1
|
Wu N, He Y, Sun Z, Zhang S, Yang X, Liu QS, Zhou Q, Jiang G. The environmental occurrence, human exposure, and toxicity of novel bisphenol S derivatives: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118182. [PMID: 40222108 DOI: 10.1016/j.ecoenv.2025.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Novel bisphenol S (BPS) derivatives are being increasingly utilized as substitutes to bisphenol A (BPA) and BPS in thermal receipts and other industrial or commercial products. In recent years, the environmental occurrence, human exposure, and toxicity of non-chlorinated and chlorinated BPS derivatives have been investigated in numerous studies. This review summarizes the state-of-art and new knowledge on these aspects and provides recommendations for future research directions. The environmental analysis showed that BPS derivatives have been widely detected in paper products, water, indoor dust, sediment, and municipal sewage sludge. Recent studies have also reported the presence of non-chlorinated BPS derivatives, such as benzenesulfonylbenzene (DDS) and 4-(4-propan-2-yloxyphenyl)sulfonylphenol (BPSIP), in human breast milk, urine, and the maternal-fetal-placental unit. Toxicological studies suggest that BPS derivatives may cause a series of toxic effects, including endocrine-disrupting effects, cytotoxicity, hepatotoxicity, developmental toxicity, and neurotoxicity, some of which have been shown to exhibit adverse effects similar to or even greater than those of BPS. Future studies should focus on elucidating environmental occurrences, half-lives, sources for human exposure, and potential transformation pathways of BPS derivatives, as well as their toxic effects and underlying mechanisms.
Collapse
Affiliation(s)
- Ning Wu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Shengnan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yuan M, Yi S, Wang X, Han G, Wei P, Lv Z, Gui B, Chen X, Wang Y, Zhu L. Promoted Translocation of Perfluorooctanoic Acid across the Blood-Retinal Barrier due to its Inhibition of Tight Junction Assembly by Antagonizing LPAR1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4807-4819. [PMID: 40038073 DOI: 10.1021/acs.est.4c12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Eye health is becoming a significant public health concern, and a recent epidemiological investigation suggested that perfluorooctanoic acid (PFOA), a so-called forever chemical, was correlated with decreased human visual acuity; however, it remains unknown whether PFOA can pass through the blood-retinal barrier (BRB) to cause visual toxicity. In this study, the mice received a 28-day subchronic oral exposure to PFOA. The results of spatial mass spectrometry imaging indicated that the eye-enriched PFOA dispersed into the subretina primarily through the outer BRB (oBRB), which subsequently resulted in significantly increased apoptosis and decreased thickness of multiple oBRB-associated layers. BRB integrity and function were compromised due to decreased expression of the tight junction (TJ). Mechanistically, PFOA outcompeted lysophosphatidic acid to bind strongly with lysophosphatidic acid receptor 1 (LPAR1) in its antagonism, abolishing its ability to stimulate the TJ assembly-related signaling pathway. This subsequently attenuated phosphorylation of the myosin light chain, rendering insufficient contraction of the actomyosin cytoskeleton, leading to decreased TJ assembly and BRB leakage. This, in turn, facilitated PFOA translocation across the BRB and accumulation within the subretinal space. Our findings suggest that oBRB is particularly vulnerable to PFOA, which targets directly LPAR1 to disable its function of maintaining TJ assembly cascades, leading to adverse visual effects.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bingxin Gui
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Chen
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Yan Wang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Sun Y, Zhang R, Li J, Hu Y, Zhang H, Wang X, Yang Y, Wang H, Ge M. 2-Ethylhexyl diphenyl phosphate induces lung oxidative stress and pyroptosis in chicks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178453. [PMID: 39818193 DOI: 10.1016/j.scitotenv.2025.178453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer easily released into the environment. Its biological toxicity is of great concern. The lung is considered a possible target organ for EHDPHP, but currently, there are limited studies on the biotoxicity of EHDPHP in poultry lungs. Therefore, the lungs were selected as the target organ to study the toxic effects of EHDPHP on chicks and their mechanisms of action. In this study, 7-day-old chicks were gavaged with different concentrations of EHDPHP, and lung samples were collected at 14, 28, and 42 days after intragastric administration. Lung histopathological and ultrapathological changes were examined by paraffin section-HE staining and transmission electron microscopy. The levels of lung damage markers (LDH) and oxidative stress markers (GSH-Px, SOD, and MDA) were detected by applying the kit. In contrast, lung cell pyroptosis-related factors (NLRP3, ASC, NF-κB, Pro-Caspase-1, IL-18, and IL-1β) and inflammatory factors (IL-6 and TNF-α) were assessed by using the qRT-PCR, Western blot and ELISA techniques. The results showed that EHDPHP induced pathological morphological changes and elevated LDH content in chick lungs, decreased lung antioxidant enzymes (GSH-Px and SOD) activities, increased peroxidation product MDA content and up-regulated the expression levels of cellular pyroptosis factors (NLRP3, ASC, NF-κB, Pro-Caspase-1, IL-18, and IL-1β), and the synthesis and secretion of inflammatory factors (IL-6 and TNF-α) were promoted. The above changes were EHDPHP dose-dependent. The results indicated that EHDPHP induced oxidative stress in chick lungs, resulting in oxidative damage to the lungs, and, intriguingly, the cellular pyroptosis pathway was activated, which was also involved in the process of EHDPHP-induced inflammatory damage in chick lungs. The results of this study revealed for the first time the damaging effects and mechanisms of EHDPHP on chick lungs. Also, they provided a scientific basis for further exploring the mechanisms of toxicity damage, safe use, and pollution control of EHDPHP.
Collapse
Affiliation(s)
- Yiming Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Jiali Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Yihan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Haolin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Xiangjie Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Yi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| |
Collapse
|
4
|
Gao N, Yang L, Zhu L, Zhu L, Feng J. New Insights into the Visual Toxicity of Organophosphate Esters: An Integrated Quantitative Adverse Outcome Pathway and Cross-chemical Extrapolation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22039-22052. [PMID: 39631370 DOI: 10.1021/acs.est.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organophosphate esters (OPEs) have been documented to adversely affect visual function, potentially impacting wildlife survival and human health, thereby necessitating a comprehensive risk assessment. Despite the quantitative adverse outcome pathway (qAOP) holding promise for addressing this concern mechanistically, unclear mode of action and inadequate quantitative understanding across biological levels currently impede its development. Herein, we employed an integrated strategy, combining multiomics analyses, targeted bioassays, and modular model-fitting, to develop and validate a qAOP framework for visual toxicity of OPEs, exemplified by tris(2-butoxyethyl) phosphate, triphenyl phosphate, and tris(1,3-dichloro-2-propyl) phosphate. Our results revealed that these OPEs induce visual dysfunction in zebrafish larvae primarily via oxidative stress, then cascade to damaging photoreceptors and retinal structures, ultimately resulting in the disruption of visual behaviors (i.e., decreased optokinetic response, phototaxis, and visual motor response). The qAOP, validated through cross-chemical extrapolation, enabled the prediction for vision-related effects of OPEs within a certain domain. Integrating toxicokinetic modeling could compensate for the uncertainty in qAOP predictions, since adjusting for internal concentrations as inputs significantly enhanced the accuracy and applicability of the predictions. This work contributes to a better understanding of visual toxicity by OPEs and presents a promising paradigm for quantitative risk assessment based on the qAOP framework.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Yan J, Fang L, Ni A, Xi M, Li J, Zhou X, Qian Q, Wang ZJ, Wang X, Wang H. Long-Term Neurotoxic Effects and Alzheimer's Disease Risk of Early EHDPP Exposure in Zebrafish: Insights from Molecular Mechanisms to Adult Pathology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19152-19164. [PMID: 39417326 DOI: 10.1021/acs.est.4c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP), ubiquitously monitored in environmental media, is highly bioaccumulative and may pose long-term risks, even after short-term exposure. In this investigation, larval zebrafish were exposed to 0.05, 0.5, and 5.0 μg/L EHDPP from 4 to 120 h postfertilization (hpf) to examine the long-term neurotoxicity effects of early exposure. Exposure to 5.0 μg/L EHDPP yielded hyperactive locomotor behavior, which was characterized by increased swimming speed, larger turning angles, and heightened sensitivity to light-dark stimulation. The predicted targets of EHDPP (top 100 potential macromolecules) were primarily associated with brain diseases like Alzheimer's disease (AD). Comparisons of differentially expressed genes (DEGs) from AD patients (GSE48350) and RNA-seq data from EHDPP-exposed zebrafish confirmed consistently abnormal regulatory pathways. EHDPP's interaction with M1 and M5 muscarinic acetylcholine receptors likely disrupted calcium homeostasis, leading to mitochondrial dysfunction and neurotransmitter imbalance as well as abnormal locomotor behavior. Especially, 5.0 μg/L EHDPP exposure during early development (4-120 hpf) triggered early- and midstage AD-like symptoms in adulthood (180 dpf), characterized by cognitive confusion, aggression, blood-brain barrier disruption, and mitochondrial damage in brains. These findings provide deep insights into the long-term neurotoxicity effects and Alzheimer's disease risks of early EHDPP exposure at extremely low dosages.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ze-Jun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
6
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Li T, Zhu F, Dai L, Hogstrand C, Li B, Yue X, Wang J, Yu L, Li D. Effects of 2-ethylhexyl diphenyl phosphate (EHDPP) on glycolipid metabolism in male adult zebrafish revealed by targeted lipidomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174248. [PMID: 38936724 DOI: 10.1016/j.scitotenv.2024.174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The present study aims to evaluate the effects of 2-ethylhexyldiphenyl phosphate (EHDPP) on glycolipid metabolism in vivo. Adult male zebrafish were exposed to various concentrations (0, 1, 10, 100 and 250 μg/L) of EHDPP for 28 days, and changes in lipid and glucose levels were measured. Results indicated significant liver damages in the 100 and 250 μg/L EHDPP groups, which both exhibited significant decreases in hepatic somatic index (HSI), elevated activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and liver, as well as hepatocyte vacuolation and nuclear pyknosis. Exposure to 100 and 250 μg/L EHDPP led to significant reductions in serum and liver cholesterol (TC), triglycerides (TGs), and lipid droplet deposition, indicating a significant inhibition of EHDPP on hepatic lipid accumulation. Lipidomic analyses manifested that 250 μg/L EHDPP reduced the levels of 103 lipid metabolites which belong to glycerides (TGs, diglycerides, and monoglycerides), fatty acyles (fatty acids), sterol lipids (cholesterol, bile acids), sphingolipids, and glycerophospholipids, and downregulated genes involved in de novo synthesis of fatty acids (fas, acc, srebp1, and dagt2), while upregulated genes involved in fatty acid β-oxidation (pparα and cpt1). KEGG analyses revealed that EHDPP significantly disrupted glycerolipid metabolism, steroid biosynthesis and fatty acid biosynthesis pathways. Collectively, the results showed that EHDPP induced lipid reduction in zebrafish liver, possibly through inhibiting lipid synthesis and disrupting glycerolipid metabolism. Our findings provide a theoretical basis for evaluating the ecological hazards and health effects of EHDPP on glycolipid metabolism.
Collapse
Affiliation(s)
- Tao Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengyue Zhu
- National Agricultural Science Observing and Experimental Station of Chongqing, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Christer Hogstrand
- King's College London, Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, United Kingdom
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xikai Yue
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China; Engineering Research Center of Green development for Conventional Aquatic, Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China; Engineering Research Center of Green development for Conventional Aquatic, Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
8
|
Wang Y, Guo AL, Xu Y, Xu X, Yang L, Yang Y, Chao L. EHDPP induces proliferation inhibition and apoptosis to spermatocyte: Insights from transcriptomic and metabolomic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116878. [PMID: 39142116 DOI: 10.1016/j.ecoenv.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND 2-ethylhexyldiphenyl phosphate (EHDPP) was used widespread in recent years and it was reported to impair reproductive behaviors and decrease fertility in male Japanese medaka. However, whether EHDPP causes spermatogenesis disturbance remains uncertain. OBJECTIVES We aimed to study the male reproductive toxicity of EHDPP and its related mechanism. METHODS Human spermatocyte cell line GC-2 was treated with 10 µM, 50 µM or 100 µM EHDPP for 24 h. Male CD-1 mice aged 6 weeks were given 1, 10, or 100 mg/kg/d EHDPP daily for 42 days and then euthanized to detect sperm count and motility. Proliferation, apoptosis, oxidative stress was detected in mice and cell lines. Metabolome and transcriptome were used to detect the related mechanism. Finally, anti-oxidative reagent N-Acetylcysteine was used to detect whether it could reverse the side-effect of EHDPP both in vivo and in vitro. RESULTS Our results showed that EHDPP inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Metabolome and transcriptome showed that nucleotide metabolism disturbance and DNA damage was potentially involved in EHDPP-induced reproductive toxicity. Finally, we found that excessive ROS production caused DNA damage and mitochondrial dysfunction; NAC supplement reversed the side effects of EHDPP such as DNA damage, proliferation inhibition, apoptosis and decline in sperm motility. CONCLUSION ROS-evoked DNA damage and nucleotide metabolism disturbance mediates EHDPP-induced germ cell proliferation inhibition and apoptosis, which finally induced decline of sperm motility.
Collapse
Affiliation(s)
- Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - An-Liang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China; Department of Reproductive Medicine, Linyi People's Hospital, Lin'yi 276003, PR China
| | - Xiaoyan Xu
- Reproductive Medicine Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong 250012, PR China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
9
|
Li J, Fang X, Cui D, Ma Z, Yang J, Niu Y, Liu H, Xiang P. Mechanistic insights into cadmium exacerbating 2-Ethylhexyl diphenyl phosphate-induced human keratinocyte toxicity: Oxidative damage, cell apoptosis, and tight junction disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116858. [PMID: 39137464 DOI: 10.1016/j.ecoenv.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Organophosphate flame retardants 2-ethylhexyldiphenyl phosphate (EHDPP) and cadmium (Cd) are ubiquitous in environmental matrices, and dermal absorption is a major human exposure pathway. However, their detrimental effects on the human epidermis remain largely unknown. In this study, human keratinocytes (HaCaT cells) were employed to examine the toxicity and underlying mechanisms of co-exposure to EHDPP and Cd. Their influence on cell morphology and viability, oxidative damage, apoptosis, and tight junction were determined. The results showed that co-exposure decreased cell viability by >40 %, induced a higher level of oxidative damage by increasing the generation of reactive oxygen species (1.3 folds) and inhibited CAT (79 %) and GPX (90 %) activities. Moreover, Cd exacerbated EHDPP-induced mitochondrial disorder and cellular apoptosis, which was evidenced by a reduction in mitochondrial membrane potential and an elevation of cyt-c and Caspase-3 mRNA expression. In addition, greater loss of ZO-1 immunoreactivity at cellular boundaries was observed after co-exposure, indicating skin epithelial barrier function disruption, which may increase the human bioavailability of contaminants via the dermal absorption pathway. Taken together, oxidative damage, cell apoptosis, and tight junction disruption played a crucial role in EHDPP + Cd triggered cytotoxicity in HaCaT cells. The detrimental effects of EHDPP + Cd co-exposure were greater than individual exposure, suggesting the current health risk assessment or adverse effects evaluation of individual exposure may underestimate their perniciousness. Our data imply the importance of considering the combined exposure to accurately assess their health implication.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Xianlei Fang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ziya Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ji Yang
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Youya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
10
|
Liu Y, Tan X, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ning X, Ku T, Sang N. Retinal Degeneration Response to Graphene Quantum Dots: Disruption of the Blood-Retina Barrier Modulated by Surface Modification-Dependent DNA Methylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14629-14640. [PMID: 39102579 DOI: 10.1021/acs.est.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Graphene quantum dots (GQDs) are used in diverse fields from chemistry-related materials to biomedicines, thus causing their substantial release into the environment. Appropriate visual function is crucial for facilitating the decision-making process within the nervous system. Given the direct interaction of eyes with the environment and even nanoparticles, herein, GQDs, sulfonic acid-doped GQDs (S-GQDs), and amino-functionalized GQDs (A-GQDs) were employed to understand the potential optic neurotoxicity disruption mechanism by GQDs. The negatively charged GQDs and S-GQDs disturbed the response to light stimulation and impaired the structure of the retinal nuclear layer of zebrafish larvae, causing vision disorder and retinal degeneration. Albeit with sublethal concentrations, a considerably reduced expression of the retinal vascular sprouting factor sirt1 through increased DNA methylation damaged the blood-retina barrier. Importantly, the regulatory effect on vision function was influenced by negatively charged GQDs and S-GQDs but not positively charged A-GQDs. Moreover, cluster analysis and computational simulation studies indicated that binding affinities between GQDs and the DNMT1-ligand binding might be the dominant determinant of the vision function response. The previously unknown pathway of blood-retinal barrier interference offers opportunities to investigate the biological consequences of GQD-based nanomaterials, guiding innovation in the industry toward environmental sustainability.
Collapse
Affiliation(s)
- Yutong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Tan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Rui Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiqi Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chen Chen
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenhao Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
11
|
Zhang Y, Lv Z, Yu XY, Zhang Y, Zhu L. Integration of Nontarget Screening and QSPR Models to Identify Novel Organophosphate Esters of High Priority in Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39087809 DOI: 10.1021/acs.est.4c04891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
With the development of large numbers of novel organophosphate esters (OPEs) alternatives, it is imperative to screen and identify those with high priority. In this study, surface water, biofilms, and freshwater snails were collected from the flow-in rivers of Taihu Lake Basin, China. Screened by target, suspect, and nontarget analysis, 11 traditional and 14 novel OPEs were identified, of which 5 OPEs were first discovered in Taihu Lake Basin. The OPE concentrations in surface water ranged from 196 to 2568 ng/L, with the primary homologue tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) being newly identified, which was likely derived from the transformation of tris(2,4-ditert-butylphenyl) phosphite. The majority of the newly identified OPEs displayed substantially higher bioaccumulation and biomagnification potentials in the biofilm-snail food chain than the traditional ones. Quantitative structure-property relationship models revealed both hydrophobicity and polarity influenced the bioaccumulation and biomagnification of the OPEs, while electrostatic attraction also had a contribution to the bioaccumulation in the biofilm. TDtBPP was determined as the utmost priority by toxicological priority index scheme, which integrated concentration, bioaccumulation, biomagnification, acute toxicity, and endocrine disrupting potential of the identified OPEs. These findings provide novel insights into the behaviors of OPEs and scientific bases for better management of high-risk pollutants in aquatic ecosystem.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiao-Yong Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
12
|
He S, He J, Ma S, Wei K, Wu F, Xu J, Jin X, Zhao Y, Martyniuk CJ. Liquid crystal monomers disrupt photoreceptor patterning of zebrafish larvae via thyroid hormone signaling. ENVIRONMENT INTERNATIONAL 2024; 188:108747. [PMID: 38761427 DOI: 10.1016/j.envint.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Liquid crystal monomers (LCMs) are the raw material for liquid crystal displays, and their use is steadily increasing in electronic products. Recently, LCMs have been reported to be novel endocrine disrupting chemicals, however, the mechanisms underlying their potential for thyroid hormone disruption and visual toxicity are not well understood. In this study, six widely used fluorinated LCMs (FLCMs) were selected to determine putative mechanisms underlying FLCM-induced toxicity to the zebrafish thyroid and visual systems. Exposure to FLCMs caused damage to retinal structures and reduced cell density of ganglion cell layer, inner nuclear layer, and photoreceptor layer approximately 12.6-46.1%. Exposure to FLCMs also disrupted thyroid hormone levels and perturbed the hypothalamic-pituitary-thyroid axis by affecting key enzymes and protein in zebrafish larvae. A thyroid hormone-dependent GH3 cell viability assay supported the hypothesis that FLCMs act as thyroid hormone disrupting chemicals. It was also determined that FLCMs containing aliphatic ring structures may have a higher potential for T3 antagonism compared to FLCMs without an aliphatic ring. Molecular docking in silico suggested that FLCMs may affect biological functions of thyroxine binding globulin, membrane receptor integrin, and thyroid receptor beta. Lastly, the visual motor response of zebrafish in red- and green-light was significantly inhibited following exposure to FLCMs. Taken together, we demonstrate that FLCMs can act as thyroid hormone disruptors to induce visual dysfunction in zebrafish via several molecular mechanisms.
Collapse
Affiliation(s)
- Shan He
- College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Siying Ma
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kunyu Wei
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Ni A, Fang L, Xi M, Li J, Qian Q, Wang Z, Wang X, Wang H, Yan J. Neurotoxic effects of 2-ethylhexyl diphenyl phosphate exposure on zebrafish larvae: Insight into inflammation-driven changes in early motor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170131. [PMID: 38246379 DOI: 10.1016/j.scitotenv.2024.170131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The extensive utilization and potential adverse impacts of the replacement flame-retardant 2-Ethylhexyl Diphenyl Phosphate (EHDPP) have raised concerns. Currently, there is limited knowledge regarding the developmental, neurological, and immunotoxic consequences of EHDPP exposure, as well as its potential behavioral outcomes. In this study, we undertook a comprehensive examination and characterization of the toxic effects over the EHDPP concentration range of 14-1400 nM. Our findings unveiled that EHDPP, even at an environmentally relevant concentration of 14 nM, exhibited excitatory neurotoxicity, eliciting a 13.5 % increase in the swimming speed of zebrafish larvae. This effect might be attributed to the potential influence of EHDPP on the release of neurotransmitters like serotonin and dopamine, which, in turn, mediated anxiety-like behavior in the zebrafish larvae. Conversely, sublethal dose EHDPP (1400 nM) exposure significantly suppressed the swimming vigor of zebrafish larvae, accompanied by morphological changes, abnormal behaviors, and alterations in intracerebral molecules. Transcriptomics revealed the underlying mechanism. The utilization of pathway inhibitors reshaped the inflammatory homeostasis and alleviated the toxicity induced by EHDPP exposure, anchoring the pivotal role played by the TLR4/NF-κB signaling pathway in EHDPP-induced adverse changes in zebrafish behavior and neurophysiology. This study observed the detrimental effects of EHDPP on fish sustainability at environmentally relevant concentrations, highlighting the practical significance for EHDPP risk management. Elucidating the toxic mechanisms of EHDPP will contribute to a deeper comprehension of how environmental pollutants can intricately influence human health.
Collapse
Affiliation(s)
- Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
14
|
Zhang Q, Wu R, Zheng S, Luo C, Huang W, Shi X, Wu K. Exposure of male adult zebrafish (Danio rerio) to triphenyl phosphate (TPhP) induces eye development disorders and disrupts neurotransmitter system-mediated abnormal locomotor behavior in larval offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133332. [PMID: 38147758 DOI: 10.1016/j.jhazmat.2023.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
15
|
Shu Y, Yuan J, Hogstrand C, Xue Z, Wang X, Liu C, Li T, Li D, Yu L. Bioaccumulation and thyroid endcrione disruption of 2-ethylhexyl diphenyl phosphate at environmental concentration in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106815. [PMID: 38185038 DOI: 10.1016/j.aquatox.2023.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
2-ethylhexyl diphenyl phosphate (EHDPP) strongly binds to transthyretin (TTR) and affects the expression of genes involved in the thyroid hormone (TH) pathway in vitro. However, it is still unknown whether EHDPP induces endocrine disruption of THs in vivo. In this study, zebrafish (Danio rerio) embryos (< 2 h post-fertilization (hpf)) were exposed to environmentally relevant concentrations of EHDPP (0, 0.1, 1, 10, and 100 μg·L-1) for 120 h. EHDPP was detected in 120 hpf larvae at concentrations of 0.06, 0.15, 3.71, and 59.77 μg·g-1 dry weight in the 0.1, 1, 10, and 100 μg·L-1 exposure groups, respectively. Zebrafish development and growth were inhibited by EHDPP, as indicated by the increased malformation rate, decreased survival rate, and shortened body length. Exposure to lower concentrations of EHDPP (0.1 and 1 μg·L-1) significantly decreased the whole-body thyroxine (T4) and triiodothyronine (T3) levels and altered the expressions of genes and proteins involved in the hypothalamic-pituitary-thyroid axis. Downregulation of genes related to TH synthesis (nis and tg) and TH metabolism (dio1 and dio2) may be partially responsible for the decreased T4 and T3 levels, respectively. EHDPP exposure also significantly increased the transcription of genes involved in thyroid development (nkx2.1 and pax8), which may stimulate the growth of thyroid primordium to compensate for hypothyroidism. Moreover, EHDPP exposure significantly decreased the gene and protein expression of the transport protein transthyretin (TTR) in a concentration-dependent manner, suggesting a significant inhibitory effect of EHDPP on TTR. Molecular docking results showed that EHDPP and T4 partly share the same mode of action of binding to the TTR protein, which might result in decreased T4 transport due to the binding of EHDPP to the TTR protein. Taken together, our findings indicate that EHDPP can cause TH disruption in zebrafish and help elucidate the mechanisms underlying EHDPP toxicity.
Collapse
Affiliation(s)
- Yan Shu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affaris, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Christer Hogstrand
- King's College London, Franklin-Wilkins Building, 150 Stamford St., London, SE1 9NH, United Kingdom.
| | - Zhiyu Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, No.2006 Xiyuan Ave, Chengdu 611731, China
| | - Xilan Wang
- King's College London, Franklin-Wilkins Building, 150 Stamford St., London, SE1 9NH, United Kingdom
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tao Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Wu F, Chen R, Li Y, Wan Y, Hu J. Unregistered Hexaphenoxycyclotriphosphazene and Its Metabolite Antagonize Retinoic Acid and Retinoic X Receptors and Cause Early Developmental Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20551-20558. [PMID: 38037888 DOI: 10.1021/acs.est.3c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hexaphenoxycyclotriphosphazene (HPCTP), an unregistered chemical, has been used as a substitute for triphenyl phosphate in flame retardants and plasticizers. Here, we identified its metabolite, pentaphenoxycyclotriphosphazene (PPCTP) in the liver of Japanese medaka exposed to HPCTP. When sexually mature female medaka were exposed to HPCTP at 37.0, 90.4, and 465.4 ng/L for 35 days, the HPCTP concentration (642.1-2531.9 ng/g lipid weight [lw]) in the embryos considerably exceeded that (34.7-298.1 ng/g lw) in the maternal muscle, indicating remarkable maternal transfer. During 0-9 days postfertilization, the HPCTP concentration in the embryos decreased continuously, while the PPCTP concentration increased. HPCTP and PPCTP antagonized the retinoic X receptor with 50% inhibitory concentrations (IC50) of 34.8 and 21.2 μM, respectively, and PPCTP also antagonized the retinoic acid receptor with IC50 of 2.79 μM. Such antagonistic activities may contribute to eye deformity (4.7% at 465.4 ng/L), body malformation (2.1% at 90.4 ng/L and 6.8% at 465.4 ng/L), and early developmental mortality (11.6-21.7% in all exposure groups) of the embryos. HPCTP was detected in a main tributary of the Yangtze River Basin. Thus, HPCTP poses a risk to wild fish populations, given the developmental toxicities associated with this chemical and its metabolite.
Collapse
Affiliation(s)
- Feifan Wu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Wu L, Zeeshan M, Dang Y, Zhang YT, Liang LX, Huang JW, Zhou JX, Guo LH, Fan YY, Sun MK, Yu T, Wen Y, Lin LZ, Liu RQ, Dong GH, Chu C. Maternal transfer of F-53B inhibited neurobehavior in zebrafish offspring larvae and potential mechanisms: Dopaminergic dysfunction, eye development defects and disrupted calcium homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164838. [PMID: 37353013 DOI: 10.1016/j.scitotenv.2023.164838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Maternal exposure to environment toxicants is an important risk factor for neurobehavioral health in their offspring. In our study, we investigated the impact of maternal exposure to chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs, commercial name: F-53B) on behavioral changes and the potential mechanism in the offspring larvae of zebrafish. Adult zebrafish exposed to Cl-PFESAs (0, 0.2, 2, 20 and 200 μg/L) for 21 days were subsequently mated their embryos were cultured for 5 days. Higher concentrations of Cl-PFESAs in zebrafish embryos were observed, along with, reduced swimming speed and distance travelled in the offspring larvae. Molecular docking analysis revealed that Cl-PFESAs can form hydrogen bonds with brain-derived neurotropic factor (BDNF), protein kinase C, alpha, (PKCα), Ca2+-ATPase and Na, K - ATPase. Molecular and biochemical studies evidenced Cl-PFESAs induce dopaminergic dysfunction, eye developmental defects and disrupted Ca2+ homeostasis. Together, our results showed that maternal exposure to Cl-PFESAs lead to behavioral alteration in offspring mediated by disruption in Ca2+ homeostasis, dopaminergic dysfunction and eye developmental defects.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Wen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
18
|
Yang R, Zhang Y, Deng Y, Yang Y, Zhong W, Zhu L. 2-Ethylhexyl Diphenyl Phosphate Causes Obesity in Zebrafish by Stimulating Overeating via Inhibition of Dopamine Receptor D2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14162-14172. [PMID: 37704188 DOI: 10.1021/acs.est.3c04070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Obesity is a popular public health problem worldwide and is mainly caused by overeating, but little is known about the impacts of synthetic chemicals on obesity. Herein, we evaluated the obesogenic effect caused by 2-ethylhexyl diphenyl phosphate (EHDPHP) on zebrafish. Adult zebrafish were exposed to 5, 35, and 245 μg/L of EHDPHP for 21 days. Results showed that EHDPHP exposure significantly promoted the feeding behavior of zebrafish, as evidenced by shorter reaction time, increased average food intake, feeding rate, and intake frequency (p < 0.05). Transcriptomic, real-time quantitative PCR, and neurotransmitter analyses revealed that the dopamine (DA) receptor D2 (DRD2) was inhibited, which interfered with the DA neural reward regulation system, thus stimulating food addiction to zebrafish. This was further verified by the restored DRD2 after 7 days of Halo (a DRD2 agonist) treatment. A strong interaction between EHDPHP and DRD2 was identified via molecular docking. As a consequence of the abnormal feeding behavior, the exposed fish exhibited significant obesity evidenced by increased body weight, body mass index, plasma total cholesterol, triglyceride, and body fat content. Additionally, the pathways linked to Parkinson's disease, alcoholism, and cocaine addiction were also disrupted, implying that EHDPHP might cause other neurological disorders via the disrupted DA system.
Collapse
Affiliation(s)
- Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yun Deng
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
19
|
Huang W, Wu T, Wu R, Peng J, Zhang Q, Shi X, Wu K. Fish to learn: insights into the effects of environmental chemicals on eye development and visual function in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27629-3. [PMID: 37195602 DOI: 10.1007/s11356-023-27629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals. However, due to inaccessibility and ethical issues, the use of humans and other placental mammals is constrained, which limits our better understanding of environmental factors on ocular development and visual function in the embryonic stage. Therefore, as complementing laboratory rodents, zebrafish has been the most frequently employed to understand the effects of environmental chemicals on eye development and visual function. One of the major reasons for the increasing use of zebrafish is their polychromatic vision. Zebrafish retinas are morphologically and functionally analogous to those of mammalian, as well as evolutionary conservation among vertebrate eye. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements (ions), metal-derived nanoparticles, microplastics, nanoplastics, persistent organic pollutants, pesticides, and pharmaceutical pollutants on the eye development and visual function in zebrafish embryos. The collected data provide a comprehensive understanding of environmental factors on ocular development and visual function. This report highlights that zebrafish is promising as a model to identify hazardous toxicants toward eye development and is hopeful for developing preventative or postnatal therapies for human congenital visual impairment.
Collapse
Affiliation(s)
- Wenlong Huang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiajun Peng
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Qiong Zhang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Xiaoling Shi
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China.
| |
Collapse
|
20
|
Xu S, Yu Y, Qin Z, Wang C, Hu Q, Jin Y. Effects of 2-ethylhexyl diphenyl phosphate exposure on the glucolipid metabolism and cardiac developmental toxicity in larval zebrafish based on transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109578. [PMID: 36822296 DOI: 10.1016/j.cbpc.2023.109578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is an organophosphorus type of flame retardant. It is mainly used as a flame-retardant plasticizer in the production of flexible polyvinyl chloride. EHDPP is widely present in environment, particularly in aquatic environment. In this study, we reported that EHDPP exposure significantly affected glucose and lipid metabolism in zebrafish larvae, which was reflected by changes in the transcription of relevant genes and decreased levels of glucose, pyruvate, and triglycerides. In addition, the transcriptomic analysis revealed that the differentially expressed genes could enrich various endpoints in zebrafish larvae. Interestingly, EHDPP exposure could not only change the transcription of genes related to glucolipid metabolism but also cause cardiotoxicity by affecting the transcription of genes related to calcium signaling pathways in zebrafish larvae. To support these findings, we confirmed that these genes involved in cardiac morphology and development were significantly upregulated in zebrafish larvae after EHDPP exposure. More importantly, the distance and overlapping area of the atrium and ventricle were also changed in the EHDPP-exposed zebrafish larvae of transgenic Tg (myl7: EGFP). Overall, our study revealed that EHDPP exposure could affect various endpoints related to glucolipid metabolism and cardiac development in the early developmental stages of zebrafish.
Collapse
Affiliation(s)
- Siyi Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Yixin Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| |
Collapse
|
21
|
Li L, Chen R, Wang L, Jia Y, Shen X, Hu J. Discovery of Three Organothiophosphate Esters in River Water Using High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7254-7262. [PMID: 37092689 DOI: 10.1021/acs.est.2c09416] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Records of the environmental occurrence of organothiophosphate esters (OTPEs), which are used as flame retardants and food and industrial additives, are unavailable. In this study, we discovered three OTPEs, namely O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168═S), O-butyl O-(butyl-methylphenyl) O-(di-butylphenyl) phosphorothioate (BBMDBPt)/O,O-bis(dibutylphenyl) O-methyl phosphorothioate (BDBPMPt), and O-butyl O-ethyl O-hydrogen phosphorothioate (BEHPt), in the surface water of the Yangtze River Basin by applying a characteristic phosphorothioate fragment-directed high-resolution mass spectrometry method. Among the 17 water samples tested, the detection frequencies of AO168═S and BEHPt were 100% and that of BBMDBPt/BDBPMPt was 29%. The mean concentration of AO168═S was 56.9 ng/L (30.5-148 ng/L), and semi-quantitative analysis revealed that the mean concentrations of BEHPt and BBMDBPt/BDBPMPt were 17.2 ng/L (5.5-65.4 ng/L) and 0.8 ng/L (<the limit of quantification, LOQ, to 6.3 ng/L), respectively. Twelve organophosphate esters were also detected, of which the highest mean concentration was found for tris(2,4-di-tert-butylphenyl) phosphate (AO168═O, 366 ng/L), followed by triphenyl phosphate (84.3 ng/L), triethyl phosphate (19.3 ng/L), and tributyl phosphate (15.7 ng/L). The Spearman's correlation coefficient between AO168═S and AO168═O was 0.547 (p < 0.05), suggesting that AO168═S commonly transforms into AO168═O or that these chemicals have a similar source and behavior in the environment. Future studies are warranted to assess the potential toxicity, environmental behavior, and health risks posed by OTPEs.
Collapse
Affiliation(s)
- Linwan Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Yu Y, Zheng T, Li H, Hou Y, Dong C, Chen H, Wang C, Xiang M, Hu G, Dang Y. Growth inhibition of offspring larvae caused by the maternal transfer effects of tetrabromobisphenol A in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121143. [PMID: 36731738 DOI: 10.1016/j.envpol.2023.121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is an industrial chemical and the most widely used brominated flame retardant, and has raised environmental health concerns. However, the maternal transfer toxicity of TBBPA is less studied in fish despite its frequency in the water environment, and limited evidence exists to confirm the major contributing factors. In this study, we performed a 28-d experiment on female and male zebrafish exposed to TBBPA (0, 5, 50, and 500 μg/L), and shortened body length of offspring larvae was observed at the maximum exposure concentration. By cross-mating control and exposed zebrafish (male or female), our results showed that the observed growth inhibition in the progeny was attributed to the maternal transfer effect. Although 28-d exposure resulted in the existence of TBBPA in ovaries and ova, the maternal transfer of TBBPA was not responsible for the shortened body length of offspring larvae, as evidenced through TBBPA embryo microinjection. Moreover, proteomic analyses in ova indicated that the abundance of apolipoproteins (apoa1, apoa1b, apoa2, apoa4b, and apoc1) was significantly downregulated in the ova, which may be partially responsible for the shortened body length of offspring larvae. Interestingly, these proteins did not differentially express in the ovaries. Therefore, our results demonstrate that TBBPA exposure disturbed maternal protein transfer from the ovaries to the ova, providing novel insights into the underlying maternal transfer effects.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunbo Hou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chuanhua Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
23
|
Chibwe L, De Silva AO, Spencer C, Teixera CF, Williamson M, Wang X, Muir DCG. Target and Nontarget Screening of Organic Chemicals and Metals in Recycled Plastic Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3380-3390. [PMID: 36787488 PMCID: PMC9979653 DOI: 10.1021/acs.est.2c07254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 05/31/2023]
Abstract
Increased demand for recycling plastic has prompted concerns regarding potential introduction of hazardous chemicals into recycled goods. We present a broad screening of chemicals in 21 plastic flake and pellet samples from Canadian recycling companies. From target analysis, the organophosphorus ester flame retardants and plasticizers exhibited the highest detection frequencies (DFs) (5-100%) and concentrations (<DL-4,700 ng/g), followed by brominated/chlorinated flame retardants (<DL-2,150 ng/g, 5-76% DFs). The perfluoroalkyl acids were least detected at the lowest concentrations (<0.01-0.70 ng/g, 5-19% DFs). Using nontargeted analysis, 217 chemicals were identified as Level 1 (authentic standard) or 2 (library match), with estimated individual concentrations up to 1030 ng/g (highest: 2-hexyl hydroxy benzoate, 100% DF). Total (Σ60) element concentrations were between 0.005 and 2,980 mg/kg, with highest concentrations for calcium (2,980 mg/kg), sodium (617 mg/kg), and iron (156 mg/kg). Collectively >280 chemicals were detected in recycled plastic pellets and flakes, suggesting potential incorporation into recycled goods. Individual concentrations indicate unintentional trace contamination following European Union threshold limits for recycled granules (500 mg/kg) and waste plastic flakes (1,000 mg/kg), although do not reflect toxicological thresholds, if any. Our study highlights that while recycling addresses sustainability goals, additional screening of goods and products made from recycled plastics is needed to fully document potentially hazardous chemicals and exposure.
Collapse
Affiliation(s)
- Leah Chibwe
- Aquatic
Contaminants Research Division, Environment
Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
- Institute
for Environmental Change and Society, University
of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Amila O. De Silva
- Aquatic
Contaminants Research Division, Environment
Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Christine Spencer
- Aquatic
Contaminants Research Division, Environment
Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Camilla F. Teixera
- Aquatic
Contaminants Research Division, Environment
Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mary Williamson
- Aquatic
Contaminants Research Division, Environment
Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Xiaowa Wang
- Aquatic
Contaminants Research Division, Environment
Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Derek C. G. Muir
- Aquatic
Contaminants Research Division, Environment
Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
24
|
Wu L, Zeeshan M, Dang Y, Liang LY, Gong YC, Li QQ, Tan YW, Fan YY, Lin LZ, Zhou Y, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Environmentally relevant concentrations of F-53B induce eye development disorders-mediated locomotor behavior in zebrafish larvae. CHEMOSPHERE 2022; 308:136130. [PMID: 36049635 DOI: 10.1016/j.chemosphere.2022.136130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The perfluorooctane sulfonate alternative, F-53B, induces multiple physiological defects but whether it can disrupt eye development is unknown. We exposed zebrafish to F-53B at four different concentrations (0, 0.15, 1.5, and 15 μg/L) for 120 h post-fertilization (hpf). Locomotor behavior, neurotransmitters content, histopathological alterations, morphological changes, cell apoptosis, and retinoic acid signaling were studied. Histology and morphological analyses showed that F-53B induced pathological changes in lens and retina of larvae and eye size were significantly reduced as compared to control. Acridine orange (AO) staining revealed a dose-dependent increase in early apoptosis, accompanied by upregulation of p53, casp-9 and casp-3 genes. Genes related to retinoic acid signaling (aldh1a2), lens developmental (cryaa, crybb, crygn, and mipa) and retinal development (pax6, rx1, gant1, rho, opn1sw and opn1lw) were significantly downregulated. In addition, behavioral responses (swimming speed) were significantly increased, while no significant changes in the neurotransmitters (dopamine and acetylcholine) level were observed. Therefore, in this study we observed that exposure to F-53B inflicted histological and morphological changes in zebrafish larvae eye, induced visual motor dysfunctions, perturbed retinoid signaling and retinal development and ultimately triggering apoptosis.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Ya Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
25
|
Sui S, Liu H, Yang X. Research Progress of the Endocrine-Disrupting Effects of Disinfection Byproducts. J Xenobiot 2022; 12:145-157. [PMID: 35893263 PMCID: PMC9326600 DOI: 10.3390/jox12030013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Since 1974, more than 800 disinfection byproducts (DBPs) have been identified from disinfected drinking water, swimming pool water, wastewaters, etc. Some DBPs are recognized as contaminants of high environmental concern because they may induce many detrimental health (e.g., cancer, cytotoxicity, and genotoxicity) and/or ecological (e.g., acute toxicity and development toxicity on alga, crustacean, and fish) effects. However, the information on whether DBPs may elicit potential endocrine-disrupting effects in human and wildlife is scarce. It is the major objective of this paper to summarize the reported potential endocrine-disrupting effects of the identified DBPs in the view of adverse outcome pathways (AOPs). In this regard, we introduce the potential molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs) associated with exposure to specific DBPs. The present evidence indicates that the endocrine system of organism can be perturbed by certain DBPs through some MIEs, including hormone receptor-mediated mechanisms and non-receptor-mediated mechanisms (e.g., hormone transport protein). Lastly, the gaps in our knowledge of the endocrine-disrupting effects of DBPs are highlighted, and critical directions for future studies are proposed.
Collapse
|
26
|
Wei S, Chen F, Xu T, Cao M, Yang X, Zhang B, Guo X, Yin D. BDE-99 Disrupts the Photoreceptor Patterning of Zebrafish Larvae via Transcription Factor six7. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5673-5683. [PMID: 35413178 DOI: 10.1021/acs.est.1c08914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proper visual function is essential for collecting environmental information and supporting the decision-making in the central nervous system and is therefore tightly associated with wildlife survival and human health. Polybrominated diphenyl ethers (PBDEs) were reported to impair zebrafish vision development, and thyroid hormone (TH) signaling was suspected as the main contributor. In this study, a pentabrominated PBDE, BDE-99, was chosen to further explore the action mechanism of PBDEs on the disruption of zebrafish color vision. The results showed that BDE-99 could impair multiple photoreceptors in the retina and disturb the behavior guided by the color vision of zebrafish larvae at 120 h post-fertilization. Although the resulting alteration in photoreceptor patterning highly resembled the effects of 3,3',5-triiodo-l-thyroine, introducing the antagonist for TH receptors was unable to fully recover the alteration, which suggested the involvement of other potential regulatory factors. By modulating the expression of six7, a key inducer of middle-wavelength opsins, we demonstrated that six7, not THs, dominated the photoreceptor patterning in the disruption of BDE-99. Our work promoted the understanding of the regulatory role of six7 in the process of photoreceptor patterning and proposed a novel mechanism for the visual toxicity of PBDEs.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fu Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyue Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
27
|
Jia Y, Zhang H, Hu W, Wang L, Kang Q, Liu J, Nakanishi T, Hiromori Y, Kimura T, Tao S, Hu J. Discovery of contaminants with antagonistic activity against retinoic acid receptor in house dust. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127847. [PMID: 34836686 DOI: 10.1016/j.jhazmat.2021.127847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Retinoic acid receptors (RARs) control reproduction and development in vertebrates, but little attention has been paid to anthropogenic chemicals exhibiting RAR agoniztic/antagonistic activity. Here we applied a His-RARα pull-down assay combined with high-resolution mass spectrometry to identify chemicals with RARα activity in house dust. After screening, a total of 540 peaks were retained as potential RARα ligands. The mass spectra of 14 chemicals matched with those in the database, of which triphenyl phosphate, galaxolidone, di(2-ethylhexyl) phthalate (DEHP), tris(2-ethylhexyl) phosphate (TEHP), and tris(2-butoxyethyl) phosphate were confirmed by their standards. While one chemical in the sample matched with monophenyl phosphate in the MS/MS database, its retention time was much higher than that of monophenyl phosphate standard, suggesting that it may be an in-source fragment. Its parent ion was finally identified to be m/z 399.2663 using a similarity analysis among chromatographic peaks of hundreds of ions at the same retention time in MS1 spectrum, and bis(2-ethylhexyl) phenyl phosphate (BEHPP) was identified. BEHPP, DEHP, and TEHP were for the first time identified to be RARα antagonists with IC50 values of 6556, 6600, and 2538 nM, respectively. This study improved structural annotation and filled the knowledge gap regarding widespread environmental contaminants with RAR antagonistic activity.
Collapse
Affiliation(s)
- Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Hong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Wenxin Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Qiyue Kang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Jiaying Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Japan
| | - Youhei Hiromori
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Japan
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China.
| |
Collapse
|
28
|
Chen X, Fan S, Lyu B, Zhang L, Yao S, Liu J, Shi Z, Wu Y. Occurrence and Dietary Intake of Organophosphate Esters via Animal-Origin Food Consumption in China: Results of a Chinese Total Diet Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13964-13973. [PMID: 34751562 DOI: 10.1021/acs.jafc.1c05697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although diet is regarded as a major exposure source of organophosphate esters (OPEs), the dietary survey of OPEs in China has been limited. Based on the sixth Chinese Total Diet Study (TDS) conducted during 2016-2019 in 24 of 34 provinces in China, 14 OPEs were detected in 96 food composites from four animal-origin food categories. Twelve OPEs were detected in more than 80% of the samples and 2-ethylhexyl diphenyl phosphate (EHDPP) presented the highest median concentration (1.63 ng/g wet weight (ww)). The most contaminated food composite was meat, with a median ∑14OPEs of 13.6 ng/g ww, followed by aquatic food (11.5 ng/g ww), egg (7.63 ng/g ww), and milk (3.51 ng/g ww). The contribution of the meat group was close to or even greater than 50% in the estimated dietary intake (EDI) of OPEs. The average (range) EDI of the ∑14OPEs via animal food consumption for a Chinese "standard man" was 34.4 (6.18-73.3) ng/kg bodyweight (bw)/day. The geographical distribution showed higher EDI in southern coastal provinces compared to the northern inland provinces. Nevertheless, the highest EDI of ∑14OPEs from animal food was still more than 10 times lower than the reference dose. This is the first national survey of OPEs in foods from China.
Collapse
Affiliation(s)
- Xuelei Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Sai Fan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Shunying Yao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaying Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
29
|
Chen Q, Lian X, An J, Geng N, Zhang H, Challis JK, Luo Y, Liu Y, Su G, Xie Y, Li Y, Liu Z, Shen Y, Giesy JP, Gong Y. Life Cycle Exposure to Environmentally Relevant Concentrations of Diphenyl Phosphate (DPhP) Inhibits Growth and Energy Metabolism of Zebrafish in a Sex-Specific Manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13122-13131. [PMID: 34523920 DOI: 10.1021/acs.est.1c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to commercial uses and environmental degradation of aryl phosphate esters, diphenyl phosphate (DPhP) is frequently detected in environmental matrices and is thus of growing concern worldwide. However, information on potential adverse effects of chronic exposure to DPhP at environmentally realistic concentrations was lacking. Here, we investigated the effects of life cycle exposure to DPhP on zebrafish at environmentally relevant concentrations of 0.8, 3.9, or 35.6 μg/L and employed a dual-omics approach (metabolomics and transcriptomics) to characterize potential modes of action. Exposure to DPhP at 35.6 μg/L for 120 days resulted in significant reductions in body mass and length of male zebrafish, but did not cause those same effects to females. Predominant toxicological mechanisms, including inhibition of oxidative phosphorylation, down-regulation of fatty acid oxidation, and up-regulation of phosphatidylcholine degradation, were revealed by integrated dual-omics analysis and successfully linked to adverse outcomes. Activity of succinate dehydrogenase and protein content of carnitine O-palmitoyltransferase 1 were significantly decreased in livers of male fish exposed to DPhP, which further confirmed the proposed toxicological mechanisms. This study is the first to demonstrate that chronic, low-level exposure to DPhP can retard growth via inhibiting energy output in male zebrafish.
Collapse
Affiliation(s)
- Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaolong Lian
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jingjing An
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yaxin Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon S7N 5B4, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas 76798-7266, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yufeng Gong
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| |
Collapse
|