplete information on the microplastics used. We have summarized and discussed these issues and provided recommendations for future laboratory research on microplastics focusing on (i) microplastic selection, (ii) microplastic characterization, and (iii) test design of laboratory research on microplastics.
Collapse
Affiliation(s)
- Ula Rozman
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
41
|
Xu J, Zhang K, Wang L, Yao Y, Sun H. Strong but reversible sorption on polar microplastics enhanced earthworm bioaccumulation of associated organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127079. [PMID: 34488102 DOI: 10.1016/j.jhazmat.2021.127079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Sorption/desorption of two organic compounds (OCs), phenanthrene (PHE), and 1-nitronaphthalene (1-Nnap) on three polar and one nonpolar polypropylene (PP) microplastics (MPs) and earthworm bioaccumulation of MP associated PHE were systematically studied. Poly-butylene succinate (PBS) with the lowest glass transition temperature (Tg) showed the highest sorption toward PHE and 1-Nnap (Kd: 25,639 ± 276 and 1673 ± 28.8 L kg-1, respectively), while polylactic acid (PLA) with the highest Tg showed the least sorption (182 ± 5 and near 0), confirming that hydrophobic partition was the main driving force of sorption. However, polar interactions also contributed to the preferential sorption of 1-Nnap on polar poly-hydroxyalkanoates (PHA). Moreover, small particle size favored the sorption of MPs and simulated weathering enhanced sorption on MPs with medium/high Tg. As for desorption, slight hysteresis was observed in most cases with near-zero hysteresis index (HI), and PHE generally had higher HI than 1-Nnap. The simulated digestive solution could further promote the desorption of PHE. The PHE concentrations in earthworms with the presence of 5% PBS or PP MPs in soil were 1.50-2.35 or 1.59-1.75 times that of the control without MPs; and PBS MPs with the smallest particle size showed the greatest enhancement. The results of this study confirmed that polar MPs could strongly but reversibly sorb both polar and nonpolar OCs and hence promote the bioaccumulation of OCs to soil organisms.
Collapse
Affiliation(s)
- Jiaping Xu
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kai Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
42
|
Feng Y, Han L, Li D, Sun M, Wang X, Xue L, Poinern G, Feng Y, Xing B. Presence of microplastics alone and co-existence with hydrochar unexpectedly mitigate ammonia volatilization from rice paddy soil and affect structure of soil microbiome. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126831. [PMID: 34391973 DOI: 10.1016/j.jhazmat.2021.126831] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs), as an emerging pollutant, may cause deleterious changes to the nitrogen cycle in terrestrial ecosystems. However, single impact of MPs and synergistic effects of MPs with hydrochar on ammonia (NH3) volatilization and soil microbiome in paddy fields has been largely unexplored. In this study, polyethylene (PE), polyacrylonitrile (PAN) and straw-derived hydrochar (HBC) were selected for observations in an entire rice cycle growth period. Results showed that under the condition of 0.5% (w/w) MPs concentration, presence of MPs alone and co-existence of MPs and HBC (MPs + HBC) unexpectedly mitigated cumulative NH3 volatilization from paddy soil compared with the control with no MPs or HBC addition. MPs + HBC increased NH3 volatilization by 37.8-46.2% compared with MPs alone, indicating that co-existence of MPs and HBC weaken the mitigation effect of MPs on NH3 volatilization. Additionally, results of nitrogen cycle related microorganisms closely related to NH3 volatilization demonstrated that MPs + HBC altered the bacterial community structure and species diversity. These findings provide an important opportunity to advance our understanding of the impacts of MPs in agricultural environment and soils, and provide a sound theoretical basis for rationalizing the application of HBC in soil with MPs.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Murdoch Applied Innovation Nanotechnology Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 5150, Australia
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Detian Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinwei Wang
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Gerrard Poinern
- Murdoch Applied Innovation Nanotechnology Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 5150, Australia
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
43
|
Li J, Mao S, Ye Y, Lü J, Jing F, Guo Y, Liu H, Wang P, Ma W, Qi P, Zheng J, Qu C. Micro-polyethylene particles reduce the toxicity of nano zinc oxide in marine microalgae by adsorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118042. [PMID: 34523509 DOI: 10.1016/j.envpol.2021.118042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/04/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Contaminant adsorption by microplastics (MPs) allows them to act as contaminant vehicles or vectors, complicating eco-toxicological study of MPs. The contaminants adsorbed are mainly organic contaminants, especially hydrophobic organic contaminants (HOCs), although heavy-metal adsorption has also been reported. Compared to the mechanisms of HOC adsorption, those for metals are not fully understood. In the present study, combined-exposure assays revealed that polyethylene microplastics (PEMPs, 150 μm) alleviate the toxic effect of nano zinc oxide (nZnO, 20-30 nm) on marine microalgal growth by 14.4%. Thus, we hypothesized that nZnO adsorption onto PEMP surfaces ameliorates its toxicity to microorganisms. To test this hypothesis, PEMP samples isolated from nZnO suspensions were characterized. Their surfaces were observed by SEM, their Zn levels were measured by ICP-MS, and the compound form of Zn on the PEMP surface was determined by XRD analysis. The results indicated that 5.53%-7.16% of the Zn in the suspension is adsorbed during the first 24 h of exposure and that the Zn remains as the ZnO form upon adsorption. The findings in the present study provide important information on the role of MPs as metal oxide vehicles.
Collapse
Affiliation(s)
- Jiji Li
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China
| | - Shuai Mao
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China.
| | - Jiayin Lü
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China
| | - Fei Jing
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China
| | - Yahong Guo
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China
| | - Hongxia Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, No.16 Guilin North Road, Huangshi, Hubei, 435003, PR China
| | - Ping Wang
- Huaihe River Basin Eco-environmental Monitoring and Scientific Research Center, No. 500 Zhihuai Road, Bengbu, Anhui, 233001, PR China
| | - Wei Ma
- Huaihe River Basin Eco-environmental Monitoring and Scientific Research Center, No. 500 Zhihuai Road, Bengbu, Anhui, 233001, PR China
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China
| | - Jialang Zheng
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No.1 Haida South Road, Changzhi Island, Zhoushan, Zhejiang, 316022, PR China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 388 Lumo Road, Wuhan, Hubei, 430074, PR China
| |
Collapse
|
44
|
Lin H, Yuan Y, Jiang X, Zou JP, Xia X, Luo S. Bioavailability quantification and uptake mechanisms of pyrene associated with different-sized microplastics to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149201. [PMID: 34303978 DOI: 10.1016/j.scitotenv.2021.149201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are the significant environmental factor for bioavailability of hydrophobic organic contaminants (HOCs) in aquatic environments. Nevertheless, the bioavailability of microplastic-associated HOCs remains unclear. In this research, the freely dissolved pyrene concentrations were kept stable with passive dosing devices, and the pyrene content in D. magna tissues as well as D. magna immobilization were analyzed to quantify bioavailability of pyrene (a representative HOC) associated with naturally-aged polystyrene (PS) MPs. Furthermore, the uptake mechanisms of pyrene associated with MPs of different sizes were explored by investigating the distribution of MPs in D. magna tissues with scanning electron microscopy. Especially, a new schematic model of bioavailability process was established. The results demonstrated that a part of pyrene associated with 0-1.5 μm MPs could directly cross cell membrane through endocytosis from intestine and exposure solutions to D. magna tissues except the 10-60 and 60-230 μm MPs. The bioavailability of microplastic-associated pyrene was ordered as 0-1.5 μm (20.0-21.6%) > 10-60 μm (10.7-13.8%) > 60-230 μm MPs (6.0-9.8%), which were essentially resulted from the difference in uptake mechanisms of pyrene associated with MPs of different sizes. This work suggests that the bioavailability of microplastic-associated HOCs should be considered when assessing water quality and environmental risk of HOCs in natural waters.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yinqiu Yuan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
45
|
Xu G, Yu Y. Polystyrene microplastics impact the occurrence of antibiotic resistance genes in earthworms by size-dependent toxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125847. [PMID: 34492800 DOI: 10.1016/j.jhazmat.2021.125847] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are two classes of emerging and prevalent contaminants in terrestrial environments. To date, effects of MPs on the occurrence of ARGs in terrestrial invertebrates remain uncertain. Here we exposed earthworms to a soil amended with polystyrene MPs at two environmentally relevant concentrations to elucidate the occurrence and mechanisms of ARGs in earthworms impacted by MPs with different sizes. Nano-size and 10 mg/kg of 100 µm MPs slightly affected the occurrence of ARGs in earthworms. Highest abundance of ARGs was found in the presence of 10 mg/kg of 10 µm MPs, whereas 100 mg/kg of 10 µm MPs significantly changed the profile of ARGs. Metagenomics sequencing and toxicity tests indicated that MPs caused toxicity and influenced the abundance of microbial community in earthworms, resulting in the changes of ARGs. Results of proteomics and metabolomics demonstrated that 100 mg/kg of 10 µm MPs changed the microenvironment of earthworm gut, built a new homeostatic process, and thus increased the abundance of key bacterial that carried a variety of ARGs. This study highlights the size-dependent toxic effects of MPs and their impacts on the transfer of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|