1
|
Liu Y, Zhang C, Wang X, Gao Y, Zhang X, Wang G. High-efficiency and sustainable peroxymonosulfate activation on Fe single-atom catalyst through incorporating complementary S species for enhanced water decontamination. J Colloid Interface Sci 2025; 692:137533. [PMID: 40209433 DOI: 10.1016/j.jcis.2025.137533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Single-atom FeNC catalyst is a promising alternative for peroxymonosulfate (PMS) activation based water treatment, but the trade-off between PMS adsorption and products desorption on Fe single site limits its performance for achieving sustainable PMS activation. Herein, the thiophene-like S (CSC) and oxidized S (C-SOx) with different electron-donating/withdrawing properties were introduced into the second coordination shell of single-atom FeNC catalyst (Fe-NSBC) to optimize its Fe electronic structure for high-efficiency and sustainable PMS activation. The S species composition was also regulated to study its effect on catalytic performance and mechanism of Fe-NSBC. Results showed the Fe-NSBC displayed highest PMS catalytic efficiency and radical (SO4•- and •OH) yield at moderate CSC/C-SOx ratio, whose catalytic activity was 3.8 and 21.1 times higher than that of Fe-NBC without S doping and homogeneous Co2+ (metal-based benchmark), and greatly outperformed those of the state-of-the-art FeNC based catalysts. Moreover, the Fe-NSBC/PMS favored free radicals production for preferential removal of hydrophilic pollutants, and displayed unique anti-interference and long-term effectiveness in real water decontamination. The CSC and C-SOx played complementary role in promoting sustainable PMS activation: CSC raised d-band center and electron density of Fe for enhanced adsorption and reduction of PMS into radicals, while C-SOx lowered d-band center of Fe for favorable radical desorption and active site regeneration.
Collapse
Affiliation(s)
- Yangcen Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chunyu Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Le TT, Hoang VC, Ahn YY, Kim K, Chae KH, Kim SH, Moon GH. Sustainable mineralization of bisphenol A via iron-oxide-fortified manganese catalysts: Integrating radical and nonradical pathways for advanced wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138047. [PMID: 40157180 DOI: 10.1016/j.jhazmat.2025.138047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Nanoparticulate manganese dioxide (MnO2) was integrated into a ferric oxide (Fe2O3) framework via a coprecipitation technique followed by thermal annealing, yielding a porous composite structure enriched with surface pores and microcracks. The Mn:Fe stoichiometry played a critical role in determining the crystalline architecture, catalytic performance, and stability of the composites. In dark conditions, the degradation of Bisphenol A (BPA) through peroxydisulfate (PDS)-mediated electron transfer did not achieve complete mineralization. Under UV irradiation, however, the composite facilitated near-complete BPA mineralization due to a synergistic interaction between radical generation and electron transfer processes. Notably, nonradical mechanisms predominantly governed BPA degradation, with the PDS-MnO2 interaction being central to its efficiency. The Fe2O3 matrix improved structural stability, significantly reducing manganese ion leaching. Specifically, MnFe-12 (Mn:Fe 1:2) exhibited a 2200-fold reduction in Mn dissolution compared to bare MnO2. In situ X-ray absorption spectroscopy revealed that radical-mediated processes elevated the oxidation state of Mn ions, while Fe ions remained unchanged. The study highlights the importance of integrating radical and nonradical pathways to achieve efficient and sustainable degradation of persistent pollutants, offering insights for the rational design of advanced oxidation systems with enhanced structural integrity and catalytic efficiency.
Collapse
Affiliation(s)
- Thao Thi Le
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Van Chinh Hoang
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Sang Hoon Kim
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Nano & Information Technology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 2447, Republic of Korea.
| | - Gun-Hee Moon
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Nano & Information Technology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Pang Y, Fu S, Wang Y, Xu Z, Xiao Y, Li S, Zhang T. Mo doping modulates peroxymonosulfate activation of cobalt carbon nanotube-based catalysts for efficient multi-pollutants removal: Oxygen vacancies trigger the evolution of high-valence cobalt-oxo species. J Colloid Interface Sci 2025; 688:93-105. [PMID: 39987844 DOI: 10.1016/j.jcis.2025.02.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Formation of defective catalysts with oxygen-rich vacancies via ion doping represents an advanced strategy for enhancing catalytic activity. Cobalt oxides supported on carbon nanotubes (CNTs) were strategically designed to enhance peroxomonosulfate (PMS) through molybdenum (Mo)-doped oxygen vacancies (Vo) management to achieve the application of high-valent cobalt oxygen (Co(IV)O) dominated degradation mechanism. The first-order rate constant for tetracycline hydrochloride degradation in the CoMo/CNTs/PMS system (0.081 min-1) was twice that of the Co/CNTs system. Additionally, the system exhibited high resistance to interference and excellent pH adaptability. The system demonstrated a high removal efficiency (91.3 %-100 %) for the emerging contaminant (sodium p-perfluorous nonenoxybenzene sulfonate), as well as other organic pollutants such as carbamazepine and imidacloprid. The prepared catalyst membranes exhibited stability and effectively degraded tetracycline hydrochloride over 10 h of continuous-flow experiments, highlighting their potential for practical applications. Theoretical calculations revealed that molybdenum doping reduced the formation energy of oxygen vacancies, while these vacancies shifted the d-band center of cobalt (Co) in CoMo/CNTs upward, bringing it closer to the Fermi energy level. Furthermore, enhanced charge transfer and stronger peroxide bond stretching were observed during PMS adsorption, thus promoting the chemical reaction of PMS adsorbed on CoMo/CNTs. More significantly, the oxygen-rich vacancies in CoMo/CNTs lowered the energy barrier for Co(IV)=O generation. This study provides insights into the mechanism of ionic doping in PMS activation by metal-based catalysts, thereby expanding the application of defective catalysts in environmental remediation.
Collapse
Affiliation(s)
- Yaqian Pang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuhan Fu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenyang Xu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Xiao
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Wang Z, Huang Y, He S, Li M, Gong J, Cheng L, Li J, Deng Y, Liang K. Oxygen-Independent Sulfate Radical and Fe 2+-Modified Implants for Fast Sterilization and Osseointegration of Infectious Bone Defects. ACS NANO 2025; 19:18804-18823. [PMID: 40350755 DOI: 10.1021/acsnano.5c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Currently, emerging dynamic therapy has gradually become a frequently used strategy for treating infectious bone defects via a rise in reactive oxygen species (ROS) levels, which can bring about oxidative harm to bacteria. However, ROS can be generated only under conditions of exogenous energy, limited by energy penetration or dependence on the existence of internal O2/H2O2. Thus, we designed Na2S2O8-decorated polyetheretherketone implants activated by Fe2+ for infected bone defects. In vitro experiments show that they generate sulfate radical (·SO4-) and hydroxyl radical (·OH) without O2/H2O2 existence, effectively killing bacteria. Additionally, the released Fe2+ enters bacteria and triggers ferroptosis-like death via lipid peroxidation. In vivo experiments show implants achieve an ideal effect of bone integration through a high-efficiency bactericidal effect and enhanced osteogenic activity. As envisioned, our proposed strategy offers a promising approach to halt refractory infection of bone tissue by autonomously catalyzing ROS storms and ferroptosis-like death, facilitating bone-defect recovery.
Collapse
Affiliation(s)
- Ziyou Wang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Yiling Huang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Shuai He
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Jing Gong
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Yi Deng
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| |
Collapse
|
5
|
Chen L, Wang X, Li J, Yan C, Yuan M, Xia S, Jianfu Z. Synergistic Oxygen Vacancy and Dual-Electron Centers for Enhancing Peroxymonosulfate Activation by Fe─Mn─Mg LDH/BC: Insights into the Key Roles of Magnesium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502606. [PMID: 40376894 DOI: 10.1002/smll.202502606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Enhancing singlet oxygen (1O2)-dominated nonradical oxidation with higher selectivity and longer lifetime is crucial for efficient antibiotic degradation. Herein, Fe/Mn/Mg layered double hydroxides (FeMnMg-LDH) modified rice husk biochar composites (BC/FeMMgx-LDH, x = 1, 2, and 3) are prepared to activate peroxymonosulfate (PMS) for sulfamethazine (SMT) removal. Increasing Mg content in FeMnMg-LDH enhances catalytic efficiency, achieving 99.2% SMT removal (50 mg L-1) within 30 min with BC/FeMMg3-LDH/PMS. 1O2 is identified as the primary active species, with its dominance increasing as Mg content rises. High Mg content induces lattice strain and structural disorder in LDH by atom intercalation in the octahedron, creating abundant oxygen vacancies (Vo) and surface M─OH groups. These Vo amplify the Fe─Mg polarization effect and promote the formation of electron-rich Fe centers. Simultaneously, the elevated d-band center at the Mn site develops electron-donating centers, facilitating short-range electron transfer to Vo and the electron-rich Fe center, boosting high local electron density. This process enhances PMS activation and 1O2 regulation. Moreover, the neutral pH microenvironment constructed by Mg, hydroxyl and interlayer carbonates supports stable 1O2 generation and broad pH applicability. This study offers new insights into the Mg-induced structural effects in BC/FeMMgx-LDH and the development of efficient 1O2-dominated PMS catalysts.
Collapse
Affiliation(s)
- Liuyu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Jing Li
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai, 200124, P.R. China
- China Three Gorges Corporation, National Engineering Research Center of Eco-Environment in the Yangtze River Economic Belt, Wuhan, 430010, P.R. China
| | - Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Meng Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Zhao Jianfu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| |
Collapse
|
6
|
Liu ZY, An T, Yu K, Jia XM, Luo YH. Improving synergistic effects within metal-organic framework by modulating structural interpenetration for boosted photocatalytic peroxydisulfate activation. J Colloid Interface Sci 2025; 685:225-234. [PMID: 39842312 DOI: 10.1016/j.jcis.2025.01.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(Fe2Ni) and MIL-126(Fe2Ni) were selected to systematically study this effect. Both MOFs are composed of 4,4'-biphenyldicarboxylic acid and [Fe2NiO(COO)6] clusters (abbreviated as Fe2Ni), while the framework of MIL-126(Fe2Ni) can be considered as a two-fold interpenetrating MIL-88D(Fe2Ni) networks. The study shows that interpenetration not only enhances the structural rigidity and stability, but also facilitates the exposure of active sites. The structural interpenetration reduces the distance between Fe2Ni clusters to 0.6 nm, which is thermodynamically favorable for PDS activation. Consequently, the photocatalytic activation of PDS by MIL-126(Fe2Ni) is significantly promoted. The MIL-126(Fe2Ni)/PDS system achieved a 96.5 % removal efficiency of ofloxacin (OFL) within 30 min, with a high degradation rate constant (k) of 0.10 min-1. In addition, the MIL-126(Fe2Ni)/PDS system can effectively remove various organic pollutants from different water bodies, even under outdoor sunlight irradiation. Fascinatingly, MIL-126(Fe2Ni)@polyurethane sponges also can remove 98.4 % of OFL in 60 min, highlighting its potential for practical applications.
Collapse
Affiliation(s)
- Zhi-Yong Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China
| | - Tao An
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China
| | - Kun Yu
- School of Intelligent Engineering, Harbin Institute of Petroleum, Harbin 150027, PR China.
| | - Xue-Meng Jia
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China
| | - Yu-Hui Luo
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China.
| |
Collapse
|
7
|
Qiu H, Wang C, Jiang L, Niu H, Wang X, Qin W, Xu F, Hao L. A microbial-driven persulfate activating-cycling system for in-depth oxytetracycline degradation and bacterial antibiotic resistance control. WATER RESEARCH 2025; 275:123151. [PMID: 39904194 DOI: 10.1016/j.watres.2025.123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Insufficient biodegradability of antibiotics (e.g., oxytetracycline, OTC) and the accompanying antibiotic resistance gene (ARG) spreading risk have been a serious concern in wastewater treatment plants. This study developed a microbial-driven persulfate activating-cycling system (MPCS) relying on the iron-reducing capacity of Shewanella oneidensis to sustainably degrade OTC and prevent ARG elevation. In MPCS, a nanosized bio-magnet shell (20-60 nm) was bio-generated and incorporated with S. oneidensis to activate peroxydisulfate and produce free radicals to attack OTC, removed by 98.78 % in 120 min. S. oneidensis metabolism re-generated the bio-magnet and cleared the toxic intermediates. Despite the stress of OTC and free radicals, S. oneidensis sustained (live/death ratio of 74.50 %: 25.50 %) under bio-magnet shell protection, showing a strong energy metabolism and iron-reducing strength. The tight coupling of biodegradation and advanced oxidation process (AOP) greatly improved degrading efficiency (132.65 %-2369.44 % higher than single biodegradation or AOP). MPCS continuously operated 5 cycles efficiently, exhibiting a diverse degrading pathway with less toxic intermediates than the single treatment. Notably, MPCS functioned well without peroxydisulfate, as the S. oneidensis produces low-level hydrogen peroxide as the AOP substrate, achieving favorable OTC elimination. Especially, the expression of sixteen tetracycline-related ARGs dropped by 62.94 %-100 % in MPCS than biodegradation, indicating resistance control advantage under bio-magnet shell protection and the synergism effect of AOP and biodegradation. This study spontaneously recyclably combined biodegradation and AOP to simultaneously eliminate antibiotics and ARGs, which provided a potential approach to control the drug resistance risk.
Collapse
Affiliation(s)
- Hang Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Can Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Liyue Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Huan Niu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Xinyi Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenqiu Qin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, PR China
| |
Collapse
|
8
|
Wang Y, Zheng J, Zhou T, Zhang Q, Feng M, Zhang S. Confinement-Modulated Singlet-Oxygen Nanoreactors for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6341-6351. [PMID: 40094388 DOI: 10.1021/acs.est.5c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Water decontamination with singlet oxygen (1O2) has shown advantages over the traditional radical-based treatment processes, which are frequently inhibited by the background inorganic/organic substances and produce toxic byproducts. However, earlier reported treatment systems mostly suffer from side reactions against efficient and cost-effective production of 1O2, together with insufficient utilization of 1O2 limited by the extremely short diffusion length. To overcome the drawbacks, we here designed high-performance nanoreactors by modulating the MnO2 phase to nanotube structures (with ∼5 nm diameter, termed "NT5"). With nanoconfinement, our developed NT5 directed efficient and almost 100% utilization of peroxymonosulfate (PMS) to produce 1O2 and achieved maximal kinetics on organic pollutant elimination. The mechanism study revealed that the geometric strain of NT5 together with spatial confinement modulated the adsorption properties of PMS molecules and led to their transformation to 1O2. To demonstrate the applicability of NT5, we developed a reactive filter with a particulate catalyst (NT5 grown on an alumina substrate) that can effectively and stably work in a broad range of contaminated scenarios (surface water, groundwater, municipal secondary effluent, and industrial wastewaters), due to the confined treatment together with the fouling-resistance nature. Our study may boost the deployment of nanomaterials with confined catalysis and their applications in practical water treatment scenarios.
Collapse
Affiliation(s)
- Yichuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jianfeng Zheng
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Tianlin Zhou
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, Tianjin 300350, P. R. China
| | - Quanzhi Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Menghan Feng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shuo Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Huang LZ, Li J, Chen W, Deng J, Zhang F. Ni(0) formation on carbon felt cathode triggers redox synergetic degradation of Ni-EDTA during electrochemical treatment for Ni-plating wastewater. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136851. [PMID: 39689565 DOI: 10.1016/j.jhazmat.2024.136851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Ni organic complexes are widely used in industrial production, posing severe threats to the natural environment and human health. In this work, we found that Ni (0) formed by the decomplexation and reduction of typical Ni organic complexes (Ni-EDTA) on the surface of carbon felt cathode. The formed Ni(0) as a catalytic site generates atomic hydrogen (H•) with strong reductive reactivity via electron transfer. H• not only accelerates the oxygen activation to form H2O2 on carbon felt cathode, but also reacts with H2O2 to generate strong oxidative hydroxyl radicals (HO•) and singlet oxygen (1O2). Under the attack of multiple active species, 95.5 % of Ni-EDTA is removed, and the removal efficiencies of total organic carbon (TOC) and dissolved Ni reach 43.8 % and 77.1 % after 120 min of electrolysis at -2.0 V (vs. Ag/AgCl). The redox synergistic reaction, initiated by the formation of Ni(0) on the carbon felt cathode, demonstrates excellent stability in treating real Ni plating wastewater. This approach eliminates the need for additional chemical reagents and prevents the release of heavy metals. Our findings offer a novel strategy for leveraging the self-transformation of Ni organic complexes to generate various active species for electrochemical treatment of Ni plating wastewater.
Collapse
Affiliation(s)
- Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China
| | - Junpeng Li
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China
| | - Weiguo Chen
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China
| | - Jia Deng
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China.
| | - Fang Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
10
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
11
|
Wu J, Xu M, Li Z, Li M, Zhou W. Dual Defect-Engineered BiVO 4 Nanosheets for Efficient Peroxymonosulfate Activation. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:373. [PMID: 40072176 PMCID: PMC11902240 DOI: 10.3390/nano15050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Defects and heteroatom doping are two refined microstructural factors that significantly affect the performance of photocatalytic materials. Coupling defect and doping engineering is a powerful approach for designing efficient photocatalysts. In this research, we successfully construct dual defect-engineered BiVO4 nanosheets (BVO-N-OV) by introducing N doping and oxygen vacancies through ammonium oxalate-assisted thermal treatment of BiVO4 nanosheets. Due to the combined enhancement of band structure and surface properties from N doping and oxygen vacancies, the obtained BVO-N-OV nanosheets demonstrate improved visible light absorption, effective charge transfer efficiency, and increased active sites. As a result, the constructed BVO-N-OV/PMS system demonstrates significantly enhanced ciprofloxacin (CIP) removal performance under visible light illumination. The highest rate constant for CIP degradation over BVO-N-OV/PMS system is 7.9, 1.9, and 6.6 times greater than pristine BiVO4 (BVO), oxygen vacancy-enriched BiVO4 (BVO-OV), and N-doped BiVO4 (BVO-N), respectively. Even in a broad pH range (3.0-11.0) with various anions, the BVO-N-OV/PMS/Vis system still demonstrates stable and excellent CIP removal performance. This study seeks to provide valuable insights into the interaction between defect and doping engineering in photocatalytic activation of PMS, thereby proposing new strategies for designing effective photocatalyst/PMS systems for wastewater treatment.
Collapse
Affiliation(s)
- Jiabao Wu
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China;
| | - Meiyu Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.X.); (Z.L.)
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.X.); (Z.L.)
| | - Mingxia Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China;
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.X.); (Z.L.)
| |
Collapse
|
12
|
Gu S, Zhang K, Xu M, Li L, Yu H, Tao H. Mechanism insights into customized 2D nanoconfined catalyst via peroxymonosulfate activation for efficient sulfamethoxazole degradation: Key roles of electronic structure and non-radical pathway. ENVIRONMENTAL RESEARCH 2025; 267:120732. [PMID: 39743010 DOI: 10.1016/j.envres.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The technology to solve the problem of the efficient pollutant removal in peroxymonosulfate (PMS) activation was the ultimate goal. There was an urgent need to achieving higher catalytic activity and oxidation efficiency. Herein, we present a MgAl-based layered double hydroxide assembled as a 2D confined catalyst (MgAl-Co-LDH) with Co metal in chelated form (Co-EDTA) for highly efficient PMS activation degrading sulfamethoxazole (SMX). Co-EDTA as an active site enlarged the interlayer height of MgAl-LDH to form a nanoconfined space. The confinement interlayer structure acted as a mediator for electron transfer, which improved the effective collision of active sites with PMS and SMX. The confined catalyst had a rate constant of 0.2262 min-1, which was much superior to the non-confined catalyst by 8.76 times. A series of experiments proved that the reactive species transformed the radical pathway into singlet oxygen (1O2). The density functional theory calculations proved that the capability of PMS cleavage was optimized and modulated the electronic structure of MgAl-Co-LDH, which enhanced the reactivity of the D-band center electrons of Co-active sites. This study offered a method to investigate the catalytic degradation mechanisms of confined catalysts used in wastewater treatment.
Collapse
Affiliation(s)
- Siyi Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Miqi Xu
- Shanghai Luwan Senior High School, No. 885 Xietu Rd., PR China
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China.
| |
Collapse
|
13
|
Liu X, Zhang J, Ma Z, Dai H, Qiu J, Fang S, Pang X. Effect of 3D Cornflower-like MoS 2-Assisted Peroxymonosulfate Process on Pesticide Removal and Aroma Quality Retaining for Tomato Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2562-2572. [PMID: 39832183 DOI: 10.1021/acs.jafc.4c11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The application of neonicotinoid insecticides (NEOs) increases the potential exposure risks and has an impact on the aroma quality of tomato fruits. Here, 3D cornflower-like MoS2 (MoS2-CF) was fabricated to directly activate peroxymonosulfate (PMS) for fast removal of three typical NEOs. The 3D MoS2-CF catalyst achieved over 96.5% NEO degradation within 15 min, which maximum increased 52.5% than that of 2D MoS2. Experiments and density functional theory calculations unraveled that the unique 3D cornflower-like structure of MoS2-CF facilitated the exposure of Mo active sites, which improved electron transfer and PMS activation. Quenching experiments and electron paramagnetic resonance tests revealed that the 1O2-mediated nonradical pathway played a dominant role in NEO removal. Comparative aroma profile analysis revealed that the developed process showed negligible effect on the aroma quality of tomato fruits. This study demonstrated the potential of the MoS2-CF/PMS treatment on pesticide residue removal and aroma quality retention for fresh vegetables.
Collapse
Affiliation(s)
- Xue Liu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China
| | - Jiguang Zhang
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China
| | - Zhiyuan Ma
- Shandong Zibo Tobacco Co., Ltd., Zibo 255000, P.R. China
| | - Huawei Dai
- Shandong Zibo Tobacco Co., Ltd., Zibo 255000, P.R. China
| | - Jun Qiu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China
| | - Song Fang
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China
| | - Xueli Pang
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China
| |
Collapse
|
14
|
Xu H, Cao L, Yu Y, Li Y, Liu X, Mao C, Zhang L. Phosphate modified nanoarchitectonics for promoted photocatalytic singlet oxygen generation and carbamazepine degradation of (010) facet-exposed BiOCl. J Colloid Interface Sci 2025; 678:1012-1021. [PMID: 39326162 DOI: 10.1016/j.jcis.2024.09.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
1O2 generation over (001) or (010) facet exposed BiOCl (B001 or B010) with/without phosphate modification were studied from the aspects of excitons involved energy transfer route, the O2- oxidation based charge transfer route and the H2O2 oxidation by HClO. Phosphate modification not only enhance charge separation thus result in H2O2 oxidation by HClO to release 1O2 but also weaken excitonic effect in the confined layer of BiOCl accordingly affect 1O2 generation via energy transfer. Considering [001] orientation favors the formation of excitons than that of [010] direction over BiOCl, excitons loss was hardly compensated by the H2O2 oxidation by HClO for 1O2 generation over phosphate modified B001. Nevertheless, limited excitonic effect makes the O2- oxidation by h+ via charge transfer as dominant route for 1O2 yielding over B010, the extra H2O2 oxidation with HClO after phosphate modification significantly enhance 1O2 generation over B010 followed with 2.2 times higher carbamazepine photodegradation activity. The initial attack of CC bond via 1O2 to form epoxide played important roles on carbamazepine degradation. This study demonstrated that the facet-specific phosphate modification of photocatalysts can finely tune reactive 1O2 species for superior pharmaceuticals degradations.
Collapse
Affiliation(s)
- Hua Xu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Liling Cao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yi Yu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiangming Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chengliang Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Gao H, Fang M, Zhang Z, Han Y, Wang D, Wang Y, Xia H, Zhu X, Miao S, Kang X. Electronic coupling of iron-cobalt in Prussian blue towards improved peroxydisulfate activation. J Colloid Interface Sci 2025; 678:1087-1098. [PMID: 39241470 DOI: 10.1016/j.jcis.2024.08.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Prussian blue analogs (PBAs) have attracted extensive attention in the field of aqueous organic degradation due to the tremendous potential for peroxydisulfate (PDS) activation. However, the relationship between the d-band center of the catalyst and the activation behavior of PDS remained largely unexplored. Herein, a series of Fe-Co PBAs-based catalysts with different Fe/Co ratios (Fe-Co PBAs-1 = 1: 0.52; Fe-Co PBAs-2 = 1: 1.21, and Fe-Co PBAs-3 = 1: 1.48) have been prepared by a facile hydrothermal procedure and subsequent acid treatment (Fe-Co PBAs-xH). The as-prepared Fe-Co PBAs-xH exhibited superior PDS activation performance and excellent recyclability in the degradation of methylene blue (MB). Density functional theory calculations revealed that the electron-occupied state of the Fe-Co PBAs was shifted to the Fermi level, indicating a strong interaction and easier electron transfer. Moreover, the d-band center of Fe-Co PBAs was upshifted relative to that of Fe PBAs, suggesting easier adsorption of MB and PDS, which was beneficial to enhancing catalytic activation and subsequent dissociation. Radicals such as •OH, 1O2, O2•-, and SO4•- were determined by the radical quenching experiment and electron paramagnetic resonance (EPR) testing in the Fe-Co PBAs-3H/PDS system, and the order of MB degradation by the free active radical is •OH > 1O2 > O2•- > SO4•-. The degradation pathway and potential ecotoxicity of MB and its intermediates were also studied. This work can provide new insights to construct the efficient catalysts for the activation of PDS and the degradation of organic pollutants.
Collapse
Affiliation(s)
- Hongcheng Gao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Mengchen Fang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Zhenzhu Zhang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Yi Han
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Dejin Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Yi Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Hongyu Xia
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Xiaojing Zhu
- Research Center of Advanced Chemical Equipment, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China.
| | - Shihao Miao
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
16
|
Zhao Z, Zhang L, Qian F, Zang Z, Zhu Y, Xue Y, Li X, Zhang C. Co 3O 4 with the Enhancement of Peroxymonosulfate Adsorption Capacity by Rare Earth Europium-Doping for High-Efficiency Organic Dye Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1024-1036. [PMID: 39757493 DOI: 10.1021/acs.langmuir.4c04333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cobalt-based metal-organic framework (MOFs)-derived catalysts are acknowledged for their effectiveness in activating peroxymonosulfate (PMS) for the treatment of persistent pollutants. However, the limited adsorption of PMS on the catalyst surface markedly reduces its degradation efficiency. To overcome this limitation, nanoflower-like Eu2O3/Co3O4-0.3 catalysts were successfully fabricated by incorporating europium (Eu) into cobalt-based MOF via the hydrothermal and calcination techniques. The doping of Eu not only enhances the adsorption of more PMS on the catalyst's surface but also serves as an electron transfer mediator to regulate the Co2+/Co3+ redox cycle and promote the generation of oxygen vacancies (OV). The catalyst Eu2O3/Co3O4-0.3 was used to activate PMS for the degradation of rhodamine B (RhB), and it was found that the degradation rate constant (k) of the Eu2O3/Co3O4-0.3/PMS system was approximately 8 times higher than that of the Co3O4/PMS system, achieving complete degradation within 20 min. Furthermore, Eu2O3/Co3O4-0.3 exhibited excellent mineralization capacity, stability, and recyclability. Trapping experiments indicated that singlet oxygen (1O2) is the primary active species, suggesting that this material is applicable in complex aqueous environments. Density Functional Theory (DFT) calculations revealed that the adsorption energy (Eads) of PMS on the Eu2O3 surface is -4.05 eV, which is much greater than that on Co3O4 (Eads = -0.32 eV). This study provides a new method for designing nonhomogeneous catalysts to activate PMS for efficient degradation of pollutants.
Collapse
Affiliation(s)
- Zhongli Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Fengyu Qian
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Zhiyong Zang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Yanan Zhu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Yanjin Xue
- National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Xingang Li
- Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Chun Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| |
Collapse
|
17
|
Gao P, Song S, Wang M, Yao M, Xue J. Oxygen atmosphere enhances ball milling remediation of petroleum-contaminated soil and reuse as adsorptive/catalytic materials for wastewater treatment. J Environ Sci (China) 2025; 147:652-664. [PMID: 39003080 DOI: 10.1016/j.jes.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 07/15/2024]
Abstract
Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.
Collapse
Affiliation(s)
- Pingting Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Simin Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou 213164, China.
| | - Meng Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinjuan Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
18
|
Zhao Y, Zhang C, Xue Y, Zhai Z, Zhou X, Zhang Y. Photocatalytic degradation of tetracycline antibiotics and elimination of N-nitrosodimethylamine formation potential by BiOCl/ZnIn 2S 4 heterostructure under visible-light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123721. [PMID: 39693976 DOI: 10.1016/j.jenvman.2024.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Photocatalysis is an effective method for removing tetracycline antibiotics, which are important precursors to the potential carcinogen N-nitrosodimethylamine (NDMA). Herein, a BiOCl/ZnIn2S4 heterojunction was successfully synthesized using a simple hydrothermal method. This heterojunction was applied for the first time to degrade various tetracycline antibiotics and reduce NDMA formation potential (NDMA-FP) under visible-light irradiation. Characterization of surface morphology, crystal structure, chemical composition and photoelectrochemical properties revealed that the BiOCl/ZnIn2S4 heterojunction significantly improved light absorption, charge transport and carrier separation efficiency, thereby enhancing photocatalytic performance. The BiOCl/ZnIn2S4 catalyst achieved high degradation efficiencies of 88.0%, 90.7%, 88.7% and 91.7% for tetracycline, minocycline, chlortetracycline and doxycycline, respectively, within 60 min of visible-light irradiation. Additionally, it exhibited the lowest NDMA-FP values of 1.5%, 3%, 0.9% and 1.4%, respectively. Radical trapping studies and EPR experiments identified •O2- and •OH radicals as the primary reactive species involved in the photocatalytic process. Analysis of the degradation intermediates and structure-activity relationships indicated that the variations in NDMA-FP were closely associated with the number of dimethylamine groups in the antibiotics and the stability of the resulting carbocations. Notably, the BiOCl/ZnIn2S4 catalyst presented satisfactory stability and positive tetracycline degradation in real antibiotic wastewater. Incorporating BiOCl/ZnIn2S4-loaded nonwoven fabric into a continuous-flow reactor efficiently degraded tetracycline in real wastewater under visible light. This work provides new insights on developing Z-scheme photocatalysts for the simultaneous degradation of various antibiotics and highlights their potential as commercially viable photocatalytic system.
Collapse
Affiliation(s)
- Yunmeng Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yin Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zhenyu Zhai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
19
|
Wang T, Chen JL, Huang R, Wu LG, Chen KP, Wu JC, Chen HL. The remediation performance and mechanism for tetracycline from groundwater using controlled release materials containing mesoporous MnO x with different morphology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125123. [PMID: 39414073 DOI: 10.1016/j.envpol.2024.125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Aiming at the effective remediation of antibiotic contaminants in groundwater, in-situ chemical oxidation (ISCO), using controlled release materials (CRMs) as an oxidant deliverer, has emerged as a promising technique due to their long-term effective pollutant removal performance. This study used different microstructures of mesoporous manganese oxide (MnOx) and sodium persulfate as active components to fabricate CRMs. Following that, a comparative study of tetracycline (TC) degradation and the formation of reactive oxygen species (ROS) by mesoporous MnOx powder and CRMs were conducted. The ROS formed during peroxodisulfate (PDS) activation by powder catalysts and CRMs differed, but MnOx powder catalysts and CRMs both had good reaction stoichiometric efficiency (RSE) for PDS, thus completely mineralizing TC. In PDS activation by mesoporous MnOx powder, oxygen vacancies (OVs) caused by defects in the catalysts contributed to the generation of singlet oxygen (1O2). The 1O2 and free radicals (·SO4- and ·OH) both worked as major ROS participating in TC degradation. Concerning the release of CRMs in static groundwater, the immobilization of catalysts inside CRMs made it difficult to release 1O2 in the solution, thus slowing the degradation of TC by CRMs containing MnOx(1) in static groundwater. In the TC remediation in dynamic groundwater, the water flowing slowly passed through the CRM layer, and TC molecules were trapped. Therefore, 1O2 degraded the trapped TC in the CRM layer in dynamic groundwater. Compared to TC, the toxicity of most intermediates during the TC degradation by CRMs has decreased in static and dynamic groundwater.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jing-le Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rui Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Li-Guang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kou-Ping Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - Ji-Chun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Hua-Li Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
20
|
Zhang K, Zhang Y, Xu S, Rosado-García FM, Duarte NSP, Chen Y, Hou J, Feng M. Percarbonate-periodate system: A novel and efficient "oxidant-oxidant" strategy for selective oxidation of micropollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136079. [PMID: 39395395 DOI: 10.1016/j.jhazmat.2024.136079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
The development of effective and selective oxidation technology in complex water matrices is crucial for water ecological security. This study reports for the first time the synergistic use of "oxidant-oxidant" about sodium percarbonate (SPC) and periodate (PI) to selectively degrade organic micropollutants. The SPC/PI system showed degradation rates of 0.0946-0.2978 min-1 for various pollutants, which was 3.7-1787 times higher than those in the PI alone and SPC alone systems and can achieve the effect of H2O2/PI systems. Additionally, SPC/PI was a safe water treatment technology without generating reactive iodine species (e.g., HOI). The slightly reduced removal rate of bisphenol F under different ionic species and strengths is indicative of the good anti-interference of the SPC/PI system. Scavenging, probe, and electron spin resonance experiments showed that ▪OH and CO3▪- played a major role in this process, rather than O2▪- and 1O2. Finally, the oxidized products and the possible transformation pathways of three different micropollutants in the SPC/PI and H2O2/PI systems were characterized and clarified, and the toxicity of the degradation products was predicted. Generally, the study proposed a new selective oxidation strategy of SPC/PI that can effectively eliminate micropollutants in water treatment and clarified the interaction mechanisms between PI and SPC.
Collapse
Affiliation(s)
- Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yi Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shuyi Xu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | | | - Yiqun Chen
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
21
|
Li Z, Hou Y, Shen Y, Nie C, Zhang X, Liu F, Tong M. Oxygen vacancy-dependent synergistic disinfection of antibiotic-resistant bacteria by BiOBr nanoflower induced H 2O 2 activation. WATER RESEARCH 2024; 267:122524. [PMID: 39348725 DOI: 10.1016/j.watres.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) pose a significant threat to both ecosystems and human health. Owing to the excellent catalytic activity, eco-safety, and convenience for defect engineering, BiOBr with oxygen vacancies (OVs) of different density thus were fabricated and employed to activate H2O2 for ARB disinfection/ARGs degradation in present study. We found that BiOBr with OVs of appropriate density induced via ethanol reduction (BOB-E) could effectively activate H2O2, achieving excellent ARB disinfection and ARGs degradation efficiency. Moreover, this disinfection system exhibited remarkable tolerance to complex water environments and actual water conditions. In-situ characterization and theoretical calculations revealed that OVs in BOB-E could effectively capture and activate aqueous H2O2 into HO· and O2·-. The generated reactive oxygen species combined with electron transfer could damage the cell membrane system and degrade genetic materials of ARB, leading to effective disinfection. The impressive reusability, high performance achieved in two immobilized reaction systems (packed column and baffled ditch reactor), excellent degradation of emerging organic pollutants supported the feasibility of BOB-E/H2O2 system towards practical water decontamination. Overall, this study not only provides insights into fabrication of bismuth-based catalysts for efficient ARB disinfection/ARGs degradation via OVs regulation, but also paves the way for their practical applications.
Collapse
Affiliation(s)
- Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yutao Shen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Han H, Chen M, Sun C, Han Y, Xu L, Zhao Y. Synergistic enhancement in hydrodynamic cavitation combined with peroxymonosulfate fenton-like process for bpa degradation: New insights into the role of cavitation bubbles in regulation reaction pathway. WATER RESEARCH 2024; 268:122666. [PMID: 39486149 DOI: 10.1016/j.watres.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The combination of hydrodynamic cavitation (HC) and Fenton-like oxidation technology can dramatically enhance the pollutant removal capacity, however, the synergistic effect of cavitation and catalysts on reactive oxygen species (ROS) generation remained enigmatic. In this study, we established a combined system based on HC and Ce-MnFe2O4 activated peroxymonosulfate (PMS) for BPA removal, and attentions were paid on the role of cavitation bubbles. The results show that the combination of HC in Ce-MnFe2O4 activated PMS could mediate the degradation of BPA from the non-radical pathway dominated by 1O2 to •O2- dominated radical pathway. Both controlled experiments and theoretical calculations revealed that the cavitation bubbles with different sizes play the dominant role in ROS generation. The microjets produced by the collapse of cavitation bubbles could create a large number of oxygen vacancy defects on Ce-MnFe2O4 surface, which modify the activation barrier of PMS and facilitate the generation of •O2- thermodynamically. The stable existing cavitation bubbles with the size of 100∼400 nm could create considerable gas-liquid interface. The molecular dynamics simulations show that the nano bubbles can concentrate the BPA and increase the probability of contacts between BPA and Ce-MnFe2O4, hence effectively solve the issues of short lifetime of •O2- radicals and limited mass transfer distance to strengthen the reaction. In addition, the PMS/Ce-MnFe2O4/HC system not only achieves the satisfied COD (95 %) and TOC (65 %) removal efficiency but also enabled the BPA-contaminated water with a low energy cost of 0.065 kWh·m-3 and oxidant cost, highlighting the application potential of the HC technology for contaminated water.
Collapse
Affiliation(s)
- Hongkun Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Mengfan Chen
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Congting Sun
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China.
| | - Yuying Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Lanlan Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Province, Changchun 130022, PR China
| | - Yingming Zhao
- Department of Biological Sciences, University of Windsor, Ontario, Windsor, Canada
| |
Collapse
|
23
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
24
|
Zou J, Wu S, Lin Y, Li X, Niu Q, He S, Yang C. Electron Delocalization Disentangles Activity-Selectivity Trade-Off of Transition Metal Phosphide Catalysts in Oxidative Desulfurization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14895-14905. [PMID: 39115177 DOI: 10.1021/acs.est.4c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breaking the activity-selectivity trade-off has been a long-standing challenge in catalysis. Here, we proposed a nanoheterostructure engineering strategy to overcome the trade-off in metal phosphide catalysts for the oxidative desulfurization (ODS) of fuels. Experimental and theoretical results demonstrated that electron delocalization was the key driver to simultaneously achieve high activity and high selectivity for the molybdenum phosphide (MoP)/tungsten phosphide (WP) nanoheterostructure catalyst. The electron delocalization not only promoted the catalytic pathway transition from predominant radicals to singlet oxygens in H2O2 activation but also simultaneously optimized the adsorption of reactants and intermediates on Mo and W sites. The presence of such dual-enhanced active sites ideally compensated for the loss of activity due to the nonradical catalytic pathway, consequently disentangling the activity-selectivity trade-off. The resulting catalyst (MoWP2/C) unprecedentedly achieved 100% removal of thiophenic compounds from real diesel at an initial concentration of 2676 ppm of sulfur with a high turnover frequency (TOF) of 105.4 h-1 and a minimal O/S ratio of 4. This work provides fundamental insight into the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire the development of high-performance catalysts for ODS and other catalytic fields.
Collapse
Affiliation(s)
- Juncong Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| |
Collapse
|
25
|
Yang X, Yao X, Qiu Y. Introducing and Boosting Oxygen Vacancies within CoMn 2O 4 by Loading on Planar Clay Minerals for Efficient Peroxymonosulfate Activation. Molecules 2024; 29:3825. [PMID: 39202904 PMCID: PMC11357143 DOI: 10.3390/molecules29163825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
CoMn2O4 (CMO) has been recognized as an effective peroxymonosulfate (PMS) activator; however, it still shows disadvantages such as limited reactive sites and metal leakage. Herein, an effective and environmentally friendly composite catalyst, CMO/Kln, was synthesized by anchoring CMO on kaolinite (Kln), a natural clay mineral with a special lamellar structure, to activate peroxymonosulfate (PMS) for the degradation of residue pharmaceuticals in water. The abundant hydroxyl groups located on the surface of Kln helped induce rich oxygen vacancies (OVs) into composite CMO/Kln, which not only acted as additional active sites but also accelerated working efficiency. In addition, compared with bare CMO, CMO/Kln showed lower crystallinity, and the adoption of the Kln substrate contributed to its structural stability with lower metal leaching after three rounds of reaction. The universal applicability of CMO/Kln was also verified by using three other pharmaceuticals as probes. This work shed light on the adoption of natural clay minerals in modifying CMO catalysts with promoted catalytic activity for the efficient and eco-friendly remediation of pharmaceuticals in wastewater.
Collapse
Affiliation(s)
- Xue Yang
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China;
| | - Xiao Yao
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China;
| | - Yinyuan Qiu
- Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China
- School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|
26
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
27
|
Pan M, Xu L, Hong J, Chen Z, Wei X, Wang J, Pan B. Oxygen Vacancy-Laden Confinement Impact on Degradation of Metal Complexes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26624-26633. [PMID: 38728053 DOI: 10.1021/acsami.4c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Oxygen vacancies (Vo) have been recognized as the superior active site for PS-mediated environmental remediation; however, the formation and activation of Vo associated with the effects of chemical and spatial environments remain ambiguous. Herein, attributing to the low defect-formation energy of Vo in the presence of sulfonate groups, an in situ nucleating Vo-laden CuO nanosheet was deliberately fabricated inside the phase of a sulfonated mesoporous polystyrene substrate (Vo-CuO@SPM). The as-prepared nanocomposite demonstrated an excellent treatment efficiency toward metal complexes [Cu-EDTA as a case] with ignorable Cu(II) leaching, and it can be repeatedly employed for 25 recycles (not limited). Mechanistically, the electron transfer and the mass transport for PDS nonradical activation were proved to be substantially enhanced by the delocalized electrons and with the assistance of the microchannel environment. This work not only establishes insight into the formation of oxygen vacancies but also reveals the PS activation mechanism in the spatially confined sites.
Collapse
Affiliation(s)
- Meilan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Lingling Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jianheng Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zelong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiuzhen Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiong Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
28
|
Ning R, Dong Y, Yang SR, Yang S, Zhou P, Xiong Z, Pan ZC, He CS, Lai B. Fe-N co-doped biochar derived from biomass waste triggers peracetic acid activation for efficient water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134139. [PMID: 38555674 DOI: 10.1016/j.jhazmat.2024.134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.
Collapse
Affiliation(s)
- Ruyan Ning
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Shu-Run Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Shuai Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhi-Cheng Pan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
29
|
Zhou Q, Song J, Lv N, Shi H, Wang J. Fully dispersed cobalt diatomic site with significantly improved Fenton-like catalysis performance for organic pollutant degradation. J Colloid Interface Sci 2024; 662:1005-1015. [PMID: 38387362 DOI: 10.1016/j.jcis.2024.02.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
A novel strategy for better catalytic performance in terms of precisely tuning the metal atom number of active centers is gradually getting attention. In this paper, the Co atom pair sites on N-doped porous carbon was engineered. The binuclear Co2 site structure was identified by aberration-corrected scanning transmission electron microscopy and X-ray absorption spectroscopy. As expected, the Co2NC display an outstanding Fenton-like catalysis activity in tetracycline degradation with turnover frequency exceeding 0.91 min-1 that is approximately 4 times higher than the conventional CoN4 site. The EPR tests indicated that the ROS strength stimulated by the binuclear site was much stronger than that of single site. Theoretical density functional theory calculations reveal that the optimized adsorption configuration is the O1 of peroxymonosulfate (PMS) interacting with two Co atoms, leading to stronger interaction effect and electron transfer for PMS comparing to single atom sites.
Collapse
Affiliation(s)
- Qi Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 China; Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601 China.
| | - Jiaojiao Song
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 China; Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601 China
| | - Na Lv
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 China; Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601 China
| | - Huizhong Shi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China
| | - Junyi Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 China; Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601 China
| |
Collapse
|
30
|
Miao F, Cheng C, Ren W, Zhang H, Wang S, Duan X. Dual Nonradical Catalytic Pathways Mediated by Nanodiamond-Derived sp 2/sp 3 Hybrids for Sustainable Peracetic Acid Activation and Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8554-8564. [PMID: 38634679 DOI: 10.1021/acs.est.3c10361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Peracetic acid (PAA) oxidation catalyzed by metal-free carbons is promising for advanced water decontamination. Nevertheless, developing reaction-oriented and high-performance carbocatalysts has been limited by the ambiguous understanding of the intrinsic relationship between carbon chemical/molecular structure and PAA transformation behavior. Herein, we comprehensively investigated the PAA activation using a family of well-defined sp2/sp3 carbon hybrids from annealed nanodiamonds (ANDs). The activity of ANDs displays a volcano-type trend, with respect to the sp2/sp3 ratio. Intriguingly, sp3-C-enriched AND exhibits the best catalytic activity for PAA activation and phenolic oxidation, which is different from persulfate chemistry in which the sp2 network normally outperforms sp3 hybridization. At the electron-rich sp2-C site, PAA undergoes a reduction reaction to generate a reactive complex (AND-PAA*) and induces an electron-transfer oxidation pathway. At the sp3-C site adjacent to C═O, PAA is oxidized to surface-confined OH* and O* successively, which ultimately evolves into singlet oxygen (1O2) as the primary reactive species. Benefiting from the dual nonradical regimes on sp2/sp3 hybrids, AND mediates a sustainable redox recycle with PAA to continuously generate reactive species to attack water contaminants, meanwhile maintaining structural/chemical integrity and exceptional reusability in cyclic runs.
Collapse
Affiliation(s)
- Fei Miao
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, P. R. China
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Cheng Cheng
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, P. R. China
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Wei Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| |
Collapse
|
31
|
Wang T, Huang R, Chen HL, Xu KM, Wu LG, Chen KP, Wu JC. Comparative study of reactive oxygen species and tetracycline degradation pathways in catalytic peroxodisulfate activation by asymmetric mesoporous TiO 2 and the corresponding controlled-release materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123813. [PMID: 38537801 DOI: 10.1016/j.envpol.2024.123813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
The removal of trace amounts of antibiotics from water environments while simultaneously avoiding potential environmental hazards during the treatment is still a challenge. In this work, green, harmless, and novel asymmetric mesoporous TiO2 (A-mTiO2) was combined with peroxodisulfate (PDS) as active components in a controlled-release material (CRM) system for the degradation of tetracycline (TC) in the dark. The formation of reactive oxygen species (ROS) and the degradation pathways of TC during catalytic PDS activation by A-mTiO2 powder catalysts and the CRMs were thoroughly studied. Due to its asymmetric mesoporous structure, there were abundant Ti3+/Ti4+ couples and oxygen vacancies in A-mTiO2, resulting in excellent activity in the activation of PDS for TC degradation, with a mineralization rate of 78.6%. In CRMs, ROS could first form during PDS activation by A-mTiO2 and subsequently dissolve from the CRMs to degrade TC in groundwater. Due to the excellent performance and good stability of A-mTiO2, the resulting constructed CRMs could effectively degrade TC in simulated groundwater over a long period (more than 20 days). From electron paramagnetic resonance analysis and TC degradation experiments, it was interesting to find that the ROS formed during PDS activation by A-mTiO2 powder catalysts and CRMs were different, but the degradation pathways for TC were indeed similar in the two systems. In PDS activation by A-mTiO2, besides the free hydroxyl radical (·OH), singlet oxygen (1O2) worked as a major ROS participating in TC degradation. For CRMs, the immobilization of A-mTiO2 inside CRMs made it difficult to capture superoxide radicals (·O2-), and continuously generate 1O2. In addition, the formation of sulfate radicals (·SO4-), and ·OH during the release process of CRMs was consistent with PDS activation by the A-mTiO2 powder catalyst. The eco-friendly CRMs had a promising potential for practical application in the remediation of organic pollutants from groundwater.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rui Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hua-Li Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Kun-Miao Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Li-Guang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kou-Ping Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Ji-Chun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
32
|
Liu LX, Liu C, Li B, Dong YM, Wang XH, Zhang X. Tuning interfacial oxygen vacancy level of bismuth oxybromide to enhance photocatalytic degradation of bisphenol A. CHEMOSPHERE 2024; 356:141911. [PMID: 38583539 DOI: 10.1016/j.chemosphere.2024.141911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Oxygen vacancies (OVs) have garnered significant interest for their role as active sites, enhancing the catalytic efficiency of various catalysts. Despite their widespread application in environmental purification processes, the generation of OVs conventionally depends on high-temperature conditions and strong reducing agents for the extraction of surface partial oxygen atoms from catalysts. In this work, bismuth oxybromide (BiOBr) nanosheets with varying levels of OVs were synthesized via a simple and effective solvothermal method. This novel method affords precise control over the conduction band (CB) and valence band (VB) positions of BiOBr. The presence of different OVs exhibited varying photocatalytic efficiencies in the degradation of bisphenol A (BPA) under visible light irradiation, with higher levels of OVs resulting in superior photocatalytic performance. Furthermore, radical scavenger experiments demonstrated that superoxide oxides (O2•-) and holes (h+) were the primary reactive oxygen species for BPA degradation. Additionally, BiOBr-OVs exhibited excellent anti-interference and stability in water matrices containing diverse inorganic anions and organic compounds. This work provides a simple and effective approach for the fine-regulating of catalysts through interfacial defect engineering, paving the way for their practical application in environmental decontamination.
Collapse
Affiliation(s)
- Le-Xuan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Bin Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ya-Meng Dong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xin-Hui Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xing Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
33
|
Zeng Y, Luo H, He D, Li J, Zhang A, Sun J, Xu J, Pan X. Influence mechanism of anions on iron doping into swine bone char: Promoting non-radical oxidation of acetaminophen in a Fenton-like system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170982. [PMID: 38367723 DOI: 10.1016/j.scitotenv.2024.170982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The application of iron-doped biochar in peroxymonosulfate (PMS) activation systems has gained increasing attention due to their effectiveness and environmental friendliness in addressing environmental issues. However, the behavioral mechanism of iron doping and the detailed 1O2 generation mechanism in PMS activation systems remain ambiguous. Here, we investigated the effects of three anions (Cl-, NO3-and SO42-) on the process of iron doping into bone char, leading to the synthesis of three iron-doped bone char (Fe-ClBC, Fe-NBC and Fe -SBC). These iron-doped bone char were used to catalyze PMS to degrade acetaminophen (APAP) and exhibited the following activity order: Fe-ClBC > Fe-NBC > Fe-SBC. Characterization results indicated that iron doping primarily occurred through the substitution of calcium in hydroxyapatite within BC. In the course of the impregnation, the binding of SO42- and Ca2+ hindered the exchange of iron ions, resulting in lower catalytic activity of Fe-SBC. The primary reactive oxygen species in the Fe-ClBC/PMS and Fe-NBC/PMS systems were both 1O2. 1O2 is produced through O2•- conversion and PMS self-dissociation, which involves the generation of metastable iron intermediates and electron transfer within iron species. The presence of oxygen vacancies and more carbon defects in the Fe-ClBC catalyst facilitates 1O2 generation, thereby enhancing APAP degradation within the Fe-ClBC/PMS system. This study is dedicated to in-depth exploration of the mechanisms underlying iron doping and defect materials in promoting 1O2 generation.
Collapse
Affiliation(s)
- Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
34
|
Chen C, Wang J, Wang Z, Ren W, Khairunnisa S, Xiao P, Yang L, Chen F, Wu XL, Chen J. Paint sludge derived activated carbon encapsulating with cobalt nanoparticles for non-radical activation of peroxymonosulfate. J Colloid Interface Sci 2024; 658:209-218. [PMID: 38103471 DOI: 10.1016/j.jcis.2023.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Industrial solid waste management and recycling are important to environmental sustainability. In this study, cobalt (Co) nanoparticles encapsulated in paint sludge-derived activated carbon (AC) were fabricated. The Co-AC possessed high conductivity, magnetic properties and abundant metal oxide impurities (TiAlSiOx), which was applied as multifunctional catalyst for peroxymonosulfate (PMS) activation. Compared to pure AC, the Co-AC exhibited significant enhanced performance for degradation of tetracycline hydrochloride (TCH) via PMS activation. Mechanism studies by in situ Raman spectroscopy, Fourier infrared spectroscopy, electrochemical analysis and electron paramagnetic resonance suggested that surface-bonded PMS (PMS*) and singlet oxygen (1O2) are the dominant reactive species for TCH oxidation. The non-radical species can efficiently oxidize electron-rich pollutants with high efficiency, which minimized the consumption of PMS and the catalyst. The removal percentages of TCH reached 97 % within 5 min and ∼ 99 % within 15 min in the Co-AC/PMS system. The Co active sites facilitated PMS adsorption to form the PMS* and the TiAlSiOx impurities provided abundant oxygen vacancy for generation of the 1O2. In addition, the Co-AC/PMS system achieved high efficiency and stability for oxidation of the target pollutants over a long-term continuous operation. This work not only offers a cost-effective approach for recycling industrial waste but also provides new insights into the application of waste-derived catalyst for environmental remediation.
Collapse
Affiliation(s)
- Chaofa Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Juan Wang
- Zhejiang Anammox Environmental Technology Co., Ltd., Hangzhou, 310013, China
| | - Zhixing Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Weiting Ren
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Silva Khairunnisa
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Peiyuan Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lining Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Feng Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
35
|
Wang C, Li Y, Wang Y, Zhang Y, Feng J, An X, Wang R, Xu Y, Cheng X. Removal of sulfonamide antibiotics by non-free radical dominated peroxymonosulfate oxidation catalyzed by cobalt-doped sulfur-containing biochar from sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133535. [PMID: 38271878 DOI: 10.1016/j.jhazmat.2024.133535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
The reuse of activated sludge as a solid waste is severely underutilized due to the limitations of traditional treatment and disposal methods. Given that, the sulfur-containing activated sludge catalyst doped with cobalt (SK-Co(1.0)) was successfully prepared by one-step pyrolysis and calcinated at 850 ℃. The generation of CoSx was successfully characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), indicating that the sulfur inside the sludge was the anchoring site for the externally doped cobalt. Cobalt (Ⅱ) (Co2+), as the main adsorption site for peroxymonosulfate(PMS), formed a complex (SK-Co(1.0)-PMS* ) and created the conditions for the generation of surface radicals. The SK-Co(1.0)/PMS system showed high degradation efficiency and apparent rate constants for Sulfamethoxazole (SMX) (91.56% and 0.187 min-1) and Sulfadiazine (SDZ) (90.73% and 0.047 min-1) within 10 min and 30 min, respectively. Three sites of generation of 1O2, which played a dominant role in the degradation of SMX and SDZ in the SK-Co(1.0)/PMS system, were summarized as:sulfur vacancies (SVs), the Co3+/Co2+ cycles promoted by sulfur(S) species, oxygen-containing functional groups (C-O). The degradation mechanisms and pathways had been thoroughly investigated using DFT calculations. In view of this, a new idea for the resource utilization of activated sludge solid waste was provided and a new strategy for wastewater remediation was proposed.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Li
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yukun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yan Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Jingbo Feng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Xiaomeng An
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Rui Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yinyin Xu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China.
| |
Collapse
|
36
|
Zhiyong Y, Yaping G, Zhiyin W, Huanrong L. Decolouration of azo dyes by radicals generated from K 2S 2O 8 automatically in homogeneous aqueous solutions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1072-1081. [PMID: 38433385 DOI: 10.1080/10934529.2024.2313931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
In this work, at 15 °C and 25 °C, authors study the decolouration reactions (or degradation reactions or oxidation reactions) of 0.10 mM azo dyes (methyl orange and congo red) by (1) K2S2O8 and (2) Co2+/K2S2O8, expounding the roles of K2S2O8 and Co2+: K2S2O8 can oxidize azo dyes automatically in water by radicals; Co2+ has catalysis for oxidation of K2S2O8, whether Co2+ is from CoSO4 or Co(NO3)2, CoCl2, CoAc2. The decolouration degree of azo dyes in all systems quickens with the increase of the initial concentration of K2S2O8 and the reaction temperature. In the presence and absence of Co2+, comparative experiments are done between the oxidation of K2S2O8 and oxone, K2S2O8 shows weaker oxidation than oxone. The decolouration reaction of methyl orange (MO) in the system of (0.10 mM MO + 2.00 mM K2S2O8) accords with the second order reaction, the reaction rate constants are 4.789 M-1 min-1 at 15 °C and 5.894 M-1 min-1 at 25 °C respectively, the activation energy Ea is 14813 J/mol, and Arrhenius equation is k = 2.328 exp[-14813/(RT)].
Collapse
Affiliation(s)
- Yu Zhiyong
- Department of Chemistry, Renmin University of China, Beijing, China
| | - Gong Yaping
- Department of Chemistry, Renmin University of China, Beijing, China
| | - Wang Zhiyin
- Shaanxi Key Laboratory of Catalysis; School of Chemical & Environmental Sciences, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Li Huanrong
- Department of Chemistry, Renmin University of China, Beijing, China
| |
Collapse
|
37
|
Tian K, Pan J, Liu Y, Wang P, Zhong M, Dong Y, Wang M. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1,4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19738-19752. [PMID: 38363503 DOI: 10.1007/s11356-024-32287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Heterogeneous Fenton oxidation using traditional catalysts with H2O2 for the degradation of 1,4-dioxane (1,4-DX) still presents challenge. In this study, we explored the potential of Fe-ZSM-5 zeolites (Fe-zeolite) with three Si/Al ratios (25, 100, 300) as heterogeneous Fenton catalysts for the removal of 1,4-DX from aqueous solution. Fe2O3 or ZSM-5 alone provided ineffective in degrading 1,4-DX when combined with H2O2. However, the efficient removal of 1,4-DX using H2O2 was observed when Fe2O3 was loaded on ZSM-5. Notably, the Brønsted acid sites of Fe-zeolite played a crucial role during the degradation of 1,4-DX. Fe-zeolites, in combination with H2O2, effectively removed 1,4-DX via a combination of adsorption and oxidation. Initially, Fe-zeolites demonstrated excellent affinity for 1,4-DX, achieving adsorption equilibrium rapidly in about 10 min, followed by effective catalytic oxidative degradation. Among the Fe-ZSM-5 catalysts, Fe-ZSM-5 (25) exhibited the highest catalytic activity and degraded 1,4-DX the fastest. We identified hydroxyl radicals (·OH) and singlet oxygen (1O2) as the primary reactive oxygen species (ROS) responsible for 1,4-DX degradation, with superoxide anions (HO2·/O2·-) mainly converting into 1O2 and ·OH. The degradation primarily occurred at the Fe-zeolite interface, with the degradation rate constants proportional to the amount of Brønsted acid sites on the Fe-zeolite. Fe-zeolites were effective over a wide working pH range, with alkaline pH conditions favoring 1,4-DX degradation. Overall, our study provides valuable insights into the selection of suitable catalysts for effective removal of 1,4-DX using a heterogeneous Fenton technology.
Collapse
Affiliation(s)
- Kun Tian
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Jie Pan
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yun Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Ping Wang
- Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ming Zhong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuanhua Dong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
38
|
Liu C, He X, Li J, Ma J, Yue J, Wang Z, Chen M. Selective electrophilic attack towards organic micropollutants with superior Fenton-like activity by biochar-supported cobalt single-atom catalyst. J Colloid Interface Sci 2024; 657:155-168. [PMID: 38035418 DOI: 10.1016/j.jcis.2023.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The global shortage of freshwater and inadequate supply of clean water have necessitated the implementation of robust technologies for wastewater purification, and Fenton-like chemistry is a highly-promising approach. However, realizing the rapid Fenton-like chemistry for high-efficiency degradation of organic micropollutants (OMs) remains challenging. Herein, one novel system was constructed by a Co single-atom catalyst activating peroxymonosulfate (PMS), and the optimal system (SA-Co-NBC-0.2/PMS) achieved unprecedented catalytic performance towards a model OM [Iohexol (IOH)], i.e., almost 100% decay ratio in only 10 min (the observed rate constant: 0.444 min-1) with high electrophilic species 1O2 (singlet oxygen) generation. Theoretical calculations unveiled that Co-N4 sites preferred to adsorb the terminal-O of PMS (more negative adsorption energy than other O sites: -32.67 kcal/mol), promoting the oxidation of PMS to generate 1O2. Iodine (I)23 (0.1097), I24 (0.1154) and I25 (0.0898) on IOH with higher f- electrophilic values were thus identified as the main attack sites. Furthermore, 16S ribosomal RNA high-throughput sequencing and quantitative structure-activity relationship analysis illustrated the environmentally-benign property of the SA-Co-NBC-0.2 and the tapering ecological risk during IOH degradation process. Significantly, this work comprehensively checked the competence of the SA-Co-NBC-0.2/PMS system for organics abatement in practical wastewater.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ziwei Wang
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
39
|
Dong X, Dai M, Yang T, Chen L, Yu H, Chen L, Zhao R, Jiang C. Mechanism of interaction between ascorbic acid and soil iron-containing minerals for peroxydisulfate activation and organophosphorus flame retardant degradation. ENVIRONMENTAL RESEARCH 2024; 244:117883. [PMID: 38072104 DOI: 10.1016/j.envres.2023.117883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Soil constituents may play an important role in peroxydisulfate (PDS)-based oxidation of organic contaminants in soil. Iron-containing minerals (Fe-minerals) have been found to promote PDS activation for organics degradation. Our study found that ascorbic acid (H2A) could enhance PDS activation by soil Fe-minerals for triphenyl phosphate (TPHP) degradation. Determination and characterization analyses of Fe fractions showed that H2A could induce the reductive dissolution of solid Fe-minerals and the increasing of oxygen vacancies/hydroxyl groups content on Fe-minerals surface. The increasing of divalent Fe (Fe(II)) accelerated PDS activation to generate reactive oxygen species (ROS). Electron paramagnetic resonance (EPR) and quenching studies showed that sulfate radicals (SO4•-) and hydroxyl radicals (HO•) contributed significantly to TPHP degradation. The composition and content of Fe-minerals and soil organic matter (SOM) markedly influenced ROS transformations. Surface-bond and structural Fe played the main role in the production of Fe(II) in reaction system. The high-concentration SOM could result in ROS consumption and degradation inhibition. Density functional theory (DFT) studies revealed that H2A is preferentially adsorbed at α-Fe2O3(012) surface through Fe-O-C bridges rather than hydrogen bonds. After absorption, H atoms on H2A may further be migrated to adjacent O atoms on the α-Fe2O3(012) surface. With the transformation of H atoms to the α-Fe2O3(012) surface, the Fe-O-C bridge is broken and one electron is transferred from the O to Fe atom, inducing the reduction of trivalent Fe (Fe(III)) atom. MS/MS2 analysis, HPLC analysis, and toxicity assessment demonstrated that TPHP was transformed to less toxic 4-hydroxyphenyl diphenyl phosphate (OH-TPHP), diphenyl hydrogen phosphate (DPHP), and phenyl phosphate (PHP) through phenol-cleavage and hydroxylation processes, and even be mineralized in reaction system.
Collapse
Affiliation(s)
- Xiaona Dong
- College of Environmental and Chemical Engineering, Jiangsu University of Science Technology, Zhenjiang, 212000, China
| | - Miaomiao Dai
- College of Environmental and Chemical Engineering, Jiangsu University of Science Technology, Zhenjiang, 212000, China
| | - Tongyi Yang
- College of Environmental and Chemical Engineering, Jiangsu University of Science Technology, Zhenjiang, 212000, China
| | - Lulu Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongxia Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rudong Zhao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430070, China.
| | - Canlan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Ran M, Du B, Liu W, Liang Z, Liang L, Zhang Y, Zeng L, Xing M. Dynamic defects boost in-situ H 2O 2 piezocatalysis for water cleanup. Proc Natl Acad Sci U S A 2024; 121:e2317435121. [PMID: 38377211 PMCID: PMC10907254 DOI: 10.1073/pnas.2317435121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Creating efficient catalysts for simultaneous H2O2 generation and pollutant degradation is vital. Piezocatalytic H2O2 synthesis offers a promising alternative to traditional methods but faces challenges like sacrificial reagents, harsh conditions, and low activity. In this study, we introduce a cobalt-loaded ZnO (CZO) piezocatalyst that efficiently generates H2O2 from H2O and O2 under ultrasonic (US) treatment in ambient aqueous conditions. The catalyst demonstrates exceptional performance with ~50.9% TOC removal of phenol and in situ generation of 1.3 mM H2O2, significantly outperforming pure ZnO. Notably, the CZO piezocatalyst maintains its H2O2 generation capability even after multiple cycles, showing continuous improvement (from 1.3 mM to 1.8 mM). This is attributed to the piezoelectric electrons promoting the generation of dynamic defects under US conditions, which in turn promotes the adsorption and activation of oxygen, thereby facilitating efficient H2O2 production, as confirmed by EPR spectrometry, XPS analysis, and DFT calculations. Moreover, the CZO piezocatalysts maintain outstanding performance in pollutant degradation and H2O2 production even after long periods of inactivity, and the deactivated catalyst due to metal ion dissolution could be rejuvenated by pH adjustment, offering a sustainable solution for wastewater purification.
Collapse
Affiliation(s)
- Maoxi Ran
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, People’s Republic of China
| | - Bibai Du
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Wenyuan Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zhiyan Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Lihong Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Yayun Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Lixi Zeng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, People’s Republic of China
| |
Collapse
|
41
|
Zhang J, Liu Y, Li J, Wang K, Zhao X, Liu X. Enhanced recovery of phosphorus from hypophosphite-laden wastewater via field-induced electro-Fenton coupled with anodic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132750. [PMID: 37956560 DOI: 10.1016/j.jhazmat.2023.132750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 11/15/2023]
Abstract
Electrochemical recovered ferric phosphate (FePO4) precipitates from hypophosphite-laden wastewater were shown to be an efficient method for phosphorus (P) recovery. However, the influence of chloride ions (Cl-) coexisting commonly in wastewater is not known for this treatment. Herein, a field-induced electro-Fenton coupled with anodic oxidation electrochemical system consisting of a Ti-RuO2 anode, an Fe inductive electrode and an activated carbon fiber (ACF) cathode, namely Ti-RuO2/Fe/ACF(NaCl) system, was established to recover phosphorus (P) as FePO4 from hypophosphite-laden wastewater in the presence of Cl-. This system enabled a hypophosphite (H2PO2-, 1.0 mM) removal ratio of ~100% and all P was recovered within 30 min at 5.0 V under the initial solution pH of 3.0. The Faradaic efficiency and energy consumption of P recovery achieved the maximum value (~94%) and the lowest value (~16 kW h kg-1 P), respectively. Reactive oxygen species including 1O2, FeIVO2+, •O2- and •OH contribute to convert H2PO2- to PO43-, which immediately formed FePO4 with the generated Fe3+ at the optimized conditions. Therein, the contribution of non-radical 1O2 was very considerable. This system exhibited good stability. The efficiency and cost for treatment of actual hypophosphite-laden wastewater were addressed to check its applicability for P recovery.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yunhan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jiaxi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Kaifeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Xueyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
42
|
Li F, Mi Y, Chen RZN, Liu W, Wu J, Hou D, Yang M, Zhang S. A radical polymer membrane for simultaneous degradation of organic pollutants and water filtration. Proc Natl Acad Sci U S A 2024; 121:e2315688121. [PMID: 38315857 PMCID: PMC10873639 DOI: 10.1073/pnas.2315688121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
Integrating reactive radicals into membranes that resemble biological membranes has always been a pursuit for simultaneous organics degradation and water filtration. In this research, we discovered that a radical polymer (RP) that can directly trigger the oxidative degradation of sulfamethozaxole (SMX). Mechanistic studies by experiment and density functional theory simulations revealed that peroxyl radicals are the reactive species, and the radicals could be regenerated in the presence of O2. Furthermore, an interpenetrating RP network membrane consisting of polyvinyl alcohol and the RP was fabricated to demonstrate the simultaneous filtration of large molecules in the model wastewater stream and the degradation of ~ 85% of SMX with a steady permeation flux. This study offers valuable insights into the mechanism of RP-triggered advanced oxidation processes and provides an energy-efficient solution for the degradation of organic compounds and water filtration in wastewater treatment.
Collapse
Affiliation(s)
- Feng Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yixin Mi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| | - Ronn Zhi Ning Chen
- National University of Singapore High School of Mathematics and Sciences, Singapore129957, Singapore
| | - Wei Liu
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Quantum Information Research Center, Southeast University, Nanjing211189, China
- Purple Mountain Laboratories, Nanjing211111, China
| | - Ji Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| | - Deyin Hou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| |
Collapse
|
43
|
Ling C, Li M, Li H, Liu X, Zhan G, Sun H, Liang C, Li Y, Zhou B, Zhao J, Zhang L. Symmetry dependent activation and reactivity of peroxysulfates on FeS 2(001) surface. Sci Bull (Beijing) 2024; 69:154-158. [PMID: 37957067 DOI: 10.1016/j.scib.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Affiliation(s)
- Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiufan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yaling Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bing Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jincai Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
44
|
Hu J, Wang R, Li S, Wu J, Qiang Z. Mechanisms of iopamidol transformation catalyzed by a copper corrosion product (c-Cu 2O) during peroxymonosulfate disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132821. [PMID: 37879278 DOI: 10.1016/j.jhazmat.2023.132821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Peroxymonosulfate (PMS) is an alternative disinfectant for drinking water. This study aimed to investigate the transformation of iopamidol (IPM) catalyzed by a main copper corrosion product (c-Cu2O) with PMS as a disinfectant. The observed pseudo-first-order constant (kobs) for the IPM degradation in the c-Cu2O/PMS system (0.033 min-1) was 3 times that in the CuO/PMS system (0.011 min-1). The quenching tests and the electron paramagnetic resonance (EPR) experiments indicate that O2•- and 1O2 contributed to IPM degradation in the c-Cu2O/ PMS system. The complexation of metastable Cu(II) with a PMS molecule polarized the OO bond and then facilitated the electron transfer from the PMS molecule to other PMS and O2 molecules, which directly and indirectly promoted the yield of O2•- and 1O2. The iodine balance indicated that 26.0% of initial TOI was converted to IO3-, and CHI3 only accounted for 0.6% of the residual TOI. In the c-Cu2O/PMS system, IPM conversion was started with amide C-N bond breakage, deiodination reaction and hydrogen abstraction. This study helps to better understand the conversion mechanisms of iodine-containing organic micropollutants when PMS is deployed as a disinfectant in copper pipes.
Collapse
Affiliation(s)
- Jun Hu
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China; Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China
| | - Ruiqi Wang
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Shangkun Li
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China; Zhejiang Huanke Environmental Research Institute Co., Ltd., Hangzhou 311121, China
| | - Jun Wu
- College of Environment, Center for Membrane and Water Science & Technology, Zhe, jiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China.
| | - Zhimin Qiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco, Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
45
|
Guo Y, Sui M, Liu S, Li T, Lv X, Yu M, Mo Y. Insight into cobalt substitution in LaFeO 3-based catalyst for enhanced activation of peracetic acid: Reactive species and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132662. [PMID: 37801973 DOI: 10.1016/j.jhazmat.2023.132662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
In this study, a hollow sphere-like Co-modified LaFeO3 perovskite catalyst (LFC73O) was developed for peracetic acid (PAA) activation to degrade sulfamethoxazole (SMX). Results indicated that the constructed heterogeneous system achieved a 99.7% abatement of SMX within 30 min, exhibiting preferable degradation performance. Chemical quenching experiments, probe experiments, and EPR techniques were adopted to elucidate the involved mechanism. It was revealed that the superior synergistic effect of electron transfer and oxygen defects in the LFC73O/PAA system enhanced the oxidation ability of PAA. The Co atoms doped into LaFeO3 as the main active site with the original Fe atoms as an auxiliary site exhibited high activity to mediate PAA activation via the Co(III)/Co(II) cycle, generating carbon-centered radicals (RO·) including CH3C(O)O· and CH3C(O)OO·. The oxygen vacancies induced by cobalt substitution also served as reaction sites, facilitating the dissociation of PAA and production of ROS. Furthermore, the degradation pathways were postulated by DFT calculation and intermediates identification, demonstrating that the electron-rich sites of SMX molecules such as amino group, aromatic ring, and S-N bond, were more susceptible to oxidation by reactive species. This study offers a novel perspective on developing catalysts with the coexistence of multiple active units for PAA activation in environmental remediation.
Collapse
Affiliation(s)
- Yali Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyuan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yaojun Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
46
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
47
|
Wu M, Zhang B, Wang H, Chen Y, Fan M, Dong L, Li B, Chen G. Exposed {110} facets of BiOBr anchored to marigold-like MnCo 2O 4 with abundant interfacial electron transfer bridges and efficient activation of peroxymonosulfate. J Colloid Interface Sci 2024; 653:867-878. [PMID: 37769365 DOI: 10.1016/j.jcis.2023.09.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/26/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Precise charge transfer modification and efficient activation of peroxymonosulfate are effective methods for increasing photocatalytic efficiency. Here, BiOBr/MnCo2O4 photocatalysts with abundant Mn-Br bonds were generated by immobilizing the exposed {110} facets of BiOBr in the marigold-like MnCo2O4. The prepared BiOBr/MnCo2O4 retained the marigold-like morphology of MnCo2O4 while exhibiting good adsorption properties and interface contact effects. More importantly, the interfacial Mn-Br bond between MnCo2O4 and BiOBr functioned as charge transport bridges, allowing for a directional transfer channel and lowering the potential energy barrier for interfacial charge transfer. In addition, the exposure of the {110} facets exhibited more Mn atom-anchored sites for easy anchoring of BiOBr, significantly solving the stability problem of the bismuth material. Compared to MnCo2O4 + BiOBr, which did not form Mn-Br bonds, the MnCo2O4/BiOBr heterojunction had more efficient photocatalytic activity (1.3 times) and stability. This suggested that using electronic bridges for directional charge transfer was an efficient way to improve photocatalytic efficiency.
Collapse
Affiliation(s)
- Mingkun Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Bowen Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Haonan Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yao Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Minguang Fan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, China.
| | - Lihui Dong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, China.
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, China
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China
| |
Collapse
|
48
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
49
|
Liu X, Qiao X, Yang R, Wei D, Qu X, Cao H, Li Y, Zhong Z, Lü J. Mechanism insights into photo-assisted peroxymonosulfate activation on oxygen vacancy-enriched nolanites via an electron transfer regime. J Colloid Interface Sci 2023; 652:912-922. [PMID: 37634364 DOI: 10.1016/j.jcis.2023.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The utilization of photo-assisted persulfate activation for the removal of organic contaminants in water has garnered significant research interest in recent times. However, there remains a lack of clarity regarding specific contributions of light irradiation and catalyst structure in this process. Herein, a photo-assisted peroxymonosulfate (PMS) activation system is designed for the highly efficient degradation of organic contaminants on oxygen vacancy-enriched nolanites (Vo-FVO). Results suggest that the degradation of bisphenol A (BPA) in this system is a nonradical-dominated process via an electron transfer regime, in which VO improves the local electron density and thus facilitates the electron shuttling between BPA and PMS. During BPA degradation, PMS adsorbed at the surface of FVO-180 withdraws electrons near VO and forms FVO-PMS* complexes. Upon light irradiation, photoelectrons effectively restore the electron density around VO, thereby enabling a sustainable electron transfer for the highly efficient degradation of BPA. Overall, this work provides new insights into the mechanism of persulfate activation based on defects engineering in nolanite minerals.
Collapse
Affiliation(s)
- Xiangji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxing Qiao
- College of Resources and Environment (Agricultural Environment and Resources Institute), Shanxi Agricultural University, No.1 Ming Xian Road, Jinzhong 030801, China
| | - Ruqian Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Wei
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinghua Qu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailei Cao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yafeng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China.
| |
Collapse
|
50
|
Tang L, Zhou S, Li F, Sun L, Lu H. Ozone Micronano-bubble-Enhanced Selective Degradation of Oxytetracycline from Production Wastewater: The Overlooked Singlet Oxygen Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18550-18562. [PMID: 36474357 DOI: 10.1021/acs.est.2c06008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficient and selective removal of refractory antibiotics from high-strength antibiotic production wastewater is crucial but remains a substantial challenge. In this study, a novel ozone micronano-bubble (MNB)-enhanced treatment system was constructed for antibiotic production wastewater treatment. Compared with conventional ozone, ozone MNBs exhibit excellent treatment efficiency for oxytetracycline (OTC) degradation and toxicity decrease. Notably, this study identifies the overlooked singlet oxygen (1O2) for the first time as a crucial active species in the ozone MNB system through probe and electron paramagnetic resonance methods. Subsequently, the oxidation mechanisms of OTC by ozone MNBs are systematically investigated. Owing to the high reactivity of OTC toward 1O2, ozone MNBs enhance the selective and anti-interference performance of OTC degradation in raw OTC production wastewater with complex matrixes. This study provides insights into the mechanism of ozone MNB-enhanced pollutant degradation and a new perspective for the efficient treatment of high-concentration industrial wastewater using ozone MNBs. In addition, this study presents a promising technology with scientific guidance for the treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Lan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Fan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou510006, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|